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Abstract
One approach to reducing the massive costs of
large language models (LLMs) is the use of quan-
tized or sparse representations for training or
deployment. While post-training compression
methods are very popular, the question of obtain-
ing even more accurate compressed models by
directly training over such representations, i.e.,
Quantization-Aware Training (QAT), is still open:
for example, a recent study (Kumar et al., 2024)
put the “optimal” bit-width at which models can
be trained using QAT, while staying accuracy-
competitive with standard FP16/BF16 precision,
at 8-bits weights and activations. We advance this
state-of-the-art via a new method called QuEST,
for which we demonstrate optimality at 4-bits and
stable convergence as low as 1-bit weights and
activations. QuEST achieves this by improving
two key aspects of QAT methods: (1) accurate
and fast quantization of the (continuous) distribu-
tions of weights and activations via Hadamard
normalization and MSE-optimal fitting; (2) a
new trust gradient estimator based on the idea
of explicitly minimizing the error between the
noisy gradient computed over quantized states
and the “true” (but unknown) full-precision gradi-
ent. Experiments on Llama-type architectures
show that QuEST induces stable scaling laws
across the entire range of hardware-supported pre-
cisions, and can be extended to sparse represen-
tations. We provide GPU kernel support show-
ing that models produced by QuEST can be exe-
cuted efficiently. Our code is available at https:
//github.com/IST-DASLab/QuEST.

1. Introduction
The massive computational demands of large language mod-
els (LLMs), e.g. (Dubey et al., 2024), have made AI ef-
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Figure 1. The scaling law induced by QuEST when training Llama-
family models from 30 to 1.6B parameters on C4, with quan-
tized weights and activations from 1 to 4 bits, in the 100 to-
kens/parameter regime (harder compression uses proportionally
more data at fixed memory). QuEST allows for stable training at 1-
bit weights and activations (W1A1), and the QuEST W4A4 model
is Pareto-dominant relative to BF16, with lower loss at lower size.

ficiency a critical challenge. One popular pathway to in-
creased efficiency has been reducing numerical precision,
usually done via post-training quantization (PTQ) methods
for compressing weights (Frantar et al., 2022; Lin et al.,
2024; Chee et al., 2024; Tseng et al., 2024) or both weights
and activations (Ashkboos et al., 2023; 2024; Zhao et al.,
2023). Quantizing both operands is necessary to leverage
hardware support for low-precision multiplications, which
extends down to 4-bit (NVIDIA, 2024). However, state-
of-the-art PTQ methods are still far from recovering full
accuracy for 4-bit precision (Ashkboos et al., 2024; Liu
et al., 2024), leaving a gap between computational support
and achievable accuracy.

One alternative is quantization-aware training (QAT) (Raste-
gari et al., 2016; Jacob et al., 2018)— where models are
trained from scratch with low-precision weights and acti-
vations on the forward pass, but with a full-precision back-
ward pass—offering the potential for superior accuracy-vs-
compression trade-offs, as gradient optimization can correct
compression errors. Despite promising results for weight-
only quantization (Wang et al., 2023; Kaushal et al., 2024),
it is currently not known whether QAT can produce accu-
rate LLMs with low-bitwidth weights and activations. Here,
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the key metric is the Pareto-optimal frontier, i.e., the mini-
mal representation size (or inference cost) for the model to
achieve a certain accuracy under a fixed data or training bud-
get. Recently, Kumar et al. (2024) identified 8-bit precision
as Pareto-optimal for QAT methods on LLMs.

Contribution. We present QuEST, a new QAT method that
brings the Pareto-optimal frontier to around 4-bit weights
and activations and enables stable training at 1-bit precision
for both operands. As shown in Figure 1, when data and
compute are scaled proportionally to model size, QuEST
can train models with 4-bit weights and activations that have
superior accuracy relative to BF16 models almost 4x in size.

We achieve this by re-thinking two key aspects of QAT meth-
ods: 1) the “forward” step, in which continuous-to-discrete
tensor distribution fitting is performed on the forward pass,
and 2) the “backward” step, in which gradient estimation
is performed over the discrete representation. For the for-
ward step, QuEST works by approximating the “optimal”
continuous-to-discrete mapping by first applying a normal-
izing Hadamard Transform, and then computing an MSE-
optimal quantization for the resulting distribution. This
replaces the prior “learned” normalization approaches (Choi
et al., 2018; Bhalgat et al., 2020).

The key remaining question is how to find an accurate gradi-
ent estimator over a weight or activation tensor quantized as
above. Here, prior work leverages the Straight-Through Es-
timator (STE) (Bengio et al., 2013), augmented with learn-
able components, e.g. (Bhalgat et al., 2020). We propose a
different approach called trust estimation, which seeks to
minimize the difference between the “true” gradient (taken
over high-precision weights) and its estimate taken over
lower-precision weights and activations. To do this, a trust
estimator diminishes the importance of the gradient for some
components depending on their quantization error on the
forward step, following the intuition that entries with large
errors lead to significant deviations in the gradient.

Next, we focus on the following question: assuming that
training computation is not a limiting factor, what is the
“optimal” precision in terms of accuracy-vs-model-size? To
address this, we implement QuEST in Pytorch (Paszke et al.,
2019) and train Llama-family models (Dubey et al., 2024)
of up to 1.6B parameters on up to 160B tokens from the
standard C4 dataset (Raffel et al., 2019), across precisions
from INT1 to INT8. Results show that QuEST provides
stable and accurate convergence across model sizes and
precisions down to 1-bit weights and activations. This in-
duces new scaling laws, which we study across model sizes
in the large-data (100 tokens/parameter) regime. QuEST
leads INT4 weights and activations to be Pareto-optimal
in terms of accuracy at a given model size and inference
cost, suggesting that the limits of low-precision training are
lower than previously thought. In addition, we provide GPU

kernels showing that models produced by QuEST can be
run efficiently on commodity hardware.

2. Background and Related Work
Hubara et al. (2016) and Rastegari et al. (2016) were among
the first to consider training neural networks with highly-
compressed internal states, focusing primarily on weight
compression. Later work focused on quantization-aware
training (QAT) (Jacob et al., 2018; Choi et al., 2018; Esser
et al., 2019; Bhalgat et al., 2020) in the form considered here,
where the model weights and activations (i.e. the forward
pass) are quantized, but the backward pass is performed in
full-precision, using variants of the straight-through esti-
mator (STE) (Bengio et al., 2013). (The variant where all
states, including gradients, are quantized (Wortsman et al.,
2023; Xi et al., 2024) is beyond the scope of this paper.)

Broadly, QAT considers the problem of finding a quantized
projection over a standard-precision tensor x, representing
part of the weights or activations, minimizing output error.
For symmetric uniform quantization, the projection onto the
quantized tensor x̂ is defined as:

x̂ = α ·
⌊

clip(x, α)
α

⌉
, (1)

where the clip function performs a clamping operation over
the value distribution for all values above the clipping pa-
rameter α, which also acts as a scaling factor, normalizing
values to x to [−1, 1], and the function ⌊·⌉ rounds each value
to its nearest quantization point, defined as a uniform grid
whose granularity depends on the number of available bits b
(i.e., {−1, . . . ,− 1

2b−1
, 1
2b−1

, . . . , 1}). Most QAT methods
propose to “learn” the factor α, for instance, via gradient-
based optimization. For example, QAT methods usually
keep a standard-precision version w of the weights; the
STE gradient is computed over the quantized weights ŵ,
and then added to the full-precision accumulator, possibly
also updating the clipping factor α.

Recent work such as BitNet (Wang et al., 2023; Ma et al.,
2024) and Spectra (Kaushal et al., 2024) showed that weight-
only quantization is viable for small- and medium-scale
LLMs. The concurrent work presents BitNet a4.8 (Wang
et al., 2024), a hybrid scheme that combines ternary weights
with mixed 4- and 8-bit activations, applied selectively to
different matrices. In parallel, Kumar et al. (2024) inves-
tigated scaling laws for GPT-type models with quantized
states, concluding that the “Pareto-optimal” point for current
QAT methods is around 8-bit weights and activations.

Prior work by Frantar et al. (2023); Jin et al. (2025) stud-
ied scaling laws specifically for sparse foundation models,
establishing that the loss can be stably predicted across pa-
rameter and data scales when the model weights are sparse.
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Recently, Frantar et al. (2025) generalized these laws to
unify both sparsity and quantization, allowing to compare
the “effective parameter count” for these two types of repre-
sentations. Our work focuses on improved training methods
for highly-compressed representations, leading to improved
scaling laws relative to standard dense training, and can be
applied to both sparsity and quantization.

3. QuEST

Motivation. A simple way of describing current QAT meth-
ods is that, given a standard-precision tensor w, we first try
to get an accurate discrete approximation ŵ by optimizing
parameters such as the clipping factor α in Equation 1 to
minimize some loss target, such as the mean-square-error
(MSE), and then rely on STE to estimate ∇wL, the gradient
over w, by ∇ŵL, the gradient taken w.r.t. the quantized
weights ŵ. Yet, the difference between these two gradients,
which correlates to the gap in optimization trajectory, could
be unbounded, specifically because of large errors in a small
subset of entries.

Instead, in this paper, we seek to minimize the “gradient
bias,” i.e. the difference between the true and discrete gradi-
ents, measured, e.g. as∥∥∥∇wL − ∇ŵL

∥∥∥2
2
. (2)

Prior work on gradient compression (Alistarh et al., 2017;
Nadiradze et al., 2021) has identified this quantity as being
critical for the convergence of gradient-based optimization
algorithms.

Let us define the quantization error for each entry wk as
errk =

∣∣wk − ŵk

∣∣. We can partition the weight indices
k based on whether the quantization error errk is smaller or
larger than some “trust factor” threshold T . Denote:

Ssmall = { k : errk ≤ T}, Slarge = { k : errk > T}.

Then, the squared gradient difference in (2) decomposes as:∑
k∈Ssmall

(∇wLk − ∇ŵLk)
2

︸ ︷︷ ︸
(⋆)

+
∑

k∈Slarge

(∇wLk − ∇ŵLk)
2

︸ ︷︷ ︸
(⋆⋆)

.

Assuming that the loss L is γ-smooth, the (⋆) “small er-
ror” term would be upper bounded by γ2T 2|Ssmall|. Intu-
itively, this term is minimized in a standard QAT method’s
“distribution fitting” step. Yet, distribution fitting does not
address the “large error” term (⋆⋆): specifically, outlier en-
tries clipped in the fitting step can lead to extremely large
gradient estimation errors.

QuEST takes this into account by balancing estimation er-
rors due to minor but persistent quantization errors in (⋆),

with the significant “outlier” errors incorporated by term
(⋆⋆). For this, we propose an efficient fitting mechanism that
minimizes persistent errors, coupled with a “trust” gradient
estimator step aimed at bounding outlier errors.

3.1. Step 1: Distribution Fitting

While optimizing the quantization grid to best fit the under-
lying tensor is a core idea across all quantization meth-
ods, PTQ methods traditionally use more complex and
computationally heavy approaches (Dettmers et al., 2024;
Malinovskii et al., 2024). In contrast, QAT methods rely
on backpropagation through the scaling factor for error-
correction (Esser et al., 2019; Bhalgat et al., 2020) while
performing re-fitting. To avoid backpropagation errors im-
pacting the forward pass, we do not use backpropagation
for distribution fitting. Instead, we start from the empiri-
cal observation that the distribution of weights and activa-
tions during LLM training is sub-Gaussian but with long
tails (Dettmers et al., 2022; 2023).

Gaussian Fitting. Specifically, we choose to optimize the
grid to explicitly fit a Gaussian distribution with the same
parametrization as the empirical distribution of the underly-
ing tensor x. Concretely, we use root mean square (RMS)
normalization to first align the empirical distribution of x
with a N (0, 1) Gaussian distribution (Frantar et al., 2025).
We then perform the projection operation with the scale α∗

chosen to minimize the L2 error resulting from projecting
N (0, 1). Formally:

x̂ = α∗ · RMS(x) ·
⌊

clip (x/RMS(x), α∗)

α∗

⌉
=

:= projα∗(x), where

α∗ := argmin
α∈R

Eξ∼N (0,1)

∥∥∥∥ξ − α ·
⌊

clip(ξ, α)
α

⌉∥∥∥∥2
2

is the MSE-optimal scaling factor. If x were Gaussian-
distributed, this would produce an MSE-optimal projection.

Hadamard Preprocessing. Yet, the natural distribution
of tensor values may not be Gaussian, especially given
the emergence of outlier values (Dettmers et al., 2022;
Nrusimha et al., 2024). To mitigate this, we add a Hadamard
Transform (HT) step before Gaussian Fitting. Thus, our for-
ward pass projection becomes:

x̂h = projα∗ HT(x). (3)

In other words, we transform the target tensor via mul-
tiplication with a Hadamard matrix of appropriate shape,
applied along the matrix-multiplication dimension, and then
project it to an MSE-optimal grid in the Hadamard domain.
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Here, we leverage 1) the fact that, roughly, multiplication
of a matrix with the Hadamard Transform leads the weight
distribution to better match a Gaussian (Ailon & Chazelle,
2009; Suresh et al., 2017); 2) the existence of fast Hadamard
multiplication kernels (Tri Dao), and 3) the fact that the HT
is orthogonal, so it can be easily inverted. While this HT
effect has been utilized in PTQ (Tseng et al., 2024; Ashk-
boos et al., 2024; Malinovskii et al., 2024) and distributed
optimization (Vargaftik et al., 2021; 2022), we believe we
are the first to harness it for QAT.

3.2. Step 2: Trust Gradient Estimation

Next, we focus on the backward pass. For simplicity, we
first describe the variant without the Hadamard Transform
step and then integrate this component.

Trust Estimators for the Basic Projection. First, assume
that x̂ = projα∗(x). Since the projection operation ⌊x⌉, is
not differentiable w.r.t. x, we need a robust way to estimate
our gradient. Expressed as an operator, STE can be written
as ∂

∂x ≈ ∂
∂⌊x⌉ during the backward pass, allowing gradients

to propagate through the network, but can lead to large
errors due to components with large quantization error.

Specifically, the factor α∗, chosen to minimize the weight
fitting error, acts as a natural scale for how far off their real
value the majority of quantized values can be: for values
below the scaling factor, this error is not larger than T =
α∗

2b−1
, the half-width of a quantization interval. This gives a

natural bound for the (⋆) term in our analysis of Equation 2.

To bound the second term (⋆⋆), we choose to not trust the
gradient estimations for weights with large errors {∇ŵLk :
k ∈ Slarge}. Choosing T = α∗

2b−1
and masking gradients for

elements in Slarge we obtain the gradient operator:

∂

∂x
≈ I|x̂−x|≤T ⊙ ∂

∂x̂
:= Mα∗(x; x̂)⊙ ∂

∂x̂
,

where I|x̂−x|≤T is the standard indicator operator. We will
refer to Mα∗ as the “trust mask”; this gradient estimation
operator will be called the trust estimator.

Trust Estimators for the Hadamard Projection. We now
interface the trust estimator with the Hadamard Transform
(HT) and its inverse (IHT) to obtain the following forward
scheme: xh = HT(x) and x̂h = projα∗ xh. Then, the
natural approach is to perform trust estimation directly in
the Hadamard domain, where quantization takes place:

∂

∂x
≈ IHT

(
Mα∗(xh; x̂h)⊙

∂

∂x̂h

)
.

In other words, after deriving the trust mask w.r.t. distribu-
tion fitting in the Hadamard domain, we apply the result-

Algorithm 1 QuEST Training Forward

1: Input: Input activations x, row-major weight w
2: xh = HT(x)
3: x̂h = projα∗ xh

4: wh = HT(w)
5: ŵh = projα∗ wh

6: y = x̂hŵ
T
h

7: Return: y, x̂h, ŵh, Mα∗(xh; x̂h), Mα∗(wh; ŵh)

ing mask Mα∗(xh; x̂h) onto the gradient w.r.t. quantized
weights in the Hadamard domain.

Gradient Effects. Notice that, in the absence of the HT or
regularization effects (e.g., weight decay), the “untrusted”
weights in Slarge would receive no gradient and may be
permanently removed from optimization. Yet, the addition
of the HT means that the trust mask is no longer binary in
the “standard” domain, allowing for gradient flow towards
all model weights. We validated this effect empirically by
observing that the HT reduced the final cardinality of the
“untrusted” weights set Slarge by ≈ 4x, aligning it with the
number of values we would expect to be outside the “trust
set” at every step, for weights from a normal distribution.
This is investigated in more depth in Appendix A.1.

3.3. Discussion

Implementation. In practice, we use identical Hadamard
Transforms along the matrix-multiplication dimension for
both the weights w and the activations x. Since the
Hadamard Transform is unitary, the quantized matrix multi-
plication output y = x̂ŵT is aligned with the full precision
output xwT it approximates. The algorithm 1 describes
the forward pass over a linear layer actively quantized with
QuEST for a row-major weight representation.

The algorithm 2 describes the backward pass over the same
layer using the quantized weight and activations from the
forward pass as well as error gradient w.r.t y. We note that,
although the backward computation is performed w.r.t. the
quantized weights and activations, the multiplications and
gradient operands are performed in standard 16-bit preci-
sion.

Algorithm 2 QuEST Training Backward

1: Input: ∂L
∂y , x̂h, ŵh, Mα∗(xh; x̂h), Mα∗(wh; ŵh)

2: ∂L
∂x̂h

= ∂L
∂y ŵh

3: ∂L
∂x = IHT

(
Mα∗(xh; x̂h)⊙ ∂L

∂x̂h

)
4: ∂L

∂ŵh
= x̂T

h
∂L
∂y

5: ∂L
∂w = IHT

(
Mα∗(wh; ŵh)⊙ ∂L

∂ŵh

)
6: Return: ∂L

∂x , ∂L
∂w
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Figure 2. Gradient alignment comparison for a 30M Llama model
after training on 2.7B tokens in 8-bit precision.

Training Complexity. In total, during training, for each
original matrix multiplication (e.g., xwT ), we need only
two Hadamard Transforms on the forward pass and two
Inverse Hadamard transforms on the backward pass.

For a Transformer model (Vaswani, 2017) with d blocks and
hidden dimension h, and a batch containing b tokens, the
MatMul complexity of the forward pass can be estimated
as: b× d× h2. Then, the asymptotic cost of the Hadamard
Transform is the quantity b×d×h× log h+d×h2× log h,
which is asymptotically negligible with b > log h.

Activation Effects. It is well-known (Choi et al., 2018)
that activation quantization has major impact on training,
possibly due to compounding with model depth. To test
the effect of different gradient estimators on backpropa-
gation, we empirically examine “gradient quality” as fol-
lows: we calculate intermediate gradients ∇âℓL with re-
spect to activations after the ℓ-th Transformer block. For the
same input, we disable activations quantization and calcu-
late the “true” gradients ∇aℓL. We then define the “gradi-
ent alignment” as the cosine similarity between gradients:
Ξ(∇âℓL,∇aℓL) = (∇âℓL · ∇aℓL)/(∥∇âℓL∥2 ∥∇aℓL∥2).

While low similarity does not necessarily indicate poor
gradient estimation (as the quantized forward pass might
have utilized slightly different pathways, leading to discrep-
ancy), high similarity clearly indicates that the estimator
produces “high-quality” gradients relative to full precision.
Figure 2 compares the gradient alignment for the STE rela-
tive to QuEST, with and without the HT. QuEST leads to
remarkably-high and well-concentrated alignment (≥ 0.8),
even at larger depths. By contrast, standard trust estimation
degrades alignment with depth but has good concentration,
whereas the STE has poor alignment and high variance.

The 1-bit Case. In our original trust estimation formulation,
we proposed to set the trust factor as half the quantization
interval, T = α∗

2b−1
. Thus, the trust regions increase expo-

nentially as the bitwidth decreases. In particular, for 1-bit

weights and activations, QuEST will suffer from trust re-
gions that extend out of the grid by a whole α⋆. To fix
this, we reduce the size of the “outermost” trust regions,
outside the clipping factor, by a scaling factor s. Through
small-scale experiments, we determined the optimal value
of s to be s⋆ ≈ 1.30. We use this scaling factor for all the
1-bit QuEST runs in this paper (unless stated otherwise).
This modification is necessary (and leads to an improve-
ment) only in the extreme 1-bit compression regime. This
is discussed further in Appendix A.2.

4. Experimental Validation
4.1. Implementation Details

Models and Hyperparameters. We tested our method
on pre-training decoder-only Transformers (Vaswani, 2017)
following the Llama architecture (Touvron et al., 2023),
in the range of 30, 50, 100, 200, 430 and 800 million
non-embedding parameters. Please see Appendix B.1
for architecture and hyper-parameter details. We trained
all models on tokens from the C4 (Dodge et al., 2021)
dataset, tokenized with the Llama 2 tokenizer. We used the
AdamW (Loshchilov & Hutter, 2019) optimizer with a co-
sine learning rate schedule and a 10% warmup period, with
gradient clipping (1.0 threshold, decoupled weight decay of
0.1). We identified the learning rate optimally for a 50M
FP16 model via a learning-rate sweep. For other models, as
standard, we scale the learning rate inverse-proportionally
to the number of non-embedding parameters. We reuse the
exact learning rates for all QuEST training runs. Please see
https://github.com/IST-DASLab/QuEST for a
reference implementation.

Unless stated otherwise, we train every model on a number
of tokens equal to 100x its number of “free” parameters, e.g.,
10B tokens for a Llama 100M model, regardless of precision.
This allows us to explore the data-saturation regime. We
aim for comparisons that are iso-size: That is, to match the
size / FLOPs of a 100M FP16 Llama model (trained on 10B
parameters), we will train a 400M-parameter model with
4-bit weights and activations, using 40B total tokens. This
allows us to explore accuracy for fixed model sizes, across
compression ratios (see Figure 1). We discuss different
D/N regimes in Appendix C.2.

4.2. Comparison to Prior QAT Methods

We compare QuEST to: STE; LSQ (Esser et al., 2019),
a widely used QAT baseline; a QAT extension of
QuaRot (Ashkboos et al., 2024), a method similar to QuEST
but with AbsMax scaling instead of proper distribution
matching; and AdaBin (Tu et al., 2022), a specialized W1A1
training method. The results, presented in Table 1, indicate
that QuEST outperform all existing methods, including spe-
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Model size Method W4A4 W3A3 W2A2 W1A1

30M STE 3.792 4.449 4.793 5.256
QuaRot 3.338 3.612 4.481 4.932
LSQ 3.315 3.410 3.598 3.991
AdaBin – – – 3.988
QuEST 3.272 3.372 3.574 3.945

50M STE 4.040 4.542 5.162 6.867
QuaRot 3.201 3.695 4.566 5.007
LSQ 3.240 3.290 3.501 3.862
AdaBin – – – 3.843
QuEST 3.135 3.226 3.441 3.791

Table 1. C4 validation loss comparison across bit-widths and
model sizes for STE, a QAT extension of QuaRot, LSQ, AdaBin
and QuEST. AdaBin is only defined in the binary case.

cialized ones, across all tested bitwidths. We perform a
more elaborate numerical comparison in the next section.

4.3. Scaling Laws

Background. Hoffmann et al. (2022) proposed to model
loss scaling as a function of the number of parameters in the
model N and the number of tokens D it was trained on, in
the form of parametric function:

L(N,D) =
A

Nα
+

B

Dβ
+ E, (4)

where A, B, E, α, and β are the scaling law parameters that
can be fit empirically. Following Frantar et al. (2025), we
modify this formula assuming that the training precision P
only affects the parameter count N as a multiplicative factor
eff(P ), which, for a given quantization method, depends
only on the training precision:

L(N,D,P ) =
A

(N · eff(P ))α
+

B

Dβ
+ E. (5)

If we take eff(16) = 1.0, we recover the law in Equation 4.

Fitting process. To estimate A, B, E, α, β and eff(P )
for every quantization precision P we need, we fit this
parametric function by minimizing the Huber loss (Huber,
1964) between the predicted and the observed log loss. Our
process is detailed in the Appendix, and closely follows the
setup of Hoffmann et al. (2022), including the grid search
and the loss hyper-parameters.

Specifically, we fit the model on the range of parameters
P ∈ {1, 2, 3, 4, 16}, N ∈ {30, 50, 100, 200, 430, 800} ×
106 and D = 100 × N . The resulting fit is presented on
Figure 1. To capture a larger range of D, we fit the model
on additional runs with P ∈ {2, 3, 4}, N ∈ {30, 50, 100}×
106 and D/N ∈ {25, 50}. We additionally fit the extensions

P 1 2 3 4 8 16

QuEST 0.02 0.16 0.43 0.70 1.02 1.00
LSQ 0.02 0.12 0.32 0.56 0.87 1.00

Table 2. Fitted scaling-law parameter efficiencies eff(P ).

1 2 4 8 16
P
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Figure 3. Illustration of the efficiency factors eff(P )/P , arising
from our analysis, for different numerical precisions P , formats
(INT, FP, INT+sparse) and methods. Higher is better. QuEST
INT4 appears to have the highest efficiency.

of our method described in Sections 5 and 4.6. Appendix
Figure 12 illustrates the quality-of-fit.

Results. The overall results were presented in Figure 1,
illustrating loss vs. model size. First, we observe that,
remarkably, QuEST provides stable training down to 1-bit
weights and activations, across model sizes, following a
stable scaling law. Second, examining the Pareto frontier,
we observe that 4-bit precision is slightly superior to 3-bit,
and consistently outperforms all higher precisions. Overall,
these results show that QuEST can lead to stable scaling
laws, which consistently improve upon prior results (Kumar
et al., 2024), moving the Pareto-optimal line to around 4-bit.

4.4. Finding the “Optimal” Precision

The Overtraining (OT) regime. The goal of a stan-
dard scaling law (Equation 4) is to determine the “opti-
mal” model size N and training duration D under fixed
pre-training compute C = 6ND. For instance, Hoffmann
et al. (2022) estimated the “Chinchilla-optimal” ratio to be
around D/N ≈ 20. Yet, it is now common to train (often
smaller) models way beyond this ratio, effectively spend-
ing additional training compute (relative to “optimal”) to
minimize deployment costs by executing a smaller model.
For example, recent models are trained with D/N ≥ 1000
(Dubey et al., 2024; Team et al., 2024). With test-time com-
pute (Snell et al., 2024), there is an incentive to increase
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Figure 4. Additional scaling laws induced by QuEST: (a, left) compares INT, FP, and INT+sparse formats at 4-bit precision, (b, middle)
shows the scaling laws for weight-only quantization, where 2-bit appears to be Pareto-dominant, while (c, right) shows that trust estimation
benefits significantly from Hadamard normalization.

this even further. If we extrapolate and take D/N → ∞,
Equation 5 takes the simplified form:

LOT (N,P ) =
A

(N · eff(P ))α
+ E. (6)

We refer to this as the “overtraining” (OT) regime, where
the training compute is less relevant, and is only bounded
by factors such as the available amount of filtered training
data. The focus is on minimizing runtime/inference com-
pute, measured for example by model latency. This problem
can be formulated as finding the optimal model size N and
precision P that minimizes a certain runtime compute limit.

Runtime Cost Estimate. Since we focus on quantizing
both weights and activations, the matrix multiplications can
be performed directly in lower-precision, providing linear
speedups in the precision P (Abdelkhalik et al., 2022). As
such, we can roughly estimate the runtime cost, up to con-
stants, as the precision-weighted number of basic operations
(FLOPs) in a forward pass F = NP . Then, the problem
of minimizing loss while staying within a certain runtime
(FLOP) constraint can be re-written as:

min
N,P

LOT (N,P ) =
A(

F · eff(P )
P

)α + E s.t. F ≤ Fmax.

From this formulation, if we fix F ≤ Fmax, maximizing
eff(P )
P becomes the key factor that influences the “optimal”

pre-training precision in the OT regime. Recall that we can
estimate eff(P ) from the empirical scaling law (obtained in
Section 4.3 and shown in Table 2). Thus, we can calculate
eff(P )
P for any precision. Figure 3 suggests that 4-bit ap-

pears to be the optimal pre-training precision in this regime.
Additionally fitting eff(P ) for selected baselines and plot-
ting them on the same figure, one can see the dominance

of QuEST across all bitwidths with gaps aroung 50% of
baseline efficiency around the optimal precision.

4.5. Extensions to Different Formats

The FP4 Format. We can use the same framework to com-
pare the “effective parameter count” for INT, INT + sparse,
and the lower-precision FP format supported by NVIDIA
Blackwell (NVIDIA, 2024). QuEST can be extended to
this data type by replacing the ⌊·⌉ rounding operation with
rounding to the FP4 grid ⌊·⌉FP4 scaled to fit the same [−1, 1]
interval. The optimal scaling factor α∗

FP4 would be defined
by simply replacing ⌊·⌉ with ⌊·⌉FP4 in the original definition.
We choose the trust factor T for Mα∗(x; x̂) = I|x̂−x|≤T as
the largest half-interval of the FP4 grid.

To determine the eff(P ) parameter for FP4, we train 30, 50,
100, and 200M models with QuEST in FP4 precision and
aggregate results in Figure 4(a), comparing them with the
original uniform grid results. We observe that FP4 performs
slightly worse than INT4. We also fit FP4 with the scaling
law in Equation (5) and present the resulting eff(P )/P in
Figure 3 (red dot). The results show that, indeed, FP has
lower parameter efficiency than INT at 4-bit precision. We
hypothesize that this is correlated with the fact that, when
clipping is allowed, FP4 has higher MSE than INT4 when
fitting Gaussian-distributed data.

Extension to sparsity. QuEST can also be extended to
sparsity. Then, the trust estimator will mask out sparsified
elements with absolute value above the trust mask; specifi-
cally, this covers the majority of sparsified elements, except
for the small elements within

[
− α∗

2b−1
,+ α∗

2b−1

]
. In practice,

we still keep the whole weight matrix in full precision dur-
ing training. On the forward pass, we first sparsify and then
quantize. On the backward pass, we apply the trust mask as
usual.

Figure 4(a) illustrates the scaling law induced by the 50%
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Figure 5. Per-layer speedups for QuEST INT4 vs BF16, on a
single RTX 4090 GPU. The results take into account quantiza-
tion/dequantization costs for QuEST, and include the cost of the
Hadamard transform (orange bar). We present results for the 1.6B
4-bit QuEST model we trained, as well as inference speedups for a
proportional 7B-parameter model.

sparse + INT4 of NVIDIA Ampere (Abdelkhalik et al.,
2022), while Figure 3 (green dot) shows its parameter effi-
ciency relative to INT and FP. With QuEST, this format can
provide better scaling than FP4, but slightly inferior to INT4.
(While this format is known as 2:4 sparsity, for INT4 + 2:4
it requires a 4:8 mask with some additional constraints.)

4.6. Additional Experiments

Weight-only quantization. In addition to the comparison
with the baseline presented in Section 4.2, we present full
scaling for weight-only QuEST quantized training. We train
models with 30, 50, 100, and 200 million parameters in
1,2,3, and 4 bits in the same general setup as Figure 1. The
results in Figure 4(b) show that our approach leads to stable
scaling laws in the weight-only case as well. Interestingly,
here 2-bit weights appear to be Pareto-dominant, while 1-bit
is surprisingly competitive with 3-bit weights.

Hadamard ablation. Finally, we examine the impact of the
Hadamard transform by removing it while maintaining the
trust technique, as described in Section 3.2. In Figure 4(c),
we present the results in the same setup as Figure 1 for a
simplified trust scheme without the Hadamard Transform.
Specifically, 1) training remains stable across all precisions,
although W1A1 is now inferior to BF16; 2) W4A4 remains
Pareto-dominant, suggesting that the Hadamard transform
improves the coefficients but does not alter the scaling laws.

5. GPU Execution Support for QuEST Models

Kernel Overview. Finally, we describe GPU kernel sup-
port. Our forward-pass pipeline for the quantized linear
layer in QuEST consists of three main stages: (1) applying
the Hadamard transformation to the BF16 activations, (2)
quantizing the BF16 activations into INT4 and packing them
into the low-precision format, and (3) performing INT4 ma-
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Figure 6. End-to-end prefill speedups for QuEST INT4 vs BF16,
across different batch sizes, using the 1.6B parameter model on a
single RTX 4090 GPU. As expected, QuEST is most effective for
larger batch sizes, where the workload is more compute-bound.

trix multiplication on the quantized activations and weights,
followed by dequantization of the result back to BF16.

For the first stage, we utilize an existing Hadamard ker-
nel (Tri Dao). We developed a custom Triton kernel for the
second stage to fuse the quantization and data formatting.
This kernel computes MSE-optimal group scales and per-
forms centered quantization on the activations. It also packs
the INT4 elements into UINT8, with additional intermediate
results prepared for matrix multiplication and dequantiza-
tion. The third stage involves fused matrix multiplication
and dequantization using our enhanced CUTLASS kernel.
In this stage, both activations and weights are read and pro-
cessed as integers to exploit the higher GPU throughput.
The results are then dequantized back to BF16 within the
same kernel. We also apply CUDA Graph end-to-end to
further reduce the kernel launching overhead.

To optimize GEMM performance, we carefully tuned the
CUDA thread-block and warp tile sizes and leveraged the
high levels of the memory hierarchy to fuse the dequantiza-
tion step before writing the results back to Global Memory
in a custom CUTLASS epilogue. By performing dequan-
tization at the register level, we minimize data movement,
reduce GMEM memory access overhead, and minimize the
number of kernel launches.

Runtime Results. The per-layer speedups achievable using
our kernel at 4-bit precision, relative to 16-bit MatMuls,
are illustrated in Figure 5. We provide a breakdown across
layers of the same shape, for 1.6B (which we have already
trained), and a proportionally-scaled 7B model (which we
plan to train in future work). These measurements include
all auxiliary overheads (e.g. quantization/dequantization)
for QuEST; in addition, we separate out the performance
impact of the Hadamard transform.

For the smaller 1.6B model, the per-layer speedups vary
between 1.2× (on the smallest layers, with Hadamard) and
2.4× (largest down-projection layer, no Hadamard). The
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largest overhead of the Hadamard transform, of around
30%, is on the down-projection layer, which presents the
largest dimension for the Hadamard. The speedups increase
significantly (2.3-3.9×) when we move to the 7B-parameter
model, as the MatMuls are much more expensive. Figure 6
shows the end-to-end inference performance at 1.6B using
our kernels vs. the BF16 baseline, showing speedups of
1.3-1.5× in the less memory-bound regime.

6. Discussion and Future Work
We introduced QuEST, a new QAT method that achieves
stable LLM training of in extremely low precision (down to
1-bit) weights and activations. Our results demonstrate that,
if data and compute are appropriately scaled, 4-bit models
can outperform standard-precision baselines in terms of
accuracy and inference cost, suggesting that the fundamental
limits of low-precision QAT are much lower than previously
thought. Further, our analysis provides new insights into the
relationship between training precision and model efficiency,
suggesting that low-precision may be a good target for large-
scale training runs in the overtrained regime. Third, we have
shown that our approach can lead to inference speedups.

Several promising directions emerge for future work. First,
while we demonstrated QuEST’s effectiveness up to 1.6B
parameters, its scaling behavior for much larger models is
an interesting direction we plan to pursue in future work.
Second, our work focused primarily on decoder-only archi-
tectures; extending QuEST to encoder-decoder models and
other architectures could broaden its applicability.
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A. Additional “Trust” Details
A.1. Trust Mask Analysis

For the purposes of weight trust masks interpretation, we trained a 30M model over 3B tokens (11,444 iterations at bs=512)
with QuEST weights and activations quantization to 8-bit with and without the Hadamard Transform (HT). We logged the
trust masks every 500 iterations. Figure 7 shows the fraction of masked weights. We can see that adding the HT leads to an
≈4x decrease in the amount of masked values, corresponding to the fraction of expected clipped weights for a standard
normal distribution. We can also see that without the HT the fraction deviates significantly from the expected fraction under
the assumption of weights normality.
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Figure 7. Fraction of weights for which Mα∗ = 0 as a function of number of training iterations for a 30M model trained with QuEST.

Moreover, we looked at the percentage of masked elements at a fixed iteration in the past, that remain masked at a fixed later
iteration. We plot these percentages in Figure 8. As we can see, for the run without the HT, around 69% of masked elements
at iteration 6000 (roughly halfway through training) remain masked at iteration 10000 (towards the end of the training).
This percentage is more than twice as small for the run with the HT at 30%. This implies that the HT makes masks less
persistent, as expected. In addition, we note that weight decay is applied on all weights (including masked ones). Thus, a
masked weight will slowly decay until it may “exit” the masked interval, obtaining gradient again.
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Figure 8. Fraction of masked values retained from an old iteration to a new iteration for a 30M model trained with QuEST W8A8.

A.2. The 1-bit Case

To determine the optimal outer trust scaling factor s∗, discussed in Section 3.3, we conduct a sweep over s, varying the outer
size of the outermost trust regions as T = s · α∗

2b−1
. The results for 1-bit, shown in Figure 9, indicate that s∗ = 1.30 for

the standard QuEST setup and s∗ = 1.25 for the setup without the Hadamard Transform (HT), corresponding to exactly a
quarter of the quantization interval.
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Figure 9. Performance of QuEST as a function of the outer trust scaling factor s for a 30M model pretraining.

A.3. Zero-shot Evaluation of QuEST Models

To assess the effectiveness of QuEST beyond perplexity, we conducted a comprehensive zero-shot evaluation on five
established commonsense reasoning benchmarks: HellaSWAG (Zellers et al., 2019), ARC (Easy and Challenge) (Clark
et al., 2018), PiQA (Bisk et al., 2019), and Winogrande (Sakaguchi et al., 2019). We compared multiple QuEST quantization
settings against full-precision (BF16) baselines. All models were trained on 80B tokens unless otherwise noted.

Table 3 summarizes the zero-shot accuracy across these tasks. Overall, W4A4 QuEST closely matches its BF16 counterpart
on HellaSWAG and PiQA, with minor degradation on ARC and Winogrande. Sparse quantization (“2:4 INT4”) incurs larger
drops.

Method, Model Size HSWAG (%) ↑ ARC-e (%) ↑ ARC-c (%) ↑ PiQA (%) ↑ Winogrande (%) ↑

BF16, 800M 39.51 53.28 22.44 71.65 53.91
QuEST INT4, 800M 39.18 52.40 22.01 71.16 52.96
QuEST no HT INT4, 800M 38.03 52.44 22.70 71.11 51.38
QuEST 2:4 INT4, 800M 36.26 50.46 21.08 69.04 53.75

Table 3. Zero-shot evaluation on five commonsense reasoning benchmarks.

B. Additional Information about the Experimental Setup
B.1. Model Hyper-parameters

For our experiments, we chose to use the Llama 2 (Touvron et al., 2023) model as the base architecture. For the attention
block, this architecture utilizes multi-head attention (Vaswani et al., 2023) with rotary positional embeddings (Su et al.,
2023). For the MLP block, it uses additional gate projection and SiLU (Elfwing et al., 2017) activation function. We
kept the MLP intermediate dimension equal to 8/3 of the hidden size, padding it to 256 for increased kernel compatibility.
For the AdamW optimizer, we used β1 = 0.90 and β2 = 0.95. We did not apply weight decay to any biases and layer
normalizations. Table 4 describes size-specific models and optimizer hyper-parameters for all model sizes used in this work.

Model size 30M 50M 100M 200M 430M 800M
Num. Blocks 6 7 8 10 13 16
Hidden Size 640 768 1024 1280 1664 2048
Num. Attn. Heads 5 6 8 10 13 16
Learning Rate 0.0012 0.0012 0.0006 0.0003 0.00015 0.000075
Num. Tokens 3B 5B 10B 20B 43B 80B

Table 4. Hyper-parameters used for each model size.
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B.2. Training Stability and Convergence

Here we present the loss curves for BF16, LSQ, PACT, and QuEST (ours) to analyze training stability and convergence.
As shown in Figure 10(a), QuEST smoothly converges throughout training, closely tracking the BF16 baseline while
consistently outperforming LSQ. Meanwhile, PACT struggles with much higher loss, indicating poor convergence. To better
highlight the differences between QuEST and LSQ in the later stages of training, Figure 10(b) focuses on steps after 1000,
removing PACT for clarity. This zoomed-in view shows that QuEST maintains a consistently lower loss trajectory than
LSQ, further reinforcing its superior stability and accuracy across training.
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Figure 10. Training loss curves for a 30M model trained on 3B tokens with W4A4 bitwidth, comparing QuEST (ours), LSQ, PACT, and
BF16. (a) Full training loss curves, showing that QuEST closely follows BF16 and consistently outperforms LSQ, while PACT struggles
with high loss. (b) Zoomed-in view of training steps after 1000, excluding PACT for clarity, highlighting that QuEST maintains a lower
loss than LSQ throughout training.

B.3. Hyper-parameter Search for Baseline Methods

Figure 11. Hyperparameter search for PACT on a 30M parameter model with 4-bit weights and activations, trained on 10% of the dataset.
The search explores different values for learning rate scaling (LR Scale) and alpha weight decay, with validation loss indicated by the
color gradient. Lower validation loss (darker colors) corresponds to better configurations.

To ensure fair comparisons between QuEST and prior QAT methods, we conducted hyperparameter searches for both PACT
and LSQ. Given PACT’s instability at lower bitwidths, we extensively tuned two key hyperparameters: weight decay and
learning rate scaling s for the quantization parameter α (i.e., ηα = s× η). Figure 11 shows the loss achieved across different
weight decay and LR scale values.

For LSQ, we only tuned weight decay, as the LSQ formulation already applies scaling internally to the gradient of α,
making additional learning rate adjustments unnecessary. Table 5 summarizes the results of the weight decay search across
2-bit, 3-bit, and 4-bit LSQ models, where the best-performing configuration (highlighted in bold) was used for final model
comparisons.
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Weight Decay 2-bit PPL ↓ 3-bit PPL ↓ 4-bit PPL ↓

0.001 37.02 31.10 27.93
0.01 36.91 30.89 27.72
0.1 36.54 30.26 27.51
1.0 38.12 31.16 28.67

Table 5. Weight decay hyperparameter search results for LSQ across different bitwidths of 30M model. The best-performing setting is
highlighted in bold.

Our hyperparameter search ensured that LSQ and PACT were tuned optimally before comparing against QuEST, leading to
a fair evaluation of performance across all tested quantization methods.

C. Scaling Laws
C.1. Description of the Fitting Procedure
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Figure 12. Scaling law (5) fit for 3 and 4 bit QuEST with
tokens/parameters ratios in {25, 50, 100}.

As described in Section 4.3, we closely follow the fitting
procedure of Hoffmann et al. (2022) for the scaling law (5)
fitting. Specifically, we copied their grid of initialization
given by: α ∈ {0., 0.5, . . . , 2.}, β ∈ {0., 0.5, . . . , 2.}, e ∈
{−1.,−.5, . . . , 1.}, a ∈ {0, 5, . . . , 25}, and b ∈ {0, 5, . . . , 25}.
We also reuse their δ = 10−3 for the Huber loss. In addition, we
fit the eff(P ) coefficient for a number of quantization schemes
described below:

• QuEST for P ∈ {1, 2, 3, 4, 8}.
• Weight-only QuEST for P ∈ {1, 2, 3, 4}.
• QuEST without the HT for P ∈ {1, 2, 3, 4, 8}.
• QuEST with FP4 grid.
• QuEST with 2:4 INT4.

C.2. Analysis of the Transitory Data Regime
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Figure 13. Comparison of different QuEST precisions P at a
fixed model size and training compute.

The results in Section 4.4 suggest that 4-bit training is optimal
in the D/N → ∞ regime. Here, we use the fitted scaling law
(5) to verify that 4 bit is also close to optimal for D/N ratios
that are reasonable in practice. We formulate the question as
follows: for a fixed model size (e.g. in Gb), for which amount
of compute is QuEST 4-bit the optimal precision?

Figure 14 demonstrates the (predicted) dependence of perfor-
mance as a function of D

N · 16
2

P 2 . For BF16, this quantity becomes
D/N . For other P , it ensures the same amount of training com-
puted (∼ ND). As such, models there are compared at both the
same size and the same training compute. We can see that 4-bit
quantization becomes optimal after it passes a certain compute
threshold that depends on model size. We can also see that the
threshold value decreases as the model size (in Gb) grows. For
a 14.0Gb model (corresponding to 7B parameters in BF16), the
threshold is around D/N ≈ 30, which is significantly below
the amount of data that models of that size are currently trained
on (see Section 4.3). For even larger models, the threshold
eventually becomes less than the “Chinchilla-optimal” ratio of
D/N ≈ 20. This validates that the regime in which 4-bit pre-
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Figure 14. Different QuEST precision performance as a function of tokens-to-parameters ratio at a fixed model memory footprint. The
gray line indicates a 4-bit optimality threshold.

training is optimal can, in fact, be easily achieved in practice.

We validate this in practice by training a set of models of approximately the same model size (1.6 Gb) and training compute
(30 exa-FLOP, 100B tokens for BF16 100M). The results, presented on Figure 13, show how P = 4 is optimal.

17


