
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE SURPRISING EFFICACY OF
ONLINE SELF-IMPROVEMENT FOR
EMBODIED MULTIMODAL FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models trained on web-scale data have revolutionized robotics, but
their application to low-level control remains largely limited to behavioral cloning.
Drawing inspiration from the sample efficiency and success of reinforcement
learning (RL) fine-tuning in large language models (LLMs), we propose a two-
stage approach suited to robotics. The first stage, Supervised Fine-Tuning
(SFT), fine-tunes pre-trained foundation models using goal-conditioned behav-
ioral cloning and “steps-to-go” prediction objectives. In the second stage, this
foundation enables the extraction of a well-shaped reward function and a success
detector, eliminating the need for manual reward engineering and real-world in-
strumentation, and allowing robots to practice autonomously with minimal human
supervision. Our experiments on both real-world and simulated robots demon-
strate that the combination of SFT and online Self-Improvement is significantly
more sample-efficient than supervised learning alone. Furthermore, the combina-
tion of our proposed approach with web-scale pre-trained foundation models en-
ables rapid acquisition of new skills, allowing robots to generalize far beyond the
behaviors observed in the imitation learning datasets used during training. These
findings highlight the transformative potential of combining pre-trained founda-
tion models with online fine-tuning to unlock new levels of autonomy and skill
acquisition in robotics.

1 INTRODUCTION

Recent works have demonstrated that foundation models can be effectively fine-tuned to directly
act as low-level robot policies (Brohan et al., 2023; Padalkar et al., 2023; Reed et al., 2022; Octo
Model Team et al., 2024; Kim et al., 2024; Durante et al., 2024), and that they inherit significant
generalization and robustness capabilities due to the web-scale pre-training of the foundation mod-
els from which they were derived. Such foundation agents present an exciting opportunity for the
future of robotics, where a monolithic agent can plan, reason, and then execute actions in the en-
vironment. They also enable tighter transfer of methodologies between the adjacent fields of AI
leveraging foundation models, such as Computer Vision and NLP. Throughout this work we will
use the term “Multimodal Foundation Agent” (MFA) to refer to foundation models that act directly
in an environment.

Thus far, the training regime for MFAs has largely been limited to behavioral cloning (i.e. supervised
learning) (Brohan et al., 2023; Padalkar et al., 2023; Reed et al., 2022; Octo Model Team et al.,
2024; Kim et al., 2024; Durante et al., 2024). In contrast, from the literature on Large Language
Models (LLMs) we observe that after the initial pre-training, post-training for downstream tasks is
typically divided into two stages: 1) Supervised Fine-Tuning (SFT), followed by 2) Reinforcement
Learning (RL) where models improve their performance on downstream tasks such as math, coding,
as well as aligning with human preferences (RLHF) (Ouyang et al., 2022). RL-Tuning of LLMs
has been shown to markedly, and rapidly, improve downstream task performance beyond the SFT
stage (Stiennon et al., 2020; Ouyang et al., 2022), and has become a critical stage in the training
recipe of foundation models (Achiam et al., 2023; Team et al., 2024; Dubey et al., 2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of our proposed two-stage fine-tuning approach. Stage 2 online self-improvement
efficiently improves robot policies and enables learning novel out-of-distribution tasks.

Despite the unique algorithmic and engineering challenges of investigating RL-tuning for MFAs in
the context of robotics, the aforementioned sample-efficiency and performance gains from the LLM
literature strongly motivate its investigation. In this work we directly tackle these challenges and
design a two-stage framework inspired by LLM post-training processes: In Stage 1 “Supervised
Fine-Tuning” (SFT), given a goal-conditioned imitation learning dataset we fine-tune MFAs using
two objectives: 1) Behavioral Cloning, and 2) Predicting the number of “steps-to-go” to accomplish
desired goals. In Stage 2 “Online Self-Improvement”, we leverage the model’s own steps-to-go pre-
dictions to derive an effective reward function and success detector, enabling 1 human operator to
monitor multiple robots as they practice downstream tasks. Critically, our data-driven reward de-
sign circumvents the need for ground-truth rewards, and leverages the robustness and generalization
properties of the underlying foundation models.

Through extensive experiments on two robot embodiments, LanguageTable (Lynch et al., 2023) and
Aloha (Zhao et al., 2023; Aldaco et al., 2024), in the real-world and simulations, we demonstrate
the surprising efficacy of our proposed fine-tuning framework. Our results demonstrate that Stage
2 fine-tuning very sample-efficiently and robustly improves policy performance. Furthermore, we
highlight that it is more efficient to distribute robot time budget between imitation data collection
for Stage 1 and Stage 2 self-improvement, rather than allocating the full robot time for Stage 1 data
collection alone. We then demonstrate the immense value of the webscale pre-training of foundation
models. Pre-taining not only results in significant sample-efficiency, but also unlocks the ability for
robots to autonomously practice and acquire new skills generalizing far outside the distribution of
tasks seen during Stage 1.

Our work highlights the transformative potential of combining pre-trained foundation models with
online fine-tuning to unlock new levels of autonomy and skill acquisition in robotics. In Section 7 we
discuss a series of open questions that would engender fruitful research endeavours for future work.
With the proliferation of open-source multimodal foundation models (Beyer et al., 2024; Dubey
et al., 2024; Liu et al., 2024; Wang et al., 2024), and hardware efficient fine-tuning methods (Hu
et al., 2021; Dettmers et al., 2024), we believe such research agendas could be effectively studied by
a broad community of robotics researchers. Our anonymous supplementary videos website can be
found at: https://sites.google.com/view/mfa-self-improvement/home

2 BACKGROUND

PaLI Vision-Language Foundation Model While our investigations in this work are independent
of the choice of underlying multimodal foundation model used, throughout this work we use the 3
billion parameter PaLI-3B (Chen et al., 2022; 2023) vision-language model as the base pretrained
foundation model that we will be fine-tuning for robotics tasks. A PaLI model receives as input one

2

https://sites.google.com/view/mfa-self-improvement/home


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

or more images alongside text, and provides text as output. At a high level, the PaLI architecture
is comprised of two components: 1) a Vision Transformer (ViT) (Parmar et al., 2018), and 2) an
encoder-decoder Transformer (Vaswani et al., 2017). Input images are processed by the ViT into a
sequence of “visual tokens”. The sequence of visual tokens is concatenated with the tokenized text
input and fed into the Transformer encoder, and the Transformer decoder outputs text tokens. The
PaLI architecture is initialized from a Transformer encoder-decoder model (language) and ViT (vi-
sion) that are pretrained separately in a unimodal fashion. The model is subsequently trained jointly
with a variety of vision-language training objectives to obtain a multimodal foundation model. For
further details regarding PaLI model, we refer the interested reader to (Chen et al., 2022; 2023). We
emphasize that our framework is independent of the choice of underlying multimodal foundation
model used.

RT-2 Brohan et al. (2023) introduce a model family, dubbed RT-2, that enables vision-language
foundation models (VLMs) to directly perform closed-loop robot control. The two VLMs consid-
ered in that work are PaLI (Chen et al., 2022; 2023) and PaLM-E (Driess et al., 2023), both of which
take images alongside text as input, and provide output in the form of text tokens. To enable these
VLMs to act as robot policies, continuous robot actions are discretized and mapped onto the linguis-
tic token space. Given image and text inputs, the VLMs are fine-tuned via behavioral cloning (BC,
i.e. supervised learning) to predict the tokenized robot actions. While the methods we present in
this work are independent of the choice of underlying model and architecture, throughout this work
our robot policy architectures are equivalent to RT-2 using the PaLI VLM.

3 METHODOLOGY

Given access to a goal-conditioned behavioral cloning dataset, our focus in this work is to design an
effective and sample-efficient procedure for fine-tuning pretrained multimodal foundation models in
order to obtain performant robotic MFAs. Our proposed fine-tuning framework is composed of two
stages: 1) Supervised Fine-Tuning (SFT) wherein we train MFAs using goal-conditioned behavioral
cloning as well as “steps-to-go” prediction objectives, and 2) Online Self-Improvement (Online RL)
wherein MFA policies autonomously practice downstream tasks and rapidly improve themselves via
self-predicted rewards.

A critical challenge of reinforcement learning for robotics, and in particular for manipulation tasks,
is the problem of reward engineering. Designing effective reward functions requires repeated trial-
and-error iterations of training RL policies and patching reward definitions to arrive at intended
outcomes. Furthermore, even with a perfect reward function, significant research and engineering
effort must be dedicated to measuring rewards in the real-world. Thus, manual reward design is
untenable as we move towards a future where we train robots to accomplish increasingly broad sets
of tasks. A key feature of our proposed approach is that it overcomes this obstacle via learning data-
driven reward functions that also inherit robustness and generalization properties from the web-scale
pre-training of the foundation models used to build the MFAs.

3.1 STAGE 1: SUPERVISED FINE-TUNING (SFT)

The first stage of our frameworks consists of an offline Supervised Fine-Tuning (SFT) stage. We as-
sume access to a goal-conditioned imitation learning datasetD consisting of a collection of episodes
τ = {(ot, at, gτ )}Tt=0, where ot and at denote observation and action at timestep t respectively, and
gτ denotes the goal for episode τ . We assume that all trajectories in the dataset end in a state
where the episode goal is accomplished. In the case of single-task datasets, we treat them as a
goal-conditioned dataset where all episodes share the same goal. Given a dataset D and pretrained
multimodal foundation model, we instantiate the MFA (e.g. RT-2 (Brohan et al., 2023) parameteri-
zation), and fine-tune the model using the following supervised learning objectives:

LBC(MFA) = −E(ot,at,gτ )∼D

[
log pMFA

(
at | ot,Questionaction(gτ )

)]
Lsteps to go(MFA) = −E(ot,at,gτ )∼D

[
log pMFA

(
length(τ)− t | ot,Questionsteps to go(gτ )

)]
LBC denotes goal conditioned behavioral cloning loss, where we maximize the likelihood of a
dataset action conditioned on the observation and a text sequence Questionaction(gτ ) representing

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1: Stage 2 Self-Improvement Loop
Input: Policy model and frozen reward computation model taken from Stage 1 checkpoints
while true do

Using the current policy collect enough robot rollouts for N update steps with batch size B;
for each rollout do

Compute Monte Carlo returns using Equation 2: Rt ←
∑T

i=t γ
i−t · r(ot, at, ot+1, g);

Place (ot, at, g, Rt) tuples in the replay buffer;
end
Shuffle the buffer, update with REINFORCE [−c ·Rt · log pMFA(at|ot,Questionaction(g))];
Empty the replay buffer if there are any remaining elements;

end

the desired goal. In this work we use Questionaction(gτ ) = "What robot action to gτ?"
. The objective Lsteps to go teaches the MFA to predict how many environment timesteps away
the robot is from accomplishing an intended goal. In this work we use Questionsteps to go(gτ ) =
"How many steps to gτ?" , and in 3.2 we will observe the critical role of this objective.

Depending on the domain, at this stage we can include additional auxiliary supervised objectives.
As an example, in our experiments with the LanguageTable domain, conditioned on the first and last
image of an episode we ask the model to predict what instruction was performed in that episode.

3.2 STAGE 2: ONLINE SELF-IMPROVEMENT (ONLINE RL)

In Stage 2, our goal is to fine-tune the MFA with online RL, with the hopes that it will lead to rapid
and significant performance improvements on desired downstream tasks. As we will see later on in
our experiments, downstream tasks may even be significantly different than those that appeared in
the dataset D used for Stage 1 training (Sections 5.3.1 and 5.3.2).

Reward Function Definition Let,

d(o, g) := EpMFA(steps to go|o,Questionsteps to go(g))

[
steps to go

]
(1)

denote the expected value of “steps to go” in order to accomplish goal g given observation o, as
predicted by the MFA model obtained after Stage 1. The reward function we use for online RL
training is defined as follows,

r(ot, at, ot+1, g) := d(ot, g)− d(ot+1, g) (2)

Intuitively, this reward function predicts how much closer the robot got towards accomplishing goal
g after taking action at. As the reward function is derived from d(o, g), which is a function of
the MFA itself, we refer to our online RL fine-tuning process as “Self-Improvement”. The choice
of using the expected value in equation 1 is for simplicity and alignment with the notion of a value
function in RL. We leave investigations of alternate definitions such as CVaR (Alexander & Baptista,
2004) for risk-aware policies, or distributional RL (Bellemare et al., 2023), to future work.

Self-Improvement Procedure To perform Stage 2 fine-tuning, we take a frozen Stage 1 check-
point to use for reward function calculations, and initialize the Stage 2 policy from a Stage 1 check-
point as well. The checkpoints for the reward and policy models are not necessarily identical as
the best validation losses for LBC and Lsteps to go can happen at different points over the course of
Stage 1 training. Within one iteration of our Stage 2 Self-Improvement loop, using the current pol-
icy we collect enough robot trajectories to perform N model update steps. Subsequently, for each
trajectory, per timestep, we compute the Monte Carlo returns Rt ←

∑T
i=t γ

i−t · r(ot, at, ot+1, g)
and place elements (ot, at, g, Rt) in a shuffled replay buffer. We then perform N policy updates
using the REINFORCE loss

[
− c ·Rt · log pMFA(at|ot,Questionaction(g))

]
. The replay buffer is then

cleared out and the next iteration begins. Algorithm 1 above presents our Stage 2 Self-Improvement
procedure. In simulation experiments we found that using a small positive multiplicative factor c in
the REINFORCE loss plays a significant role in ensuring the model trains stably. Throughout this

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: An example trajectory from the Aloha Single Insertion Task and a plot of model predictions for
steps-to-go, d(o, g). Key moments: 1) Model believes episode is about to complete successfully, 2) Policy
accidentally drops the peg and d(o, g) increases, 3) Policy regrasps the peg from a bad angle not suitable for
insertion so d(o, g) remains high, 4) Policy drops the peg, enabling regrasping correctly which reduces d(o, g),
5) Policy is pushing the peg inside and d(o, g) marks that episode is about to succeed.

work we used c = 5e-2. Despite our goal of sample-efficient RL, we choose to perform on-policy
RL without data reuse due to the stability of on-policy RL methods (Van Hasselt et al., 2018), and
leave the investigation of off-policy RL methods for future work.

Success Detection We find that it is important for robot episodes to terminate upon successfully
reaching the intended goal state. Otherwise, a significant portion of the collected data will include
the robot being in a successful terminal state. In settings where we do not have a ground-truth
success detector, as in our real-world experiments, we use the following success indicator derived
from the frozen reward model checkpoint: success(o, g) := 1[d(o, g) ≤ s], with s being a very
small number of timesteps. We found this formulation of success detection to be very robust even in
low data regimes, and significantly more reliable than explicitly including a success detection binary
classification objective in Stage 1. Throughout our work we use s = 3 unless noted otherwise.

4 INTUITION ON REWARD FUNCTION

Mathematical Intuition For the interested reader, in Appendix E we discuss how our proposed
Stage 2 procedure leads to policies that more efficiently achieve intended goals while being implicitly
regularized to stay close to the dataset policy µ! We also highlight a supplementary python notebook
implementing our two stage fine-tuning procedure on a pointmass goal-reaching domain.

Visual Intuition For Our Choice of Reward Function We can also attempt to build our intu-
ition regarding the efficacy of steps-to-go prediction via visualizing model predictions on domains
of interest. Figure 5 visualizes an example trajectory on the Aloha Single Insertion Task (task de-
tails provided in 5.1). The caption in Figure 5 walks the reader through the level of intricate details
that the MFA model is able to learn. We provide additional visualizations – including on the Lan-
guageTable domain – in the form of videos on our anonymous supplementary content website.

5 EXPERIMENTS

In our experiments we seek to validate our proposed self-improvement framework and answer the
following five questions:

• Q1: Does our self-improvement procedure improve performance on downstream tasks be-
yond the supervised learning stage?

• Q2: Is our self-improvement procedure, which depends on RL, reliable and reproducible
enough to be employed for real-world robotics?

• Q3: Is the combination of supervised learning and self-improvement a more efficient pro-
cedure for obtaining performant policies, compared to supervised learning alone?

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

• Q4: What is the contribution of the web-scale pretraining of multimodal foundation model?
• Q5: Can we leverage the pretraining knowledge embedded into the MFA to push gener-

alization abilities, and perform Stage 2 Self-Improvement on tasks that generalize beyond
what was seen in the imitation dataset?

We study these questions using the LanguageTable (Lynch et al., 2023) and Aloha (Zhao et al.,
2023; Aldaco et al., 2024) robot embodiments, with experiments in both simulation and the real-
world (please refer to Appendix B for details regarding the robotic domains used). As mentioned
in Section 2, throughout this work we will use the PaLI (Chen et al., 2022; 2023) vision-language
model as our base pretrained foundation model. The inputs to our PaLI MFA are always two images
and a text sequence, and the outputs are a sequence of tokens. To employ PaLI models as policies,
we follow the RT-2 (Brohan et al., 2023) policy parameterization and predict tokenized actions.
Thus, our Stage 1 behavioral cloning policies are exactly equivalent RT-2 policies and will serve as
key baselines. To use the PaLI model for predicting steps-to-go, we also map the range of integers
[0, T ] onto the PaLI model’s output token space. We refer the interested reader to Appendix A for
details regarding tokenization. In Stage 1 we do not freeze any parameters in the model, and fine-
tune both the Transformer and the ViT backbone. In Stage 2 we do not further fine-tune the ViT
portion of the model. This was an early decision in our project in hopes of improved stability, and
we did not ablate this choice.

5.1 SELF-IMPROVEMENT IS ROBUST, EFFECTIVE, AND MORE EFFICIENT THAN
SUPERVISED LEARNING ALONE

5.1.1 SIMULATED LANGUAGETABLE

The dataset we use to train Stage 1 policies for the simulated LanguageTable domain is the one pro-
vided by the original work (Lynch et al., 2023). This dataset consists of 181,020 human-generated
trajectories, with 78,623 unique instructions describing the goals of the trajectories. We subsample
this dataset to create 3 new datasets 10%, 20%, and 80% of the original size. For each dataset size
we take the following procedure: First, we perform the Stage 1 supervised fine-tuning of the PaLI
MFA. We use the checkpoint at the best imitation validation loss as the supervised policy check-
point, and the one at the best steps-to-go prediction validation loss for reward computation. We
perform Stage 2 fine-tuning with 3 seeds to validate the reliability of the self-improvement proce-
dure. While the LanguageTable dataset contains a variety of tasks, we perform Stage 2 fine-tuning
on the Block2Block tasks, e.g. "move the blue moon to the red pentagon". We
stop Stage 2 training when policy success rates appear to plateau.

Results The first plot in Figure 3 presents our results on the simulated LanguageTable domain,
where orange markers represent policy performance after Stage 1, and blue markers represent pol-
icy performance after Stage 2. As can be observed, across all dataset sizes (10%, 20%, 80%), our
proposed self-improvement procedure leads to very significant improvement in success rates (min-
imum 1.5x performance boost), with incredible sample-efficiency in terms of number of episodes
(less than 2% extra episodes collected in Stage 2). As an example, by training a 10% data Stage 1
policy with 1% additional episodes in Stage 2, we obtain policies that outperform both the 20% and
80% data Stage 1 policies. Furthermore, as evidenced by Figure 8 left (Appendix D), across random
seeds our Stage 2 process is stable and reproducible, with the individual blue markers representing
individual experiments tightly packed together.

5.1.2 REAL-WORLD LANGUAGETABLE

The significant sample-efficiency and robustness of our results suggest that our self-improvement
procedure may indeed be applicable for real-world robotics. To this end, we apply our two-stage
fine-tuning framework to the real-world LanguageTable domain, in two settings of using 20% and
80% of the real-world LanguageTable dataset (Lynch et al., 2023). As in the simulated setting,
we apply our Stage 2 process on the Block2Block subset of tasks. Experiments are run for ap-
proximately 20 hours each, with 1 human operator monitoring and periodically resetting 3-4 Lan-
guageTable robot stations simultaneously. For details on the real-world LanguageTable experimen-
tation protocol we refer the interested reader to Appendix C. We run the 80% data experiment once
using 3 robot stations, and run the 20% data experiment twice, once with 3 and once with 4 robot
stations. As described in Section 3.2, success detection for episode termination is performed auto-
matically by our system, and the sole responsibility of the human operator is to monitor the robots
and periodically reset the blocks on the stations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Stage 2 Self-Improvement Results. Orange: Stage 1 (equivalent to RT-2 Brohan et al. (2023)
baseline). Blue: Stage 2 Self-Improvement. Our results in simulated and real LanguageTable, and well as Aloha
domain, demonstrate that our proposed two-stage approach achieves higher success rates significantly more
sample-efficiently than supervised learning alone. Our Real2Sim LanguageTable and in particular BananaTable
results demonstrate that the combination of Stage 2 and web-scale pre-training enables policies to acquire novel
skills far outside the Stage 1 imitation learning dataset. Variations across random seeds are small, highlighting
the robustness of our approach. Values above are averaged across 3 seeds (unaggregated results in Figure 7,
Figure 8). While Stage 1 LanguageTable datasets contain varied tasks, for fairness, the x-axes in the plots above
count number of Block2Block episodes (normalized by number of Block2Block episodes in full dataset).

Results Figure 3 presents our results. As can be seen, for both the 20% and 80% data settings,
our Stage 2 self-improvement procedure improves policy success rate from ∼60% up to ∼80%-
85%, all within ∼3% additional Block2Block episodes. To put this into perspective, this means
that with a total amount of experience equivalent to ∼23% (Stage 1 + Stage 2), we obtain policies
that far exceed the Stage 1 BC policies (i.e. RT-2) that used 80% of the real-world LanguageTable
dataset. Furthermore, as opposed to the 1-to-1 human-to-robot ratio during imitation learning data
collection for Stage 1, the Stage 2 process requires only 1

4 of the human effort due to the 1-to-many
human-to-robot ratio enabled by our proposed approach.

5.1.3 SIMULATED ALOHA SINGLE INSERTION TASK
We also validate our proposed fine-tuning framework on a second robot embodiment, the bimanual
Aloha manipulation platform (Zhao et al., 2023; Aldaco et al., 2024). We designed and collected
data for a bimanual insertion task, where the left gripper must pick up a socket, and the right gripper
must pick up a peg and insert that peg into the socket. Figure 6 presents a visualization of this task,
with videos available on our supplementary materials website. Due to the single-task nature, much
smaller imitation datasets, much more complex observations, and 70-dim action space, this presents
a challenging setting for further validation of our proposed process. For details on the task and how
the datasets were created, we refer to Appendix B.3. We create 3 imitation dataset sizes of 5K,
10K, and 15K trajectories. We apply our two-stage process on 5K and 10K dataset sizes, and report
results for supervised learning on the 15K dataset as well to better situate the numbers. The only
differences in methodology compared to LanguageTable domain are the following: 1) To initialize
the Stage 2 policy checkpoint we do not take the best validation checkpoint, as we saw that further
training the supervised policy lead to much more improved performance. 2) Since the exact success
state is difficult to observe from the robot camera observations, we add a small positive constant to
the reward function when the robot reaches a successful state. Our task and collected data will be
open-sourced in an upcoming contribution to the Aloha simulation repository (Aldaco et al., 2024).
Results Figure 3, middle, presents our results. As can be seen, policies trained with 5K+2.5K
episodes (Stage 1 + Stage 2) outperform policies trained with 10K imitation episodes (Stage 1 only,
RT-2), and rival the success rate of those trained with 15K supervised episodes (Stage 1 only, RT-2).

A1, A2: Our proposed Stage 2 fine-tuning procedure significantly improves policy perfor-
mance on downstream tasks, is reliably reproducible across experiment seeds, and is robust
enough to be strongly effective on real-world robot training.
A3: Within a given budget of robot episodes, we can obtain more performant robot poli-
cies by distributing the budget between our proposed Stage 1 and Stage 2 fine-tuning stages,
as opposed to allocating that budget purely for Stage 1 imitation data collection.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Left Our ablation results demonstrate the critical role of the web-scale pre-training of foundation
models for enabling effective Stage 2 training, in particular in the small dataset size regime. Right Lan-
guageTable Real2Sim domain transfer results.

5.2 IMPORTANCE OF FOUNDATION MODEL PRETRAINING

It is critical to study to what extent the significant benefits of our proposed self-improvement proce-
dure are afforded by the webscale pretraining of the PaLI (Chen et al., 2022; 2023) foundation model
we start from. As described in Section 2, the PaLI model is initialized from a pretrained ViT model
(trained unimodally using vision tasks) and a pretrained language Transformer model (trained uni-
modally using language tasks), which are connected to form the PaLI architecture, and subsequently
co-trained on multimodal vision-language tasks. To ablate the effect of the multimodal knowledge
embedded into PaLI, we can run our proposed two-stage fine-tuning process starting from alternative
variations of the PaLI model:

• Scratch: where we use the PaLI architecture but with randomly initialized parameters.
• Frankenstein: where we take the version of the PaLI model that connects the pretrained ViT

model to the pretrained language Transformer, but without the PaLI vision-language co-training.
We refer to this model as the “Frankenstein” model, referencing how the ViT and the Transformer
are “Frankensteined together”.

Similar to Section 5.1.1, we compare these variations on the Simulated LanguageTable domain, us-
ing the 10%, 20%, and 80% dataset sizes, performing Stage 2 fine-tuning on the Block2Block subset
of tasks. Each experiment is ran with 3 random seeds. Despite our best efforts and very long training
runs, we observed that Stage 1 supervised policies derived from Scratch or Frankenstein variations
very significantly underperformed PaLI Stage 1 policies. Hence, we focus our ablation on the Stage
2 self-improvement process, where the policy is initialized from the PaLI Stage 1 checkpoints, and
the reward model uses Scratch or Frankenstein checkpoints. Figure 4 Left presents our results.
There is a clear ordering in performance, where the PaLI is best, followed by Frankenstein, and
then Scratch reward model. The Scratch reward models leads to high variance results across random
seeds, and struggles to provide any meaningful improvements in the low-data regimes, to the point
that in the 10% data regime Stage 2 fine-tuning could not improve the Stage 1 policy. While better
than Scratch, Stage 2 with Frankenstein reward models is also significantly worse than using PaLI
reward models. In fact, Stage 2 fine-tuning with PaLI reward models in the 20% regime leads to
better policies than Stage 2 fine-tuning with Frankenstein reward models in the 80% regime! These
results clearly demonstrate the immense value that webs-cale multimodal pre-training brings to our
self-improvement procedure.

A4: Foundation model pre-training leads to significantly better Stage 2 policies, and is a
key enabler of sample-efficiency.

5.3 GENERALIZATION

A capability unlocked by the combination of our proposed self-improvement process and the use
of pretrained multimodal foundation models is that, during Stage 2 self-improvement policies can

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Strong Generalization to BananaTable. Top Before Stage 2 fine-tuning on the BananaTable
domain, the policy struggles to effectively maneuver a banana across the table due to the difficult geometry.
Bottom Left After Stage 2 fine-tuning policies are visibly more proficient at the BananaTable task (videos on
our supplementary website). Bottom Right Prior to Stage 2 BananaTable fine-tuning, the policy and reward
models have never seen the BananaTable task, creating a very challenging generalization problem.

practice novel tasks that were not covered by the imitation learning dataset. In this section we present
results for two increasingly difficult forms of generalization.

5.3.1 DOMAIN TRANSFER BETWEEN SIMULATION AND REAL

In this section we investigate domain transfer between simulation and real. Sim2Real is an important
class of approaches for robotics with many successes (Pinto et al., 2017; Tan et al., 2018; Akkaya
et al., 2019; Rao et al., 2020; Kataoka et al., 2023), and can significantly reduce the amount of real-
world experience needed to train performant robot policies. To make experimentation simpler, in
this section we investigate the inverse problem of Real2Sim transfer on the LanguageTable domain.
We train Stage 1 models using 80% of the real-world LanguageTable dataset, and perform Stage 2
self-improvement in the simulated LanguageTable environment. Similar to our ablation in section
5.2, we also train Stage 2 models using the “Frankenstein” reward model variant to highlight the
role of foundation model pretraining in enabling domain transfer.

Figure 4 right, presents our results. As can be seen, with a mere number of episodes equivalent to
3% of Block2Block episodes in the simulated LanguageTable dataset, our Stage 2 self-improvement
procedure improves policy performance from ∼ 22% to ∼ 59%. This performance is equivalent
to PaLI Stage 1 models (i.e. RT-2 behavioral cloning) trained with 80% of the simulated Lan-
guageTable dataset. Additionally, Figure 4 right demonstrates that the Frankenstein model leads to
a significantly slower self-improvement procedure, highlighting the key role of PaLI pre-training.
Given our strong real-world LanguageTable results in section 5.1.2, we expect our Real2Sim results
to be strongly indicative of Sim2Real transfer as well.

5.3.2 STRONG GENERALIZATION TO LEARNING NOVEL SKILLS

Lastly, we test the generalization ability of our self-improvement approach via an experiment we
dub “BananaTable” (Figure 6, top right). Starting from a real-world LanguageTable policy that
was Stage 2 fine-tuned for the Block2Block tasks and the corresponding reward model (Section
5.1.2), we perform futher Stage 2 fine-tuning but for the BananaTable task, where we replace the
LanguageTable blocks with a single prosthetic banana and request policies to push the banana to
various locations on the board.

Prior to this experiment, the policy and reward function have never seen a banana or the table without
blocks. Thus we are solely relying on the generalization abilities of the PaLI model underneath. Not
only is the BananaTable scene visually different from LanguageTable, requiring semantic general-
ization, but manipulating bananas effectively necessitates learning new skills compared to the ones
used for manipulating LanguageTable blocks, requiring behavioral generalization. As an example,
due to its geometry, inaccurate pushing of a banana results in it rotating around itself instead of mov-
ing in the intended direction. The videos in our supplementary website demonstrate that within ∼ 8
hours of training using 2 robot stations, the policy becomes visibly more proficient at accomplishing
the BananaTable tasks (∼ 63% −→∼ 85% success rate, Figure 3).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

A5: Unlike prior work such as RT-2 (Brohan et al., 2023) where foundation models have
demonstrated semantic generalization (e.g. executing the same pick and place motion but in
a different context), our proposed self-improvement procedure enables policies to not only
refine their behaviors during domain transfer (Real2Sim, Section 5.3.1), but also rapidly
acquire new skills that are strongly beyond the distribution covered by the imitation learning
datasets they are provided (BananaTable, Section 5.3.2).

6 RELATED WORKS

Pretrained Models As Robot Policies A number of works leverage pre-trained multimodal foun-
dation models to obtain performant robot policies. RT-2 Brohan et al. (2023) fine-tunes variants
of the PaLI (Chen et al., 2023) vision-language model using behavioral cloning, demonstrating
strong performance and generalization gains from the use of pre-trained models. This approach was
further validated by applying to the Open X Embodiment (Collaboration et al., 2023) dataset con-
taining over 1M robot trajectories from 21 institutions (e.g. Octo (Octo Model Team et al., 2024)
and OpenVLA (Kim et al., 2024)). Shah et al. (2023) train a foundation model for visual naviga-
tion, demonstrating that it can be leveraged to control various embodiments, and sample-efficiently
fine-tuned to adapt to new observation modalities, as well as new navigation tasks and domains.

Improving Robot Policies Without Ground-Truth Rewards A significant challenge of improv-
ing robot policies is that commonly we do not have access to ground-truth reward functions, whether
due to the challenge of designing one, or difficulty in measuring them. An important class of
works (Bhateja et al., 2023; Ma et al., 2022; Sermanet et al., 2018) learn latent observation rep-
resentations on top of which rewards and value functions can be defined. In contrast, our approach
of predicting timesteps until end of episodes directly leverages the existing input-output space and
loss functions of existing large pre-trained models, making it much simpler to implement. A num-
ber of prior works also leverage time distances between states to learn policies. Hartikainen et al.
(2019) use unsupervised interactions to learn distances between states, while also using imitation
datasets to guide policies towards goals. Predicted distances to goals are used as negative rewards
and for goal-conditioned RL. In an offline setting, Hejna et al. (2023) model the distribution of
timesteps between states in imitation learning datasets and approximate shortest paths. Policies are
extracted by weighing actions by their reduction in distance estimates. Many alternative approaches
to robot learning without rewards have been explored as well. Kumar et al. (2022) use a heuristic of
labeling the last n trajectories of an episode with +1 rewards and the rest with 0. They demonstrate
that offline and online RL, using the combination of target task and pre-existing data, can be used
for sample-efficiently improving robot policy performance. (Eysenbach et al., 2022) demonstrate
that a particular form of contrastive learning corresponds to a form of goal-conditioned Q-Learning.
(Chebotar et al., 2021) demonstrate the offline goal-conditioned RL with relabeled goals can lead
to sample-efficient downstream fine-tuning for new tasks. RobotCat (Bousmalis et al., 2023) trains
a large behavioral cloning Transformer with a similar architecture as Gato (Reed et al., 2022) on a
diverse set of robotics tasks. They demonstrate that policy performance can be improved by rolling
out the policies, relabeling episodes with accomplished goals, and adding the trajectories back into
the imitation dataset. However, it is important to note that using hindsight relabeled supervised
learning as a policy improvement procedure can have important failure cases (Ghugare et al., 2024).

7 FUTURE WORK AND LIMITATIONS
Our work has clearly demonstrated the immense potential of the combination of pre-trained mul-
timodal foundation models and online self-improvement towards efficiently obtaining performant
robot policies that also exhibit strong generalization capacities. There still exist, however, many
important avenues for future work: 1) Our approach uses on-policy REINFORCE for simplicity
which does not reuse any collected data in Stage 2. Off-policy methods have the potential to even
more substantially improve Stage 2 sample-efficiency. 2) Training large models requires significant
compute budgets. Understanding whether our framework is amenable to parameter-efficient tuning
methods (e.g. LoRA (Hu et al., 2021)) is critical towards enabling broad access to Stage 2 fine-
tuning. 3) What are the failure cases of our reward formulation? Anecdotally, we have seen that
if we continue training Stage 2 for past the peak performance, the success rate of the policies can
begin to degrade. Is this due to gaps between our reward formulation and intended task outcome?
We hope that the strong results presented in this work motivate the broader research community to
investigate these fruitful avenues of future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Jorge Aldaco, Travis Armstrong, Robert Baruch, Jeff Bingham, Sanky Chan, Kenneth Draper, De-
bidatta Dwibedi, Chelsea Finn, Pete Florence, Spencer Goodrich, et al. Aloha 2: An enhanced
low-cost hardware for bimanual teleoperation. arXiv preprint arXiv:2405.02292, 2024.

Gordon J Alexander and Alexandre M Baptista. A comparison of var and cvar constraints on port-
folio selection with the mean-variance model. Management science, 50(9):1261–1273, 2004.

Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement Learning. MIT
Press, 2023. http://www.distributional-rl.org.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
Paligemma: A versatile 3b vlm for transfer. arXiv preprint arXiv:2407.07726, 2024.

Chethan Bhateja, Derek Guo, Dibya Ghosh, Anikait Singh, Manan Tomar, Quan Vuong, Yevgen
Chebotar, Sergey Levine, and Aviral Kumar. Robotic offline rl from internet videos via value-
function pre-training. arXiv preprint arXiv:2309.13041, 2023.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X Lee, Maria Bauza,
Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat: A self-improving
foundation agent for robotic manipulation. arXiv preprint arXiv:2306.11706, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex Irpan,
Benjamin Eysenbach, Ryan Julian, Chelsea Finn, et al. Actionable models: Unsupervised offline
reinforcement learning of robotic skills. arXiv preprint arXiv:2104.07749, 2021.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual
language-image model. arXiv preprint arXiv:2209.06794, 2022.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Car-
los Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a
multilingual vision and language model. arXiv preprint arXiv:2305.18565, 2023.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ
Tedrake, and Shuran Song. Universal manipulation interface: In-the-wild robot teaching with-
out in-the-wild robots. arXiv preprint arXiv:2402.10329, 2024.

Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Ab-
hishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar,
Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khazatsky, Anant
Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh Garg, Aniruddha
Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh Yavary, Arhan
Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim, Bernhard
Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea Finn, Chen

11

http://www.distributional-rl.org


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher Agia, Chuer
Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne Chen, Deepak
Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov, Dorsa Sadigh, Ed-
ward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao, Felipe Vieira Fru-
jeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan, Gilbert Feng,
Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang, Hao Su, Hao-Shu
Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen, Hiroki Furuta, Homer
Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Radosavovic, Isabel Leal, Jacky Liang, Jad
Abou-Chakra, Jaehyung Kim, Jaimyn Drake, Jan Peters, Jan Schneider, Jasmine Hsu, Jeannette
Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun,
Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra
Malik, João Silvério, Joey Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Sal-
vador, Joseph J. Lim, Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol Hausman,
Keegan Go, Keerthana Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento
Kawaharazuka, Kevin Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty El-
lis, Krishan Rana, Krishnan Srinivasan, Kuan Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle
Hatch, Kyle Hsu, Laurent Itti, Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan,
Linxi ”Jim” Fan, Lionel Ott, Lisa Lee, Luca Weihs, Magnum Chen, Marion Lepert, Marius Mem-
mel, Masayoshi Tomizuka, Masha Itkina, Mateo Guaman Castro, Max Spero, Maximilian Du,
Michael Ahn, Michael C. Yip, Mingtong Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Sri-
rama, Mohit Sharma, Moo Jin Kim, Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J
Joshi, Niko Suenderhauf, Ning Liu, Norman Di Palo, Nur Muhammad Mahi Shafiullah, Oier
Mees, Oliver Kroemer, Osbert Bastani, Pannag R Sanketi, Patrick ”Tree” Miller, Patrick Yin,
Paul Wohlhart, Peng Xu, Peter David Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya
Sundaresan, Qiuyu Chen, Quan Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Mart’in-
Mart’in, Rohan Baijal, Rosario Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang,
Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani,
Sergey Levine, Shan Lin, Sherry Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani, Shu-
ran Song, Sichun Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon Adebola, Simon Guist,
Soroush Nasiriany, Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian Ramamoorthy,
Sudeep Dasari, Suneel Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa,
Tanmay Gupta, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu,
Tianli Ding, Todor Davchev, Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung,
Vidhi Jain, Vincent Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu
Chen, Xiaolong Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yan-
song Pang, Yao Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu,
Yilin Wu, Ying Xu, Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon
Lee, Yuchen Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang,
Yunshuang Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff
Cui, Zichen Zhang, Zipeng Fu, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets
and RT-X models. https://arxiv.org/abs/2310.08864, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Zane Durante, Bidipta Sarkar, Ran Gong, Rohan Taori, Yusuke Noda, Paul Tang, Ehsan Adeli,
Shrinidhi Kowshika Lakshmikanth, Kevin Schulman, Arnold Milstein, et al. An interactive agent
foundation model. arXiv preprint arXiv:2402.05929, 2024.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learn-
ing as goal-conditioned reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:35603–35620, 2022.

12

https://arxiv.org/abs/2310.08864


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap be-
tween td learning and supervised learning–a generalisation point of view. arXiv preprint
arXiv:2401.11237, 2024.

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical distance
learning for semi-supervised and unsupervised skill discovery. arXiv preprint arXiv:1907.08225,
2019.

Joey Hejna, Jensen Gao, and Dorsa Sadigh. Distance weighted supervised learning for offline inter-
action data. In International Conference on Machine Learning, pp. 12882–12906. PMLR, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Satoshi Kataoka, Youngseog Chung, Seyed Kamyar Seyed Ghasemipour, Pannag Sanketi, Shix-
iang Shane Gu, and Igor Mordatch. Bi-manual block assembly via sim-to-real reinforcement
learning. arXiv preprint arXiv:2303.14870, 2023.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn, and
Sergey Levine. Pre-training for robots: Offline rl enables learning new tasks from a handful of
trials. arXiv preprint arXiv:2210.05178, 2022.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024.

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. IEEE Robotics
and Automation Letters, 2023.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International conference on machine learning, pp. 4055–
4064. PMLR, 2018.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine, Julian Ibarz, and Mohi Khansari. Rl-
cyclegan: Reinforcement learning aware simulation-to-real. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11157–11166, 2020.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 1134–1141. IEEE,
2018.

Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin Black, Noriaki Hirose, and
Sergey Levine. Vint: A foundation model for visual navigation. arXiv preprint arXiv:2306.14846,
2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332, 2018.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A TOKENIZATION

A.1 LANGUAGETABLE

Actions We represnt LanguageTable actions via 4 tokens: +/−, token representing 0-10, +/−,
token representing 0-10. The continuous 2D actions are binned to fall into this representation.

Timesteps We represent timesteps until end of episode using one token, which represents a num-
ber between 0-50.

A.2 ALOHA

Actions As discussed in B.3 our action space is 5 × 14 dimensions. We represent each dimension
as 1 token, meaning the model outputs 70 tokens. Each token represents a number from 0-255. The
continuous Aloha actions are discretized and binned into these 256 bins.

Timesteps We represent timesteps until end of episode using one token, which represents a num-
ber between 0-300.

Joints As input we provide the model with the current joint positions, i.e. we append 14 tokens
to the input, where each token represents a number from 0-255. The continuous Aloha joints are
discretized and binned into these 256 bins.

B ENVIRONMENTS AND TASKS

Figure 6 presents a visualization of the tasks used in this work.

B.1 LANGUAGETABLE

The LanguageTable domain (Lynch et al., 2023) has a 2D action space representing delta movement
in the x-y plane. The tasks we perform Stage 2 on are the Block2Block subset of tasks which contain
instructions of the form ‘‘move the blue cube to the green star". The datasets
used in Stage 1 are those provided by the original paper. The two images given to PaLI represent
the current and previous frame as viewed by the LanguageTable robot camera (Figure 6, top left).

B.2 BANANATABLE

In the BananaTable task we remove all blocks from the LanguageTable stations and replace them
with a single banana. The instructions for the BananaTable task have the form, “X the banana
to the Y of the table.”, where X is a set of verbs synonomous with pushing, and Y
is one of left, top left, top center, top right, right, bottom right,
bottom, bottom left, center.

B.3 ALOHA

The Aloha domain is 14 degree of freedom joint-space controlled robot. As opposed to the default
50Hz, we operate the environment at 10Hz. A common design choice in the Aloha domain (Zhao
et al., 2023) is to train policies to predict N actions into the future. We use N = 5 which results in
an action space that is 70-dimensional (14 × 5).

The Aloha environment has 4 cameras. To turn them into two images to pass to our PaLI models,
we stack two images into one image with a black buffer in between. Figure 6 bottom left and bottom
right show an example of the two images given to PaLI.

We designed and collected data for a bimanual insertion task, where the left gripper must pick up a
socket, and the right gripper must pick up a peg and insert that peg into the socket. We collected 800
demonstrations using a VR headset to view the Mujoco simulation, and using the real-world Aloha

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 6: The environments used in this work.

leader robots to control the virtual robots. We then trained a small diffusion policy (Chi et al., 2023)
on the 800 demonstrations and used the model to generate 3 datasets of size, 5K, 10K, and 15K.

Critical to successful PaLI policies was to employ semi-global action representations as in Chi
et al. (2024), as well as training Stage 1 far beyond the point at which the best validation loss was
obtained.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C REAL-WORLD LANGUAGETABLE EXPERIMENTATION PROCEDURE

For all real-world experiments, 1 human was responsible for monitoring all robots and performing
resets. They did not provide any form of labels or success indicators to the models. Operators were
instructed to perform resets either when a block drops off the table, or if a station has not been
shuffled and reset in the past 3-5 minutes of operation.

Figure 7: Self-Improvement results on real-world LanguageTable domain. We conducted real-world exper-
iment 3 times: 1) 80% data in Stage 1, Stage 2 fine-tuned on 3 robots simultaneously, 2) 20% data in Stage
1, Stage 2 with 3 robots, 3) 20% data in Stage 1, Stage 2 with 4 robots. In all Stage 2 experiments 1 human
monitored and performed period resets for all robots. Each experiment took approximately 20 hours (4 hours
× 5 days).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D ADDITIONAL PLOTS

Figure 8: (left) Results and ablations on the simulated LanguageTable domain. We emphasize to the reader
that while it appears that the Stage 1 and Stage 2 plots have identical x-axis values, there is no bug in the plot
and they are in fact different. The Stage 2 process is simply sample-efficient to the point that the difference in
x-axis is negligible. (right) Plots demonstrating the efficacy of the Self-Improvement Process on Aloha Single
Insertion Task in the 5K and 10K data settings (3 random seeds each setting). The blue plots demonstrate that
despite the much smaller datasets compared to LanguageTable, distributing environment interaction budget
between Stage 1 and Stage 2 is a more sample-efficient approach towards obtaining performant policies, as
opposed to allocating the full budget to Stage 1 (yellow markers).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E MATHEMATICAL INTUITION

Mathematical Intuition Let µ denote the policy corresponding to the imitation learning dataset
D (e.g. the “human policy”). Given the definition in Equation 1, we can see that d(ot, g) =
−V µ(ot, g), where V µ denotes the undiscounted value function of policy µ for the reward func-
tion −1

[
ot satisfies g

]
(i.e. 0 in goal states, -1 elsewhere). Substituting in Equation 2 we obtain,

r(ot, at, ot+1, g) = V µ(ot+1, g) − V µ(ot, g). Thus, when performing Stage 2 RL updates with
discount factor γ, we have,

r(ot, at, ot+1, g) = (1− γ) · V µ(ot+1, g) +
[
γ · V µ(ot+1, g)− V µ(ot, g)

]
︸ ︷︷ ︸

reward shaping

(3)

We see that r(ot, at, ot+1, g) is implicitly a shaped reward function (Ng et al., 1999), providing
higher rewards in states where the dataset policy µ performs well. Simplifying the Monte Carlo
returns we have,

Rt =
T∑
i=t

γi−t · r(oi, ai, oi+1, g) =
[
(1− γ) ·

T∑
i=t

γi−t · V µ(oi+1, g)
]
− V µ(ot, g)︸ ︷︷ ︸

baseline

The reward shaping in Equation 3 results in a baseline subtracted from the Monte Carlo returns, lead-
ing to lower variance estimates that are particularly useful when employing simple RL objectives,
such as REINFORCE in our case. When γ is close to 0, we have Rt = V µ(ot+1, g) − V µ(ot, g)
which is closely similar to a single-step policy improvement for the −1[ot satisfies g] reward. As
γ → 1, Rt encourages policies to traverse trajectories along which the states have high value under
the dataset policy µ (i.e. high V µ). Thus, performing Stage 2 RL updates with our proposed reward
function in Equation 2 leads to policies that more efficiently achieve intended goals while being
implicitly regularized to stay close to the dataset policy µ!

Toy Pointmass Navigation Domain In our supplementary materials website we include an exten-
sive self-contained python notebook implementing our two stage fine-tuning procedure on a point-
mass domain. In each episode the pointmass start in a random position, and the goal is for the point-
mass to reach a different randomly sampled goal position. We create a purposefully sub-optimal
imitation learning dataset for this task, where using a PD-controller we navigate the pointmass to 5
waypoints before heading to the desired goal position. We then execute our proposed Stage 1 and
Stage 2 fine-tuning procedures on this imitation dataset using simple MLP policies and steps-to-go
prediction models.

Figure 9, depicts the dataset, as well as trajectories from the Stage 1 and Stage 2 policies. Despite the
suboptimal behavior of the Stage 1 learned policies, Stage 2 policies clearly converge to an almost
optimal policy for the pointmass navigation task. These experiments provide additional support for
our choice of reward functions and fine-tuning procedures.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 9: Results from our toy pointmass domain implemented in the python notebook included in
our supplementary materials website.

20


	Introduction
	Background
	Methodology
	Stage 1: Supervised Fine-Tuning (SFT)
	Stage 2: Online Self-Improvement (Online RL)

	Intuition on Reward Function
	Experiments
	Self-Improvement is Robust, Effective, and More Efficient Than Supervised Learning Alone
	Simulated LanguageTable
	Real-World LanguageTable
	Simulated Aloha Single Insertion Task

	Importance of Foundation Model Pretraining
	Generalization
	Domain Transfer Between Simulation and Real
	Strong Generalization to Learning Novel Skills


	Related Works
	Future Work and Limitations
	Tokenization
	LanguageTable
	Aloha

	Environments and Tasks
	LanguageTable
	BananaTable
	Aloha

	Real-World LanguageTable Experimentation Procedure
	Additional Plots
	Mathematical Intuition

