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ABSTRACT

As Large Language Models (LLMs) evolve from passive text generators to active
reasoning agents capable of interacting with external tools, the Model Context
Protocol (MCP) has emerged as a key standardized framework for dynamic tool
discovery and orchestration. Despite its widespread industry adoption, existing
evaluation methods do not adequately assess tool utilization capabilities under this
new paradigm. To address this gap, this paper introduces MCP-RADAR, the first
comprehensive benchmark specifically designed to evaluate LLM performance
within the MCP framework. MCP-RADAR features a challenging dataset of 507
tasks spanning six domains: mathematical reasoning, web search, email, calendar,
file management, and terminal operations. It quantifies performance based on two
primary criteria: answer correctness and operational accuracy. To closely emulate
real-world usage, our evaluation employs both authentic MCP tools and high-
fidelity simulations of official tools. Unlike traditional benchmarks that rely on sub-
jective human evaluation or binary success metrics, MCP-RADAR adopts objective,
quantifiable measurements across multiple task domains, including computational
resource efficiency and the number of successful tool-invocation rounds. Our eval-
uation of leading closed-source and open-source LLMs reveals distinct capability
profiles and highlights a significant trade-off between accuracy and efficiency. Our
findings provide actionable insights for both LLM developers and tool creators,
establishing a standardized methodology applicable to the broader LLM agent
ecosystem. All implementations, configurations, and datasets are publicly available
at https://anonymous.4open.science/r/MCPRadar-B143.

1 INTRODUCTION

The paradigm of Large Language Models (LLMs) is undergoing a fundamental shift, evolving from
passive text generators into proactive reasoning agents capable of interacting with external tools and
APIs (Chowdhery et al., 2022; Brown et al., 2020). This evolution has been significantly accelerated
by the advent of the Model Context Protocol (MCP), which provides a standardized framework for
dynamic tool discovery and orchestration (Int; Mod; Qwe). As MCP adoption becomes widespread,
the development of rigorous, standardized benchmarks to evaluate model performance within this
new paradigm is critically important.

However, existing evaluation methodologies are insufficient. While traditional benchmarks excel at
assessing knowledge-based reasoning (Hendrycks et al.) (Zhong et al.) or instruction following (Wang
et al.) (Shridhar et al.), they offer limited insight into tool-use capabilities. Current tool-centric
evaluations suffer from two primary limitations: 1) they struggle to differentiate between a model’s
genuine problem-solving via tools and mere recitation of pre-trained knowledge, 2) their reliance on
simulated environments often fails to capture the complexities of real-world tool interactions.

To address these gaps, we introduce MCP-RADAR, the first comprehensive benchmark designed
specifically to evaluate LLM performance in the MCP paradigm. As illustrated in Figure 1, our
methodology is structured around three core stages. First, in the Data Construction phase, we curate
a diverse MCP Pool using both real-world tools from platforms like Smithery and high-fidelity mock
MCPs for common applications such as email and calendar management. This pool supports two
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distinct task categories: Precise Answer tasks (e.g., Math, Websearch), which have a single correct
ground-truth value, and Fuzzy Match tasks (e.g., Filemanagement, Terminal), which require a correct
sequence of operations.

Next, in the Test & Evaluation stage, we evaluate ten leading open- & closed-source LLMs. Our
novel framework moves beyond simple binary success metrics by assessing accuracy through two
core methods: Answer Matching for Precise Answer tasks and Operation Matching for Fuzzy Match
tasks. Based on this, we quantify performance across multiple dimensions: Answer Accuracy (RA),
Tool Selection Efficiency (DTSR), and Computational Resource Efficiency (CRE).

Our evaluation using MCP-RADAR reveals critical insights. For instance, while closed-source mod-
els significantly outperform open-source counterparts in mathematical reasoning, this gap narrows
to less than 10% in web search tasks. More importantly, we identify a recurring failure pattern:
models frequently select a semantically plausible but functionally incorrect tool, indicating a su-
perficial understanding of the task requirements. Based on these findings, we provide actionable
recommendations for both LLM development and MCP tool design.
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Figure 1: Overview of MCP-RADAR.

Our main contributions are threefold:

• We introduce MCP-RADAR, a comprehensive benchmark featuring two fundamental task
types (Precise Answer and Fuzzy Match) across six critical domains: Mathematical Reason-
ing, Web Search, Email, Calendar, File Operations, and Terminal.

• We establish a high-fidelity evaluation environment by employing a combination of real-
world MCP tools and meticulously replicated mock tools based on official specifications.

• We propose a novel, multi-dimensional evaluation framework for tool-augmented LLMs
that utilizes purely objective and quantifiable metrics to assess accuracy, efficiency, and
resourcefulness.

2 RELATED WORK

2.1 THE EVOLUTION TOWARDS STANDARDIZED TOOL USE

The Model Context Protocol (MCP) for Large Language Models (LLMs) is a unified interaction
standard proposed by Anthropic to address systematic challenges in tool invocation. Early LLMs such
as the GPT family relied only on static training data and were unable to access real-time information
or interact with external systems, resulting in limited applications. Wei et al. (2022) demonstrated
the role of structured reasoning in improving the performance of LLMs. With the increase of complex
scenarios such as multi-round dialog systems, developers try to connect to external via API (Liu
et al., 2024) (Song et al., 2023) (Qin et al., 2023) (Tang et al., 2023) to external data sources. Use the
tool-enhanced LLM (Patil et al., 2024) (Parisi et al., 2022) (Lu et al., 2023) to try to solve the web
browsing (Schick and Schütze, 2020) (Spiegel and Horák) (Chowdhury and Chowdhury, 2024) or
code interpretation (Zhuang et al., 2023) (Liu et al., 2023) and other aspects of relevance, but Schick
et al. (Schick et al., 2023) points out that this “peer-to-peer” integration leads to N × M issues,
limiting system expansion and increasing maintenance costs. While platforms such as Hugging Face
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promote model sharing, and frameworks such as LangChain attempt to enhance model capabilities
through Tool Calling, these solutions do not address the underlying problem. However, these solutions
still fail to address the fundamental problem. Hsieh et al. (2023) noting that these approaches still
lack a common context delivery mechanism. It is in this context that the Model Context Protocol
(MCP) was formally introduced and open sourced.

2.2 EVALUATING TOOL AND MCP PROFICIENCY

Evaluating the tool-use capabilities of LLMs has emerged as a critical research direction. While
traditional evaluation frameworks focused on language comprehension, the advent of tool-augmented
AI (Wang et al., 2023; Schick et al., 2023) has made specialized benchmarks for tool proficiency
essential (Xu et al., 2023; Liang et al., 2024; Patil et al., 2024). The HELM framework, proposed by
Liang et al. (2022), sought to establish multi-dimensional evaluation criteria but did not specifically
address the efficiency and effectiveness of tool interaction protocols. Existing tool-use benchmarks
exhibit several limitations: some struggle to handle complex scenarios such as long-context memory,
multi-turn, or multi-tool calls (Li et al., 2023; Patil et al., 2024; Xu et al., 2023; Zhuang et al., 2023;
Tang et al., 2023; Qin et al., 2023), while others rely on single-path, standardized answers that do
not align with the diversity of real-world user needs (Wang et al., 2024). Furthermore, the dataset
in Luo et al. (2025) is limited to operational-matching tasks, and the one in Liu et al. (2025) is
entirely synthetic, raising doubts about its real-world applicability. Consequently, these systems
lack a comprehensive and systematic evaluation of a model’s ability to utilize specific protocols like
MCP. In this paper, we introduce MCP-RADAR, a large-scale instruction benchmark, to explore the
performance of LLMs in a variety of real-world MCP usage scenarios.

3 MCP-RADAR DATA GENERATION

The MCP-RADAR benchmark is comprised of 507 instances meticulously crafted to span six distinct
real-world domains. To comprehensively evaluate the diverse capabilities of LLM agents, we
structured our dataset around two fundamental task archetypes: Precise Answer and Fuzzy Match. A
detailed breakdown of the instance distribution and the specific tools associated with each domain is
provided in Table 1.

The two task categories are defined as follows: Precise Answer: This category includes tasks that
require the model to return a single, definitive ground-truth value, such as a number, an algebraic
expression, or a specific noun. As detailed in Table 1, this category covers the Math and Websearch
domains. To ensure robustness and relevance, the instances for these tasks were curated and adapted
from established academic datasets. Each data point consists of a query and its unique, verifiable
answer. Fuzzy Match: This category encompasses operational tasks where success is determined
not by a simple textual response, but by the correct invocation of an external tool with the appropriate
parameters. This is essential for evaluating an agent’s ability to act upon instructions in domains
like Email, Calendar, Filemanagement, and Terminal. For these tasks, each data point consists of
a query paired with the ground-truth tool name and its corresponding arguments. The step-by-step
methodology for generating these goal-oriented instances is illustrated in Figure 2, with concrete
examples available in subsection A.1.

Task Type Data-Domain Quantity #Tools Tools

Precise Answer Math 120 4 Calculate, SolveEquation, Differentiate...
Websearch 94 2 Search, FetchContent

Fuzzy Match

Email 119 17 SendEmail, DraftEmail, ReadEmail...
Calendar 28 4 ListCalendars, ListEvents, CreateEvent...

Filemanagement 91 13 ReadTextFile, ReadMediaFile, ReadMultipleFiles...
Terminal 63 9 GetConfig, SetConfigValue, StartProcess...

Table 1: Data-Tool Statistics.

3.1 PRECISE ANSWER DATA CURATION

Our methodology for the Precise Answer dataset prioritizes answer accuracy, real-world relevance,
and challenging queries. To achieve this, we chose to adapt and repurpose existing authoritative
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datasets for mathematics and web search, rather than generating synthetic data from scratch (Zhuang
et al., 2023) or deriving tasks solely from tool definitions (Styles et al., 2024). This approach grounds
our benchmark in previously validated problems.

The curation process involved several key steps:

1. Data Sourcing and Filtering: We began by selecting the most challenging queries from
high-quality source datasets (Gou et al., 2024; Fan et al., 2024; Srivastava et al., 2023;
Kazemi et al., 2025; Mialon et al.). To ensure our benchmark specifically tests tool-use
rather than a model’s internal knowledge—a common issue of data contamination—we
used a powerful baseline model (Gemini 2.5 Flash (Google)) as a filter. Queries that the
model could solve without external tools were discarded, isolating problems that genuinely
necessitate tool invocation.

2. Ground-Truth Annotation: For the remaining queries, we manually annotated the scope
of potentially applicable tools for each problem. This annotation defines a set of valid
tools without enforcing a single, rigid solution path. Crucially, for this task category, our
evaluation focuses solely on the correctness of the final standard answer; the specific tools
used are not assessed, only the result.

3. Tool Implementation: To execute these tasks, we integrated verified, open-source MCP
tools. Specifically, we utilized the calculator-mcp-server for mathematical operations and
the duckduckgo-mcp-server for web search functionalities.

3.2 FUZZY MATCH DATA CURATION

Template:

Single-Tool QA Pair

Parameter 

Consistency

GmailMCP SendEmail

MockServer

Tool Construction

MockTool-SendEmail

Send{name}an email inviting him/her

to dinner tomorrow.

Standard Answer:

Toolname: SendEmail 

Toolargs: “to”: {name}@mail.com

Subject: Invitation Content: …

Multi-Tool QA Pair

Template:
Send{name}an email inviting him/her to dinner 

tomorrow and then mark the message as “{label}”.

Standard Answer:

Toolname: SendEmail, BatchModify 

Toolargs: “to”: {name}@mail.com Subject: Invitation 

Content: … MessageIds: … AddLabelIds: {label}

Tool

Combine

Figure 2: Data Generation.

The generation of the Fuzzy Match dataset involved two core stages: establishing a controlled tool
environment and programmatically generating single- and multi-tool interaction scenarios.

Tool Implementation and Environment To ensure reproducible and monitorable experiments,
we developed a high-fidelity, semi-sandboxed tool environment. For the Filemanagement and
Terminal domains, we integrated robust, community-developed open-source MCP tools. For the
Email and Calendar domains, we implemented our own mock tools, EmailMCP and CalendarMCP,
which meticulously replicate the interfaces and parameter structures of their real-world counterparts
(GmailMCP and macOS CalendarMCP, respectively). These mock tools interact with a controlled,
local database, pre-populated with 100 email and 50 calendar entries, rather than executing live
operations. This setup provides realistic tool interaction schemas while maintaining a controlled
evaluation environment. The email data format is detailed in subsection A.1.

Instance Generation Methodology Our approach employs a template-based programmatic method,
similar to frameworks like Workbench (Styles et al., 2024) and ToolQA (Zhuang et al., 2023), to
generate question-and-action pairs.

For single-tool instances, we designed a unique template for each tool, from which five distinct tasks
were generated. This process co-generates both the user query and the corresponding ground-truth
tool invocation (toolname and toolargs), which forms the basis for our Fuzzy Match evaluation.
Examples of these templates are provided in subsection A.1.

For multi-tool instances, we adopted a more constrained approach to avoid the combinatorial explosion
of exhaustive tool pairings. We identified the top three most frequently used tools within each domain
and created chained-task templatessubsection A.1 by combining their respective single-tool templates.
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To ensure a unique and verifiable solution, the sequence of tool invocations in these multi-tool
scenarios is strictly defined in the ground truth. The distribution of multi-tool questions per domain is
shown in Figure 3.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP
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Figure 3: Multi-Tool Data Distribution.

Models Evaluated Our evaluation encompasses a
diverse suite of ten leading Large Language Models,
accessed via the OpenRouter API for standardized
interfacing. The selection includes six state-of-the-
art closed-source models: openai/gpt-5 (OpenAI),
openai/gpt-4o (Hel), google/gemini-2.5-flash (Google),
google/gemini-2.5-pro (Google), anthropic/claude-
sonnet-4 (Anthropic), and anthropic/claude-3.7-
sonnet (Cla); and four prominent open-source mod-
els: qwen/qwen3-235b-a22b-2507 (Alibaba Cloud,
2025), deepseek/deepseek-chat-v3-0324 (Yang),
deepseek/deepseek-r1-0528 (DeepSeek AI), and
meta-llama/llama-4-maverick (Meta AI, 2025).

Implementation Details Each model was tasked with
solving problems using a set of 49 MCP tools distributed across the six domains. For every task,
the model was provided with a system_message, the user question, and a list of available tools.
The models were required to complete each task within a maximum of K=10 interaction rounds;
exceeding this limit was considered a task failure.

The required output format depended on the task type. For Fuzzy Match tasks, the evaluation focused
on the sequence of tool invocations generated by the model. For Precise Answer tasks, models
were instructed to enclose their final response within a designated tag: <answer>[YOUR FINAL
ANSWER]</answer>, ensuring unambiguous extraction of the answer. To mitigate tool-related
hallucinations (Huang et al., 2025) and improve reliability, the system_message included detailed,
tool-specific instructions. The complete prompt templates, along with a comparative analysis of
different prompting strategies (e.g., ReAct vs. concise), are available in subsection A.2.

4.2 EVALUATION METRICS

Our evaluation framework employs distinct sets of metrics tailored to the unique success criteria of
each task category.

Precise Answer Tasks For this category, evaluation focuses exclusively on the final outcome, as the
tool-use path to a correct answer is often non-unique and may involve self-correction from erroneous
steps. Consequently, we do not assess the intermediate tool invocation sequence. Performance is
measured along two dimensions:

• Result Accuracy (RA): A binary metric indicating whether the model’s final, extracted
answer matches the ground truth exactly.

• Computational Resource Efficiency (CRE): A measure of the computational cost (e.g.,
token consumption) incurred to reach the solution.

We only require that the tools used by the model are from the valid set provided for the task, but we
do not penalize alternative or redundant tool paths as long as the final answer is correct.

Fuzzy Match Tasks For tasks where the goal is to perform a correct operation, we evaluate the
tool invocation process itself. Performance is assessed across three dimensions:

• Result Accuracy (RA): A binary metric indicating whether the model’s final, decisive tool
invocation (both tool name and parameters) exactly matches the ground-truth operation.
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Table 2: Comparison of model performance metrics across two domains of MCP-RADAR. Gemini-
Flash and Gemini-Pro are based on Gemini 2.5 Flash and Gemini 2.5 Pro respectively. Scores
highlighted in red indicate the lowest score, while scores in green are the highest.

Task GPT-5 GPT-4o Gemini-Flash Gemini-Pro Claude-3.7 Claude-4 Qwen3 Deepseek-V3 Deepseek-R1 Llama-4

Math ACC. 0.607 0.486 0.612 0.539 0.466 0.423 0.408 0.287 0.365 0.128
CRE. 0.564 0.326 0.688 0.403 0.456 0.000 0.785 1.000 0.965 0.644

Websearch ACC. 0.182 0.154 0.193 0.298 0.256 0.164 0.194 0.103 0.125 0.008
CRE. 0.245 0.000 0.421 0.324 0.231 0.364 0.764 0.897 1.000 0.965

Table 3: Comparison of model performance metrics across Four domains of MCP-RADAR
Task GPT-5 GPT-4o Gemini-Flash Gemini-Pro Claude-3.7 Claude-4 Qwen3 Deepseek-V3 Deepseek-R1 Llama-4

Email
ACC. 0.749 0.632 0.742 0.825 0.765 0.454 0.756 0.625 0.738 0.448
CRE. 0.642 1.000 0.854 0.765 0.846 0.213 0.413 0.632 0.875 0.000
DTSR. 0.806 0.765 0.936 0.855 0.784 0.645 0.802 0.743 0.932 0.623

Calendar
ACC. 0.723 0.643 0.762 0.825 0.765 0.653 0.746 0.432 0.312 0.286
CRE. 0.423 0.325 0.412 0.333 0.531 0.000 0.352 1.000 0.862 0.742
DTSR. 0.802 0.695 0.783 0.886 0.823 0.663 0.769 0.502 0.612 0.466

Filemanagement
ACC. 0.323 0.438 0.346 0.596 0.462 0.436 0.478 0.362 0.392 0.254
CRE. 0.000 0.432 0.852 0.754 0.532 0.756 0.412 0.751 0.651 1.000
DTSR. 0.522 0.845 0.543 0.623 0.588 0.623 0.563 0.452 0.753 0.635

Terminal
ACC. 0.420 0.413 0.562 0.599 0.458 0.396 0.452 0.325 0.366 0.421
CRE. 0.233 0.153 0.425 1.000 0.624 0.356 0.451 0.222 0.346 0.000
DTSR. 0.453 0.566 0.608 0.665 0.496 0.455 0.469 0.365 0.666 0.652

• Dialogue Turn Success Rate (DTSR): Defined as the ratio of successful tool invocations
to the total number of interaction turns. A "successful invocation" is one where the model
selects an applicable tool and provides correctly formatted parameters, measuring its step-
by-step ability to extract information and construct valid calls.

• Computational Resource Efficiency (CRE): A measure of the computational cost, with
values normalized using max-min scaling to allow for cross-model comparison.

5 RESULTS

5.1 MAIN RESULTS

Precise Answer Tasks As shown in Table 2, closed-source models generally exhibit superior
performance in this category. The performance gap is most pronounced in mathematical reasoning.
The Websearch domain proved to be highly challenging for all models, with success rates universally
below 30%. This difficulty stems from the dual requirement of selecting the correct tool and
formulating a precise query to extract the necessary information. Among the models tested, Gemini-
2.5-Pro emerged as the top performer with an accuracy of 29.8%, whereas the open-source Llama-4
recorded the lowest at 0.8%. While closed-source models maintained an advantage in Websearch, the
performance gap narrowed compared to other tasks, with an average success rate of 20.7% versus
10.8% for open-source models.

Fuzzy Match Tasks In this category, model performance strongly correlates with task complex-
ity. Models achieved significantly higher accuracy on simpler operational tasks (Email, Calendar)
compared to more complex domains requiring precise sequential logic (Filemanagement, Terminal).
A critical finding, detailed in Table 3, is the significant disparity observed between Dialogue Turn
Success Rate (DTSR) and final accuracy (ACC) in complex tasks. For instance, in the Filemanage-
ment domain, GPT-4o achieved a high DTSR of 84.5% but an ACC of only 43%. This 40.7% gap
highlights a crucial failure mode: models can syntactically execute tool calls correctly but fail to select
the semantically appropriate tool to solve the problem. This suggests a superficial understanding of
the task’s core requirements.

To further probe the models’ planning capabilities, we conducted a targeted multi-tool experiment
inspired by Huang et al. (2023). We tested whether providing a hint about the number of required
tools would improve performance. The results in Table 4 show that such prompts had minimal impact,
yielding only a 2.5% to 5% improvement. This indicates that the primary capability boundary for
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Table 4: Multi Tool Selection Result. 2/2 means that we suggest call two tools, and then the LLM
call the correct two tools. 2/ means that we do not advise about tools, and the LLM called the correct
two tools. 1/2 means that on the basis of suggestion, the LLM called two tools, but only one of them
was correct. 1/1 means that, based on the suggestion, the LLM only call one tool and it is correct

Task GPT-5 GPT-4o Gemini-Flash Gemini-Pro Claude-3.7 Claude-4 Qwen3 Deepseek-V3 Deepseek-R1 Llama-4

ACC

2/ 0.465 0.418 0.500 0.511 0.523 0.441 0.465 0.383 0.372 0.232
2/2 0.511 0.430 0.651 0.662 0.534 0.430 0.500 0.383 0.441 0.255
1/1 0.023 0.047 0.023 0.000 0.023 0.047 0.058 0.023 0.058 0.070
1/2 0.279 0.302 0.186 0.232 0.186 0.000 0.256 0.349 0.360 0.349

current models is not determining if a tool is needed, but rather deciding which specific tool to invoke
and how to parameterize it correctly.

Overall Performance The holistic view presented in the radar charts Figure 4 reveals a distinct
trade-off between performance and efficiency across the model landscape. While leading closed-
source models demonstrate robust and well-rounded capabilities, certain open-source models achieve
competitive accuracy, often at the cost of significantly higher computational resource (token) con-
sumption. Notably, Gemini-2.5-Pro stands out as a highly capable tool-user across diverse domains.
Among open-source models, Qwen demonstrates a commendable balance between task accuracy and
resource efficiency.
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Figure 4: Model Performance Comparison Across Tasks. Longer edges indicate superior performance
in each metric.

5.2 ABLATION STUDY

In our main experiments, we impose a limit on the maximum number of interaction rounds (K) to
balance task performance with computational efficiency. However, this constraint could potentially
limit a model’s capacity for complex reasoning, reflection, and self-correction. To investigate this
trade-off and justify our choice of K, we conducted an analysis on a randomly selected 50% subset
of our dataset.

The results, illustrated in Figure 5, demonstrate a clear trend. As the maximum number of allowed
rounds K increases, the overall task accuracy for most models improves. This is expected, as more
rounds allow for more attempts and corrective actions. However, we observe a point of diminishing
returns. For most models, the rate of accuracy improvement slows considerably when K ≥ 10,
eventually beginning to plateau.

Therefore, considering the balance between maximizing solution accuracy and maintaining reasonable
interaction latency, we selected K = 10 as the standard setting for all our main experiments.
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6 ANALYSIS AND DISCUSSION

6.1 ERROR ANALYSIS
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Figure 5: Impact of Dialogue Rounds on Average
Accuracy Across Domains.

Our analysis identifies three primary categories
of failures: Tool-Use Errors, Reasoning Errors,
and Information Synthesis Errors.

Tool-Use Errors This category concerns fail-
ures in the direct invocation and selection of
tools.Parameter Error. Occurs when the model
selects the correct tool but supplies improperly
formatted or invalid arguments. Examples in-
clude providing an invalid email address format
or a malformed mathematical expression to a
calculator (see Appendix B). Inaccurate Tool
Invocation. Occurs when the model correctly
identifies the need for a tool but selects one that
is inappropriate for the given task. This often
stems from a misinterpretation of a tool’s func-
tionality or its operational scope, such as using
a basic arithmetic calculator for a problem re-
quiring symbolic differentiation.

Reasoning Errors This category includes failures in the model’s high-level planning and logical
deduction.Tool Omission. The model incorrectly assesses its own capabilities and attempts to solve a
problem from its parametric knowledge when it should have invoked an external tool. This is common
in complex tasks where the model fails to decompose the problem into tool-solvable sub-problems (see
Appendix B). Faulty Reasoning. The model generates illogical or factually incorrect conclusions,
even when the underlying tool outputs are accurate. A typical case is when a tool returns a correct
number, but the model’s final answer violates the problem’s logical constraints (e.g., providing a
decimal for a quantity that must be an integer), indicating a failure to integrate tool outputs with the
problem’s semantic context. Redundant Tool Invocation. The model becomes trapped in a reasoning
loop, repeatedly invoking the same or similar tools without making substantive progressAppendix B.
This behavior suggests deficiencies in its planning and state-tracking capabilities, as it fails to update
its strategy based on new observations.

Information Synthesis Errors This category involves failures in processing and utilizing the infor-
mation returned by tools. Tool-Result Integration Error. The model obtains a correct intermediate
result from a tool but fails to integrate it into subsequent reasoning steps. For instance, a model
might correctly solve an equation with a calculator but then fail to substitute the result back into
a larger derivation. Information Extraction Failure. The model successfully retrieves a large
volume of information (e.g., from a web search) but fails to extract, filter, or summarize the core
information relevant to the query. This manifests as either presenting irrelevant content or providing
a disorganized data dump instead of a synthesized answer.

Other Types this type of error accounts for a relatively small proportion. It mainly includes errors
such as interaction termination due to excessive interaction rounds, incorrect result solutions, or the
invocation of non-existent tools.

For tasks requiring precise answers, such as complex web searches or mathematical problems, Faulty
Reasoning and Tool Omission are the most prevalent failures. In the case of niche web queries,
models often struggle to grasp the key points, leading to a reliance on their internal knowledge base
which can result in factual hallucinations. For mathematical tasks, models often misjudge their
own capability boundaries and, viewing the reasoning as overly cumbersome, will attempt to solve
problems without invoking the necessary tools.

Conversely, for tasks involving fuzzy matching or complex tool parameterization, direct execution
errors are more frequent. In these cases, Parameter Errors are the most common issue, particularly
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when a tool requires a large number of arguments, increasing the likelihood of incorrect data entry
(e.g., placing a recipient’s email in the subject line). Furthermore, persistent instances of Inaccurate
Tool Invocation in these scenarios suggest that LLMs retain fundamental misunderstandings about
the specific application scope of certain tools.
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Figure 6: Error Distribution by Task Type.

6.2 DISCUSSION AND CONCLUSION

In this paper, we introduced MCP-RADAR, a comprehensive framework to systematically evaluate
the tool-use capabilities of Large Language Models within the MCP paradigm. By assessing ten
leading models across six domains using a combination of real-world and high-fidelity mock tools.

Our findings reveal a critical gap between a model’s syntactic ability to invoke a tool and the deeper
semantic understanding required to solve problems effectively. We consistently observed that while
models can often execute a tool call, they struggle with the higher-level reasoning required for
proactive and precise tool selection, multi-step planning, and effective information synthesis from
tool outputs. These core challenges point to clear directions for both model and tool development.

Implications for LLM Development

• Improving Proactive Tool Invocation: Current models exhibit a tendency to default to
their parametric knowledge, failing to recognize their own capability boundaries. Future
training should focus on improving this self-awareness, encouraging models to view external
tools as a primary resource rather than a last resort.

• Fostering De-compositional Reasoning: We observed that models often attempt to solve
complex problems with a single tool call, particularly in domains like advanced mathemat-
ics.Enhancing their ability to deconstruct tasks into a sequence of smaller, tool-solvable
steps is crucial for tackling multi-stage problems.

Recommendations for MCP Tool Developers

• Optimizing Tool Descriptions: A tool’s description is a critical interface for the LLM. De-
scriptions must be both concise and precise, as overly verbose or ambiguous text significantly
increases the model’s cognitive load and leads to invocation errors.

• Promoting Atomic Tool Design: Our results suggest that LLMs are more proficient at
orchestrating a sequence of simple, single-purpose ("atomic") tools than understanding and
correctly parameterizing a complex, multi-functional one. Developers should favor creating
granular tools that can be combined to solve complex tasks.
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ETHICS STATEMENT

The authors confirm their adherence to the ICLR Code of Ethics. This research introduces MCP-
RADAR, a benchmark for evaluating the tool-use capabilities of Large Language Models (LLMs),
and does not propose a new model architecture. Our primary goal is to foster transparency and guide
the responsible development of AI agents by providing the community with objective, quantifiable
evaluation metrics.

We acknowledge that advancing the capabilities of tool-using agents carries an inherent dual-use risk;
more competent agents could potentially be repurposed for malicious activities. Our work aims to
mitigate such risks by providing a clear framework for identifying model weaknesses, such as the
observed tendency for models to select incorrect tools, which can inform the development of safer
and more reliable systems.

The datasets used in MCP-RADAR are constructed from established public benchmarks (e.g., MATH,
GAIA) or generated programmatically. The underlying LLMs evaluated may reflect societal biases
present in their training data. While our benchmark measures performance, it does not explicitly
address or mitigate these biases, which remains a critical area for future research. To prevent real-
world harm during evaluation, operational tasks involving tools like email, calendar, and terminal
commands were conducted in a semi-sandboxed environment, using custom-built mock servers that
replicate tool functionality without executing real operations. We believe the benefit of a standardized,
objective evaluation framework for agentic models significantly contributes to the safe and ethical
progression of AI.

REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our work. The complete implemen-
tation of the MCP-RADAR benchmark, including all configurations, evaluation scripts, and the full
dataset, has been made publicly available at https://anonymous.4open.science/r/MCPRadar-B143.

The data generation process is described in detail in Section 3. This includes the repurposing of
existing public datasets for "Precise Answer" tasks (Section 3.1.1) and the template-based program-
matic generation for "Fuzzy Match" tasks (Section 3.1.2). Appendix A provides further examples of
data templates and prompts. The specific models evaluated are listed in Section 4.1, and the novel,
quantifiable evaluation metrics (Result Accuracy, Dialogue Turn Success Rate, and Computational
Resource Efficiency) are formally defined in Section 4.2.

Our experimental setup, including system prompts and the maximum interaction rounds, is detailed
in Section 4.1. The tools used in the benchmark are a combination of open-source MCP servers and
custom-built mock tools designed to replicate official specifications, with sources and implementation
details provided in https://anonymous.4open.science/r/MCPRadar-B143. We believe these resources
provide a comprehensive basis for replicating our results and extending this research.
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A DATASET AND EXPERIMENT DETAILS

A.1 DATASET DETAILS

For precise answer type query:

{"unique_id": "db4fd70a-2d37-40ea-873f-9433dc5e301f",
"Prompt": "As of May 2023, how many stops are between South

Station and Windsor Gardens on MBTAs Franklin-Foxboro
line (not included)?",

"Answer": "10"}

For fuzzy match type query:

{"unique_id": "db4fd70a-2d37-40ea-873f-9433dc5e301f",
"Prompt": "Please send Lucy@gamil.com an email for me,

invite her to come over for dinner tomorrow.",
"Toolname": "SendEmail",
"Toolargs": "from":(default)mock@localhost.com, "to":

Lucy@gamil.com, "subject": ".", "body": "I hope this
message finds you well. I would like to warmly invite you
to come over for dinner at my place tomorrow evening."}

Emaildata Format:

"email_id":"c98db9b0-347b-4357-b7fd-0075f944acb3","status":"outbox",
"to":["Harmon@mail.com"],
"subject":"hihihihihi","body":"nice to meet you",
"cc":[],"bcc":[],"attachments":[],
"sent_datetime":"2025-08-19T09:43:46.979Z","labels":["important"]

Single-Tool Template Format:

Email:
"Please email {name} to notify her/him to attend the meeting."
Calendar:
"Please add {something} to the schedule."
Filemanage:
"Please return the content in {path} file."
Terminal:
"Start {python scripts}"

Multi-Tool Template Format Example:

Email:
"Please email {name} to notify her/him to attend the meeting

and then mark the message as {label}"

A.2 SYSTEM PROMPT

In this section, we demonstrate the impact of setting the prompt to concise mode versus ReAct format
on experimental results.

ReAct Version:
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Table 5: Prompt Effect Comparison
Mean-Acc. GPT-5 GPT-4o Gemini-Flash Gemini-Pro Claude-3.7 Claude-4 Qwen3 Deepseek-V3 Deepseek-R1 Llama-4

ReAct 0.524 0.386 0.499 0.512 0.533 0.462 0.602 0.388 0.374 0.282

Concise 0.501 0.461 0.536 0.614 0.529 0.421 0.506 0.356 0.383 0.258

∆ -0.023 0.075 0.037 0.102 -0.004 -0.041 -0.096 -0.032 0.009 -0.024

You are a professional mathematics assistant that must solve problems by following a loop of
Thought -> Action -> Observation. Your sole tool is calculator-mcp-server.
Tools You can only use calculator-mcp-server.
calculator-mcp-server calculate: Evaluates a mathematical expression and returns the result.
solve_equation: Solves algebraic equations for x and returns all solutions. differentiate: Com-
putes derivatives of expressions. integrate: Computes indefinite integrals of expressions.
Instructions Strictly follow the ReAct loop: Thought -> Action -> Observation until the problem
is solved.
Every action must be a call to the calculator-mcp-server tool.
The action format must be an exact JSON string.
The final answer must be enclosed in <answer> tags.
Format Thought: You must describe your reasoning process in detail here.
Analyze the problem and determine what needs to be solved.
Plan the steps to solve the problem.
Decide which tool function to call and what its input parameters should be.
Action: Call the tool. You must use the following JSON format.
JSON
"server_name": "calculator-mcp-server", "tool_name": "...", "inputs": ... Observation: The
output result from the tool.
Example Question: What is the determinant of matrix [[4, 7], [2, 6]]?
Thought: The question asks for the determinant of a matrix. I must use the calculator-mcp-
server tool to perform this calculation. I will use the calculate function, and its expression
parameter will be det([[4, 7], [2, 6]]).
Action:
JSON
"server_name": "calculator-mcp-server", "tool_name": "calculate",
"inputs": "expression": "det([[4, 7], [2, 6]])"

Concise Prompt:

"You are a specialized mathematics assistant. " "You MUST ONLY use the calculator-mcp-
server’s tools to solve math problems to solve all math problems. " "Do NOT provide any direct
answers without using tools. " "Always analyze the problem first and then call calculator-mcp-
server’s tools with the corresponding arguments. " "Show your reasoning steps clearly and format
answers using the tool’s output. " "You MUST format your final answer as: <answer>[YOUR
FINAL ANSWER]</answer>" "Mathematical answers should be numbers or formatted in
LaTeX, e.g., (

31 50
−18 −29

)

We randomly selected ten datasets from each domain and tested them with two different prompts.
The results are shown in Table 5.

B RELATED EXPERIMENT RESULTS

Error Type:

• Tool Omission
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User: "Suppose f(x) = x2, and g(x) is a polynomial such that f(g(x)) = 4x2 + 4x+ 1. Enter
all possible polynomials g(x), separated by commas."
Assistant: "We are given that: - f(x) = x2 - g(x) is a polynomial - f(g(x)) = (g(x))2 =
4x2 + 4x+ 1 So we need to find all polynomials g(x) such that:

(g(x))2 = 4x2 + 4x+ 1

### Step 1: Analyze the right-hand side Note that:

4x2 + 4x+ 1 = (2x+ 1)2

So,
(g(x))2 = (2x+ 1)2

Taking square roots (keeping in mind that polynomials can be positive or negative), we get:

g(x) = 2x+ 1

or
g(x) = −(2x+ 1) = −2x− 1

These are both polynomials, and squaring either gives:

(2x+ 1)2 = 4x2 + 4x+ 1

### Step 2: Are there any other polynomial solutions? Suppose g(x) is a polynomial such that
(g(x))2 = (2x+ 1)2. Then:

(g(x))2 − (2x+ 1)2 = 0− > (g(x)− (2x+ 1))(g(x) + (2x+ 1)) = 0

So the polynomial equation implies that g(x) − (2x + 1) = 0 or g(x) + (2x + 1) = 0,
since a polynomial cannot be zero at all points unless one of the factors is identically zero (as
polynomials form an integral domain). Thus, the **only** polynomial solutions are:

g(x) = 2x+ 1quadtextorquadg(x) = −2x− 1

### Final Answer: <answer>2x + 1, -2x - 1</answer>"

• Redundant Tool Invocation. It repeatedly queries the same website address

User: I’m researching species that became invasive after people who kept them as pets released
them. There’s a certain species of fish that was popularized as a pet by being the main character
of the movie Finding Nemo. According to the USGS, where was this fish found as a nonnative
species, before the year 2020? I need the answer formatted as the five-digit zip codes of the
places the species was found, separated by commas if there is more than one place.
Assistant: The species of fish popularized by the movie *Finding Nemo* is the clown
anemonefish (*Amphiprion ocellaris*). "tool_use_detail": [["type": "call", "content":
"[Calling tool search with args ’query’: ’Finding Nemo fish invasive species USGS’,
’max_results’: 5]", "type": "result", "content": "tool return result meta=None con-
tent=[TextContent(type=’text’, text=F̈ound 5 search results:1. Nonindigenous Aquatic Species
URL: https://nas.er.usgs.gov/ ***URL: https://www.usgs.gov/index.php/centers/ wetland-
and-aquatic-research-center/science/science-topics/ nonindigenous-aquatic-species Summary:
TheUSGSNonindigenous AquaticSpecies(NAS) database tracks occurrence data on non-native
aquatic plant and animalspeciesthroughout the United States, and provides the public with-
speciesprofiles, distribution maps, and online/real-time queries for state/hydrologic basin-
specificspecies. 3. Invasive Species Experts Database | U.S. Fish & Wildlife Service ****URL:
https://www.usgs.gov/index.php/centers/wetland-and-aquatic- research-center/science/science-
topics/nonindigenous-aquatic-species

• Parameter Errors
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User: Please send an email to Jimmy inviting him to dinner tonight.
Assistant: "email_id":"c98db9b0-347b-4357-b7fd-0075f944acb3",
"status":"outbox",
"to":[],
"subject":"Jimmy@mail.com",
"body":""Hey, want to come over for dinner tonight?","cc":[],"bcc":[],
"attachments":[],
"sent_datetime":"2025-09-19T09:43:46.979Z", "labels":[""]

Table 6: Impact of Dialogue Rounds K on Average Accuracy Across Domains)
Dialogue

Rounds (K) GPT-5 GPT-4o Gemini-Flash Gemini-Pro Claude-3.7 Claude-4 Qwen3 Deepseek-V3 Deepseek-R1 Llama-4

K=5 0.355 0.296 0.321 0.365 0.332 0.210 0.346 0.124 0.136 0.075

K=7 0.405 0.362 0.362 0.521 0.389 0.253 0.485 0.226 0.264 0.096

K=9 0.432 0.452 0.501 0.586 0.466 0.375 0.476 0.284 0.341 0.126

K=10 0.501 0.461 0.536 0.614 0.529 0.421 0.506 0.356 0.383 0.258

K=11 0.495 0.501 0.536 0.574 0.562 0.452 0.475 0.366 0.423 0.303

K=13 0.517 0.488 0.565 0.635 0.516 0.488 0.554 0.394 0.412 0.341

K=15 0.522 0.496 0.608 0.622 0.631 0.552 0.562 0.396 0.418 0.332

C EXPERIMENTAL PROCEDURE FORMATTING

MCP-Pool
"mcp_pool": [
{
"name": "FireCrawl",
"description": "A Model Context Protocol (MCP) server implementation that integrates with Firecrawl for
web scraping capabilities.",
"tools": [
{
"tool_name": "firecrawl_search",
"tool_description": "Search the web and optionally extract content from search results.",
"inputs": [
{
"name": "query",
"type": "string",
"required": true,
"description": "your search query"
}
]
}
],
"run_config": [
{
"command": "npx -y firecrawl-mcp",
"env": {
"FIRECRAWL_API_KEY": "your key"
},
"port": your port
}
]
}
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Eval-Result

{
"unique_id": "*****",
"question": "Given a integer n(>0), make a pile of n levels of ...",
"ground_truth": "def make_a_pile(n):\n
return [n + 2*i for i in range(n)]",
"prediction": "def make_a_pile(n):\n
pile = []\n for i in range(n):\n
if n % 2 == 0:\n pile.append(n + 2*i)\n
else:\n pile.append(n + 2*i)\n
return pile",
"success": true,
"tool_usage": {
"tool_calls": [
{"name": "read_file", "arguments": "{\"path\":\problem.jsonl\"}"},
{"name": "write_file", "arguments": "{\"path\":\answer.jsonl\"}"}

],
"total_tool_count": 2,
"tool_names": ["read_file", "write_file"]

},
"token_usage": {
"prompt_tokens": 820,
"completion_tokens": 610,
"total_tokens": 1430

}
}

D THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were utilized in two capacities during this research: dataset con-
struction and manuscript preparation.

First, as detailed in Section 3.1, LLMs played an auxiliary role in the creation of the MCP-RADAR
benchmark. For the precise answer tasks, we utilized results from Gemini 2.5 Flash to help select
queries from existing datasets that required tool invocation. For the fuzzy match tasks, question-
answer pairs were programmatically generated based on author-designed templates, a process inspired
by LLM-based data generation methodologies.

Second, Gemini 2.5 Pro was employed as a writing assistant to polish the manuscript by improving
grammar, refining phrasing, and enhancing overall clarity.

All core scientific contributions, including the research ideation, the design of the evaluation frame-
work and metrics, experimental setup, and final analysis, were performed exclusively by the human
authors. The authors have carefully reviewed all machine-generated content and take full responsibil-
ity for the validity, integrity, and originality of this entire work.
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