

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MCP-RADAR: A MULTI-DIMENSIONAL BENCHMARK FOR EVALUATING TOOL USE CAPABILITIES IN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

As Large Language Models (LLMs) evolve from passive text generators to active reasoning agents capable of interacting with external tools, the Model Context Protocol (MCP) has emerged as a key standardized framework for dynamic tool discovery and orchestration. Despite its widespread industry adoption, existing evaluation methods do not adequately assess tool utilization capabilities under this new paradigm. To address this gap, this paper introduces MCP-RADAR, the first comprehensive benchmark specifically designed to evaluate LLM performance within the MCP framework. MCP-RADAR features a challenging dataset of 507 tasks spanning six domains: mathematical reasoning, web search, email, calendar, file management, and terminal operations. It quantifies performance based on two primary criteria: answer correctness and operational accuracy. To closely emulate real-world usage, our evaluation employs both authentic MCP tools and high-fidelity simulations of official tools. Unlike traditional benchmarks that rely on subjective human evaluation or binary success metrics, MCP-RADAR adopts objective, quantifiable measurements across multiple task domains, including computational resource efficiency and the number of successful tool-invocation rounds. Our evaluation of leading closed-source and open-source LLMs reveals distinct capability profiles and highlights a significant trade-off between accuracy and efficiency. Our findings provide actionable insights for both LLM developers and tool creators, establishing a standardized methodology applicable to the broader LLM agent ecosystem. All implementations, configurations, and datasets are publicly available at <https://anonymous.4open.science/r/MCPRadar-B143>.

1 INTRODUCTION

The paradigm of Large Language Models (LLMs) is undergoing a fundamental shift, evolving from passive text generators into proactive reasoning agents capable of interacting with external tools and APIs (Chowdhery et al., 2022; Brown et al., 2020). This evolution has been significantly accelerated by the advent of the Model Context Protocol (MCP), which provides a standardized framework for dynamic tool discovery and orchestration (Int; Mod; Qwe). As MCP adoption becomes widespread, the development of rigorous, standardized benchmarks to evaluate model performance within this new paradigm is critically important.

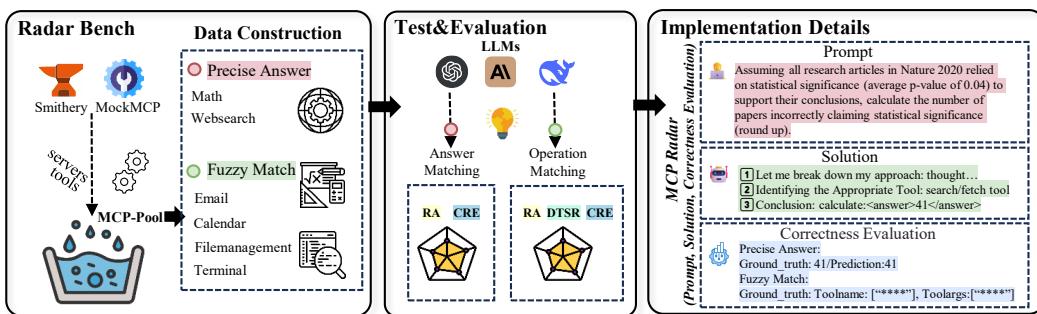
However, existing evaluation methodologies are insufficient. While traditional benchmarks excel at assessing knowledge-based reasoning (Hendrycks et al.) (Zhong et al.) or instruction following (Wang et al.) (Shridhar et al.), they offer limited insight into tool-use capabilities. Current tool-centric evaluations suffer from two primary limitations: 1) they struggle to differentiate between a model’s genuine problem-solving via tools and mere recitation of pre-trained knowledge, 2) their reliance on simulated environments often fails to capture the complexities of real-world tool interactions.

To address these gaps, we introduce MCP-RADAR, the first comprehensive benchmark designed specifically to evaluate LLM performance in the MCP paradigm. As illustrated in Figure 1, our methodology is structured around three core stages. First, in the Data Construction phase, we curate a diverse MCP Pool using both real-world tools from platforms like Smithery and high-fidelity mock MCPs for common applications such as email and calendar management. This pool supports two

054 distinct task categories: Precise Answer tasks (e.g., Math, Websearch), which have a single correct
 055 ground-truth value, and Fuzzy Match tasks (e.g., Filemanagement, Terminal), which require a correct
 056 sequence of operations.

057 Next, in the Test & Evaluation stage, we evaluate ten leading open- & closed-source LLMs. Our
 058 novel framework moves beyond simple binary success metrics by assessing accuracy through two
 059 core methods: Answer Matching for Precise Answer tasks and Operation Matching for Fuzzy Match
 060 tasks. Based on this, we quantify performance across multiple dimensions: Answer Accuracy (**RA**),
 061 Tool Selection Efficiency (**DTSR**), and Computational Resource Efficiency (**CRE**).
 062

063 Our evaluation using MCP-RADAR reveals critical insights. For instance, while closed-source mod-
 064 els significantly outperform open-source counterparts in mathematical reasoning, this gap narrows
 065 to less than 10% in web search tasks. More importantly, we identify a recurring failure pattern:
 066 models frequently select a semantically plausible but functionally incorrect tool, indicating a su-
 067 perficial understanding of the task requirements. Based on these findings, we provide actionable
 068 recommendations for both LLM development and MCP tool design.



069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 Figure 1: Overview of MCP-RADAR.

Our main contributions are threefold:

- We introduce MCP-RADAR, a comprehensive benchmark featuring two fundamental task types (Precise Answer and Fuzzy Match) across six critical domains: Mathematical Reasoning, Web Search, Email, Calendar, File Operations, and Terminal.
- We establish a high-fidelity evaluation environment by employing a combination of real-world MCP tools and meticulously replicated mock tools based on official specifications.
- We propose a novel, multi-dimensional evaluation framework for tool-augmented LLMs that utilizes purely objective and quantifiable metrics to assess accuracy, efficiency, and resourcefulness.

2 RELATED WORK

2.1 THE EVOLUTION TOWARDS STANDARDIZED TOOL USE

The Model Context Protocol (MCP) for Large Language Models (LLMs) is a unified interaction standard proposed by Anthropic to address systematic challenges in tool invocation. Early LLMs such as the GPT family relied only on static training data and were unable to access real-time information or interact with external systems, resulting in limited applications. Wei et al. (2022) demonstrated the role of structured reasoning in improving the performance of LLMs. With the increase of complex scenarios such as multi-round dialog systems, developers try to connect to external via API (Liu et al., 2024) (Song et al., 2023) (Qin et al., 2023) (Tang et al., 2023) to external data sources. Use the tool-enhanced LLM (Patil et al., 2024) (Parisi et al., 2022) (Lu et al., 2023) to try to solve the web browsing (Schick and Schütze, 2020) (Spiegel and Horák) (Chowdhury and Chowdhury, 2024) or code interpretation (Zhuang et al., 2023) (Liu et al., 2023) and other aspects of relevance, but Schick et al. (Schick et al., 2023) points out that this “peer-to-peer” integration leads to $N \times M$ issues, limiting system expansion and increasing maintenance costs. While platforms such as Hugging Face

108 promote model sharing, and frameworks such as LangChain attempt to enhance model capabilities
 109 through Tool Calling, these solutions do not address the underlying problem. However, these solutions
 110 still fail to address the fundamental problem. Hsieh et al. (2023) noting that these approaches still
 111 lack a common context delivery mechanism. It is in this context that the Model Context Protocol
 112 (MCP) was formally introduced and open sourced.
 113

114 2.2 EVALUATING TOOL AND MCP PROFICIENCY

115 Evaluating the tool-use capabilities of LLMs has emerged as a critical research direction. While
 116 traditional evaluation frameworks focused on language comprehension, the advent of tool-augmented
 117 AI (Wang et al., 2023; Schick et al., 2023) has made specialized benchmarks for tool proficiency
 118 essential (Xu et al., 2023; Liang et al., 2024; Patil et al., 2024). The HELM framework, proposed by
 119 Liang et al. (2022), sought to establish multi-dimensional evaluation criteria but did not specifically
 120 address the efficiency and effectiveness of tool interaction protocols. Existing tool-use benchmarks
 121 exhibit several limitations: some struggle to handle complex scenarios such as long-context memory,
 122 multi-turn, or multi-tool calls (Li et al., 2023; Patil et al., 2024; Xu et al., 2023; Zhuang et al., 2023;
 123 Tang et al., 2023; Qin et al., 2023), while others rely on single-path, standardized answers that do
 124 not align with the diversity of real-world user needs (Wang et al., 2024). Furthermore, the dataset
 125 in Luo et al. (2025) is limited to operational-matching tasks, and the one in Liu et al. (2025) is
 126 entirely synthetic, raising doubts about its real-world applicability. Consequently, these systems
 127 lack a comprehensive and systematic evaluation of a model’s ability to utilize specific protocols like
 128 MCP. In this paper, we introduce MCP-RADAR, a large-scale instruction benchmark, to explore the
 129 performance of LLMs in a variety of real-world MCP usage scenarios.
 130

131 3 MCP-RADAR DATA GENERATION

132 The MCP-RADAR benchmark is comprised of 507 instances meticulously crafted to span six distinct
 133 real-world domains. To comprehensively evaluate the diverse capabilities of LLM agents, we
 134 structured our dataset around two fundamental task archetypes: Precise Answer and Fuzzy Match. A
 135 detailed breakdown of the instance distribution and the specific tools associated with each domain is
 136 provided in Table 1.
 137

138 The two task categories are defined as follows: **Precise Answer:** This category includes tasks that
 139 require the model to return a single, definitive ground-truth value, such as a number, an algebraic
 140 expression, or a specific noun. As detailed in Table 1, this category covers the Math and Websearch
 141 domains. To ensure robustness and relevance, the instances for these tasks were curated and adapted
 142 from established academic datasets. Each data point consists of a query and its unique, verifiable
 143 answer. **Fuzzy Match:** This category encompasses operational tasks where success is determined
 144 not by a simple textual response, but by the correct invocation of an external tool with the appropriate
 145 parameters. This is essential for evaluating an agent’s ability to act upon instructions in domains
 146 like Email, Calendar, Filemanagement, and Terminal. For these tasks, each data point consists of
 147 a query paired with the ground-truth tool name and its corresponding arguments. The step-by-step
 148 methodology for generating these goal-oriented instances is illustrated in Figure 2, with concrete
 149 examples available in subsection A.1.
 150

Task Type	Data-Domain	Quantity	#Tools	Tools
Precise Answer	Math	120	4	Calculate, SolveEquation, Differentiate...
	Websearch	94	2	Search, FetchContent
	Email	119	17	SendEmail, DraftEmail, ReadEmail...
Fuzzy Match	Calendar	28	4	ListCalendars, ListEvents, CreateEvent...
	Filemanagement	91	13	ReadTextFile, ReadMediaFile, ReadMultipleFiles...
	Terminal	63	9	GetConfig, SetConfigValue, StartProcess...

156 157 158 159 160 161 Table 1: Data-Tool Statistics.

3.1 PRECISE ANSWER DATA CURATION

Our methodology for the Precise Answer dataset prioritizes answer accuracy, real-world relevance,
 and challenging queries. To achieve this, we chose to adapt and repurpose existing authoritative

162 datasets for mathematics and web search, rather than generating synthetic data from scratch (Zhuang
 163 et al., 2023) or deriving tasks solely from tool definitions (Styles et al., 2024). This approach grounds
 164 our benchmark in previously validated problems.

165 The curation process involved several key steps:

167 1. Data Sourcing and Filtering: We began by selecting the most challenging queries from
 168 high-quality source datasets (Gou et al., 2024; Fan et al., 2024; Srivastava et al., 2023;
 169 Kazemi et al., 2025; Mialon et al.). To ensure our benchmark specifically tests tool-use
 170 rather than a model’s internal knowledge—a common issue of data contamination—we
 171 used a powerful baseline model (Gemini 2.5 Flash (Google)) as a filter. Queries that the
 172 model could solve without external tools were discarded, isolating problems that genuinely
 173 necessitate tool invocation.

174 2. Ground-Truth Annotation: For the remaining queries, we manually annotated the scope
 175 of potentially applicable tools for each problem. This annotation defines a set of valid
 176 tools without enforcing a single, rigid solution path. Crucially, for this task category, our
 177 evaluation focuses solely on the correctness of the final standard answer; the specific tools
 178 used are not assessed, only the result.

179 3. Tool Implementation: To execute these tasks, we integrated verified, open-source MCP
 180 tools. Specifically, we utilized the calculator-mcp-server for mathematical operations and
 181 the duckduckgo-mcp-server for web search functionalities.

182 3.2 FUZZY MATCH DATA CURATION

192 Figure 2: Data Generation.

194 The generation of the Fuzzy Match dataset involved two core stages: establishing a controlled tool
 195 environment and programmatically generating single- and multi-tool interaction scenarios.

197 **Tool Implementation and Environment** To ensure reproducible and monitorable experiments,
 198 we developed a high-fidelity, semi-sandboxed tool environment. For the Filemanagement and
 199 Terminal domains, we integrated robust, community-developed open-source MCP tools. For the
 200 Email and Calendar domains, we implemented our own mock tools, EmailMCP and CalendarMCP,
 201 which meticulously replicate the interfaces and parameter structures of their real-world counterparts
 202 (GmailMCP and macOS CalendarMCP, respectively). These mock tools interact with a controlled,
 203 local database, pre-populated with 100 email and 50 calendar entries, rather than executing live
 204 operations. This setup provides realistic tool interaction schemas while maintaining a controlled
 205 evaluation environment. The email data format is detailed in subsection A.1.

206 **Instance Generation Methodology** Our approach employs a template-based programmatic method,
 207 similar to frameworks like Workbench (Styles et al., 2024) and ToolQA (Zhuang et al., 2023), to
 208 generate question-and-action pairs.

210 For single-tool instances, we designed a unique template for each tool, from which five distinct tasks
 211 were generated. This process co-generates both the user query and the corresponding ground-truth
 212 tool invocation (toolname and toolargs), which forms the basis for our Fuzzy Match evaluation.
 213 Examples of these templates are provided in subsection A.1.

214 For multi-tool instances, we adopted a more constrained approach to avoid the combinatorial explosion
 215 of exhaustive tool pairings. We identified the top three most frequently used tools within each domain
 and created chained-task templates subsection A.1 by combining their respective single-tool templates.

216 To ensure a unique and verifiable solution, the sequence of tool invocations in these multi-tool
 217 scenarios is strictly defined in the ground truth. The distribution of multi-tool questions per domain is
 218 shown in Figure 3.

219

220

4 EXPERIMENT

221

222

4.1 EXPERIMENTAL SETUP

223

Models Evaluated Our evaluation encompasses a diverse suite of ten leading Large Language Models, accessed via the OpenRouter API for standardized interfacing. The selection includes six state-of-the-art closed-source models: openai/gpt-5 (OpenAI), openai/gpt-4o (Hel), google/gemini-2.5-flash (Google), google/gemini-2.5-pro (Google), anthropic/claussonet-4 (Anthropic), and anthropic/clause-3.7-sonnet (Cla); and four prominent open-source models: qwen/qwen3-235b-a22b-2507 (Alibaba Cloud, 2025), deepseek/deepseek-chat-v3-0324 (Yang), deepseek/deepseek-r1-0528 (DeepSeek AI), and meta-llama/llama-4-maverick (Meta AI, 2025).

236

Implementation Details Each model was tasked with solving problems using a set of 49 MCP tools distributed across the six domains. For every task, the model was provided with a system_message, the user question, and a list of available tools. The models were required to complete each task within a maximum of K=10 interaction rounds; exceeding this limit was considered a task failure.

237

The required output format depended on the task type. For Fuzzy Match tasks, the evaluation focused on the sequence of tool invocations generated by the model. For Precise Answer tasks, models were instructed to enclose their final response within a designated tag: <answer>[YOUR FINAL ANSWER]</answer>, ensuring unambiguous extraction of the answer. To mitigate tool-related hallucinations (Huang et al., 2025) and improve reliability, the system_message included detailed, tool-specific instructions. The complete prompt templates, along with a comparative analysis of different prompting strategies (e.g., ReAct vs. concise), are available in subsection A.2.

249

250

4.2 EVALUATION METRICS

251

Our evaluation framework employs distinct sets of metrics tailored to the unique success criteria of each task category.

253

Precise Answer Tasks For this category, evaluation focuses exclusively on the final outcome, as the tool-use path to a correct answer is often non-unique and may involve self-correction from erroneous steps. Consequently, we do not assess the intermediate tool invocation sequence. Performance is measured along two dimensions:

258

- **Result Accuracy (RA):** A binary metric indicating whether the model’s final, extracted answer matches the ground truth exactly.
- **Computational Resource Efficiency (CRE):** A measure of the computational cost (e.g., token consumption) incurred to reach the solution.

263

We only require that the tools used by the model are from the valid set provided for the task, but we do not penalize alternative or redundant tool paths as long as the final answer is correct.

265

266

Fuzzy Match Tasks For tasks where the goal is to perform a correct operation, we evaluate the tool invocation process itself. Performance is assessed across three dimensions:

268

269

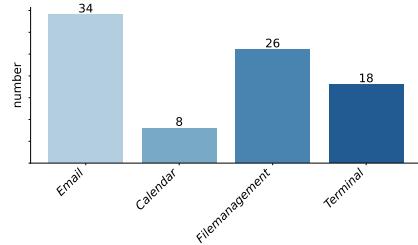


Figure 3: Multi-Tool Data Distribution.

270
271 Table 2: Comparison of model performance metrics across two domains of MCP-RADAR. Gemini-
272 Flash and Gemini-Pro are based on Gemini 2.5 Flash and Gemini 2.5 Pro respectively. Scores
273 highlighted in **red** indicate the lowest score, while scores in **green** are the highest.

Task	GPT-5	GPT-4o	Gemini-Flash	Gemini-Pro	Claude-3.7	Claude-4	Qwen3	Deepseek-V3	Deepseek-R1	Llama-4	
Math	ACC. CRE.	0.607 0.564	0.486 0.326	0.612 0.688	0.539 0.403	0.466 0.456	0.423 0.000	0.408 0.785	0.287 1.000	0.365 0.965	0.128 0.644
Websearch	ACC. CRE.	0.182 0.245	0.154 0.000	0.193 0.421	0.298 0.324	0.256 0.231	0.164 0.364	0.194 0.764	0.103 0.897	0.125 1.000	0.008 0.965

278
279 Table 3: Comparison of model performance metrics across Four domains of MCP-RADAR

Task	GPT-5	GPT-4o	Gemini-Flash	Gemini-Pro	Claude-3.7	Claude-4	Qwen3	Deepseek-V3	Deepseek-R1	Llama-4	
Email	ACC. CRE. DTSR.	0.749 0.642 0.806	0.632 1.000 0.765	0.742 0.854 0.936	0.825 0.765 0.855	0.765 0.846 0.784	0.454 0.213 0.645	0.756 0.413 0.802	0.625 0.632 0.743	0.738 0.875 0.932	0.448 0.000 0.623
	ACC. CRE. DTSR.	0.723 0.423 0.802	0.643 0.325 0.695	0.762 0.412 0.783	0.825 0.333 0.886	0.765 0.531 0.823	0.653 0.000 0.663	0.746 0.352 0.769	0.432 1.000 0.502	0.312 0.862 0.612	0.286 0.742 0.466
	ACC. CRE. DTSR.	0.323 0.000 0.522	0.438 0.432 0.845	0.346 0.852 0.543	0.596 0.754 0.623	0.462 0.532 0.588	0.436 0.756 0.623	0.478 0.412 0.563	0.362 0.751 0.452	0.392 0.651 0.753	0.254 1.000 0.635
Terminal	ACC. CRE. DTSR.	0.420 0.233 0.453	0.413 0.153 0.566	0.562 1.000 0.608	0.599 1.000 0.665	0.458 0.624 0.496	0.396 0.356 0.455	0.452 0.222 0.469	0.325 0.222 0.365	0.366 0.346 0.666	0.421 0.000 0.652

290
291 • **Dialogue Turn Success Rate (DTSR):** Defined as the ratio of successful tool invocations
292 to the total number of interaction turns. A "successful invocation" is one where the model
293 selects an applicable tool and provides correctly formatted parameters, measuring its step-
294 by-step ability to extract information and construct valid calls.

295 • **Computational Resource Efficiency (CRE):** A measure of the computational cost, with
296 values normalized using max-min scaling to allow for cross-model comparison.

5 RESULTS

5.1 MAIN RESULTS

303 **Precise Answer Tasks** As shown in Table 2, closed-source models generally exhibit superior
304 performance in this category. The performance gap is most pronounced in mathematical reasoning.
305 The Websearch domain proved to be highly challenging for all models, with success rates universally
306 below 30%. This difficulty stems from the dual requirement of selecting the correct tool and
307 formulating a precise query to extract the necessary information. Among the models tested, Gemini-
308 2.5-Pro emerged as the top performer with an accuracy of 29.8%, whereas the open-source Llama-4
309 recorded the lowest at 0.8%. While closed-source models maintained an advantage in Websearch, the
310 performance gap narrowed compared to other tasks, with an average success rate of 20.7% versus
311 10.8% for open-source models.

312 **Fuzzy Match Tasks** In this category, model performance strongly correlates with task complexity-
313 ity. Models achieved significantly higher accuracy on simpler operational tasks (Email, Calendar)
314 compared to more complex domains requiring precise sequential logic (Filemanagement, Terminal).
315 A critical finding, detailed in Table 3, is the significant disparity observed between Dialogue Turn
316 Success Rate (DTSR) and final accuracy (ACC) in complex tasks. For instance, in the Fileman-
317 agement domain, GPT-4o achieved a high DTSR of 84.5% but an ACC of only 43%. This 40.7% gap
318 highlights a crucial failure mode: models can syntactically execute tool calls correctly but fail to select
319 the semantically appropriate tool to solve the problem. This suggests a superficial understanding of
320 the task's core requirements.

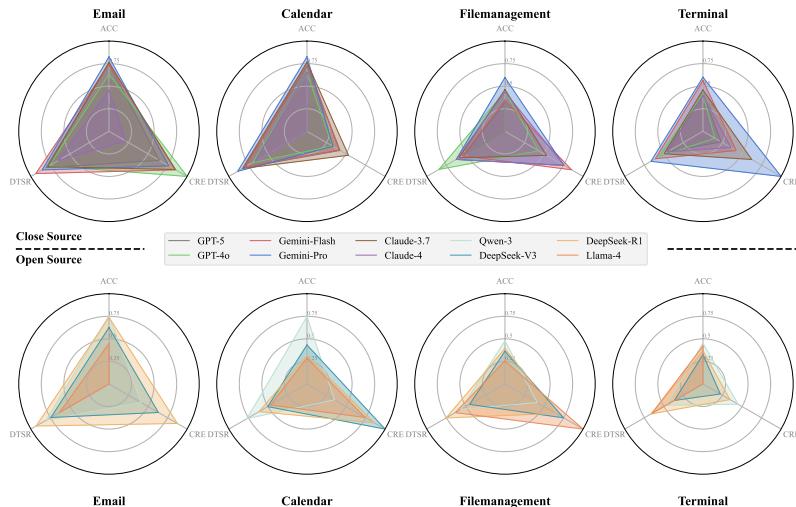
321 To further probe the models' planning capabilities, we conducted a targeted multi-tool experiment
322 inspired by Huang et al. (2023). We tested whether providing a hint about the number of required
323 tools would improve performance. The results in Table 4 show that such prompts had minimal impact,
324 yielding only a 2.5% to 5% improvement. This indicates that the primary capability boundary for

324
 325 Table 4: Multi Tool Selection Result. 2/2 means that we suggest call two tools, and then the LLM
 326 call the correct two tools. 2/ means that we do not advise about tools, and the LLM called the correct
 327 two tools. 1/2 means that on the basis of suggestion, the LLM called two tools, but only one of them
 328 was correct. 1/1 means that, based on the suggestion, the LLM only call one tool and it is correct

Task	GPT-5	GPT-4o	Gemini-Flash	Gemini-Pro	Claude-3.7	Claude-4	Qwen3	Deepseek-V3	Deepseek-R1	Llama-4	
ACC	2/	0.465	0.418	0.500	0.511	0.523	0.441	0.465	0.383	0.372	0.232
	2/2	0.511	0.430	0.651	0.662	0.534	0.430	0.500	0.383	0.441	0.255
	1/1	0.023	0.047	0.023	0.000	0.023	0.047	0.058	0.023	0.058	0.070
	1/2	0.279	0.302	0.186	0.232	0.186	0.000	0.256	0.349	0.360	0.349

322
 323
 324 current models is not determining if a tool is needed, but rather deciding which specific tool to invoke
 325 and how to parameterize it correctly.

326
 327 **Overall Performance** The holistic view presented in the radar charts Figure 4 reveals a distinct
 328 trade-off between performance and efficiency across the model landscape. While leading closed-
 329 source models demonstrate robust and well-rounded capabilities, certain open-source models achieve
 330 competitive accuracy, often at the cost of significantly higher computational resource (token) con-
 331 sumption. Notably, Gemini-2.5-Pro stands out as a highly capable tool-user across diverse domains.
 332 Among open-source models, Qwen demonstrates a commendable balance between task accuracy and
 333 resource efficiency.



361 Figure 4: Model Performance Comparison Across Tasks. Longer edges indicate superior performance
 362 in each metric.

364 5.2 ABLATION STUDY

365 In our main experiments, we impose a limit on the maximum number of interaction rounds (K) to
 366 balance task performance with computational efficiency. However, this constraint could potentially
 367 limit a model’s capacity for complex reasoning, reflection, and self-correction. To investigate this
 368 trade-off and justify our choice of K , we conducted an analysis on a randomly selected 50% subset
 369 of our dataset.

370 The results, illustrated in Figure 5, demonstrate a clear trend. As the maximum number of allowed
 371 rounds K increases, the overall task accuracy for most models improves. This is expected, as more
 372 rounds allow for more attempts and corrective actions. However, we observe a point of diminishing
 373 returns. For most models, the rate of accuracy improvement slows considerably when $K \geq 10$,
 374 eventually beginning to plateau.

375 Therefore, considering the balance between maximizing solution accuracy and maintaining reasonable
 376 interaction latency, we selected $K = 10$ as the standard setting for all our main experiments.

378 6 ANALYSIS AND DISCUSSION

379 6.1 ERROR ANALYSIS

380 Our analysis identifies three primary categories
 381 of failures: Tool-Use Errors, Reasoning Errors,
 382 and Information Synthesis Errors.

383 **Tool-Use Errors** This category concerns failures
 384 in the direct invocation and selection of
 385 tools. **Parameter Error.** Occurs when the model
 386 selects the correct tool but supplies improperly
 387 formatted or invalid arguments. Examples in-
 388 clude providing an invalid email address format
 389 or a malformed mathematical expression to a
 390 calculator (see Appendix B). **Inaccurate Tool**
 391 **Invocation.** Occurs when the model correctly
 392 identifies the need for a tool but selects one that
 393 is inappropriate for the given task. This often
 394 stems from a misinterpretation of a tool’s func-
 395 tionality or its operational scope, such as using
 396 a basic arithmetic calculator for a problem re-
 397 quiring symbolic differentiation.

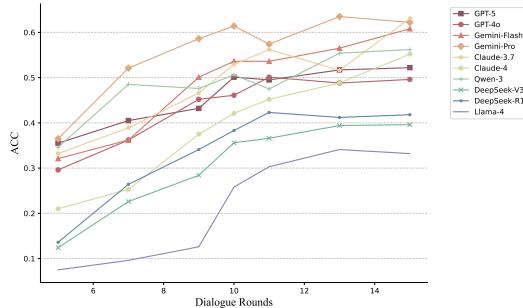
398 **Reasoning Errors** This category includes failures in the model’s high-level planning and logical
 399 deduction. **Tool Omission.** The model incorrectly assesses its own capabilities and attempts to solve a
 400 problem from its parametric knowledge when it should have invoked an external tool. This is common
 401 in complex tasks where the model fails to decompose the problem into tool-solvable sub-problems (see
 402 Appendix B). **Faulty Reasoning.** The model generates illogical or factually incorrect conclusions,
 403 even when the underlying tool outputs are accurate. A typical case is when a tool returns a correct
 404 number, but the model’s final answer violates the problem’s logical constraints (e.g., providing a
 405 decimal for a quantity that must be an integer), indicating a failure to integrate tool outputs with the
 406 problem’s semantic context. **Redundant Tool Invocation.** The model becomes trapped in a reasoning
 407 loop, repeatedly invoking the same or similar tools without making substantive progressAppendix B.
 408 This behavior suggests deficiencies in its planning and state-tracking capabilities, as it fails to update
 409 its strategy based on new observations.

410 **Information Synthesis Errors** This category involves failures in processing and utilizing the infor-
 411 mation returned by tools. **Tool-Result Integration Error.** The model obtains a correct intermediate
 412 result from a tool but fails to integrate it into subsequent reasoning steps. For instance, a model
 413 might correctly solve an equation with a calculator but then fail to substitute the result back into
 414 a larger derivation. **Information Extraction Failure.** The model successfully retrieves a large
 415 volume of information (e.g., from a web search) but fails to extract, filter, or summarize the core
 416 information relevant to the query. This manifests as either presenting irrelevant content or providing
 417 a disorganized data dump instead of a synthesized answer.

418 **Other Types** this type of error accounts for a relatively small proportion. It mainly includes errors
 419 such as interaction termination due to excessive interaction rounds, incorrect result solutions, or the
 420 invocation of non-existent tools.

421 For tasks requiring precise answers, such as complex web searches or mathematical problems, Faulty
 422 Reasoning and Tool Omission are the most prevalent failures. In the case of niche web queries,
 423 models often struggle to grasp the key points, leading to a reliance on their internal knowledge base
 424 which can result in factual hallucinations. For mathematical tasks, models often misjudge their
 425 own capability boundaries and, viewing the reasoning as overly cumbersome, will attempt to solve
 426 problems without invoking the necessary tools.

427 Conversely, for tasks involving fuzzy matching or complex tool parameterization, direct execution
 428 errors are more frequent. In these cases, Parameter Errors are the most common issue, particularly



429 Figure 5: Impact of Dialogue Rounds on Average
 430 Accuracy Across Domains.

when a tool requires a large number of arguments, increasing the likelihood of incorrect data entry (e.g., placing a recipient’s email in the subject line). Furthermore, persistent instances of Inaccurate Tool Invocation in these scenarios suggest that LLMs retain fundamental misunderstandings about the specific application scope of certain tools.



Figure 6: Error Distribution by Task Type.

6.2 DISCUSSION AND CONCLUSION

In this paper, we introduced MCP-RADAR, a comprehensive framework to systematically evaluate the tool-use capabilities of Large Language Models within the MCP paradigm. By assessing ten leading models across six domains using a combination of real-world and high-fidelity mock tools.

Our findings reveal a critical gap between a model’s syntactic ability to invoke a tool and the deeper semantic understanding required to solve problems effectively. We consistently observed that while models can often execute a tool call, they struggle with the higher-level reasoning required for proactive and precise tool selection, multi-step planning, and effective information synthesis from tool outputs. These core challenges point to clear directions for both model and tool development.

Implications for LLM Development

- **Improving Proactive Tool Invocation:** Current models exhibit a tendency to default to their parametric knowledge, failing to recognize their own capability boundaries. Future training should focus on improving this self-awareness, encouraging models to view external tools as a primary resource rather than a last resort.
- **Fostering De-compositional Reasoning:** We observed that models often attempt to solve complex problems with a single tool call, particularly in domains like advanced mathematics. Enhancing their ability to deconstruct tasks into a sequence of smaller, tool-solvable steps is crucial for tackling multi-stage problems.

Recommendations for MCP Tool Developers

- **Optimizing Tool Descriptions:** A tool’s description is a critical interface for the LLM. Descriptions must be both concise and precise, as overly verbose or ambiguous text significantly increases the model’s cognitive load and leads to invocation errors.
- **Promoting Atomic Tool Design:** Our results suggest that LLMs are more proficient at orchestrating a sequence of simple, single-purpose (“atomic”) tools than understanding and correctly parameterizing a complex, multi-functional one. Developers should favor creating granular tools that can be combined to solve complex tasks.

486 ETHICS STATEMENT
487488 The authors confirm their adherence to the ICLR Code of Ethics. This research introduces MCP-
489 RADAR, a benchmark for evaluating the tool-use capabilities of Large Language Models (LLMs),
490 and does not propose a new model architecture. Our primary goal is to foster transparency and guide
491 the responsible development of AI agents by providing the community with objective, quantifiable
492 evaluation metrics.493 We acknowledge that advancing the capabilities of tool-using agents carries an inherent dual-use risk;
494 more competent agents could potentially be repurposed for malicious activities. Our work aims to
495 mitigate such risks by providing a clear framework for identifying model weaknesses, such as the
496 observed tendency for models to select incorrect tools, which can inform the development of safer
497 and more reliable systems.498 The datasets used in MCP-RADAR are constructed from established public benchmarks (e.g., MATH,
499 GAIA) or generated programmatically. The underlying LLMs evaluated may reflect societal biases
500 present in their training data. While our benchmark measures performance, it does not explicitly
501 address or mitigate these biases, which remains a critical area for future research. To prevent real-
502 world harm during evaluation, operational tasks involving tools like email, calendar, and terminal
503 commands were conducted in a semi-sandboxed environment, using custom-built mock servers that
504 replicate tool functionality without executing real operations. We believe the benefit of a standardized,
505 objective evaluation framework for agentic models significantly contributes to the safe and ethical
506 progression of AI.507
508 REPRODUCIBILITY STATEMENT
509510 We have taken extensive measures to ensure the reproducibility of our work. The complete implemen-
511 tation of the MCP-RADAR benchmark, including all configurations, evaluation scripts, and the full
512 dataset, has been made publicly available at <https://anonymous.4open.science/r/MCPRadar-B143>.513 The data generation process is described in detail in Section 3. This includes the repurposing of
514 existing public datasets for "Precise Answer" tasks (Section 3.1.1) and the template-based program-
515 matic generation for "Fuzzy Match" tasks (Section 3.1.2). Appendix A provides further examples of
516 data templates and prompts. The specific models evaluated are listed in Section 4.1, and the novel,
517 quantifiable evaluation metrics (Result Accuracy, Dialogue Turn Success Rate, and Computational
518 Resource Efficiency) are formally defined in Section 4.2.519 Our experimental setup, including system prompts and the maximum interaction rounds, is detailed
520 in Section 4.1. The tools used in the benchmark are a combination of open-source MCP servers and
521 custom-built mock tools designed to replicate official specifications, with sources and implementation
522 details provided in <https://anonymous.4open.science/r/MCPRadar-B143>. We believe these resources
523 provide a comprehensive basis for replicating our results and extending this research.524
525 REFERENCES
526527
528 [1] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
529 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
530 Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
531 Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
532 Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
533 Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
534 Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
535 Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
536 Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
537 Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
538 Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
539 Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language
modeling with pathways, 2022. URL <https://arxiv.org/abs/2204.02311>.

540 [2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 541 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 542 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 543 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
 544 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 545 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.
 546 URL <https://arxiv.org/abs/2005.14165>.

547 [3] Introducing the Model Context Protocol. URL <https://www.anthropic.com/news/model-context-protocol>.

548 [4] Model context protocol (MCP) - OpenAI Agents SDK. URL <https://openai.github.io/openai-agents-python/mcp/>.

549 [5] QwenLM/Qwen-Agent. URL <https://github.com/QwenLM/Qwen-Agent>.

550 [6] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 551 Jacob Steinhardt. Measuring Massive Multitask Language Understanding. URL [http://arxiv.org/abs/2009.03300](https://arxiv.org/abs/2009.03300).

552 [7] Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin
 553 Saied, Weizhu Chen, and Nan Duan. AGIEval: A Human-Centric Benchmark for Evaluating
 554 Foundation Models. URL [http://arxiv.org/abs/2304.06364](https://arxiv.org/abs/2304.06364).

555 [8] Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
 556 MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback. URL
 557 [http://arxiv.org/abs/2309.10691](https://arxiv.org/abs/2309.10691).

558 [9] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and
 559 Matthew Hausknecht. ALFWorld: Aligning Text and Embodied Environments for Interactive
 560 Learning. URL [http://arxiv.org/abs/2010.03768](https://arxiv.org/abs/2010.03768).

561 [10] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
 562 Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
 563 *Advances in neural information processing systems*, 35:24824–24837, 2022.

564 [11] Huanxi Liu, Jiaqi Liao, Dawei Feng, Kele Xu, and Huaimin Wang. Autofeedback: An llm-based
 565 framework for efficient and accurate api request generation. *arXiv preprint arXiv:2410.06943*,
 566 2024.

567 [12] Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song, Hailiang
 568 Huang, Cheng Li, Ke Wang, Rong Yao, et al. Restgpt: Connecting large language models with
 569 real-world restful apis. *arXiv preprint arXiv:2306.06624*, 2023.

570 [13] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
 571 Xiangru Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+
 572 real-world apis. *arXiv preprint arXiv:2307.16789*, 2023.

573 [14] Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun.
 574 Toolalpaca: Generalized tool learning for language models with 3000 simulated cases. *arXiv
 575 preprint arXiv:2306.05301*, 2023.

576 [15] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
 577 model connected with massive apis. *Advances in Neural Information Processing Systems*, 37:
 578 126544–126565, 2024.

579 [16] Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. *arXiv
 580 preprint arXiv:2205.12255*, 2022.

581 [17] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun
 582 Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language
 583 models. *Advances in Neural Information Processing Systems*, 36:43447–43478, 2023.

594 [18] Timo Schick and Hinrich Schütze. Exploiting cloze questions for few shot text classification
595 and natural language inference. *arXiv preprint arXiv:2001.07676*, 2020.

596

597 [19] Michal Spiegel and Aleš Horák. Webmap: Improving llm web agents with semantic search for
598 relevant web pages.

599

600 [20] Gobinda Chowdhury and Sudatta Chowdhury. Ai-and llm-driven search tools: A paradigm
601 shift in information access for education and research. *Journal of Information Science*, page
602 01655515241284046, 2024.

603

604 [21] Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
605 question answering with external tools. *Advances in Neural Information Processing Systems*, 36:
606 50117–50143, 2023.

607

608 [22] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
609 Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. *arXiv preprint
610 arXiv:2308.03688*, 2023.

611

612 [23] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
613 Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models
614 can teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36:
615 68539–68551, 2023.

616

617 [24] Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander Ratner, Chen-Yu Lee,
618 Ranjay Krishna, and Tomas Pfister. Tool documentation enables zero-shot tool-usage with large
619 language models. *arXiv preprint arXiv:2308.00675*, 2023.

620

621 [25] Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi, Wangchunshu Zhou, Shaochun Hao,
622 Guangzheng Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen, et al. Interactive natural
623 language processing. *arXiv preprint arXiv:2305.13246*, 2023.

624

625 [26] Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
626 manipulation capability of open-source large language models. *arXiv preprint arXiv:2305.16504*,
627 2023.

628

629 [27] Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei
630 Ji, Shaoguang Mao, et al. Taskmatrix. ai: Completing tasks by connecting foundation models
631 with millions of apis. *Intelligent Computing*, 3:0063, 2024.

632

633 [28] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
634 Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of
635 language models. *arXiv preprint arXiv:2211.09110*, 2022.

636

637 [29] Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li,
638 Fei Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms.
639 *arXiv preprint arXiv:2304.08244*, 2023.

640

641 [30] Pei Wang, Yanan Wu, Zekun Wang, Jiaheng Liu, Xiaoshuai Song, Zhongyuan Peng, Ken Deng,
642 Chenchen Zhang, Jiakai Wang, Junran Peng, et al. Mtu-bench: A multi-granularity tool-use
643 benchmark for large language models. *arXiv preprint arXiv:2410.11710*, 2024.

644

645 [31] Ziyang Luo, Zhiqi Shen, Wenzhuo Yang, Zirui Zhao, Prathyusha Jwalapuram, Amrita Saha,
646 Doyen Sahoo, Silvio Savarese, Caiming Xiong, and Junnan Li. Mcp-universe: Benchmarking
647 large language models with real-world model context protocol servers, 2025. URL <https://arxiv.org/abs/2508.14704>.

648

649 [32] Zhiwei Liu, Jielin Qiu, Shiyu Wang, Jianguo Zhang, Zuxin Liu, Roshan Ram, Haolin Chen,
650 Weiran Yao, Shelby Heinecke, Silvio Savarese, Huan Wang, and Caiming Xiong. Mcpeval:
651 Automatic mcp-based deep evaluation for ai agent models, 2025. URL <https://arxiv.org/abs/2507.12806>.

652

653 [33] Olly Styles, Sam Miller, Patricio Cerda-Mardini, Tanaya Guha, Victor Sanchez, and Bertie
654 Vidgen. Workbench: a benchmark dataset for agents in a realistic workplace setting, 2024. URL
655 <https://arxiv.org/abs/2405.00823>.

648 [34] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan,
 649 and Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving,
 650 2024. URL <https://arxiv.org/abs/2309.17452>.

651 [35] Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Jonah Brenner, Danxian
 652 Liu, Nianli Peng, Corey Wang, and Michael P. Brenner. Hardmath: A benchmark dataset for
 653 challenging problems in applied mathematics, 2024. URL <https://arxiv.org/abs/2410.09988>.

654 [36] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
 655 Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Ag-
 656 nieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt,
 657 Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman
 658 Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S.
 659 Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew
 660 Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong,
 661 Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa
 662 Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mollokandov, Ashish Sabharwal, Austin
 663 Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph,
 664 Bartłomiej Bojanowski, Batuhan Özürt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin
 665 Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinon, Cameron
 666 Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan
 667 Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris
 668 Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E.
 669 Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo,
 670 Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi,
 671 Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen,
 672 Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta,
 673 Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke
 674 Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan
 675 Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth
 676 Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang,
 677 Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice En-
 678 gefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed,
 679 Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard
 680 de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang,
 681 Gonzalo Jaimovich-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah
 682 Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze,
 683 Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack
 684 Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B.
 685 Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Janelle Wingfield,
 686 Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski,
 687 Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel,
 688 Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John
 689 Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose
 690 Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum,
 691 Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrish-
 692 nan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi,
 693 Kory Mathewson, Kristen Chiaffullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle
 694 Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-
 695 Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt,
 696 Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap,
 697 Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco
 698 Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha
 699 Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna
 700 Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu,
 701 Michael Ivanitskiy, Michael Starratt, Michael Strube, Michał Swędrowski, Michele Bevilacqua,
 Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Ti-
 wari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun
 Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas

702 Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff,
 703 Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang,
 704 Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth
 705 Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy
 706 Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush
 707 Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade,
 708 Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm
 709 Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan
 710 Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang,
 711 Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib
 712 Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel
 713 Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A.
 714 Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann,
 715 Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry
 716 Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal,
 717 Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thorw Meyer, Simone Melzi,
 718 Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanis-
 719 las Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad,
 720 Steven T. Piantadosi, Stuart M. Shieber, Summer Misgerghi, Svetlana Kiritchenko, Swaroop
 721 Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo
 722 Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick,
 723 Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar
 724 Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak,
 725 Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Sri Kumar, William Fedus,
 726 William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi
 727 Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin
 728 Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai,
 729 Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and Ziyi Wu. Beyond the
 730 imitation game: Quantifying and extrapolating the capabilities of language models, 2023. URL
 731 <https://arxiv.org/abs/2206.04615>.

[37] Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou,
 731 Sanket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth
 732 Dikkala, Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay, Vinh Q.
 733 Tran, Quoc V. Le, and Orhan Firat. Big-bench extra hard, 2025. URL <https://arxiv.org/abs/2502.19187>.

[38] Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
 736 Scialom. GAIA: A benchmark for General AI Assistants. URL <https://arxiv.org/abs/2311.12983>.

[39] Google. Introducing gemini 2.5 pro, . URL <https://ai.google.dev/gemini-api/docs/models/gemini-2-5-pro>.

[40] OpenAI. Gpt-5: A team of ph.d. level experts in your pocket. URL <https://openai.com/blog/introducing-gpt-5>.

[41] Hello GPT-4o. URL <https://openai.com/index/hello-gpt-4o>.

[42] Google. Gemini 2.5 flash | generative ai on vertex ai, . URL <https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash?hl=zh-cn>.

[43] Anthropic. Introducing claude sonnet 4. URL <https://www.anthropic.com/news/claude-sonnet-4>.

[44] Claude 3.7 Sonnet and Claude Code. URL <https://www.anthropic.com/news/claude-3-7-sonnet>.

[45] Alibaba Cloud. Qwen3-235b-a22b-2507. URL <https://huggingface.co/qwen/qwen3-235b-a22b-2507>, 2025.

756 [46] Chars Yang. DeepSeek v3 - Advanced AI & LLM Model Online. URL <https://deepseekv3.org/>.

757

758 [47] DeepSeek AI. Deepseek-r1. URL <https://api-docs.deepseek.com/zh-cn/news/news250528>.

761 [48] Meta AI. Llama 4: Industry Leading, Open-Source AI. <https://www.llama.com/>, 2025.

762

763 [49] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qian-
764 glong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallu-
765 cination in large language models: Principles, taxonomy, challenges, and open questions.
766 *ACM Transactions on Information Systems*, 43(2):1–55, January 2025. ISSN 1558-2868. doi:
767 [10.1145/3703155](https://doi.org/10.1145/3703155). URL <http://dx.doi.org/10.1145/3703155>.

768 [50] Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou,
769 Yao Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
770 whether to use tools and which to use. *arXiv preprint arXiv:2310.03128*, 2023.

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A DATASET AND EXPERIMENT DETAILS
811812 A.1 DATASET DETAILS
813814 For precise answer type query:
815816
817 {"unique_id": "db4fd70a-2d37-40ea-873f-9433dc5e301f",
818 "Prompt": "As of May 2023, how many stops are between South
819 Station and Windsor Gardens on MBTA's Franklin-Foxboro
820 line (not included)?",
821 "Answer": "10"}823 For fuzzy match type query:
824825
826 {"unique_id": "db4fd70a-2d37-40ea-873f-9433dc5e301f",
827 "Prompt": "Please send Lucy@gmail.com an email for me,
828 invite her to come over for dinner tomorrow.",
829 "Toolname": "SendEmail",
830 "Toolargs": "from":(default)mock@localhost.com, "to":
831 Lucy@gmail.com, "subject": ".", "body": "I hope this
832 message finds you well. I would like to warmly invite you
833 to come over for dinner at my place tomorrow evening."}835 Emaildata Format:
836837 {"email_id": "c98db9b0-347b-4357-b7fd-0075f944acb3", "status": "outbox",
838 "to": ["Harmon@mail.com"],
839 "subject": "hihihihihi", "body": "nice to meet you",
840 "cc": [], "bcc": [], "attachments": [],
841 "sent_datetime": "2025-08-19T09:43:46.979Z", "labels": ["important"]}842 Single-Tool Template Format:
843844 Email:
845 "Please email {name} to notify her/him to attend the meeting."
846 Calendar:
847 "Please add {something} to the schedule."
848 Filemanage:
849 "Please return the content in {path} file."
850 Terminal:
851 "Start {python scripts}"852 Multi-Tool Template Format Example:
853854 Email:
855 "Please email {name} to notify her/him to attend the meeting
856 and then mark the message as {label}"859 A.2 SYSTEM PROMPT
860861 In this section, we demonstrate the impact of setting the prompt to concise mode versus ReAct format
862 on experimental results.
863

864 ReAct Version:

864
865
866
867
868
869
870
871

Table 5: Prompt Effect Comparison

Mean-Acc.	GPT-5	GPT-4o	Gemini-Flash	Gemini-Pro	Claude-3.7	Claude-4	Qwen3	Deepseek-V3	Deepseek-R1	Llama-4
ReAct	0.524	0.386	0.499	0.512	0.533	0.462	0.602	0.388	0.374	0.282
Concise	0.501	0.461	0.536	0.614	0.529	0.421	0.506	0.356	0.383	0.258
Δ	-0.023	0.075	0.037	0.102	-0.004	-0.041	-0.096	-0.032	0.009	-0.024

You are a professional mathematics assistant that must solve problems by following a loop of Thought -> Action -> Observation. Your sole tool is calculator-mcp-server.

Tools You can only use calculator-mcp-server.

calculator-mcp-server calculate: Evaluates a mathematical expression and returns the result.

solve_equation: Solves algebraic equations for x and returns all solutions. differentiate: Computes derivatives of expressions. integrate: Computes indefinite integrals of expressions.

Instructions Strictly follow the ReAct loop: Thought -> Action -> Observation until the problem is solved.

Every action must be a call to the calculator-mcp-server tool.

The action format must be an exact JSON string.

The final answer must be enclosed in <answer> tags.

Format Thought: You must describe your reasoning process in detail here.

Analyze the problem and determine what needs to be solved.

Plan the steps to solve the problem.

Decide which tool function to call and what its input parameters should be.

Action: Call the tool. You must use the following JSON format.

JSON

"server_name": "calculator-mcp-server", "tool_name": "...", "inputs": ... Observation: The output result from the tool.

Example Question: What is the determinant of matrix [[4, 7], [2, 6]]?

Thought: The question asks for the determinant of a matrix. I must use the calculator-mcp-server tool to perform this calculation. I will use the calculate function, and its expression parameter will be det([[4, 7], [2, 6]]).

Action:

JSON

"server_name": "calculator-mcp-server", "tool_name": "calculate",
"inputs": "expression": "det([[4, 7], [2, 6]])"

Concise Prompt:

"You are a specialized mathematics assistant. " "You MUST ONLY use the calculator-mcp-server's tools to solve math problems to solve all math problems. " "Do NOT provide any direct answers without using tools. " "Always analyze the problem first and then call calculator-mcp-server's tools with the corresponding arguments. " "Show your reasoning steps clearly and format answers using the tool's output. " "You MUST format your final answer as: <answer>[YOUR FINAL ANSWER]</answer>" "Mathematical answers should be numbers or formatted in LaTeX, e.g.,

$$\begin{pmatrix} 31 & 50 \\ -18 & -29 \end{pmatrix}$$

We randomly selected ten datasets from each domain and tested them with two different prompts. The results are shown in Table 5.

B RELATED EXPERIMENT RESULTS

Error Type:

- Tool Omission

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

User: "Suppose $f(x) = x^2$, and $g(x)$ is a polynomial such that $f(g(x)) = 4x^2 + 4x + 1$. Enter all possible polynomials $g(x)$, separated by commas."

Assistant: "We are given that: - $f(x) = x^2 - g(x)$ is a polynomial - $f(g(x)) = (g(x))^2 = 4x^2 + 4x + 1$ So we need to find all polynomials $g(x)$ such that:

$$(g(x))^2 = 4x^2 + 4x + 1$$

Step 1: Analyze the right-hand side Note that:

$$4x^2 + 4x + 1 = (2x + 1)^2$$

So,

$$(g(x))^2 = (2x + 1)^2$$

Taking square roots (keeping in mind that polynomials can be positive or negative), we get:

$$g(x) = 2x + 1$$

or

$$g(x) = -(2x + 1) = -2x - 1$$

These are both polynomials, and squaring either gives:

$$(2x + 1)^2 = 4x^2 + 4x + 1$$

Step 2: Are there any other polynomial solutions? Suppose $g(x)$ is a polynomial such that $(g(x))^2 = (2x + 1)^2$. Then:

$$(g(x))^2 - (2x + 1)^2 = 0 \rightarrow (g(x) - (2x + 1))(g(x) + (2x + 1)) = 0$$

So the polynomial equation implies that $g(x) - (2x + 1) = 0$ or $g(x) + (2x + 1) = 0$, since a polynomial cannot be zero at all points unless one of the factors is identically zero (as polynomials form an integral domain). Thus, the **only** polynomial solutions are:

$$g(x) = 2x + 1 \text{ or } g(x) = -2x - 1$$

Final Answer: <answer>2x + 1, -2x - 1</answer>

- Redundant Tool Invocation. It repeatedly queries the same website address

User: I'm researching species that became invasive after people who kept them as pets released them. There's a certain species of fish that was popularized as a pet by being the main character of the movie Finding Nemo. According to the USGS, where was this fish found as a nonnative species, before the year 2020? I need the answer formatted as the five-digit zip codes of the places the species was found, separated by commas if there is more than one place.

Assistant: The species of fish popularized by the movie *Finding Nemo* is the clown anemonefish (*Amphiprion ocellaris*). "tool_use_detail": [{"type": "call", "content": "[Calling tool search with args 'query': 'Finding Nemo fish invasive species USGS', 'max_results': 5]", "type": "result", "content": "tool return result meta=None content=[TextContent(type='text', text=Found 5 search results:1. Nonindigenous Aquatic Species URL: https://nas.er.usgs.gov/ ***URL: https://www.usgs.gov/index.php/centers/ wetland-and-aquatic-research-center/science/science-topics/ nonindigenous-aquatic-species Summary: The USGS Nonindigenous Aquatic Species (NAS) database tracks occurrence data on non-native aquatic plant and animal species throughout the United States, and provides the public with species profiles, distribution maps, and online/real-time queries for state/hydrologic basin-specific species. 3. Invasive Species Experts Database | U.S. Fish & Wildlife Service ***URL: https://www.usgs.gov/index.php/centers/wetland-and-aquatic-research-center/science/science-topics/nonindigenous-aquatic-species"}]

- Parameter Errors

972
973
974
975
976
977
978
979
980
981
982
983
984

User: Please send an email to Jimmy inviting him to dinner tonight.
 Assistant: "email_id":"c98db9b0-347b-4357-b7fd-0075f944acb3",
 "status":"outbox",
 "to":[],
 "subject":"Jimmy@mail.com",
 "body":"Hey, want to come over for dinner tonight?", "cc":[], "bcc":[],
 "attachments":[],
 "sent_datetime":"2025-09-19T09:43:46.979Z", "labels":[]"]

994
995
996
997
998
999

Table 6: Impact of Dialogue Rounds K on Average Accuracy Across Domains

Dialogue Rounds (K)	GPT-5	GPT-4o	Gemini-Flash	Gemini-Pro	Claude-3.7	Claude-4	Qwen3	Deepseek-V3	Deepseek-R1	Llama-4
K=5	0.355	0.296	0.321	0.365	0.332	0.210	0.346	0.124	0.136	0.075
K=7	0.405	0.362	0.362	0.521	0.389	0.253	0.485	0.226	0.264	0.096
K=9	0.432	0.452	0.501	0.586	0.466	0.375	0.476	0.284	0.341	0.126
K=10	0.501	0.461	0.536	0.614	0.529	0.421	0.506	0.356	0.383	0.258
K=11	0.495	0.501	0.536	0.574	0.562	0.452	0.475	0.366	0.423	0.303
K=13	0.517	0.488	0.565	0.635	0.516	0.488	0.554	0.394	0.412	0.341
K=15	0.522	0.496	0.608	0.622	0.631	0.552	0.562	0.396	0.418	0.332

C EXPERIMENTAL PROCEDURE FORMATTING

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

MCP-Pool
 "mcp_pool": [
 {
 "name": "FireCrawl",
 "description": "A Model Context Protocol (MCP) server implementation that integrates with Firecrawl for web scraping capabilities.",
 "tools": [
 {
 "tool_name": "firecrawl_search",
 "tool_description": "Search the web and optionally extract content from search results.",
 "inputs": [
 {
 "name": "query",
 "type": "string",
 "required": true,
 "description": "your search query"
 }
]
 }
]
 },
 "run_config": [
 {
 "command": "npx -y firecrawl-mcp",
 "env": {
 "FIRECRAWL_API_KEY": "your key"
 },
 "port": your port
 }
]
 }

```

1026
1027 Eval-Result
1028
1029 {
1030     "unique_id": "*****",
1031     "question": "Given a integer n(>0), make a pile of n levels of ...",
1032     "ground_truth": "def make_a_pile(n):\n    return [n + 2*i for i in range(n)]",
1033     "prediction": "def make_a_pile(n):\n    pile = []\n    for i in range(n):\n        if n % 2 == 0:\n            pile.append(n + 2*i)\n        else:\n            pile.append(n + 2*i)\n    return pile",
1034     "success": true,
1035     "tool_usage": {
1036         "tool_calls": [
1037             {"name": "read_file", "arguments": "{\"path\": \"problem.jsonl\"}"},
1038             {"name": "write_file", "arguments": "{\"path\": \"answer.jsonl\"}"}
1039         ],
1040         "total_tool_count": 2,
1041         "tool_names": ["read_file", "write_file"]
1042     },
1043     "token_usage": {
1044         "prompt_tokens": 820,
1045         "completion_tokens": 610,
1046         "total_tokens": 1430
1047     }
1048 }
1049
1050
1051
1052 D THE USE OF LARGE LANGUAGE MODELS
1053
1054 Large Language Models (LLMs) were utilized in two capacities during this research: dataset con-
1055 struction and manuscript preparation.
1056
1057 First, as detailed in Section 3.1, LLMs played an auxiliary role in the creation of the MCP-RADAR
1058 benchmark. For the precise answer tasks, we utilized results from Gemini 2.5 Flash to help select
1059 queries from existing datasets that required tool invocation. For the fuzzy match tasks, question-
1060 answer pairs were programmatically generated based on author-designed templates, a process inspired
1061 by LLM-based data generation methodologies.
1062
1063 Second, Gemini 2.5 Pro was employed as a writing assistant to polish the manuscript by improving
1064 grammar, refining phrasing, and enhancing overall clarity.
1065
1066 All core scientific contributions, including the research ideation, the design of the evaluation frame-
1067 work and metrics, experimental setup, and final analysis, were performed exclusively by the human
1068 authors. The authors have carefully reviewed all machine-generated content and take full responsibil-
1069 ity for the validity, integrity, and originality of this entire work.
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

```