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Abstract

Growing work in algorithmic decision support proposes methods for combining
predictive models with human judgment to improve decision quality. A challenge
that arises in this setting is predicting the risk of a decision-relevant target outcome
under multiple candidate actions. While counterfactual prediction techniques have
been developed for these tasks, current approaches do not account for measure-
ment error in observed labels. This is a key limitation because in many domains,
observed labels (e.g., medical diagnoses, test scores) serve as a proxy for the target
outcome of interest (e.g., biological medical outcomes, student learning). We
develop a method for counterfactual prediction of target outcomes observed under
treatment-conditional outcome measurement error (TC-OME). Our method mini-
mizes risk with respect to target potential outcomes given access to observational
data and estimates of measurement error parameters. We also develop a method for
estimating error parameters in cases where these are unknown in advance. Through
a synthetic evaluation, we show that our approach achieves performance parity
with an oracle model when measurement error parameters are known and retains
performance given moderate bias in error parameter estimates.

1 Introduction

Predictive models are increasingly being introduced to support expert decision-making in real-world
tasks. In the medical domain, clinical models have been developed to inform patient treatment deci-
sions by predicting the likelihood of adverse health outcomes (e.g, heart attack, stroke) [Mullainathan
and Obermeyer, 2022]. In the educational domain, learning analytics tools have been introduced to
allocate additional tutoring resources to at-risk students [Livieris et al., 2016]. In these settings, policy
makers often wish to estimate the risk of a downstream target outcome under multiple alternative
actions [Schulam and Saria, 2017].

However, because outcomes were observed under the past decision-making policy, we do not
observe the counterfactual outcome that would under a different decision [Pearl, 2009]. This makes
it challenging to learn a counterfactual model given observational data. Recent work proposes
counterfactual modeling and evaluation approaches designed for decision-support settings Coston
et al. [2020b,a]. This work builds upon causal inference methods for conditional average treatment
effect (CATE) estimation [Abrevaya et al., 2015], which have received growing interest within the
machine learning community [Johansson et al., 2018]. We consider counterfactual modeling in two
real-world decision support tasks. In selective intervention tasks, a model estimates baseline risk
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under no intervention (e.g., risk of child neglect given no welfare services [Chouldechova et al., 2018],
or poor learning outcomes given no tutoring). In selective opportunity settings, a model estimates
risk of a target outcome under a proposed opportunity (e.g., likelihood default given receiving a loan,
or performance ratings given a new job). We study these counterfactual prediction settings where the
target outcome is subject to measurement error.

Outcome measurement error occurs when policy-relevant target outcomes (e.g., heart attack, student
learning) are imperfectly approximated by proxies (e.g., heart attack diagnosis, test scores) in data
[Jacobs and Wallach, 2021]. While measurement error and label noise have been studied in previous
literature [Menon et al., 2015, Natarajan et al., 2013, Wang et al., 2021, Fogliato et al., 2020, 2021],
this challenge has not been addressed in counterfactual prediction settings. Therefore, in this work,
we study the novel setting of counterfactual prediction in the presence of treatment-conditional
outcome measurement error (TC-OME). We offer the following contributions:

• We formalize the problem of counterfactual prediction under treatment-conditional outcome
measurement error.

• We develop a risk minimization approach (FRM-SL; Algorithm 1) for estimating target
potential outcomes given observed covariates, past decisions, and proxy outcomes observed
under treatment-conditional outcome measurement error. Our method combines covariate
adjustment techniques designed for CATE inference [Johansson et al., 2020] with a surrogate
loss developed by Natarajan et al. [2013] for label noise correction.

• We develop a method for estimating treatment-conditional measurement error parameters
(CCPE; Algorithm 2). Our approach builds on class probability estimation (CPE) techniques
designed for label noise settings [Menon et al., 2015, Scott et al., 2013].

• We evaluate FRM-SL and CCPE via synthetic experiments and show that FRM-SL achieves
performance parity with an oracle model given access to ground-truth error parameters.
We also show that FRM-SL performance is tolerant to moderate bias in CCPE parameter
estimates, and show that bias in estimates decreases as a function of sample size.

2 Problem setup

We consider a counterfactual distribution defined over p∗(X,D, Y ∗
0 , Y

∗
1 ), where X ∈ X ⊆ Rd are

covariates, D ∈ {0, 1} are past decisions, and Y ∗
0 , Y ∗

1 ∈ {0, 1} are target binary potential outcomes
of interest to human decision-makers. Under potential outcomes [Rubin, 2005], Y ∗

0 is the hypothetical
outcome we would see under the baseline condition when d = 0, while Y ∗

1 is the outcome we would
observe under the proposed intervention (selective intervention) or opportunity (selective opportunity)
when d = 1. Following the standard setup in causal inference, we only observe Y ∗

0 or Y ∗
1 for a given

instance such that Y ∗ = D · Y ∗
1 + (1−D) · Y ∗

0 [Pearl, 2009].

Given the counterfactual joint p∗, we would like to estimate the target quantity

η∗d(x) := P(Y ∗
d = 1 | X = x), ∀x ∈ X. (1)

where d = 0 in selective intervention settings, and d = 1 in selective opportunity settings.

However, rather than sampling directly from p∗, we draw samples i.i.d. from p(X,D, Y ), where
Y ∈ {0, 1} is a binary proxy outcome. Two challenges complicate estimation of η∗d(x) given samples
from p. First, observed proxies Y arise from potential outcomes such that Y = D ·Y1 +(1−D) ·Y0.
Therefore, we do not know the outcome that would have occurred had the counterfactual decision
been made in the past. Second, proxy potential outcomes Yd are subject to outcome measurement
error. In our treatment-conditional outcome measurement error (TC-OME) model, the proxy potential
outcome is observed under a false positive rate αd and false negative rate βd given by

αd := P(Yd = 1 | Y ∗
d = 0), βd := P(Yd = 0 | Y ∗

d = 1), ∀d ∈ D (2)

where αd + βd < 1. Figure 1 shows an example of TC-OME in a heart attack prediction context,
including factual and counterfactual target potential outcomes that can be observed under different
error rates for d = {0, 1}.
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Figure 1: Example of TC-OME in a heart attack prediction
setting. Under the past decision not to treat (factual in blue),
heart attack occurred (Y ∗

0 = 1) but went undiagnosed (Y0 =
0) and no heart attack was recorded (Y = 0). Had the patient
received treatment (counterfactual in grey), the patient would
not have had a heart attack (Y ∗

1 = 0) and would be correctly
diagnosed (Y1 = 0) and recorded (Y = 0) as such.

X

D

Y ∗ Y

Figure 2: Causal diagram of treat-
ment conditional outcome measure-
ment error.

Under this model, the class probability function of the proxy potential outcome Yd can be given by

P(Yd = 1 | X = x) = P(Yd = 1 | Y ∗
d = 1) · P(Y ∗

d = 1 | X = x)

+ P(Yd = 1 | Y ∗
d = 0) · P(Y ∗

d = 0 | X = x)

= (1− βd) η
∗
d(x) + αd (1− η∗d(x)), ∀x ∈ X, d ∈ D.

(3)

which gives an expression for the observed class probability ηd(x) in terms of the target class
probability η∗d(x). Modeling measurement error requires making assumptions on the relationship
between target and proxy outcomes [Jacobs and Wallach, 2021]. We make the following assumptions
in our model:

Assumption 2.1 (Measurement Error Model). Error parameters not depend on covariates X or
unmeasured confounders Z: P(Yd | Y ∗

d ) = P(Yd | Y ∗
d , X = x) = P(Yd | Y ∗

d , Z = z).

While this assumption follows from the class-conditional model studied in past literature [Menon
et al., 2015, Scott et al., 2013], our methods can be readily extended to settings where P(Yd | Y ∗

d ) ̸=
P(Yd | Y ∗

d , X = x) by applying a group-dependent error model [Wang et al., 2021]. It also follows
from e.q. 3 that ∀d ∈ D, ηd(x) is a strictly monotone increasing transform of η∗d(x).

2.1 Identifiability conditions

Figure 2 shows a causal diagram specifying the assumptions we make on the data generating
process in a TC-OME setting. Class probability functions η∗d and ηd are identifiable if they can be
computed uniquely from the observed distribution p(X,D, Y ). Our target causal estimand η∗d(x) is
not identifiable directly because potential outcomes {Y ∗

0 , Y ∗
1 } are unobserved. However, {Y0, Y1}

are identifiable under a standard set of causal identifiability assumptions:

Assumption 2.2 (Consistency). An instance receiving decision d ∈ {0, 1} has outcome Y = Yd:
Y = D · Y1 + (1−D) · Y0.

Assumption 2.3 (Ignorability). Potential outcomes and decisions are conditionally independent
given X: {Y0, Y1} ⊥⊥ D | X .

Assumption 2.4 (Positivity). For any set of covariates x ∈ X , both decisions have non-zero
probability of observation in the data: ∀x ∈ X, d ∈ {0, 1} : p(D = d|X = x) > 0.

3 Methodology

First, we develop an estimator for η∗d(x) given i.i.d. samples drawn from the observational joint
p(X,D, Y ) assuming a priori knowledge of error terms (Section 3.1). In practice, αd and βd are
unknown in advance. Therefore, in Section 3.2, we develop an approach for error parameter estimation
(Algorithm 2). This approach requires access to observational data from p and an additional weak
separability assumption commonly applied in class-conditional error settings [Menon et al., 2015].
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3.1 Risk minimization

Let f ∈ H be a probabilistic decision function belonging to H ⊂ {h : X → [0, 1]} and let
ℓ : R× {±1} → R+ be a bounded loss function. The ℓ-risk of f over Y ∗

d can be given by

R∗
ℓ (f) := EX,Y ∗

d
[ℓ(f(X), Y ∗

d )] (4)

where R∗
ℓ (f) is the marginal risk over the full population.

Because we wish to recover a class probability η∗d(x), we restrict ℓ to be strictly proper composite
such that argminf R

∗
ℓ (f) is a monotone transform ϕ of η∗d (e.g., the logistic and exponential loss)

[Agarwal, 2014, Menon et al., 2015]. This allows for recovering class probabilities from the optimal
prediction via the link function ϕ.

Johansson et al. [2020] show that the marginal risk over the full population can be decomposed into
factual and counterfactual components scaled by π = p(D = 1) via

R∗
ℓ (f) := π R∗

d,ℓ (f)︸ ︷︷ ︸
Factual

+(1− π)R∗
1−d,ℓ (f)︸ ︷︷ ︸

Counterfactual

. (5)

for d ∈ {0, 1}. The factual risk, denoted by subscript d, can be directly estimated over the sample
that received treatment D = d. Under ignorability, this factual risk is identifiable as

R∗
d,ℓ(f) := EX,Y ∗

d
[ℓ(f(X), Y ∗

d )] = EX,Y ∗|D[ℓ(f(X), Y ∗)|D = d] (6)

The factual risk R∗
d,ℓ(f) is a biased estimator for population risk R∗

ℓ (f) in observational settings (i.e.,
when X ⊥̸⊥ D) [Johansson et al., 2020]. However, previous work has demonstrated empirically that
bias correction techniques such as propensity re-weighting offer limited performance improvements
in counterfactual risk assessment settings given sufficient sample size and an expressive model class
[Coston et al., 2020b]. Therefore, in this work, we develop a minimizer for the factual risk R∗

d,ℓ(f)
and leave a comparison with re-weighting based approaches for future work.

The factual risk R∗
d,ℓ(f) cannot be estimated directly because target potential outcomes are unob-

served. Instead, we construct a surrogate loss ℓ̃ such that minimizing factual ℓ̃-risk w.r.t. proxy
outcomes Y is equivalent to minimizing factual ℓ-risk w.r.t. target outcomes Y ∗ in expectation
[Natarajan et al., 2013]. Under ignorability, the factual risk over the proxy potential outcome Yd is
identifiable by conditioning on D = d via

Rd,ℓ(f) := EX,Yd
[ℓ(f(X), Yd)] = EX,Y |D[ℓ(f(X), Y )|D = d] (7)

Given knowledge of error parameters, we wish to construct a surrogate loss ℓ̃ s.t. Rd,ℓ̃(f) gives an
unbiased estimator for R∗

d,ℓ(f)

EY |Y ∗=y∗,D=d[ℓ̃(f(x), Y )] = ℓ(f(x), y∗) (8)

∀x ∈ X s.t. D = d, where ℓ is computed on the target y∗ and ℓ̃ is computed over proxy outcomes Y .
By Lemma 1 in Natarajan et al. [2013] , such an ℓ̃ can be constructed via

ℓ̃(f(x),+1) :=
(1− αd) ℓ(f(x),+1)− βd ℓ(f(x),−1)

1− βd − αd

ℓ̃(f(x),−1) := (1− βd) ℓ(f(x),−1)− αd ℓ(f(x),+1)

1− βd − αd

(9)

∀x ∈ X s.t. D = d and arbitrary loss ℓ.
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Algorithm 1: Factual risk minimization
with surrogate loss (FRM-SL)
Input: Data W ∼ p
Output: Learned estimator for η̂∗d(x)

1 Compute parameter estimates
α̂d, β̂d ← CCPE(W )

2 Construct ℓ̃ parameterized by α̂d, β̂d

3 Learn η̂∗d(x) := argminf∈H R̂d,ℓ̃(f)

Algorithm 2: Conditional class probability es-
timation (CCPE)
Input: Data W = {Xi, Di, Yi}i∈N ∼ p

Output: Parameter estimates α̂d, β̂d

1 Partition W into subsets W 1, W 2

2 Learn η̂d(x) := argminf∈H R̂d,ℓ(f) on W 1

3 Use η̂d(x) to estimate error terms on W 2:
α̂d = min

x∈X
{η̂d(x)}, β̂d = 1−max

x∈X
{η̂d(x)}

Because Rd,ℓ̃(f) is over the observed joint p(X,D, Y ), we can compute the empirical ℓ̃-risk on
samples (X1, D1, Y1), ..., (Xn, Dn, Yn) from p

R̂d,ℓ̃(f) :=
1

|D′ |
∑
i∈D′

ℓ̃(f(Xi), Yi) (10)

where D
′
= {i ∈ 1, ..., N : Di = d}. We can then learn a predictor from observed data by

minimizing the empirical risk

f̂ ← argmin
f∈H

R̂d,ℓ̃(f) (11)

By Lemma 1 in Natarajan et al. [2013], e.q. 11 converges to the factual risk of the target potential
outcome R∗

d,ℓ(f) in expectation. Under the condition that ℓ is strictly proper composite, R̂∗
d(f) can

be used to recover desired class probabilities η∗d(x). Therefore, given a priori knowledge of αd, βd,
we can learn an estimator for η∗d(x) given samples from p(X,D, Y ).

3.2 Error parameter estimation

Directly minimizing R̂d,ℓ̃(f) is challenging because error parameters are often unknown in advance.
Therefore, we develop a procedure for estimating error terms, then use estimates α̂d, β̂d to construct
the surrogate loss. Our parameter estimation approach places a weak separability assumption on p∗.

Assumption 3.1 (Weak Separability). For fixed d ∈ {0, 1}, there exist target potential outcomes Y ∗
d

such that infx∈X{η∗d(x)} = 0 and supx∈X{η∗d(x)} = 1.

This assumption has been widely applied in observational label noise settings [Menon et al., 2015,
Xia et al., 2019, Wang et al., 2021]. In our counterfactual setting, this assumption stipulates that there
exists an individual at no risk (Y ∗

d = 0) and another individual at certain risk (Y ∗
d = 1) under d = 0

in selective intervention settings or d = 1 in selective opportunity settings. This assumption need
only hold for d = 0 or d = 1 depending on the target quantity of interest in a given setting.

Given weak separability, error parameters can be estimated by substituting η∗d(x) = 0, η∗d(x) = 1
into the TC-OME model (e.q. 3) and solving

η∗d(x) = 0 =⇒ αd = inf
x∈X

ηd(x)

η∗d(x) = 1 =⇒ βd = 1− sup
x∈X

ηd(x)
(12)

where we can take the infimum and supremum of ηd(x) because it is a monotone transform of
η∗d(x) by e.q. 3. Therefore, we estimate αd, βd by learning η̂d(x), then computing the minimum
and maximum over class probabilities predicted on a held-out sample (Algorithm 2). For statistical
purposes, we perform each step on disjoint data folds [Menon et al., 2015]. Estimates α̂, β̂ can then
be used to construct ℓ̃ and minimize e.q. 11 to learn η̂∗d(x) (Algorithm 1).
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(0, 0) (.1, .3) (.2, .2) (.3, .1)

OBS 55.6 (±6.0) 54.5 (±1.7) 53.7 (±4.6) 58.5 (±3.5)

FRM 75.6 (±3.4) 63.0 (±8.7) 72.1 (±7.7) 67.9 (±6.8)

FRM+SL 77.1 (±0.5) 76.2 (±0.8) 69.3 (±9.6) 73.0 (±6.8)

PROXY∗ 75.1 (±3.6) 65.8 (±11.7) 75.4 (±3.8) 64.6 (±12.4)

TARGET∗ 72.6 (±7.5) 75.7 (±2.9) 70.7 (±9.4) 72.9 (±9.3)

Table 1: Mean accuracy (%) over 10 runs with standard
error reported in parentheses N = 10, 000. Results for
configuration (αd, βd) shown in each column.

Figure 3: Parameter estimation er-
ror as a function of sample size.

Figure 4: FRM-SL performance as a function of bias in α̂0, β̂0. We vary α0 (β0) across columns
keeping β0 (α0) fixed at 0.

4 Experiments

Setup. TC-OME evaluation on real-world data is challenging due to compounding uncertainty
from (1) unobserved potential outcomes [Pearl, 2009, Coston et al., 2020b] and (2) measurement
error [De-Arteaga et al., 2021, Fogliato et al., 2021]. Therefore, we conduct a controlled synthetic
evaluation to validate our approach. Our evaluation emulates a selective intervention setting with
target quantity η∗0(x). We use a unidimensional covariate X ∼ U(−1, 1) and sinusoidal functions
η∗0(x), η

∗
1(x) satisfying weak separability. We sample Y ∗

0 , Y
∗
1 ∼ Bern(η∗d(x)), ∀d ∈ D and generate

proxy outcomes by flipping Y ∗
0 , Y

∗
1 with probability given by α0, β0. We observe outcomes Y by

sampling from a propensity function π(x) = P(D = 1 | X = x) that is linear in X . We use an MLP
trained via binary cross-entropy loss in all experiments. Appendix A.1 contains additional details.

Experiments. Experiment one (Table 1) compares (i) an observational model targeting Y (OBS);
(ii) factual risk minimization with unmodified loss (FRM); and (iii) factual risk minimization with
a surrogate loss parameterized by α0, βd (FRM+SL; Algorithm 1). We compare against oracles
predicting Y ∗

0 (TARGET∗) and Y0 (PROXY∗). We report accuracy with respect to Y ∗
0 on a held-

out sample in line with a selective intervention setting targeting η∗0(x). As shown in Table 1,
OBS performs poorly across all configurations. FRM and oracle methods perform comparably in
configurations with (1) no measurement error (α0 = 0, β0 = 0) and (2) with symmetric error terms
(0.2, 0.2). In the former case, a surrogate loss is not needed to correct for measurement error. In the
latter, FRM and PROXY∗ perform well because the optimal threshold minimizing misclassification
risk can be computed directly from observed labels given symmetric error terms (see Menon et al.
[2015], Appendix F.1). In more realistic asymmetric error configurations (.1, .3), (.3, .1), FRM+SL
outperforms FRM and performs at parity with TARGET∗. While this experiment assumes oracle
access to α0, βd, we conduct an additional experiment (Figure 4) showing that FRM+SL performance
is robust to bias in α̂0, β̂0 in the neighborhood of ±.05 to ±.1 depending magnitude of α0, β0.

Experiment two (Figure 3) evaluates CCPE as a function of sample size. We construct π(x) and η∗0(x)
such that π(x) ∝ η∗0(x). This mirrors the real-world setting in which individuals at high baseline risk
are more likely to receive a risk-reducing intervention. Because this results in lower sample density
over the high risk region of η∗0(x), the learned approximation η̂0(x) is likely to be worse near the
supremum of η∗0(x) than at its infimum. As a result, we expect more bias in β̂d than α̂d. Figure 3
shows that estimates improve as N increases, and confirms slower convergence for β̂d than α̂d.

6



5 Discussion

We introduce a novel treatment-conditional outcome measurement error model that formalizes key
challenges in counterfactual prediction settings. We provide risk minimization (Algorithm 1) and
parameter estimation (Algorithm 2) techniques designed for this setting. Synthetic results demonstrate
that FRM+SL provides a strong improvement over FRM alone in asymmetric error settings. Results
also show that FRM+SL performance remains robust given bias in α̂d, β̂d, and that CCPE recovers
reasonable estimates for αd, βd.

Our counterfactual identification and measurement model assumptions can be violated in some
real-world settings. For instance, ignorability (Assumption 2.3) can be violated if humans make use
of predictive contextual factors that are not recorded as covariates [Kleinberg et al., 2018, Lakkaraju
et al., 2017]. This issue can be partially circumvented if unobservables are only un-available at runtime
[Coston et al., 2020b]. In decision support settings, positivity violations are not of major concern. This
is because the instances that require support from predictive models often have uncertain risk profiles
and could receive either decision. In contrast, the “cut-and-dry” cases potentially violating positivity
(Assumption 2.4) are normally routed through other administrative decision-making procedures.
It is also important to carefully consider, based on domain expertise, whether weak separability
(Assumption 2) is likely to hold in a given modeling context. This assumption has shown to be
unreasonable in some settings (e.g., criminal justice [Fogliato et al., 2020, 2021]), and should not be
relied upon without careful cross-checking with existing domain knowledge.

6 Related work

To our knowledge, the treatment-conditional error setting we study is novel in this work. Techniques
have been developed for addressing class-conditional [Menon et al., 2015, Scott et al., 2013], group-
dependent [Wang et al., 2021], and instance-dependent [Xia et al., 2020] label noise models. Menon
et al. [2015], Scott et al. [2013] and Northcutt et al. [2021] develop noise rate estimation approaches
commonly used in label noise settings. Recently, De-Arteaga et al. [2021] propose a method
leveraging inter-expert consistency to adjust for measurement error in proxy outcomes. Yet this
approach is designed for observational, rather than counterfactual, prediction settings. Coston et al.
[2020b] develop counterfactual modeling and evaluation approaches for decision-support settings
without accounting for measurement error.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We highlight opportunities for

future work in 5
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the

main experimental results (either in the supplemental material or as a URL)?
[Yes] https://anonymous.4open.science/r/counterfactual-decision-support-under-TCE-
F53E/

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Appendix

A.1 Details of experimental setup

Synthetic setup: Conducting evaluations for settings in which measurement error and treatment
effects impact observed outcomes is challenging because often there is no way of recovering the
target counterfactual outcome or the measurement error parameters. Therefore, we design an initial
empirical evaluation via synthetic data to validate our proposed approach. Previous approaches have
also used a uni-variate feature and protected attribute Coston et al. [2020b] or 2D synthetic data
Natarajan et al. [2013], De-Arteaga et al. [2021]. We plan to extend to these settings and others with
semi-synthetic and real-world data in later evaluations.

In all experiments, we use sinusoidal target class probability functions

η∗0(x) =


.4 + .4 cos(9x+ 5.5) x ∈ [−1,−.61]
.5 + .3 sin(8x+ .9) + .15 sin(10x+ .2) + .05 sin(30x+ .2) x ∈ (−.61, .921]
x3 x ∈ (.921, 1]

(13)

and η∗1(x) = .5+ .5 sin(2.9x+ .1) ∀x ∈ [−1, 1]. We design η∗0(x) to be more challenging to estimate
because we use it as our target quantity in this selective intervention setting. In all experiments, we
use a linear propensity function π(x) = .35x+ .5,∀x ∈ [−1, 1].
Model and hyperparameters: All experiments use a MLP implemented via PyTorch with layer
sizes (1, 40, 20, 4, 1) and a binary cross-entropy loss satisfying our strictly proper composite criteria
for class probability estimation. We run experiments with α = .001.

Evaluation. In all experiments, we split data 70/30 into training and validation folds. We evaluate
accuracy with respect to Y ∗

0 on a held-out validation fold. We use accuracy as a performance measure
rather than a metric such as AU-ROC because AU-ROC is immune to corruption from our error
model (see Menon et al. [2015] for additional details).

Computing Environment Experiments were run on a MacBook Pro with 2.6 GHz 6-Core processor
with 32 GB of RAM and Google Colab environment with standard runtime configuration.

A.2 Details of experiment configurations

• Experiment 1. Reported in Table 1. We run each setting with N = 10000 and average
performance over 10 runs with 40 epochs of training per run.

• Experiment 2. Reported in Figure 3. We run each setting with N =
{1000, 2000, 3000, 4000, 5000, 10000, 20000} with 150 runs per setting and 30 epochs
of training per round. Each round, we sample α0, β0 ∼ U(0, .3).

• Experiment 3. Reported in Figure 4. We run each setting with N = 10000 with 15 runs
per setting and 30 epochs of training per round. We vary αd (βd) from .1, .2, .3 and hold β0

(α0) fixed at 0. We then construct the surrogate loss ℓ̃ with biased parameter estimates α̂0,
β̂0 parameter estimates.

A.3 Baselines

• P̂ℓ[Y = 1|X = x] (OBS)

• P̂ℓ[Y = 1|D = d,X = x] (FRM)

• P̂ℓ̃[Y = 1|D = d,X = x] (FRM-SL)

• P̂ℓ[Yd = 1|X = x] (PROXY∗)

• P̂ℓ[Y
∗
d = 1|X = x] (TARGET∗)

In causal inference settings, FRM is also referred to as a backdoor covariate adjustment or plug-in
estimator Coston et al. [2020b,a], Pearl [2009].
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