
Konjak: Live Visualization in Deep Neural Network Programming as a
Learning Tool
Anonymous Authors *

Author’s Affiliation

ABSTRACT

Visualization in deep neural networks (DNNs) development could
play a key role in helping novice programmers to inspect and under-
stand a network structure. However, these visualizations are usually
available only after the implementation of the DNN program. We
propose combining a code editor with a live visualization of the
DNN structure to assist machine learning novice users during the
DNN code development. The user assigns operation blocks and
input data size in the code editor, and the system continuously up-
dates the network visualization. The visualization is also editable,
where the user can directly use drag-and-drop operations to build a
network. To our knowledge, we are the first to tightly combine text-
based programming editor with live and editable visualization as an
educational tool in DNN programming, which can help understand
the concept of shape consistency. This paper describes the system’s
design rationale and presents an exploratory user study to evaluate
its effectiveness as a learning environment.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

In recent years, deep learning networks (DNNs) have been surging
in many classical machine learning tasks, such as image classifica-
tion [16, 18, 23, 30], object detection [15], text generation [11], and
rendering [21]. As a sub-domain in machine learning, DNNs show
impressive performance in most of the tasks above, even surpass-
ing human-level accuracy. DNNs’ powerful ability to dig insights
from data makes it one of the most popular tools for researchers and
practitioners to utilize in practice.

For non-expert machine learning users, like software engineers,
medical doctors, and artists, DNNs are attractive for applications in
their domains. Libraries like Tensorflow [1, 2] and Pytorch [29] pro-
vide high-level APIs to enable a more approachable model building
without losing the flexibility needed by expert users to customize
more details in their model. In general, DNNs are sequences of
mathematical functions (a.k.a. layers) to process data in the form of
multi-dimensional arrays (a.k.a. tensors), and arguments of these
functions rule legal tensor shapes that can be processed. The pro-
grammer needs to consider the alignment between layer arguments
and assumed input data shape at the early DNN programming stage.
However, this is not an easy task for a novice machine learning user.
We will detailedly describe the shape inconsistency error that the
misalignment will lead to in Sect. 3.

By observing expert machine learning users and rethinking our
own experience, we noticed that the network diagram plays a crucial
role in DNN programming practice. DNN developers or researchers
often draw node-link diagrams on a whiteboard for DNN structure
communication [36] as well as scholarly communication. In the

*e-mail: Author’s email

Figure 1: Konjak shows live visualization next to the text-based code
editor, providing continuous feedback on the Deep Neural Network
structure to the programmers. The visualization also supports direct
manipulation to edit the corresponding text code.

current DNN programming practice, visualization is optional and
only available after the training phase. These visualization tools
enable network validation at a very late stage in DNN modeling
procedures, although visualization can guide the user during the code
editing. Tools such as A Neural Network Playground [31] introduce
manipulable visualization into DNN education to help explain the
mechanism but do not show the corresponding text-based code. This
prevents novice users from improving DNN programming skills,
which usually involves text-based programming.

We propose Konjak, a system to augment a standard text-based
code editor with an always-on and editable live network structure
visualization to help machine learning novice programmers to learn
DNN programming, as shown in Fig. 1. Konjak enables higher live-
ness than the current practice of DL system development, where the
programmers can bidirectionally check and edit the DNN between
synchronized code panel and visualization panel. We support an
automated tensor shape checker to help users, especially novices,
tackle a shape inconsistency error at where they occur in time. By
comparing the codes and adjacent DNN visualization and repeating
edit on either of them, the programmer can qualitatively improve
the DNN programming skill. We contribute to Human-Computer
Interaction (HCI) as follows:

• A literature study on DNN visualization based on figures from
machine learning academic papers and existing visualization
tools. From it, we summarize visual principles for the DNN
programming environment.

• A novel DNN programming environment for teaching non-
expert programmers about DNN modeling and programming
paradigm. The programmers can edit the neural network in
the editable live visualization and check the tensor shape in
real-time.

• An exploratory user study that shows Konjak helps in two

aspects: novice machine learning users could touch the DNN
programming paradigm and fix layer-tensor alignment during
programming; experienced DNN programming trainers could
teach the skills to the learners by demonstrating text-based
editing and the corresponding effect on the visualization, or
vise versa.

2 RELATED WORK

2.1 Deep Neural Network Bug and Repairing
In practical DL system development, the developers mainly use mod-
ern DL frameworks like Tensorflow [1], Chainer [35], Pytorch , [29]
and Keras [10] to programmatically build their model. These embed-
ded domain-specific-languages (DSL) provide packaged functions
and layers in DNN programming and keep updated to support the
newest statistical functions proposed in the machine learning commu-
nity. Many studies have researched on challenges that a programmer
may face in DL system development. Amershi et al. surveyed soft-
ware engineers from Microsoft teams. They found that the more the
programmer experiences machine learning software engineering, the
more they consider the use of “AI tools” as a challenge [4]. Cai et al.
investigated software engineers’ motivation, hurdles, and desires in
shifting to machine learning engineering and found that “implemen-
tation challenge” is unignorable [7]. Zhang et al. and Islam et al.
looked deeper into the DL programming process by analyzing posts
from StackOverflow and repositories on GitHub [19, 39]. According
to them, “Program Crash” is a common category of bugs in the deep
learning system, and amongst this type, “Shape Inconsistency” is
one of the most questioned bug types. “Shape Inconsistency” refers
to runtime errors caused by mismatched multi-dimension arrays
between operations and layers [39]. To ensure that the shape of the
array will not differ from the developer’s desired mental model, the
programmer may keep calling print statement or have their model
visualized after the editing towards the network definition program
file is over, then repeat the process until they are satisfied with the
network’s structure. Konjak is designed based on our observation
of this specific type of bug. With the “Level 3” liveness in DNN
programming (as explained in the following subsection), the novice
programmer can more efficiently master the mechanism of DNN
development.

2.2 Coding-free DNN Development Tools
In response to the growing desire to become a more professional
programmer in data science [4,7,24], Konjak plays the role of a novel
DL programming learning environment. AutoML [13] provides a
commercial online service to allow the user to upload their data
and have their data automatically analyzed without touching the
complicated machine learning algorithm and program. It is end-to-
end, which means the only thing the user needs to do is to prepare
desired input and output data pairs, and the algorithm will pick
a proper model and train it automatically. Thus the pipeline is
simple enough for those end-users who even don’t have coding
experience at all, but it is also not originally designed with teaching
machine learning programming paradigm in mind. Neural Network
Console [32] by Sony and DL-IDE [33] by IBM provides the user
with a fully graphical interface for DNN modeling using block-based
visual programming language, without exposing codes to the user.
From Tanimoto’s classification [34], both of them utilize a “Level
2” liveness in DNN modeling, which means the network structure
diagram is editable and executable but not always responsive to the
user’s edits. However, these coding-free DNN development tools
are limited in capability and flexibility. You can do much more
by direct coding using frameworks. From the study by Qian et al.
in [37], in data science model building, experts prefer graphical
tools for communication and education, while non-experts prefer
code editor where they are able to start from existing codes. To
fill the gap by providing both ways in the user interface, Konjak

is initially designed for novice’s DL programming education. We
retain the code editor and experiment “Level 3” liveness in modern
DNN modeling since its visualization and codes update in nearly
real-time whenever the user edits the model in its interface.

2.3 Live Programming Environment
Our system is categorized into live programming environments, a
concept that already has a long history [27, 34]. The main core of
these techniques is the liveness in the programming experience of
the under-development program, which is demonstrated by contin-
uously providing the programmers simultaneous feedback so that
an evaluation phase can be integrated with the code-editing phase
to some degree [27]. By reducing the latency between writing the
code and checking its behavior [34], the programmer will have a
better comprehension of the behavior they are conducting towards
the program. A number of live programming environments have
been implemented for different domains while with corresponding
features emphasized. For example, TextAlive [22] allows editing
computer graphics animation algorithms whose rendering results are
shown next to the code editor. Omnicode [20] provides an always-on
visualization that presents all numerical values throughout the whole
execution history in order to provide the user with better program
understanding; Projection Boxes [26] are interaction techniques to
enable on-the-fly configuration of such always-on visualizations;
Sketch-n-Sketch [17] contributes an output-oriented programming
interface to bidirectionally (code⇔ screen) create and manipulate
graphical designs (scalable vector graphics [SVG]); Plotshop [5, 6]
augments a text-based code editor with an interactive scatter plot
editor to enable the user to author synthetic 2D points dataset for
machine learning algorithm test more intuitively. Skyline [38] is
quite a similar project with Konjak in concept and background but
focuses on in-editor DNN computation performance profiling.

3 BACKGROUND ON DNNS PROGRAMMING

As stated in Sect. 2, many previous works have focused on obstacles
that a user might meet during writing DL programs and utilizing
DL in their systems [4, 7, 19, 39]. In this paper, we especially focus
on model structure comprehension and tensor shape inconsistency
during DNNs programming. This section briefly introduces the
background of DNNs programming practice and common bugs in
DL development.

a) DNN programming using DL libraries: Writing a program to
define a DNN is actually to assemble a series of mathematical func-
tions into a sequence. The finished function sequence is called a
network, and each mathematical function is identified as a layer in
the network, which may have weights. In practice, DL libraries are
maintained to provide common layers and tools to build up a net-
work, which has much-eased programmers’ burden in the network
programming phase. Once the network is assembled up, the program-
mer writes scripts to define the training process, where the DNN is
created as an instance, also called model, then its weights iteratively
learn from batches of input data. In their heart, DNN models receive
data in specific tasks and output predictions. In each iteration of the
training process, the model makes a prediction towards the input data
batch, and based on errors of the prediction, the model’s weights are
updated to reduce the prediction error. In this process, layers receive
and emit data in the form of a multi-dimensional array, e.g., for an
image as the input into the network, the tensor is usually in shape
(batch size, channel size, height, width). The multi-dimensional
array is heuristically called activation or tensor. After the training is
finished, the programmer evaluates the performance of the trained
model, and iteratively improves it by muting arguments and network
structure. Optionally, the programmer may deploy the model into an
actual system.

b) Common bugs in DNN programming: Bugs in DNNs can be

Table 1: Examples of DNN structure visualization design. We categorized them based on (a) what the node represents and (b) how to draw the
node.

(a) What the node represents

YOLO Customized Architecture

Fully Connected Fully Connected

Y
O

L
O

𝟏
×
𝟏

C
o
n

v

𝟑
×
𝟑

C
o
n

v

𝟑
×
𝟑

C
o
n

v

R
e
L

U

B
a

tc
h

N
o
rm

R
e
L

U

s
u

m

Tensor [25] Layer [9]
(b) How to draw the node

𝟐𝟐𝟒

𝟐𝟐𝟒

𝟑

𝟏𝟏

𝟏𝟏

𝟒𝟖

𝟓𝟓

𝟓

𝟓

𝟓𝟓

𝟐𝟕

𝟐𝟕

𝟑𝟐 × 𝟑𝟐 𝟐𝟖 × 𝟐𝟖
+

++ ++

++

+

+

~

~

~

~

𝟏 × 𝟏 𝟏 × 𝟏

𝟏 × 𝟏

𝟑 × 𝟑

𝟏 × 𝟏 𝟏 × 𝟏

𝟏 × 𝟏

𝟑 × 𝟑

𝟏 × 𝟏

𝟑 × 𝟑

𝟏 × 𝟏

𝟑 × 𝟑

3D-box [23] Stacked Sheets [25] Flow-like [9]

identified as explicit or implicit bugs. Explicit bugs are those that
crash the program and abort the training or evaluation process. Im-
plicit bugs won’t produce any errors during program execution but
cause symptoms like abnormal training or low prediction accuracy.
In this work, we focus on explicit bugs that crash the program. Ac-
cording to Zhang et al. in their study over DL-related questions
collected from StackOverflow [39], the most common explicit bugs
that cause program crash in DNN program are: 1) Shape inconsis-
tency: Layers in a network are defined with several arguments and
can only receive tensors in a specific shape. If a layer’s arguments
mismatch with the input tensor shape (e.g., in the image classifica-
tion task, produces a tensor that has non-integer height or width),
the execution will be aborted and throw an error; 2) Numerical er-
ror: data in DNNs is mainly defined as float point values [12], and
inconsistent numerical type will easily raise an undesired error, e.g.,
when a float64 tensor is an input to a layer with float32 weights; 3)
CPU/GPU incompatibility: GPU plays a vital role in accelerating
DNN’s training and evaluation iteration but given a trained model
and relevant published codes, the execution may fail on another
CPU-only machine because the codes are GPU only. These bugs are
most frequently asked in DL application-related questions and do
not occur in conventional non-DL applications.

4 A LITERATURE STUDY ON DNN VISUALIZATION

We address the learning of novice in DNN programming by intro-
ducing a synchronized visualization bound with text-based program-
ming. Prior to the design of the system, we first investigated com-
mon network drawing practices in DNN to reflect the programmer’s
mental model towards the under-developed model within our inter-
face. We follow procedures to create more effective domain-specific
visualization for communication proposed by [3]. We collected hand-
drawn DNN structure diagrams from DL papers to build a database.
The papers are picked from Paperswithcode.com [28] by visiting
leaderboards in three computer vision areas (i.e., image classifica-
tion, object detection, and semantic segmentation). Besides referring
to DL papers, we also get insights from the existing DNN model
visualizers, which automatically renders a trained model matrix or
manually input network definition into a visual representation.

We analyzed the DNN visualization database (including diagrams
from papers and synthesized by tools) and categorized the visualiza-

tions in terms of visual encoding. In the DNN visualization database,
it is common to draw network structure in a node-link diagram. We
noticed that there are two branches in the design decision what the
node represents (see Table 1): some diagrams choose node as the
visual factor when representing the tensors, and the adjacent link
represents layers to process tensors; Other diagrams, on the contrary,
emphasize layers as nodes in visual representation, in this case, links
indicate tensor’s flow in the network.

Another important choice in visualization design is how to draw
the node in the diagram, especially in diagrams where tensors are
emphasized as nodes. In our observation, three answers are given
in this choice: One is to draw the node in a 3D-box, which is
the style adopted in network structure diagram by AlexNet [23],
the paper opened DL’s new age in 2012. Tensor data in DNN
can be a 1-D vector or an n-D array, and each dimension’s size
affects the network’s correctness. Drawing tensors in 3D-boxes
gives the user an instinctive representation of the tensor’s concrete
shape; The other style is to draw the node in Stacked Sheets. Here
tensors are represented as some stacked rectangles. The size of
the rectangle is the encoding of a tensor’s map sizes (width and
height), and the number of rectangles is encoded from the channel
number of a tensor. This style is adopted by LeCun et al. in 1998’s
famous DNN structure LeNet; a Very limited amount of diagrams
choose a flow-like style to represent the flow of tensors. This style
encodes tensors into some “rivers,” and the river’s width represents
the tensor’s channel number. However, the tensor map’s width and
height information is omitted in this drawing style. On the other
hand, in diagrams where a node represents a layer, the node is usually
drawn as a plain rectangle.

As stated in the previous section, “Shape Inconsistency” is the
main problem we want to solve in a novice’s DNN programming
learning. Therefore, in the first choice what the node represents,
we pick tensors as the majority of the structure graph. In terms
of the second choice how to draw the node, we choose 3D-box
to show the tensor’s shape as much as possible. Nevertheless, the
layer’s information should be contained in the visualization. Thus
in our design, we divide a separate panel from the interface to list
information of all the layers defined by users in code.

Figure 2: Screenshot of the code editor at left half of the user
interface: (a) the code editor, (b) the program error log panel and (c)
the inline shape consistency indicator.

5 KONJAK

We implemented a prototype system, called Konjak, to show the
feasibility and effectiveness of live visualization for teaching novices
DNN programming and accelerating their progress to DL software
engineering. It is implemented as a web-based application writ-
ten in JavaScript. We use Python as the user-facing language and
Chainer [35] as DNN API. We choose Chainer as the DNN library
because it was one of the most popular DNN libraries at the time
of the implementation; meanwhile, its pioneered dynamic eager
execution characteristics has deeply inspired later DNN libraries’
API design [2, 29]. Keeping the education purpose in mind, we
now visit every component in Konjak’s interface and explain their
design motivation and functions. The user interface consists of two
tightly interlinked main components, the code editor and the live
visualization.

5.1 Code Editor

The left half of the screen is split as the code editor component,
where the user writes a program like in a standard workflow of
general-purpose programming (See Fig. 2). This consists of three
child components: a) text-based code editor, b) problem panel, and
c) inline shape check and highlight.

a) Text-based code editor: We utilize CodeMirror [14] as the
backbone of the text-based code editor in a browser. The user
writes a DNN structure program in this area. Note that although
in the prototype we only support Chainer, without loss of gener-
ality, the interface can be transferred to other popular DNN li-
braries like PyTorch due to their similar API design. A DNN
structure in Chainer usually starts from inheriting a built-in class
chainer.Chain, which is a class to define a neural network com-
posed of several layers (chainer.links or chainer.functions).
In actual code structure, the user defines layers to use in the network
in function __init__ by assigning Chainer.links instances to at-
tributes. For example, the code self.c0 = L.Convolution2D(3,
16, 3, 1, 1) assigns a 2D convolution layer instance to a attribute
c0, with the convolution layer’s arguments given as “Use a 3×3 ker-
nel to convolute a 3-channel tensor in stride 1, and output 16-channel
tensor. In convolution, the input tensor map is spatially padded with
width 1 for each channel”.

The other necessary component in code is function __call__,
where the user gradually connects layers defined in function
__init__ to input data. When the network definition is over, the
user is supposed to give a shape definition of input data in a com-
ment, e.g., in line 23, x=(32, 128), means x is a tensor in the
shape of 32×128×128. In our current prototype, we assume that

Figure 3: Screenshot of the live visualization at right half of the user
interface: (e) layer card bar to list all layers defined in the program,
and (d) the interactive graph visualization panel for visualizing
network structure and tensor shape.

the input data’s width and height are the same for simplification.
Konjak provides a live programming environment that always parses
the under-development program and updates its visualization. Every
time the user stops typing after 0.5 seconds, the browser will send
the program back to a server to have it checked for further visual
feedback.

b) Problem panel: After the program is sent to the server, its syntax
will be checked first by the library Pylint. If no errors are found, the
server parses the received program into AST and sends simplified
AST back to the browser in JSON format. Konjak renders the
received JSON into visualization in the user interface and prints
an error message in the problem panel, which can be syntax errors
detected by Pylint or non-syntax errors (tensor shape inconsistency).
The state of the program is encoded to panel background color to
notify users, where red is for error and green is for success. The line
number is included in the message to help users locate errors.

c) Inline shape check and highlight: Synchronized with the prob-
lem panel, in-situ tensor shape inconsistency indicator is activated
in lines where __call__ function is defined. Applying exactly the
same color encoding as the problem panel, the line where the in-
consistency happens will become red. The indicator stops showing
color at that line. Otherwise, all lines in the __call__ function
show green.

5.2 Live Visualization

Live visualization (See Fig. 3) is designed to help novices lively
check DNN structure and interactively connect layers to tensors lies
in the right half of the user interface. Following the design principles
we described in the last section, we use two sub-panels to visualize
the neural networks: d) layer card bar and e) graph visualization
panel.

d) Layer card bar: We retain a bar to list all layers defined in
function __init__. In this bar, all the layer instances assigned to
the network’s attributes are drawn in separate cards, and Konjak
places the cards in the narrow bar vertically, following the order that
layer instances are created in the program. These layer cards are
responsive to the program in the code editor. When the user adds
or deletes lines in the program to create or delete layer instances,
the corresponding layer cards will simultaneously arise or disappear.
Taking the characteristics of different types of layers in DNN into
consideration, we present a brief and explanatory layer card design.

Fig. 4 shows some examples of layer cards in Konjak. For the

(a) Convolution (b) Normalization (c) Linear

(d) Activation (e) Dropout (f) Pooling

Figure 4: Examples of layer card designs.

top 2/3 space of the card, we draw different sketches to represent
different types of neural network layers. These brief sketches also
indicate the layer’s effect on the tensor shape, e.g., a linear layer will
flatten a tensor into a fixed-length vector, and a max-pooling layer
down-sample a tensor by picking the maximum value in each tile of
the tensor to reduce original data volume to a smaller one. We show
the layer’s parameter information at the bottom 1/3 space for those
layers that only receive and emit specific data size. At the left end of
the cards, we encode different layer categories into a colored strip
(Orange for convolution, purple for normalization, ash for linear, red
for activation, dark blue for dropout, and green for pooling). Every
time the user edits parameters to create a layer instance in the code
editor, the corresponding layer card updates its drawing as well as
information.

(a)

(b)

Figure 5: Drag-and-drop function in Konjak’s live visualization. (a)
the user is allowed to drag a layer card and drop it on the tensor
node they want to connect the layer to, then the graph visualization
updates to reflect the connection, meanwhile (b) new code line (red
frame) is synthesized simultaneously in code editor.

e) Graph visualization panel: this is the heart of Konjak, which
interacts with all other components in the user interface. Similar to
the layer card bar, it mainly provides the user synchronized visual
representation of the network structure in the form of a node-link
graph. To keep the user’s image towards tensor shape clear, we draw
3D tensor nodes in 3D-box and 2D tensor nodes in the 2D bar, with
tensor shape printed next to the box (Channel×Height×Width).
Color encoding of the cube or the 2D bar is consistent with the

layer card but to indicate layer type that reproduces the tensor. As
a special type of tensor, we encode input data as grey cubes. h or
x at the side of tensor nodes means these tensors are assigned to
variables in the program.

Graph visualization panel interacts with the layer card bar by
providing a drag-and-drop feature. The user is allowed to click
and drag the layer card, then drop it on these tensor nodes with the
variable names to connect the layer to the tensor node. After the
drag-and-drop operation, a new node will show as the next tensor,
and variable information updates simultaneously. This operation
will also affect the code editor as a way to synthesize new code
lines in relevant line numbers from visualization. We implement
this feature by binding the visualization elements with the relevant
line number and offset information in the program. When the drag-
and-drop operation is conducted, Konjak attaches the synthesized
codes after the relevant last line, then the browser sends the updated
program back to the server and re-render the visualization based on
the response from the server. The editable visualization, together
with the synchronized update from code editing to visualization,
builds a bidirectional DNN editing experience for novices. To make
the binding between program and visualization tighter, when the user
move cursor in the code editor, the line cursor movement will trigger
highlights in relevant visual parts. In reverse, if the user’s mouse
hovers on link (layer) or node (tensor) in the graph visualization
panel, the corresponding layer card will show a different background
color, and relevant code lines will become bold.

6 USAGE SCENARIOS

Under the context of DNN programming curriculum and a novice’s
first DNN programming exploration, we present two usage scenarios
here as examples to show how Konjak can be used.

6.1 Convolution layer setting playground
Compared to other layers that don’t affect the input tensor’s shape
or simply reduce the original tensor’s size to half, the convolution
layer’s output tensor shape is influenced by many layer parameters
in the definition. The formula to calculate the output tensor shape of
a convolution layer is:

Co = K

Wo =
(Wi−F +2P)

S
+1 (1)

where input tensor is of size (Ci,Hi,Wi), output tensor
is of size (Co,Ho,Wo), and the convolution layer’s argu-
ments are defined as L.Convolution2D(in_channels=Wi,
out_channels=K, ksize=F, stride=S, pad=P). Some spe-
cific parameter settings are commonly used in neural networks im-
plementations, like (ksize=3, stride=1, pad=1) to keep input
tensor size and (ksize=4, stride=2, pad=1) to reduce the size

Figure 6: Konjak enables DL programming learners solving shape
consistency problem iteratively in much lower trail-and-error cost.

to half. Konjak can act as a playground for a novice to easily exper-
iment with different convolution layer parameter settings, always
with instant visual feedback to help them what is happening with
the parameter.

6.2 Solving shape inconsistency

Live visualization largely reduces novices’ trial and error cost in
solving the bugs related to a tensor’s shape. Let’s consider a scene
where a novice is re-implementing a network structure to fit their
own application needs. In Step.1, the user starts by copying and
pasting a template of a DNN program, then defines the layers that
will be used in the network. Layer parameters don’t need to be
precisely filled at the beginning because Konjak’s visualization is
synchronized. Even when there is improper parameter-picking, our
system can tell the user where it is wrong. With layers defined with
randomly picked initial parameters in the code editor, the user can
use the drag-and-drop function to have a quick network connection
in Step.2. Then, the user will notice the error message shown in
the problem panel and inline highlight and locates the layer that
results in the shape error. Step.3, the user is allowed to check the
live visualization alternately, go back to the layer definition part
and modify the parameters, and repeat this process until the tensor
shape shown in the visualization is satisfactory. Compared to current
practice to use a print statement or visualization tool after the code
editing phase, trial and error cost here is reduced to less than one
second.

7 USER STUDY

As an educational tool to help novices learn DNN programming, we
hope Konjak’s liveness and visualization can 1) help form a proper
mental model towards DNN structure and 2) shorten the cycle in
input/feedback in the learning stage. To evaluate the points above
in the educational context, we ran an exploratory first-use study
to get feedback from both DL novices (learners) and experienced
DL developers (trainers). We invited 12 participants (nine males
and three females), aged 22 to 28, with programming experience
from two to 10 years. P1 - P4 are Deep Learning engineers who
mainly act as the role of a trainer, and P5 - P12 are lab internal
members who are identified as novices in DNN programming (has
nearly no knowledge or only basic knowledge about DNN). Note
that we determined the number of participants (sample size) based
on the professional standards for this type of study within the HCI
community [8].

7.1 Procedures

The study lasted 60 minutes for each participant. We started with a
15-minutes warm-up session on Konjak’s user interface and features,
as well as the basics of DNN programming. During the session, the
participant was allowed actually to touch Konjak to get familiar with
the system. Next, we presented two tasks that are common in the DL
programming learning situation and have been mentioned in Sect. 6.
We designed the tasks by talking to expert machine learning users.
Each task lasts 15 minutes. After the task phase, we conducted
an interview and questionnaire in the 15 minutes remaining. Note
that all the participants worked on the same tasks. P5 - P12 are the
main target participants to simulate the DNN programming learning
situation, and P1 - P4 are mainly recruited to provide extra reviews
about our system from the perspective of an educator. The tasks are:

• Task 1: Given desired input and output tensor size, explore
proper layer parameter settings to finish the tensor shape trans-
formation.

• Task 2: Given the DNN structure diagram cropped from a re-
search paper (LeNet [25]), try to implement it in Konjak.

Table 2: Summary of post-study questionnaire results.

Items in Questionnaire µ σ

1
The live visualization diagram reflected my
mental model towards the network structure
well.

4.42 0.51

2
Highlight features (code2visualization, vi-
sualization2code) helped me to locate
code/visual element from each other.

4.00 1.04

3
The design to divide visualization panel into
graph visualization panel and layer card bar
is intuitive for Chainer’s code structure.

4.67 0.49

4
Using node to represent tensors in visualiza-
tion, and the shape check feature, helped me
in exploring a shape-consistent solution in
DNN implementation.

4.58 0.67

5 Konjak’s network and layer card drawing are
confusing for me to understand.

1.92 0.90

6
The consistency between code editor and vi-
sualization, helped me observing DNN pro-
gram more conveniently.

4.50 0.67

7.2 Result
All except two (P8 and P11) of our participants finished the two
simulation learning tasks using Konjak within the given time. Ta-
ble 2 shows post-study questionnaire results, which are summarized
from six 5-point Likert scale questions (From Strongly Disagree
1, to Strongly Agree 5). These questions covered the core concept
of utilizing live programming in the DNN educational context and
detailed design points of the visualization. In terms of the draw-
ing of sketches in layer card and network graph to show different
layer’s functionality, because they are mainly originated from our
understanding, we included a question in the questionnaire to survey
users’ reaction towards our concern that the drawing may cause
novices’ confusion. We also surveyed participants willing to use
live visualization to train other novices in DNN programming in the
future. Here we summarize their feedback in three aspects:

Assist DNN implementation and debug: some feedback can be
categorized into description about how the live visualization help
some of our participants implement DNN program and debug pa-
rameters. Compared to traditional practice to check tensor shapes
using built-in print statements, Konjak enables a shorter route in
debugging the DNN program. P6 said: “With the highlight feature
and real-time visualization, I can write the program while making
sure whether previous lines are correct or not.” Exactly as why we
are motivated to design Konjak, P7 expressed that the system indeed
reduces shape inconsistency in DNN implementation: “Konjak’s
interactive feedback and tensor shape inconsistency error messages
were very useful to create a DNN structure without worrying about
tensor shape inconsistency too much.”

We recorded how the participants used Konjak in the study. When
reviewing the video, we noticed P10’s whispering in Task 2: “The
input image is (3, 32, 32), and the first feature map on the diagram
is (6, 28, 28), so I should first fill in out_channels=6 ... Then what
about the parameter ksize and stride? It seems that stride=2
will make the output map size decrease too much, so I keep it 1 first...
And ksize=1, this will make the width 32... (Change the value to
4) Oops, it (map size) is still not small enough... (Re-input 5) Okay,
now it’s the same as the diagram. So the next layer is a max-pooling
layer...” Observing his behavior in Konjak, we found that it exactly
matches the usage scenario of solving the shape inconsistency we
presented in the last section.

A skilled DNN programmer also provided positive feedback about
the live visualization in aiding DNN implementation. P1 presented a
view about the similarity between Konjak’s programming experience

and web development: “This reminds me of my web developing
experience, where I put a code editor on the left half and browser
on the right half. Since I use hot-reloader, which automatically
refreshes the browser whenever I change the code base, I have the
tendency to focus on coding and use the visualizer only for reference.”
In this sense, we may potentially extend Konjak’s features for more
than an educational purpose.

Aid DNN programming education: Eight participants (P5 - P12)
are novices or beginners in DNN programming, and Konjak is highly
regarded by them. P8, a CS student who had learned DL before, but
nearly forgot all of the knowledge, appreciate the live visualization
a lot: “Although I almost forgot DNN, this structure helped me
understand how the layers and structures work. I want to use it
when I use DNN in the future.”. P10, identified as a DL learner, said:

“(Konjak) is especially helpful in implementing a DNN while referring
to a research paper.”

All of our participants agreed that if it is possible, they tend
to use a live visualization like Konjak to teach other beginners
DNN programming in the future. From the perspective of a skilled
DL engineer, P1 described the situation where he uses a system
like Konjak to teach a novice DNN programming: “If I am going
to teach someone Chainer, I probably will use this UI because
after understanding how it works, the synchronization between code
editor and graph is very helpful to teach the student. I will focus
on teaching the student how to write code on the left panel, but
occasionally if they make any mistake or don’t understand what is
going on with the code, then I will remind them to play with the
visualization to understand what is going wrong so he can clarify
his question and return to coding.”

We ran this study like a get-started lesson to our novice par-
ticipants, and for those trainer participants, it might seem like a
chance for them to think about how to teach the DNN programming
paradigm to a newbie. Nevertheless, the programming paradigm is
only a side in DL programming. According to the study by Cai et
al. [7], other obstacles like mathematics knowledge are still prohibit-
ing novices’ diving in.

Implementation Issues: Some feedback are about some interface
details that affected participants’ programming experience. P5 com-
plained about the switching between the code editor and the live
visualization: “It bothered me a little if I have to watch the visu-
alization but edit the network on another side. I’d like to modify
the network parts right in the visualization panel.”. P9 suggested
another style to draw 3D-Box in graph visualization panel: “Live
visualization to show DNN structure is easy to understand. But the
drawing of tensor nodes confused me at first. Maybe you can draw
it like stacked slices, which can be a more intuitive representation of
channels.”

8 LIMITATION AND FUTURE WORK

Konjak’s current prototype is originated from the motivation to sup-
port novices in the learning stage. For this reason, only limited
layers and structures are supported to be displayed in the live visual-
ization. We implement the prototype to only support convolutional
neural networks (CNNs) for tasks like image classification, object
detection, and image segmentation, while other structures such as
recurrent neural networks (RNNs) and generative adversarial net-
works (GANs) are out of scope. Fig. 4 covers nearly all the supported
layers in the current prototype, nine layers in total. Besides the layers
drawn in the figure, two activation layers (Sigmoid and Softmax)
and one normalization layer (Local_response_normalization)
are supported in the implementation. These six layer categories are
typical because they are the main components of some classical
DNNs, such as VGG16/19 [30], AlexNet [23], and ResNet [16]. In
each category, we only implemented at most three layers because
the layers classified into the same category share similar APIs and

visual representation. In DNN programming learning, the DNN
model that novices explored might be relatively simple, but when
the programmers become skilled, more complicated networks (e.g.,
with skip link or multiple tensor flows) and customized layers are
common in practical development. In our user study, the skilled
machine learning programmer participants agreed that the live visu-
alization to always show tensor shape could be quite helpful even in
their daily DNN programming. Therefore, the direction to extend
Konjak’s concept to more situations is worth considering. Features
like sub-nets or customized layer visualization are in our future plans.
Konjak’s current implementation is based on static analysis, which
limits the system’s application in an expert’s practical development.
We think that hacking a Python interpreter and tracing its execu-
tion memory by executing the actual code will greatly improve the
system’s extensibility and make it ready for practical development.

In our user study to evaluate Konjak as an educational tool, we
design the study like a lesson to train novices in solving shape
inconsistency problems and collect their first-use impression of
Konjak. We didn’t compare Konjak with the print statement or other
coding-free DNN network modelers. As far as we know, Konjak
is the first research to explore a live programming environment in
text-based DNN programming. We hope this work can become
the first step toward the acceleration of research in improving DL
developing experience in the future.

Also, our participants identified some implementation issues in
Konjak’s prototype. We thought that they could be overcome with
engineering efforts.

9 CONCLUSION

We have proposed a system called Konjak that augments a text-
based code editor with a synchronized, editable, and representative
live visualization to support novices in DNN programming as an
educational tool. We revisited DNN structure diagram designs from
research papers in machine learning and existing DNN visualizer and
extracted design principles, especially for educational context and
live programming environment. The system provides a bidirectional
editing manner between the code editor and the live visualization
and instant tensor shape checking features to avoid the common
shape inconsistency error of the DNN program. An exploratory user
study was conducted to evaluate Konjak in an educational situation.

ACKNOWLEDGEMENTS

Removed for review.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for
large-scale machine learning. In Proceedings of the 12th USENIX
conference on Operating Systems Design and Implementation (OSDI),
pp. 265–283. USENIX Association, USA, 2015.

[2] A. Agrawal, A. N. Modi, A. Passos, A. Lavoie, A. Agarwal, A. Shankar,
I. Ganichev, J. Levenberg, M. Hong, R. Monga, et al. Tensorflow eager:
A multi-stage, python-embedded dsl for machine learning. arXiv
preprint arXiv:1903.01855, 2019.

[3] M. Agrawala, W. Li, and F. Berthouzoz. Design principles for visual
communication. Communications of the ACM, 54(4):60–69, 2011. doi:
10.1145/1924421.1924439

[4] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann. Software engineering for
machine learning: A case study. In Proceedings of IEEE/ACM 41st
International Conference on Software Engineering: Software Engi-

neering in Practice (ICSE-SEIP), pp. 291–300. IEEE, Montreal, QC,
Canada, 2019. doi: 10.1109/ICSE-SEIP.2019.00042

[5] K. Asai, T. Fukusato, and T. Igarashi. Plotshop: An interactive system
for designing a 2d data distribution on a scatter plot. In The Adjunct
Publication of the 32nd Annual ACM Symposium on User Interface
Software and Technology, UIST ’19, pp. 19––20. ACM, New York,
NY, USA, 2019. doi: 10.1145/3332167.3357101

[6] K. Asai, T. Fukusato, and T. Igarashi. Integrated development environ-
ment with interactive scatter plot for examining statistical modeling. In
Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 2020), pp. 328:1–328:7. ACM, New York, NY, USA,
2020. doi: 10.1145/3313831.3376455

[7] C. J. Cai and P. J. Guo. Software developers learning machine learning:
Motivations, hurdles, and desires. In Proceedings of IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), pp.
25–34. IEEE, Memphis, TN, USA, 2019. doi: 10.1109/VLHCC.2019.
8818751

[8] K. Caine. Local standards for sample size at chi. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems,
CHI’16, pp. 981–992. ACM, New York, NY, USA, 2016. doi: 10.
1145/2858036.2858498

[9] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. Dual
path networks. In Proceedings of Advances in Neural Informa-
tion Processing Systems, pp. 4467–4475. Curran Associates, Inc.,
Long Beach, USA, 2017. https://papers.nips.cc/paper/

7033-dual-path-networks.pdf.
[10] F. Chollet. Keras. https://github.com/fchollet/keras, 2015.
[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[12] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, Mar. 1991.
doi: 10.1145/103162.103163

[13] Google Cloud. Automl, custom machine learning models. https:
//cloud.google.com/automl, 2018.

[14] M. Haverbeke. Codemirror, 2020. https://codemirror.net/.
[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In

Proceedings of the IEEE international conference on computer vision,
pp. 2961–2969, 2017.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[17] B. Hempel, J. Lubin, and R. Chugh. Sketch-n-sketch: Output-directed
programming for svg. In Proceedings of the 32nd Annual ACM Sympo-
sium on User Interface Software and Technology, pp. 281–292. ACM,
New York, NY, USA, 2019. doi: 10.1145/3332165.3347925

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 4700–4708,
2017.

[19] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan. Repairing deep neural
networks: Fix patterns and challenges. In Proceedings of the 42nd
International Conference on Software Engineering (ICSE’20), pp. 1–12.
ACM and IEEE Computer Society, Seoul, South Korea, 2020.

[20] H. Kang and P. J. Guo. Omnicode: A novice-oriented live program-
ming environment with always-on run-time value visualizations. In
Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology (UIST), pp. 737–745. ACM, New York, NY,
USA, 2017. doi: 10.1145/3126594.3126632

[21] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[22] J. Kato, T. Nakano, and M. Goto. Textalive: Integrated design envi-
ronment for kinetic typography. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, CHI ’15,
p. 3403–3412. Association for Computing Machinery, New York, NY,
USA, 2015. doi: 10.1145/2702123.2702140

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural infor-
mation processing systems, pp. 1097–1105. Curran Associates, Inc.,

Lake Tahoe, Nevada, USA, 2012. doi: 10.1145/3065386
[24] S. Kross and P. J. Guo. Practitioners teaching data science in industry

and academia: Expectations, workflows, and challenges. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing
Systems, pp. 1–14. ACM, New York, NY, USA, 2019. doi: 10.1145/
3290605.3300493

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998. doi: 10.1109/5.726791

[26] S. Lerner. Projection boxes: On-the-fly reconfigurable visualization
for live programming. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, CHI ’20, p. 1–7. Association
for Computing Machinery, New York, NY, USA, 2020. doi: 10.1145/
3313831.3376494

[27] Live Prog Blog. A history of live programming. http:

//liveprogramming.github.io/liveblog/2013/01/

a-history-of-live-programming/, 2013.
[28] A. ML. Papers with code: the latest in machine learning. https:

//paperswithcode.com/, 2020.
[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds., Pro-
ceedings of Advances in Neural Information Processing Systems 32
(NeurIPS), pp. 8024–8035. Curran Associates, Inc., Vancouver, Canada,
2019.

[30] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[31] D. Smilkov, S. Carter, D. Sculley, F. B. Viégas, and M. Wattenberg.
Direct-manipulation visualization of deep networks. arXiv preprint
arXiv:1708.03788, 2017.

[32] Sony Network Communications Inc. Neural network console. https:
//dl.sony.com, 2018.

[33] S. G. Tamilselvam, N. Panwar, S. Khare, R. Aralikatte, A. Sankaran,
and S. Mani. A visual programming paradigm for abstract deep learning
model development. In Proceedings of the 10th Indian Conference on
Human-Computer Interaction, pp. 1–11. ACM, New York, NY, USA,
2019. doi: 10.1145/3364183.3364202

[34] S. L. Tanimoto. A perspective on the evolution of live programming. In
Proceedings of the 1st International Workshop on Live Programming
(LIVE), pp. 31–34. IEEE, San Francisco, CA, USA, 2013. doi: 10.
1109/LIVE.2013.6617346

[35] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki,
K. Uenishi, B. Vogel, and H. Yamazaki Vincent. Chainer: A deep
learning framework for accelerating the research cycle. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), pp. 2002–2011. ACM, New York,
NY, USA, 2019. doi: 10.1145/3292500.3330756

[36] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mane,
D. Fritz, D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualiz-
ing dataflow graphs of deep learning models in tensorflow. IEEE
Transactions on Visualization and Computer Graphics, 24(1):1–12,
2017. doi: 10.1109/TVCG.2017.2744878

[37] Q. Yang, J. Suh, N.-C. Chen, and G. Ramos. Grounding interactive
machine learning tool design in how non-experts actually build models.
In Proceedings of the 2018 Designing Interactive Systems Conference,
DIS ’18, p. 573–584. Association for Computing Machinery, New
York, NY, USA, 2018. doi: 10.1145/3196709.3196729

[38] G. X. Yu, T. Grossman, and G. Pekhimenko. Skyline: Interactive
In-Editor Computational Performance Profiling for Deep Neural Net-
work Training. In Proceedings of the 33rd ACM Symposium on User
Interface Software and Technology (UIST’20), 2020.

[39] T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim. An empirical study
of common challenges in developing deep learning applications. In
Proceedings of IEEE 30th International Symposium on Software Re-
liability Engineering (ISSRE), pp. 104–115. IEEE, Berlin, Germany,
2019. doi: 10.1109/ISSRE.2019.00020

https://papers.nips.cc/paper/7033-dual-path-networks.pdf
https://papers.nips.cc/paper/7033-dual-path-networks.pdf
https://github.com/fchollet/keras
https://cloud.google.com/automl
https://cloud.google.com/automl
https://codemirror.net/
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
https://paperswithcode.com/
https://paperswithcode.com/
https://dl.sony.com
https://dl.sony.com

	Introduction
	Related Work
	Deep Neural Network Bug and Repairing
	Coding-free DNN Development Tools
	Live Programming Environment

	Background on DNNs Programming
	A Literature Study on DNN Visualization
	Konjak
	Code Editor
	Live Visualization

	Usage Scenarios
	Convolution layer setting playground
	Solving shape inconsistency

	User Study
	Procedures
	Result

	Limitation and Future Work
	Conclusion

