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Abstract
Local differential privacy (LDP) is a powerful
method for privacy-preserving data collection. In
this paper, we develop a framework for training
Generative Adversarial Networks (GAN) on dif-
ferentially privatized data. We show that entropic
regularization of the Wasserstein distance - a pop-
ular regularization method in the literature that
has been often leveraged for its computational
benefits - can be used to denoise the data distribu-
tion when data is privatized by popular additive
noise mechanisms, such as Laplace and Gaussian.
This combination uniquely enables the mitigation
of both the regularization bias and the effects of
privatization noise, thereby enhancing the overall
efficacy of the model. We analyze the proposed
method, provide sample complexity results and
experimental evidence to support its efficacy.

1. Introduction
Local differential privacy (Dwork et al., 2006a; Ka-
siviswanathan et al., 2011) has emerged as a powerful
method to provide privacy guarantees on individuals’ per-
sonal data and has been recently deployed by major tech-
nology organizations for privacy-preserving data collection
from peripheral devices. In this framework, the user data is
locally randomized (e.g. by the addition of noise) before it
is transferred to the data curator. Mathematically provable
guarantees on the randomization mechanism ensure that any
adversary that gets access to the privatized data will be un-
able to learn too much about the user’s personal information.
Learning from privatized data, however, requires rethinking
machine learning methods to extract accurate and useful
population level models from the noisy individual data.

In this paper, we consider the problem of training generative
models from locally privatized user data. In recent years,
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deep learning based generative models, known as Genera-
tive Adversarial Networks (GANs) have become a popular
framework for learning data distributions and sampling as
they have achieved impressive results in various domains
(De et al., 2016; Isola et al., 2017; Reed et al., 2016; Ledig
et al., 2017). As opposed to traditional methods of fitting
a parametric distribution, GANs aim to learn a mapping
(usually modeled as a neural network) from a simple known
distribution to the unknown data distribution or its empiri-
cal approximation. The mapping is set to a minimizer of a
chosen distance measure between the generated and target
distributions. A popular metric used in practice is the p-
Wasserstein distance (see Section 2 for a formal definition),
in which case the GAN optimization problem can be written
in the following form,

min
G∈G

Wp

(
PG(Z), PX

)
. (1)

Here G(·) is called the generator, and comes from a set
of functions G ⊆ {G : Z → X} and maps a latent random
variable Z ∈ Z with some known distribution to a random
variable G(Z) ∈ X , with distribution PG(Z) that is close
to some target probability measure PX in p-Wasserstein
distance. The target probability measure PX is the popula-
tion distribution from which samples {Xi}ni=1 ∼ P⊗n

X are
drawn and the optimization problem is solved by replacing
PX in (1) with the empirical distribution Qn

X of the samples.
For example, Xi can represent images taken by users and
G represents a generative model for such images.

How can we use the GAN framework above to learn a
generative model for PX when we have only access to sam-
ples privatized by an LDP mechanism? Assume now that
each Xi represents a sample locally generated at a different
user i, and is privatized by a randomized LDP mechanism
M : X → Y . The learner only observes the privatized sam-
ples {Yi = M(Xi)}ni=1. Can we learn a generative model
for the true distribution PX from the privatized samples
Yi

n
i=1? Simply replacing the target distribution PX in (1)

with the empirical distribution Qn
Y of the observed samples,

min
G∈G

W p
p

(
PG(Z), Q

n
Y

)
, (2)

will result in a generative model for PY = M#PX , the
push-forward distribution of PX through the privatization
mechanism M , rather than the original distribution PX .
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In other words, we will learn to generate samples from the
privatized distribution, e.g. noisy images, instead of learning
to generate samples from the original (raw) distribution.

In this paper, we show that a simple but non-intuitive modi-
fication of the objective in (2) – the addition of an entropic
regularization term – allows one to provably learn the origi-
nal distribution of the samples under de-facto privatization
mechanisms such as the local Laplace or Gaussian mecha-
nism. We first show that in the population case when Qn

Y

is replaced by PY = M#PX , the optimal solution G∗ of
the entropic p-Wasserstein GAN is such that PG∗(Z) = PX

(assuming G is rich enough to generate PX ). Here, p is cho-
sen to match the privatization mechanism used, e.g. p = 1
for the Laplace mechanism and p = 2 for the Gaussian
mechanism. This result shows that the entropic regulariza-
tion acts as a denoiser for the Gaussian mechanism under
the W2 distance, and the Laplace mechanism under the W1

distance. We also provide sample complexity results which
suggest that the solution of the empirical problem (when
PY is replaced by Qn

Y ) converges to the population solution
at the parametric convergence rate O(1/

√
n).

Our main contributions include:

• LDP Framework for Wasserstein GANs: We propose a
novel modification to the widely adopted Wasserstein
GAN framework that enables it to learn effectively from
LDP samples with only one communication round be-
tween the data holders and the server. This adaptation,
which is both simple and non-intuitive, provides a solu-
tion for privacy-preserving learning that does not require
any training method modifications.

• Sample Complexity Bounds: An essential element of
our work involves providing sample complexity bounds.
These bounds offer theoretical insights into the perfor-
mance and scalability of our proposed method, providing
a clear understanding of the trade-off between privacy,
accuracy, and the volume of data.

• Empirical Validation: We supplement our theoretical con-
tributions with a comprehensive set of experiments de-
signed to validate our claims. These experiments demon-
strate the efficacy of our approach in practical scenarios
and provide empirical evidence of the superior perfor-
mance of our method.

1.1. Related Work

Estimation, inference and learning problems under local dif-
ferential privacy constraints have been of significant interest
in the recent literature with emphasis on two canonical tasks:
discrete distribution and mean estimation (Bassily et al.,
2017; Bun et al., 2019; Chen et al., 2021; 2020a; Suresh
et al., 2017; Bhowmick et al., 2018; Han et al., 2018). How-
ever, insights from these solutions do not extend to learning
high-dimensional distributions under LDP constraints.

The exploration of differentially private learning in gen-
erative models has primarily been focused on introducing
privacy during the training phase, e.g. by adding noise
to the gradients during training.(Chen et al., 2020b; Cao
et al., 2021; Xie et al., 2018; Zhang et al., 2018; Mansbridge
et al., 2020). In contrast, in our framework privatization is
achieved at the data level, and the training of the GAN is
effectively indistinguishable from the non-private case.

Moreover, our local differential privacy framework is non-
interactive, which means that the data is privatized and
released only once, no further interaction is expected from
the data holders. In contrast, previous approaches (Chen
et al., 2020b; Cao et al., 2021; Xie et al., 2018; Zhang et al.,
2018; Mansbridge et al., 2020) that introduce privacy in
the optimization phase, e.g. DP-SGD, require the model
updates to be transmitted back and forth between the data
holder and the server at each iteration of the optimization al-
gorithm (Behera et al., 2022) or the raw (unprivatized) data
to be transmitted to a server, to which the training algorithm
has access. We note that the privacy guarantees achieved
under these two different settings, non-interactive/local DP
vs. interactive/central DP are not directly comparable. For
example, (Kasiviswanathan et al., 2011) showed that achiev-
ing privacy in the interactive setting is significantly easier
than in the non-interactive setting. In particular, they give
an example of a problem that is privately learnable with a
polynomial number of samples with interaction but requires
an exponential (in terms of dimension) number of samples
in the non-interactive setting.

2. Background and Problem Formulation
2.1. Local Differential Privacy

A local randomized algorithm A : X → Z acting on
the data domain X , satisfies (ϵ, δ)-(approximate) local dif-
ferential privacy (DP) (Kasiviswanathan et al., 2011) for
ϵ ≥ 0, δ ∈ (0, 1) if for any S ⊆ Z and for any pair of inputs
x, x′ ∈ X it holds that

P (A(x) ∈ S) ≤ eϵP (A(x′) ∈ S) + δ (3)

LDP ensures that the input to A cannot be determined from
its output with high confidence (determined by ϵ). When
δ = 0, we refer to pure local differential privacy. One of
the most common ways of achieving pure local differential
privacy is via the Laplace mechanism.

Laplace Mechanism (Dwork et al., 2006a). For any ϵ > 0
and any function f : X → Rk such that ∥f(x)−f(x′)∥1 ≤
∆ for any x, x′ ∈ X , the randomized mechanism A(x) =
f(x)+(s1, . . . , sk) with si ∼ Laplace(0,∆/ϵ) independent
of sj , j ̸= i is ϵ-DP and is called the Laplace Mechanism.
We will call ϵ/∆ the noise scale of the mechanism.

2



Local Differential Privacy with Entropic Wasserstein Distance

For (ε, δ)-DP with δ > 0, one of the most versatile mecha-
nisms is the Gaussian Mechanism.

Gaussian Mechanism (Dwork et al., 2006b; 2014; Zhao
et al., 2019). For any ϵ > 0, δ ∈ (0, 0.5), and any function
f : X → Rk such that ∥f(x)−f(x′)∥2 ≤ ∆ for any x, x′ ∈
X , the randomized mechanismA(x) = f(x)+(s1, . . . , sk)
with si ∼ N (0, σ2) independent of sj , j ̸= i is called the
Gaussian Mechanism and is (ϵ, δ)-DP if

σ >
c+
√
c2 + ϵ

ϵ
√
2

∆,where c2 = ln
2√

16δ + 1− 1
. (4)

Similar to the Laplacian mechanism, will call σ the noise
scale of the Gaussian mechanism.

2.2. Wassserstein GANs

p-Wasserstein distance. Let p ≥ 1 and P(U) be the set
of all probability measures with support U⊆ Rd. Then for
U ,V ⊆ Rd and PU ∈ P(U), PV ∈ P(V) – two proba-
bility measures on U ,V with finite p-order moments the
p-Wasserstein distance between PU , PV (raised to power p)
is

W p
p (PU , PV ) = inf

π∈Π(PU ,PV )
E(U,V )∼π

[
∥U − V ∥pp

]
, (5)

where Π(PU , PV ) = {π ∈ P(U × V) :
∫
V π(u, v)dv =

PU (U),
∫
U π(u, v)du = PV (v)} is the set of all couplings

of PU and PV – all joint probability measures with marginal
distributions PU and PV .

Wasserstein GAN. The main objective of GANs is to find
a mapping G(·), called generator, that comes from a set of
functions G ⊆ {G : Z → X} (usually modeled as a neural
network) and maps a latent random variable Z ∈ Z with
some known distribution to a variable X ∈ X with some
target probability measure PX . Using the p-Wasserstein
distance to measure the dissimilarity between the gener-
ated PG(Z) and target distribution X leads to the following
learning problem of GAN:

min
G∈G

W p
p

(
PG(Z), PX

)
. (6)

Entropic Wasserstein GAN. Entropic regularization to
the Wasserstein distance objective has been proposed to
make the problem strongly convex and thus solvable in
linear time (Peyré et al., 2019). Formally, the entropy-
regularized p-Wasserstein distance is defined as

W p,λ(PU , PV )

= inf
π∈Π(PU ,PV )

E(U,V )∼π

[
∥U − V ∥pp

]
+ λIπ(U, V ), (7)

where Iπ(U, V ) =
∫
log
(

dπ(u,v)
dPU (u)dPY (V )

)
dπ(u, v) is the

mutual information between X,Y under the coupling

π. The corresponding GAN objective is the the entropy-
regularized p-Wasserstein distance between the generated
distribution G#PZ = PG(Z) for some latent noise Z and
the empirical approximation of target distribution Qn

X :

min
G∈G

Wp,λ(PG(Z), Q
n
X), (8)

2.3. Wassserstein GANs with LDP Data

Let M : X → Y be a randomized noise-additive privacy
preserving mechanism: Y = M(X) = X +N, where the
noise is sampled from pdf fN independent of the input X.
fN can be the Laplace pdf for the Laplace mechanism or
the Gaussian pdf for the Gaussian mechanism. Let PY =
M#PX denote the distribution of Y , i.e. the push-forward
distribution of PX through the privatization mechanism M .
The goal of learning a Wasserstein GAN from privatized
samples is to reconstruct G(Z) ≈ X in distribution from a
sample S = {Y }ni=1 ∼ P

⊗
n

Y with empirical distribution
Qn

Y = 1
n

∑n
i=1 δYi .

3. Main Results
First, we show that solving (8)indeed recovers the target
distribution PX in the population setting, i.e. when one has
access to the generating distribution PY of the privatized
samples, provided that the model class is rich enough to
generate the target distribution PX .

Theorem 1. Let X ∼ PX and Y = M(X) = X + N,
where N = (N1, . . . , Nd) ∼ fN independent of X and
fN (x) ∝ e−∥x∥p

p/(pσ
p) and

G∗ = argmin
G∈G

Wp,pσp(PG(Z), PY ). (9)

We have:

(i) If PX ∈ {PG(Z) | G ∈ G}, and then PG∗(Z) = PX .

(ii) If PX /∈ {PG(Z) | G ∈ G}, then for p ∈ {1, 2} :

DKL(PG∗(Z)+N∥PX+N ) ≤ min
G∈G

W p
p (PG∗(Z), PX), (10)

where DKL(P∥Q) =
∫
log dP

dQdP is the KL-divergence.

The theorem indicates that the optimal solution to the GAN
optimization problem (9) generates the target distribution
PX . Thus provided that there are enough samples, the gen-
erator will output the target distribution. Moreover, when
the true data distribution PX cannot be exactly generated by
any model in G, i.e. the approximation error of the class G is
non-zero, the theorem bounds the KL Divergence between
the pushforwards of the generated and target distribution.
The KL divergence in (9) is sometimes called the smoothed
KL divergence between PX and PG(Z) (Goldfeld et al.,
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2020). (10) ensures that if ϵ is the approximation error in p-
Wasserstein distance of the class G, then PG∗(Z) is ϵ-close to
the target distribution PX in smoothed KL-divergence. The
theorem thus justifies using entropic Wasserstein distance
as a loss function for LDP additive noise mechanisms. We
give the exact settings of Laplace and Gaussian mechanisms
in the following corollaries.

Corollary 1. Under the conditions of Theorem 1, if
supx∈X ∥x∥1 ≤ ∆1, p = 1, and Y = M(X) is the Lapla-
cian mechanism with noise scale ϵ/∆1, then training a GAN
with loss W1,ϵ/∆1

(PG(Z), PY ) is ϵ-LDP, and recovers the
target distribution: PG∗(Z) = PX .

Corollary 2. Under the conditions of Theorem 1, if
supx∈X ∥x∥2 ≤ ∆2, p = 2, and Y = M(X) is the Gaus-
sian mechanism with noise scale σ defined in (4), then train-
ing a GAN with loss W2,2σ2(PG(Z), PY ) is (ϵ, δ)-LDP, and
recovers the target distribution: PG∗(Z) = PX .

We next develop sample complexity results for p = 2 by
building on (Reshetova et al., 2021). To formally state the
sample complexity results, let us first recall some definitions.
A distribution PX supported on a d-dimensional set X is σ2

sub-gaussian for σ ≥ 0 if E exp
(
∥X∥2/(2dσ2)

)
≤ 2. Let

σ2(X)= min{σ≥ 0
∣∣E exp(∥X∥2/(2dσ2)) ≤ 2}, denote

the sub-gaussian parameter of the distribution of X. A set
of generators G is said to be star-shaped with a center at 0 if
a line segment between 0 and G ∈ G also lies in G, i.e.

G ∈ G ⇒ αG ∈ G,∀α ∈ [0, 1]. (11)

Note that these conditions are not very restricting. For exam-
ple, the set of all linear generators, the set of linear functions
with a bounded norm or a fixed dimension, the set of all L-
Lipschitz functions, or neural networks with a relu (f(x) =
max(0, x)) activation function at the last layer all satisfy it.

Theorem 2. (Excess risk) Let PZ and PX be sub-gaussian,
the support of PX be d-dimensional and the generator set G
consist of L-Lipschitz functions, i.e. ∥G(Z1)−G(Z2)∥ ≤
L∥Z1 − Z2∥ for any Z1, Z2 ∈ Z. and let G satisfy (11). If
Y = M(X) = X + N is the Gaussian mechanism with
noise scale σ then for

G∗ = argmin
G∈G

W2,2σ2(PG(Z), PY ), and

Gn = argmin
G∈G

W2,2σ2(PG(Z), Q
n
Y ),

where Qn
Y is the empirical distribution of n i.i.d. samples

from PY it holds that

E
[
W2,2σ2(PGn(Z), PY )−W2,2σ2(PG∗(Z), PY )

]
≤ Cdσ

2n−1/2
(
1 + (τ2(1 + σ(X)/σ)2)⌈5d/4⌉+3

)
,

where τ = max{Lσ(Z)/σ(X), 1} and Cd is a dimension
dependent constant.

The generalization error and the distance between the gen-
erated and target distributions is thus parametric (of order
1/
√
n), which breaks the curse of dimensionality (conver-

gence of order n−Ω(1/d)), often attributed to GANs. How-
ever, the rate is still exponential in the dimension. We also
observe that the generalization error is approximately lin-
ear in σ2, the privatization noise scale, beyond a certain
threshold (σ2 > σ(X)2)). This implies that convergence
for larger σ2 can be achieved by increasing the number of
samples n.

We note that since privatization happens at the data level,
the number of optimization rounds is not bounded by the
privacy budget, and thus empirical loss minimization can be
performed up to the desired accuracy by any optimization
method. As opposed to our method, (Chen et al., 2020b; Cao
et al., 2021; Xie et al., 2018; Zhang et al., 2018; Mansbridge
et al., 2020) constrain the optimizer to DP-SGD and its
variants thereby only guaranteeing convergence to a saddle
point of the empirical problem (as discussed in (Pichapati
et al., 2019)) and introducing bias to the empirical optimiza-
tion problem. In our method, however, the utility is fully
defined by the statistical convergence and is controlled by
theorem 2 for the optimal generator Gn (estimated based on
the privatized data).

The above result shows that the value of the loss function
under the empirical solution Gn converges to the value of
the loss function under the population solution G∗. How-
ever, this result does not directly relate PGn(Z) to PX . Next,
we use Theorem 2 to upper bound smoothed KL-divergence
between PX and PGn(Z).
Corollary 3. Under the conditions of Theorem 2, if ad-
ditionally the target distribution can be generated, i.e.
PX ∈ {PG(Z) | G ∈ G}, one has

E
[
DKL(PY ∥PGn(Z) ∗ N (0, σ2I)

]
≤ Cdn

−1/2
(
1 + (τ2(1 + σ(X)/σ)2)⌈5d/4⌉+3

)
(12)

Note that the parametric convergence of the smoothed
KL-divergence results in the convergence of the Gaussian-
smoothed Wasserstein distance (Goldfeld et al., 2020),
which is, in turn, a distance metrizing weak convergence
similar to Wp.

4. Experimental Results
We conduct our experiments for both Laplace and Gaussian
data privatization mechanisms and use the Sinkhorn-Knopp
algorithm (Flamary et al., 2021) to approximate the optimal
transport plan π in (8). We train our models on MNIST
data (LeCun, 1998), consisting of 60000 grayscale images
of handwritten digits, we do not use the labels to mimic a
fully unsupervised training scenario. The generator model
is DCGAN from (Radford et al., 2015). Additional details

4



Local Differential Privacy with Entropic Wasserstein Distance

and more experiments are provided in the appendix. Here
we show that our approach results in much better images,
compared to the ones denoised with wavelet transform (Mal-
lat, 1999). The wavelet transform parameters for denoising
(the wavelet basis, the level and reconstruction thresholds)
were chosen to minimize the average distance between the
reconstructed and original image under the particular noise
instance, thus providing better results than one would expect
in a fully privatized setting. A Wasserstein-GAN (Gulrajani
et al., 2017) was trained on the privatized samples as well
as the wavelet denoised image. We compare the results to
our method (8), denoted entropic WGAN in Figure 1.

original priva-
tized

wavelet
denoising

p-
WGAN (1)

denoise+p-
WGAN

Entropic
WGAN(8)

Figure 1: Image samples privatized with Gaussian (ϵ, δ) =
(35, 10−4) (top) and Laplace mechanism ϵ = 196 (bottom)
and generated images from GANs trained on the data.

The results demonstrate that naive denoising with wavelet
transform, which is a standard for image denoising, is un-
able to reconstruct the mnist images privatized with either
Gaussian or Laplace noise at the chosen privatization level,
and WGAN is not able to learn from either privatized or de-
noised images. In contrast, the entropic p-WGAN generator
learned with the privatized samples was able to learn the dis-
tribution far beyond the values of ϵ needed for the wavelet
transform reconstruction, demonstrating the efficacy of our
method.
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5. Appendix
5.1. Proof of Part (i) of Theorem 1

Proof. We first prove that PG∗(Z) = PX if PX ∈ {PG(Z) | G ∈ G}.

Fix some G ∈ G and recall that the differential entropy of a random variable U with density µ is h(U) =
−
∫
µ(x) logµ(x)dx. Rewriting the mutual information in terms of the differential entropies we get

W p,pσp(PG(Z), PY ) = min
π∈Π(PG(Z),PY )

E(G(Z),Y )∼π[∥G(Z)− Y ∥pp] + pσpIπ(G(Z), Y )

= min
π∈Π(PG(Z),PY )

E(G(Z),Y )∼π[∥G(Z)− Y ∥pp] + pσp(h(Y )− h(Y | G(Z))

= min
π∈Π(PG(Z),PY )

E(G(Z),Y )∼π[∥G(Z)− Y ∥pp] + pσp(h(Y )− h(Y −G(Z) | G(Z))

Note that the last term on the RHS is upper bounded by h(Y −G(Z)) since conditioning cannot increase differential entropy
and the equality holds iff Y −G(Z) and G(Z) are independent. Denoting now D = Y −G(Z) results in

W p,pσp(PG(Z), PY ) ≥ min
π∈Π(PG(Z),PY )

E(G(Z),Y )∼π[∥D∥pp]− pσph(D) + pσph(Y )

≥ min
π∈Π(PG(Z),PY )

d∑
i=1

E(G(Z),Y )∼π[|Di|p]− pσph(Di) + pσph(Y ), (13)

where we use that h(D) = h(D1, . . . , Dd) ≤
∑d

i=1 h(Di), i.e. that the entropy of a vector is maximized iff its components
are independent. h(Di) in the RHS can now be bounded by the maximum entropy of a random variable with a fixed p-th
moment. It can be checked that the maximum entropy distribution for E|Di|p = mp

i is

fmax,mi(x) =
1

miCN
e−|x|p/pmp

i ,

where CN is the normalization constant that only depends on p. Plugging this into (13) gives

Wp,pσp(PG(Z), PY ) ≥ min
mi>0

d∑
i=1

mp
i − σp log(emp

iC
p
N ) + pσph(Y )

≥ dσp(p log(σCN )) + pσph(Y ) (14)
= σp(d− ph(N) + ph(Y ))

where (14) follows from minimizing the RHS over mp
i > 0, which leads to mi = σ and the value of differential entropy of

N :

h(N) = dh(Ni) = d(E[|Ni|p]/(pmp
i ) + log(miCN ))

= d(1/p+ log(miCN )) = d(1/p+ log(σCN ))

It is easy to check that the RHS value of (14) is achieved whenever the coupling π is such that π(y | G(z)) = fN (y−G(z)),
which is a feasible coupling if and only if Y = G(Z) + N a.s. Thus, minimizing over G ∈ G on both sides gives
PG∗(Z) = PX .

5.2. Proof of Part (ii) of Theorem 1

We first prove the following lemma, which is used in the proof of Theorem 1 and Corollary 3.

Lemma 5.1. Let X ∼ PX , G ∼ PG and Y = M(X) = X +N, where N = (N1, . . . , Nd) ∼ fN independent of X and
fN (x) = 1

Cd
Nσd e

−∥x∥p/(pσp) Then

DKL(PY ∥PG ∗ fN ) ≤ 1

2σ2

(
W2,2σ2(PY , PG)−W2,2σ2(PY , PX)

)
, (15)

8
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where DKL(P∥Q) is the KL-divergence (DKL(P∥Q) =
∫
P (x) log P (x)

Q(x)dx for continuous PX and DKL(P∥Q) =∑
x∈X P (x) log P (x)

Q(x) for discrete X)

Proof. By the formula for convolution: PG ∗ fN (x) =
∫
fN (x− g)dPG(g) = E[fN (x−G)]. Note that Y is a continuous

random variable, and plugging its density PY into the definition of KL-divergence we get:

DKL(PY ∥PG ∗ fN ) =

∫
log

PY (y)

PG ∗ fN (y)
PY (y)dy

= E log
PY (Y )

PG ∗ fN (Y )

= E logPY (Y )− E [log (E[fN (Y −G) | Y ])]

= −h(Y )− E [logE[fN (Y −G) | Y ]] . (16)

The main ingredient for the rest of the proof will be the Donsker and Varadhan’s variational formula (Donsker and
Varadhan, 1983): for U ∼ PU being a random variable supported on U and any measurable function f : U → R, such that
E[|f(U)|] <∞, it holds that

logEU∼PU

[
ef(U)

]
= sup

PV ≪PU

{EV∼PV
[f(V )]−DKL(PV ∥PU )} , (17)

where PV ≪ PU indicates that V is absolutely continuous with respect to U.

Now, we can use (17) to expand log (E[fN (Y −G) | Y = y]) in the negative term in (16). We fix some y ∈ Rd and choose
PU := PG and f(g) := fN (y − g), then

logE[fN (Y −G) | Y = y] = logE[fN (y −G)]

= sup
Py

V ≪PG

{
EV∼Py

V
[fN (y − V )]−DKL(P

y
V ∥PG)

}
,

where we renamed PV into P y
V to emphasise its dependence on y. Plugging the above into (16) produces:

DKL(PY ∥PG ∗ fN ) = −h(PY )− E

[
sup

Py
V ≪PG

EV∼Py
V
[log fN (Y − V ) | Y ]−DKL(P

y
V ∥PG)

]

Denote now π(v | y) = P y
V (v) for any v, y ∈ Rd and notice that the supremum can be taken outside of the expectation

since it is taken for each y independently, which leads to

DKL(PY ∥PG ∗ fN ) = −h(PY ) (18)

− sup
{π(v|y)≪PG|y∈Rd}

E
[
EV∼π(·|Y )[log fN (Y − V ) | Y ]−DKL(π(· | Y )∥PG)

]
.

Letting now µ(v) =
∫
π(v | y)PY (y)dy, we get that π(v, y) = π(v | y)PY (y) is a coupling between µ and PY , i.e.

π ∈ Π(µ, PY ). Note that µ ≪ PG ⇐⇒ π(v | y) ≪ PG since PY (y) > 0∀y. Moreover, the supremum can be taken
outside of the expectation since it is taken for each y independently, which leads to

DKL(PY ∥PG ∗ fN )

= − sup
µ≪PG

sup
π∈Π(µ,PY )

E(V,Y )∼π log fN (Y − V )− EDKL(π(· | Y )∥PG)− h(Y )

= inf
µ≪PG

inf
π∈Π(µ,PY )

E(V,Y )∼π[− log fN (Y − V )] + EDKL(π(· | Y )∥PG)− h(Y ) (19)

As a final step we use the chain rule for KL-divergence: for any two joint distributions Q1 ≪ Q2 with marginals (Q1
X , Q1

Y )
and (Q2

X , Q2
Y ) correspondingly, it holds that

DKL(Q
1∥Q2) = DKL(Q

1
X∥Q2

X) + EX∼Q1
X
DKL(Q

1(· | X)∥Q2(· | X)) (20)

= DKL(Q
1
Y ∥Q2

Y ) + EY∼Q1
Y
DKL(Q

1(· | Y )∥Q2(· | Y )). (21)

9
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Setting Q1 = π and Q2 = PG × PY , we can rewrite the DKL term in (19) using (21) as

EY∼PY
DKL(π(· | Y )∥PG) = DKL(π∥PG × PY )−DKL(πY ∥PY )

= DKL(π∥PG × PY )

= EG∼µDKL(π(· | G)∥PY ) +DKL(µ∥PG), (22)

where in the last equality we used (20). For the first term in (23) we use (20) again with Q1 = π and Q2 = µ× PY , which
results in

EDKL(π(· | Y )∥PG) = EG∼µDKL(π∥µ× PY ) +DKL(µ∥PG) (23)

We finally note that Iπ(G, Y ) = DKL(π∥µ× PY ) by the definition of mutual information. Plugging this and (23) into (19)
gives

DKL(PY ∥PG ∗ fN ) =

inf
µ≪PG

inf
π∈Π(µ,PG)

E(V,Y )∼π[− log fN (Y − V )] + Iπ(G, Y ) +DKL(µ∥PG)− h(Y ).

Letting µ = PG gives us the upper bound:

DKL(PY ∥PG ∗ fN )

≤ inf
π∈Π(PG,PY )

E(G,Y )∼π[− log fN (Y −G)] + Iπ(G, Y )− h(Y )

We can now plug in fN (x) = 1
Cd

Nσd e
−∥x∥p

p/σ
pp :

DKL(PY ∥PG ∗ fN )

≤ inf
π∈Π(PG,PY )

E(G,Y )∼π

[
∥Y −G∥PP

pσp

]
+ Iπ(G, Y ) + d log(CNσ)− h(Y )

=
1

pσp
(Wp,pσp(PY , PG) + dpσp log(CNσ)− pσph(Y ))

=
1

pσp
(Wp,pσp(PY , PG)−Wp,pσp(PY , PX)) , (24)

where we used Wp,pσp(PY , PX) = pσp(h(Y )− d log(CNσ)) from (14).

We now prove Part (ii) of Theorem 1

To show (10) we first prove that

Wp,pσp(PG(Z), PY )−Wp,pσp(PX , PY ) ≤W p
p (PG(Z), PX). (25)

We fix a coupling π ∈ Π(PG(Z), PX) and let (G(Z), X) ∼ π and Y = X + N where N ∼ fN is independent of
(X,G(Z)). Then

E[∥G(Z)− Y ∥pp] ≤ E[∥G(Z)−X∥pp] + E[∥X − Y ∥pp], (26)

where for p = 1 this is the triangle inequality and for p = 2 :

E[∥G(Z)− Y ∥22] = E[∥G(Z)−X∥22] + 2E[(G(Z)−X)T (X − Y ) + E[∥X − Y ∥22]
= E[∥G(Z)−X∥22] + 2E[(G(Z)−X)TN ] + E[∥X − Y ∥22].

By the independence of N and G(Z), X :

E[(G(Z)−X)TN ] = E[(G(Z)−X)]TE[N ] = 0

10
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since E[Y −X] = E[N ] = 0. So, (26) holds for p = 2 as well as for p = 1. Also note that G(Z)−X − Y forms a Markov
chain, so the data processing inequality holds:

I(G(Z), Y ) ≤ I(X,Y ).

Thus, for any π ∈ Π(PG(Z), PX) and for Y = X +N with N independent of G(Z), X :

E[G(Z)− Y ∥pp] + pσpI(G(Z), Y ) ≤ E[∥G(Z)−X∥pp] + E[∥X − Y ∥pp] + pσpI(X,Y )

Note that the infimum of the LHS over all couplings π′ ∈ Π(PG(Z), PY ) is by definition (7) Wp,pσp(PG(Z), PY ). So, for
any π ∈ Π(PG(Z), PX) :

Wp,pσp(PG(Z), PY ) ≤ E(G(Z),X)∼π[∥G(Z)−X∥pp] + E[∥X − Y ∥pp] + pσpIπ(X,Y )

Now taking the infimum over π ∈ Π(PG(Z), PX) on the RHS and recalling that

inf
π∈Π(PG(Z),PX)

Eπ[∥X −G(Z)∥pp] = W p
p (PG(Z), PX),

leads to

Wp,pσp(PG(Z), PY ) ≤W p
p (PG(Z), PX) + E[∥X − Y ∥pp] + pσpIπ(X,Y )

The only thing left to show is that

E[∥X − Y ∥pp] + pσpIπ(X,Y ) = Wp,pσp(PX , PY ),

but this follows from our choice of Y = X +N and part (i) of Theorem 1.

Second, we show that

Wp,pσp(PG(Z), PY )−Wp,pσp(PX , PY ) ≥ DKL(PG(Z)+N , PX+N ).

It follows directly from Lemma 5.1 by setting G = G(Z). Combining this with (25) results in

DKL(PG(Z)+N , PX+N ) ≤Wp,pσp(PG(Z), PY )−Wp,pσp(PX , PY ) ≤W p
p (PG(Z), PX)

Letting
G∗ = argmin

G∈G
Wp,pσp(PG(Z), PY ),

and taking the minimum on both sides of

Wp,pσp(PG(Z), PY )−Wp,pσp(PX , PY ) ≤W p
p (PG(Z), PX)

leads to

DKL(PG∗(Z)+N , PX+N ) ≤Wp,pσp(PG∗(Z), PY )−Wp,pσp(PX , PY ) ≤ min
G∈G

W p
p (PG(Z), PX).

5.3. Proof of Theorem 2 and Corollary 3

Theorem 2 follows from the following theorem proved in (Reshetova et al., 2021, Theorem 6).

Theorem 3. (Reshetova et al., 2021, Theorem 6)

Let PZ and PY be sub-Gaussian and the set of generators G consist of L-Lipschitz functions, i.e. ∥G(Z1) − G(Z2)∥ ≤
L∥Z1 − Z2∥ for any Z1, Z2 in the support of PZ and let G satisfy (11). Then the generalization error for entropic GAN
with p = 2 (8) can be both upper bounded as

E
[
W 2

2,λ(PGn(Z), PY )−W 2
2,λ(PG∗(Z), PY )

]
≤ Cdλn

−1/2
(
1 + (2τ2/λ)⌈5d/4⌉+3

)
(27)

with τ2 = max{L2σ2(Z), σ2(Y )}.

11
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We present the proof of Theorem 2 below:

Proof. In our case λ = 2σ2 and Y = X +N with N ∼ N (0, σ2I), so σ(Y ) ≤ σ(X) + σ(N), where σ(N) = σ2. Thus,
plugging it into the theorem we get

E
[
W 2

2,λ(PGn(Z), PY )−W 2
2,λ(PG∗(Z), PY )

]
≤ Cdσ

2n−1/2

(
1 +

(
max{Lσ(Z), σ(X) + σ}

σ

)2⌈ 5d
4 ⌉+6

)

Letting τ = max{Lσ(Z)/σ(X), 1} we get (σ(X) + σ)τ ≥ max{Lσ(Z), σ(X) + σ}, which leads to

E
[
W 2

2,λ(PGn(Z), PY )−W 2
2,λ(PG∗(Z), PY )

]
≤ Cdσ

2n−1/2

(
1 +

(
τ2 (1 + σ(X)/σ)

2
)⌈ 5d

4 ⌉+3
)
.

We can now prove Corollary 3.

Proof. Denoting fN the pdf of N (0, σ2I) and plugging it into lemma 5.1 with PG = PGn(Z) leads to

DKL(PY ∥PGn(Z) ∗ fN ) ≤ 1

2σ2

(
W2,2σ2(PY , PGn(Z))−W2,2σ2(PY , PX)

)
.

Taking the expectation of both sides and applying Theorem 2 proves the claim.

5.4. Additional Deatils on Experiments

Data Privatization For the Laplace mechanism we project the data onto an ℓ1 ball, add the Laplace noise with scale ϵ for
ϵ-LDP and add it to the training data. For the Gaussian mechanism we project the data onto an ℓ2 ball, add the Gaussian
noise with variance σ2 calculated from (4) for (ϵ, δ)-LDP and add it to the training data. Then we proceed with training the
model
GAN training For training the Sinkhorn GAN we follow the work of (Genevay et al., 2018) by using Sinkhorn-Knopp
algorithm (Flamary et al., 2021) to approximate the optimal transport plan π in (8) from the mini-batches of size b both
for the generated and privatized training data. We use 100-dimensional Uniform [0, 1] noise at the input to the generator
(Pz = Unif[0, 1]100). The algorithm is stated here for completeness, where θ stands for the parameter of the Generator, i.e.
G = {Gθ : Z → X | θ ∈ Θ}

Algorithm 1 Training GAN with Wp,pσp

Input: θ0, {yi}ni=1 (the privatized training data), b (batch size), L (number of Sinkhorn iterations), σ (noise scale), α
(learning rate), p (for ℓp-distance as the cost)

Output: θ
θ ← θ0
for t = 1, 2, . . . do

Sample {yi}bi=1 from the train set, Qb
Y := 1

b

∑b
i=1 δyi

Sample {zi}bi=1
i.i.d∼ PZ , Qb

G := 1
b

∑b
i=1 δGθ(zi)

Calculate π = argminπ∈Π(Qb
G,Qb

Y ) E(Gθ(Z),Y )∼π[∥Gθ(Z)− Y ∥pp] + pσpIπ(Gθ(Z), Y ) – the optimal transport plan
for Wp,pσp(Qb

G, Q
b
Y ) with L Sinkhorn-Knopp steps

Cij ← ∥yi −Gθ(zj)∥pp for i, j = 1, . . . b
gt ← ∇θ ⟨π,C⟩
θ ← θ − αgt.

end for
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Dataset and architecture We train our models on MNIST data (LeCun, 1998), consisting of 60000 grayscale images of
handwritten digits, we do not use the labels to mimic a fully unsupervised training scenario. The generator model is DCGAN
from (Radford et al., 2015) with latent space dimension 100. All the losses were used in the primal formulations (5),(7) with
optimization over the coupling matrix.
Details on section 4 For training the entropic p-WGAN we use the 400 Sinkhorn-Knopp iterations and the Adam optimizer
with learning rate 10−4 for 100 epochs. No clipping of the norm of images was performed. In Figure 2 we provide 200
uniformly random samples for Entropic p-WGAN on MNIST trained on data privatized with the corresponding mechanism
together with the privacy parameter.

5.5. MNIST: Higher Privacy samples

In this experiment we illustrate the results we got with the entropic p-Wasserstein GAN with LDP. We set the number of
sinkhorn steps L = 400 and the batchsize to be b = 400 and we performed optimization with Adam optimizer (Kingma and
Ba, 2014) and learning rate varied in {0.005, 10−4, 5× 10−5}. We optimized for 150 epochs. For p = 1 we first took the
discrete cosine transform of the images and clipped the coefficients below 0.8 quantile to preserve more information. We
also applied DCT transform to the generator output before plugging it into the loss function.

The results indicate the effectiveness of our model at higher privacy regimes, however, smaller ϵ values still produced a lot
of noise in the generated samples or eroded the images significantly. This can be potentially mitigated by increasing the
number of samples as suggested in Theorem 2, however the relatively small size of MNIST limits the privacy levels that can
be achieved.

We additionally report 400 randomly sampled digits with different privacy levels in figure 5 for the Laplace mechanism and
in figure 6 for the Gaussian mechanism.

We discuss convergence in more detail in the next section.

5.6. Empirical convergence

Third, we empirically check how the performance (measured by the 2-Wasserstein distance) depends on the privatiza-
tion level. In our experiment, we set p = 2 and train GANs with 3 different loss functions on MNIST: the entropy-
regularized 2-Wasserstein loss between the generated distribution and the empirical distribution of the privatized samples
W2,2σ2(PG(Z), Q

n
Y ), the 2-Wasserstein distance W 2

2 (PG(Z), Q
n
Y ) and the sinkhorn divergence (Feydy et al., 2019) (which is

the debiased version of the entropy-regularized 2-Wasserstein distance). We choose the latent dimension to be 2-dimensional,
i.e. PZ = Uniform[0, 1]2, L = 200, b = 200. We report the 2-Wasserstein distance between the generated and the target
distribution PX , on Figure 7 where we approximate the target distribution by the empirical distribution of the non-privatized
data. The results show that the distance grows with the noise scale σ for all three of the metrics we considered, however, the
slope of our method W2,2σ2(PG(Z), Q

n
Y ) is the smallest. The growth is to be expected from theorem 2, when the dataset

size n is kept constant, increasing the noise scale σ (and thus privatization) degrades the performance.

5.7. Influence of train set size on the error

Here we empirically check how the performance (measured by the 2-Wasserstein distance) depends on the size of the training
set . We use the setting described in section 5.6 with σ2 = 4 and train the model with the entropy-regularized 2-Wasserstein
loss between the generated distribution and the empirical distribution of the privatized samples W2,2σ2(PG(Z), Q

n
Y ). We

report the 2-Wasserstein distance between the generated PG(Z) and the target distribution PX on Figure 8, where we
approximate the target distribution by the empirical distribution of the non-privatized data that was used for training
(curve labeled "train") and that was left out for validation (curve labeled "test"). To compute W2,2σ2(PG(Z), PY ) we use
mini-batches of size 200. The distance is decreasing on the left plot for both train and test curves, which is expected by
theorem 2 to be proportional to 1/

√
n. The closeness of the train and test curves also shows no signs of overfitting, which is

most probably happening due to privatization.
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Figure 2: Comparing Wavelet denoising and Entropic p-WGAN for p = 1 and Laplace mechanism (top 2 rows) and p = 2
and Gaussian mechanism (bottom 2 rows)
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Figure 3: Entropic 1-WGAN on MNIST trained on data privatized with the Laplace mechanism achieving ϵ-LDP ϵ = 35
(left) and ϵ = 25 (right)

Figure 4: Entropic 2-WGAN on MNIST trained on data privatized with the Gaussian mechanism achieving (ϵ, δ)-LDP with
δ = 10−4 and ϵ = 30 (left) and ϵ = 25 (right)

(a) ϵ = 65.25 (b) ϵ = 49 (c) ϵ = 35 (d) ϵ = 25

Figure 5: Laplace mechanism with different privacy budgets ϵ and clipping of the discrete cosine transform, 1-EWGAN

(a) ϵ = 35 (b) ϵ = 30 (c) ϵ = 25 (d) ϵ = 25

Figure 6: Gaussian mechanism with different privacy budgets ϵ and clipping the euclidean norm of images, 2-EWGAN
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Figure 7: Dependence of the 2-Wasserstein distance(left) and the validation error (right) on the noise scale σ

Figure 8: Dependence of W2,2σ2(PG(Z), PY ) on the dataset size n
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