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Abstract

Bias amplification is a phenomenon in which
models exacerbate biases or stereotypes present
in the training data. In this paper, we study bias
amplification in the text-to-image domain using
Stable Diffusion by comparing gender ratios in
training vs. generated images. We find that the
model appears to amplify gender-occupation
biases found in the training data (LAION) con-
siderably. However, we discover that amplifica-
tion can be largely attributed to discrepancies
between training captions and model prompts.
For example, an inherent difference is that cap-
tions from the training data often contain ex-
plicit gender information while our prompts
do not, which leads to a distribution shift and
consequently inflates bias measures. Once we
account for distributional differences between
texts used for training and generation when
evaluating amplification, we observe that am-
plification decreases drastically. Our findings
illustrate the challenges of comparing biases in
models and their training data, and highlight
confounding factors that impact analyses.

1 Introduction

Breakthroughs in machine learning have been fu-
eled in large part by training models on massive
unlabeled datasets (Gao et al., 2020; Raffel et al.,
2020; Schuhmann et al., 2022). However, several
studies have shown that these datasets exhibit bi-
ases and undesirable stereotypes (Birhane et al.,
2021; Dodge et al., 2021; Garcia et al., 2023),
which in turn impact model behavior. Given that
models are trained to represent the data distribution,
it is not surprising that models perpetuate biases
found in the training data (De-Arteaga et al., 2019;
Sap et al., 2019; Adam et al., 2022, among others).

To introduce bias amplification, let us take a
model that generates images of engineers that are
female 10% of the time. When examining the train-
ing data, we may assume that the model reflects as-
sociations in the data and expect to observe roughly

“A photo of the face of an engineer”
!
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Figure 1: Comparing generated and training images
for engineer, the model clearly seems to amplify bias
by generating 10% female images, as compared to 25%
female in training images. However, when looking at the
subset of training examples without gender indicators
in captions (10% female), similar to our prompts, the
model does not amplify bias.

With Gender
Indicators
(40% female)

10% female as well.! However, it would be prob-
lematic for the model to instead exacerbate existing
imbalances by generating engineer images that are
only 10% female, while the training engineer im-
ages are 25% female, as shown in Figure 1. This
phenomenon, known as bias amplification (Zhao
et al., 2017), is concerning because it further rein-
forces stereotypes and widens disparities. While
previous works suggest that models amplify biases
(Zhao et al., 2017; Wang et al., 2018; Hall et al.,
2022; Hirota et al., 2022; Friedrich et al., 2023),
there remain unanswered questions about the para-
doxical nature of bias amplification: Given that
models learn to fit the training data, why do mod-
els amplify biases found in the data as opposed to
strictly representing them?

"Note that even such bias preservation may be undesirable.



In this paper, we investigate how model biases
compare with biases found in the training data.
We focus on the text-to-image domain and ana-
lyze gender-occupation biases in Stable Diffusion,
(Rombach et al., 2022) as well as its publicly avail-
able training dataset LAION (Schuhmann et al.,
2022), which consists of image-caption pairs in En-
glish (§2). To select training examples, we identify
captions that mention occupations (e.g., engineer)
and obtain corresponding images. We follow pre-
vious work (Bianchi et al., 2023; Luccioni et al.,
2023) and use prompts that contain a given occupa-
tion (e.g., “A photo of the face of an engineer”) to
generate images. For each occupation, we then clas-
sify binary gender to measure bias in corresponding
training and generated images, and compare the re-
spective quantities to determine whether the model
amplifies biases? from its training data (§3).

At first glance, it appears that the model am-
plifies bias considerably (on average, generation
bias is 12.57% higher than training bias) using ex-
isting approaches (§4). When comparing train-
ing captions and prompts, however, we discover
clear distributional differences that impact ampli-
fication measurements. For example, one inher-
ent distinction is that captions often contain ex-
plicit gender mentions while prompts used to study
gender-occupation biases do not.> More generally,
captions often contain additional context and de-
tails that are absent from the prompts we use.

Based on our observations, it is clear the cur-
rent approach of directly using all training captions
that contain a given occupation provides a naive
characterization of bias amplification. Instead, we
propose evaluating amplification on subsets of the
training data that reduce distribution shifts between
training and generation (§5). We introduce two ap-
proaches to account for distributional differences:
(1) Excluding captions with explicit gender infor-
mation and (2) Using nearest neighbors (NN) on
text embeddings to select training captions that
closely resemble prompts. Both approaches restrict
the search space of training texts to more closely
match prompts, which results in considerably lower
amplification measures. We then eliminate differ-
ences between training captions and prompts by

*We define bias as a deviation from the 50% balanced
(binary) gender ratio. This definition differs from measur-
ing performance gaps between groups (e.g., TPR difference),
which is common in classification setups.

3Since we study gender bias, prompts exclude explicit
gender information to avoid skewing generations.

utilizing the captions themselves to generate im-
ages (§6), and show that amplification is minimal.
By modifying either the captions or prompts used
to evaluate amplification, we provide insights into
how the subsets of data used to measure bias at
training and generation impact amplification.

To summarize, we study gender-occupation bias
amplification in Stable Diffusion and highlight no-
table discrepancies between texts used for training
and generation. We demonstrate that naively quan-
tifying bias provides an incomplete and misleading
depiction of model behavior. Our work empha-
sizes that comparisons of dataset and model biases
should factor in distributional differences and eval-
uate comparable distributions. We hope that our
work encourages future studies that analyze model
behavior through the lens of the data.

2 Experimental Setup

Before discussing how we define and evaluate am-
plification in the following section, we first outline
the dataset and models in our experiments, as well
as how we infer gender from images.

2.1 Dataset and Models

To study bias amplification, we use Stable Diffu-
sion (Rombach et al., 2022), a text-to-image model
that generates images based on a textual descrip-
tion (prompt). Stable Diffusion is trained on pairs
of captions and images taken from LAION-5B
(Schuhmann et al., 2022), a public dataset created
by scraping images and their captions from the web.
We focus on two versions, Stable Diffusion 1.4 and
1.5, which are both trained on text-image pairs from
the 2.3 billion English portion of LAION-5B.#

2.2 Gender Classification

We analyze bias in images with respect to perceived
gender.’ To classify binary gender at scale, we
utilize an automated approach. Therefore, it is im-
portant to verify that images include faces, and that
perceived gender is discernible from these images.
We first check whether an image contains a single
face using a face detector.® Then, we use CLIP
(Radford et al., 2021), a multimodal model with

“Stable Diffusion 1.5 is finetuned for a longer duration on
LAION-Aesthetics (a subset of higher quality images).

SClassifying binary gender based on appearance has limita-
tions and perpetuates stereotypes. While our analysis excludes
non-binary individuals, inferring non-binary gender from ap-
pearance alone risks misrepresenting a marginalized group.

6https ://developers.google.com/mediapipe/
solutions/vision/face_detector/python.


https://developers.google.com/mediapipe/solutions/vision/face_detector/python
https://developers.google.com/mediapipe/solutions/vision/face_detector/python
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Prompt

A photo of the face of a/an [OCCUPATION]
A portrait photo of a/an [OCCUPATION]
A photo of a/an [OCCUPATION] smiling
A photo of a/an [OCCUPATION] at work

AN~

Table 1: The four prompts we use to generate images.
“[OCCUPATION]” is a placeholder we replace with one
of the 62 occupations we use (e.g., engineer).

zero-shot image classification capabilities, to pre-
dict gender (note that Stable Diffusion also uses
CLIP’s text encoder to encode prompts). To ex-
clude cases where gender is difficult to infer (e.g.,
faces might be blurred or obscured), we only con-
sider images for which the predicted gender proba-
bility is greater than or equal to 0.9. We apply these
filtering steps to training and generated images.

2.3 Occupations

Similar to previous works, we analyze gender-
occupation biases for occupations that exhibit vary-
ing levels of bias (Rudinger et al., 2018; Zhao et al.,
2018; De-Arteaga et al., 2019). These include occu-
pations that skew male (e.g., CEO, engineer), fairly
balanced (e.g., attorney, journalist), and female
(e.g., dietitian, receptionist) based on the training
data. In total, we consider 62 job occupations,
which can be found in Table 4 in the Appendix.

3 Methodology

3.1 Measuring Model Bias

To measure biases exhibited by the model, we gen-
erate images using four prompts, shown in Table
1. These prompts deliberately do not contain gen-
der information since we want to capture biases
learned by the model. Both prompts #1 and #2
also direct the model to generate faces by includ-
ing “face”/“portrait”. We generate 500 images per
occupation and prompt using various random seeds
to initialize random noise. We define G p, as the
percentage of females in generated images for a
prompt P describing an occupation o.

3.2 Measuring Data Bias

Given that the training data consists of image-
caption pairs, we use captions to obtain relevant
training examples. In doing so, we assume that
the training captions relating to a given occupa-
tion mention the occupation. We use the search
capabilities of WIMBD (Elazar et al., 2023), a tool
that enables exploration of large text corpora, to

Example Captions

Portrait of smiling young female mechanic inspecting
a CV joint on a car in an auto repair shop

Muscular bearded athlete drinks water after good work-
out session in city park

Portrait of a salesperson standing in front of electrical
wire spool with arms crossed in hardware store

Table 2: Training captions often include additional de-
tails (e.g., descriptions, activity information) that reduce
ambiguity, and may contain explicit and implicit gender
information. In contrast, the prompts we use to generate
images (Table 1) lack context and specificity.

query LAION. We define T’s, as the percentage
of females in images for a training subset S corre-
sponding to occupation o (we provide more details
on example selection in Section 4).

3.3 Evaluating Bias Amplification

We compute bias amplification by comparing the
percentage female in generated (G p,) vs. training
(Ts,) images for a specific occupation o using the
approach outlined in Zhao et al. (2017):

Ap,s, = |Gp, — 50| — |Ts, — 50|

This formulation takes into account that ampli-
fication for a given occupation is specific to the
prompt P, used to generate images, as well as the
chosen subset of training examples .S,. For a set of
occupations O, the expected amplification is:

1
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Ap, g, is calculated for each occupation and
aggregated across occupations (O) to obtain
E[Ap, s, for each prompt. We then average
E[Ap, s,] across all four prompts. For occupations
that skew male in the training data, bias is ampli-
fied if it skews further male in generated images,
and vice versa for occupations that skew female.
Bias decreasing from training to generation is con-
sidered de-amplification. We exclude occupations
that exhibit different directions of bias at training
and generation from our analysis.

4 Baseline Approach

We examine the extent to which Stable Diffusion
amplifies gender-occupation biases from the data
by selecting training examples that contain a given
occupation in the caption (e.g., all captions that



President

Training Generation

(a) Training captions for President: 1) “Leana Wen, Planned
Parenthood president...” 2) “New Schaumburg Business
Association President...” 3) “BCCI president N Srinivasan...”
4) “Indiana Pacers president of basketball operations...”

Teacher
Training

(b) Training captions for Teacher: 1) “Brad Draper, percus-
sion teacher...” 2) “teacher/author in the 80s sits in yoga
lotus pose...” 3) “Jo Anne Young Art Teacher...” 4) “Classi-
cal Guitar Teacher...”

Figure 2: Differences between training and generated examples using our baseline approach. Here, we
handpick examples of discrepancies in how occupations are depicted in training vs. generated examples for

President (left) and Teacher (right) professions.

contain the word “president”). In practice, we ran-
domly sample a subset of 500 training examples
instead of using all examples. We find that Stable
Diffusion amplifies bias relative to the training data
by 12.57%’ on average across all occupations and
prompts (10.24% for Prompt #1, as shown in Fig-
ure 3). This behavior is concerning because instead
of reflecting the training data and its statistics, the
model compounds bias by further underrepresent-
ing groups. However, when qualitatively inspecting
examples, we observe discrepancies in how occu-
pations are presented in captions vs. prompts due
to varying levels of ambiguity.

For example, we notice the use of explicit gender
indicators to emphasize deviations from stereotypi-
cal gender-occupation associations, such as female
mechanics. While gender information is used fre-
quently in captions, we hypothesize that usage is
more common for underrepresented groups. If this
hypothesis holds, the gender distribution would
shift closer towards balanced in resulting training
images. As a result, the decision to focus on all
captions vs. captions without any gender indicators
might exaggerate amplification measures.

More generally, prompts commonly used to
study gender-occupation bias are intentionally un-
derspecified, or lack detail. Underspecification re-
sults in the model having to generate images from
textual inputs that are vague and open to interpreta-
tion (Hutchinson et al., 2022; Mehrabi et al., 2023).
For instance, the prompt “A photo of the face of
a/an [OCCUPATION]” does not contain any adjec-
tives or information about surroundings, activities,

"We report values for Stable Diffusion 1.4 throughout the
paper, but results for both model versions are presented in
Table 3. Overall, we observe similar trends for both models.
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Figure 3: Bias is amplified consistently using our

baseline approach. The x-axis corresponds to the %

female in training images, and the y-axis corresponds

to the % female in generated images (using Prompt

#1). Each point represents an occupation. Shading:
and

etc. In contrast, captions may contain context and
details that result in less ambiguous descriptions,
as shown in Table 2.8

Discrepancies in how captions and prompts are
written also impact how occupations are depicted in
training and generated images. These differences
are especially notable for occupations that have
multiple interpretations. For example, when query-
ing for training examples containing “president”,
the resulting captions may refer to various types of
presidents, including the president of a company
or organization, as shown in Figure 2a. However,
when generating images using the prompt “A photo
of the face of a president”, the model appears to
interpret president as a leader of a country, often
the United States (we also showcase similar dif-
ferences for the occupation teacher in Figure 2b).
Given that there are evident qualitative differences
in images, we should not expect the training and

8We showcase examples that include descriptions of indi-
viduals and activities they are engaged in.



generation gender distributions to match.

To compare bias at training and generation, we
need to consider gender ratios for similar cap-
tions and prompts. Therefore, we cannot conclude
whether differences in gender ratios are due solely
to the model amplifying bias, or other confound-
ing factors that contribute to amplification. Next,
we focus on decreasing the impact of distribution
shifts on bias amplification evaluation.

5 Reducing Discrepancies

In this section, we reduce training and generation
discrepancies by restricting the search space of
training examples. The prompts P, remain fixed,
while the subset of training examples S, varies.

5.1 Excluding Explicit Gender Indicators

A notable distinction between training and genera-
tion is the use of explicit gender indicators, which
is absent from prompts. On average, more than half
the captions (59.5%) contain explicit gender infor-
mation. Furthermore, gender usage in captions
varies depending on which gender is underrepre-
sented for a given occupation. For example, images
of female mechanics in the training data frequently
accompany captions that indicate the mechanic is
female. In comparison, this specification is less
common for male mechanics (only 30% of male
mechanic examples contain explicit gender indica-
tors, as opposed to 68% for female mechanics).
To validate these observations, we compute the
correlation between the percentage of females in
training images and the percentage of captions with
female indicators. We expect that female-skewing
occupations are less likely to contain explicit fe-
male gender indicators in captions, resulting in a
negative correlation. The Pearson’s correlation co-
efficient is indeed negative, with a coefficient value
of -0.458 and statistically significant (significance
level < 0.05). These results suggest that including
training examples with gender information during
evaluation may exaggerate amplification.

Addressing Gender Indicators To assess
whether amplification differs for the subset of
captions without indicators, we split the training
examples selected in Section 4 by detecting direct
gender mentions in the captions (more details in
Appendix A.5). We focus on the subset of captions,
S,, without explicit male or female indicators.

Reduced Bias Amplification We observe that
bias amplification is noticeably lower when focus-

President

Teacher

(a) Training captions for
President: 1) “The presi-
dent is pictured smiling.” 2)
“President Donald J. Trump -
Official Photo” 3) “Portrait
of President George H. W.
Bush” 4) “Official Portrait of
President Ronald Reagan”

(b) Training captions for
Teacher: 1) “Picture of a
teacher in the classroom” 2)
“Portrait of a smiling teacher
in a classroom.” 3) “Portrait
of teacher woman working”
4) “Teacher smiling in class-
room, portrait”

Figure 4: Training examples chosen with Nearest
Neighbors. Selected training captions and images are
more similar to prompts and generated images as com-
pared to the examples in Figure 2.

ing on the no-gender indicator subset of training
examples. Compared to the initial amplification
of 12.57% for keyword querying, the average am-
plification for captions without gender indicators
is 8.66% (| 31%), as shown in Table 3. This be-
havior aligns with the reasoning described above —
gender indicators are more likely to delineate the
presence of the underrepresented gender, which in
turn inflates amplification measures.

5.2 Nearest Neighbor Captions (NN)

Beyond explicit gender indicators, there are clear
differences in the information conveyed by prompts
vs. captions. The prompts we use are concise and
structured, but lack concrete details. On the other
hand, randomly sampled training captions are more
diverse and vary in their usage of the occupation
and contextual information, as highlighted in Table
2 and Figure 2. Furthermore, captions may contain
implicit gender information (e.g., descriptors, attire,
activities) that is absent from prompts.

These qualitative differences are also apparent
when comparing caption and prompt text embed-
dings. We use SBERT (Reimers and Gurevych,
2019) to compute text embeddings,” and calculate
the average pairwise cosine similarity between cap-
tion and prompt embeddings for each occupation.
We find that the average cosine similarity across
occupations is 0.385, indicating that captions and
prompts are highly dissimilar (relative to nearest
neighbors, which we will see next).

“We use the all-MiniLM-L6-v2 model for text embeddings.



SD 1.4 SD 1.5
Approach #1 #2 #3 #4  Average #1 #2 #3 #4  Average
Naive Approach 1024 1757 1077 11.68 1257 10.87 1636 11.15 991 12.07
No Gender Indicators 649 13,58 7.09 749 8.66 676 1241 6.82 5.87 7.97
Nearest Neighbors (NN) 359 12,62 558 527 6.76 401 11.14 521 3.65 6.01
NN + No Indicators 1.11 872 306 4.05 4.35 1.55 7.29 278 272 3.59

Table 3: Bias Amplification across occupations using Stable Diffuson (SD) 1.4 and 1.5, for each prompt and averaged
across prompts. Amplification lowers considerably when using nearest neighbors to select training captions and
excluding captions with gender indicators. We see further reductions when combining approaches.

Addressing Similarity Discrepancies To ac-
count for these gaps, we propose using nearest
neighbors (NN) to select captions that closely re-
semble prompts. We can find NN by considering
all captions that contain a given occupation, and
selecting examples based on the similarity between
caption and prompt text embeddings instead of sam-
pling randomly. As a result, the chosen captions
are closer in structure and wording to prompts. We
compute the cosine similarity between text embed-
dings to measure the similarity between captions
and prompts.'® For a given occupation, we con-
sider the top-k similar captions, where k£ = 500.

Applying NN, the average cosine similarity be-
tween caption and prompt embeddings increases
to 0.704 (1 83% from keyword querying), which
occurs by design since we directly target exam-
ples that resemble prompts. Note however, that
the increase in similarity is also reflected in image
embeddings. The pairwise similarity of CLIP im-
age embeddings increases with NN (1 13% from
keyword querying), indicating that chosen training
and generated images are slightly more similar.

There are noticeable qualitative improvements
as well. NN chooses captions that are closer in
structure and meaning to prompts (e.g., “Picture of
a teacher in the classroom’), which also impacts
corresponding training images. In contrast to the
naive approach, the training images corresponding
to NN captions for “president” primarily represent
world leaders (often US presidents), while captions
for “teacher” depict educators in classroom settings,
as shown in Figure 4.

Reduced Bias Amplification When selecting
training examples S, using NN, we see that bias
amplification reduces considerably across occupa-
tions and prompts, as shown in Table 3. The aver-
age amplification drops to 6.76% (| 46% relative

10Text embedding used to compute NN can reinforce biases.
By using SBERT, we avoid leaking biases from Stable Diffu-
sion’s text encoder (CLIP) when selecting training examples.

to keyword querying). While NN yields increased
similarity between training and generated exam-
ples, there are still unresolved sources of distribu-
tion shift that impact amplification measures.

5.3 Combining Approaches

We observe that amplification further reduces when
combining the no-gender indicator subset with NN,
as shown in the last rows in Table 3. The average
amplification decreases to 4.35%, which is notice-
ably lower compared to the values for each method
individually. Both methods work in tandem to re-
duce distributional differences in complementary
ways, perhaps by targeting both explicit and im-
plicit gender information. We also observe greater
reductions for specific prompts; for example, am-
plification is just 1.11% for Prompt #1.

We perform a one-sample t-test to test the null
hypothesis that the expected amplification is O for
each of the prompts; we fail to reject the null hy-
pothesis for prompts #1 and #3 and reject the null
hypothesis for prompts #2 and #4 (significance
level < 0.05). Our results indicate a portion of
amplification is unexplained for all prompts, espe-
cially prompts #2 and #4, and may involve more
subtle confounding factors. Although the proposed
methods do not account for all possible discrepan-
cies between training and generation, we observe
that the bias measures become closer as we select
subsets of training captions that resemble prompts.

6 Removing Distributional Differences: A
Lower Bound

The previous approaches reduce discrepancies be-
tween training and generation by evaluating am-
plification with captions that are more similar to
prompts. Instead, we can focus our efforts in the
other direction and modify the prompts we use
to align with captions more closely. One way to
achieve this is to eliminate differences altogether
by making prompts and captions identical. We then
ask: Does using identical texts to measure training



I nursess
nurse s $ g
o
) o

.
teacfgmstudent teachers,
2,

*student
bartendg[.:""

.
<
5 (’architect ./
-

.
,| bartendefe®,

p D
ol , € architect
o

Generation (% female)
Generation (% female)

02 04 06 08
Training (% female)

(b) No Gender Indicators

02 04 06 08
Training (% female)

(a) All Captions

Figure 5: Bias amplification when prompting with
training captions. We observe minimal amplification
when P, = S, (left). This behavior mostly holds when
focusing on captions without explicit gender indicators
(right). Shading: and

and generation bias lower amplification? We use
the original training subset (.5,) from Section 4 and
make the prompts (F,) match the captions verba-
tim. In this setup, we generate 10 images for every
prompt in P,, and then compute amplification us-
ing P, := S, for each occupation.

We hypothesize that enforcing prompts and cap-
tions to match yields similar bias measurements,
which reduces amplification. As shown in Figure
Sa, amplification is small when P, = S, and most
occupations reside along the diagonal (no amplifi-
cation). The average amplification drops to 0.68%,
indicating that the model mostly reflects training
bias.!! Furthermore, amplification remains consis-
tently low, even for highly imbalanced occupations.

For captions that contain either male or female
gender indicators, the model generates images that
match the gender of corresponding training im-
ages (with 98.41% accuracy), since this informa-
tion is directly provided in the prompt. Therefore,
we analyze results separately on the subset of cap-
tions without gender indicators. As shown in Fig-
ure 5b, bias amplification is larger for the no gen-
der indicator subset as compared to all captions.
That being said, the average amplification remains
low at 2.05% (| 84% relative to keyword query-
ing).!! We also observe similar results when using
paraphrased versions of the training captions as
prompts, as discussed in Appendix A.6.

Although practitioners are unlikely to utilize
prompts that exactly match training captions (nor
do we make this recommendation), this experiment
highlights the impact of distributional similarity
between captions and prompts when comparing bi-
ases. In addition, it provides a lower bound to the
bias amplification problem. In summary, we con-
clude that the model nearly mimics biases from the

"However, we reject the null hypothesis that the expected
amplification is O using a one-sample t-test.

data when we eliminate distributional differences.

7 Related Work

Relating pretraining data to model behavior
There is a growing body of work focused on study-
ing pretraining data properties and their relation
to model behavior. This type of large-scale data
and model analysis provides useful insights into
model learning and generalization capabilities (Car-
lini et al., 2023). Recent work shows that few-shot
capabilities of large language models are highly
correlated with pretraining term frequencies, and
that models struggle to learn long-tail knowledge
(Kandpal et al., 2023; Razeghi et al., 2022). Several
works have also explored the relationship between
pretraining data and model performance from a
causal perspective (Biderman et al., 2023; Elazar
et al., 2022; Longpre et al., 2023). For example,
Longpre et al. (2023) comprehensively investigate
how various data curation choices and pretraining
data slices affect downstream task performance.

Bias Amplification Our work is strongly in-
spired by the findings of Zhao et al. (2017), who
show that structured prediction models amplify bi-
ases present in the data. However, there are im-
portant differences to note. First, their task jointly
predicts multiple target labels (including gender),
as opposed to generating images. Additionally,
their work focuses on mitigating amplification, as
opposed to investigating underlying factors that af-
fect amplification. Hall et al. (2022) consider how
data, training, and model-related choices influence
amplification using a classification setup with syn-
thetic bias, but do not examine distribution shifts.

Friedrich et al. (2023) also compare biases ex-
hibited by LAION and Stable Diffusion, and show
that the model demonstrates amplification. Instead
of identifying relevant training examples using
captions, they use text-image similarity between
prompts and training images. Furthermore, their
work primarily focuses on bias mitigation, while
our work is centered around analyzing confounding
factors that impact amplification.

Bias in text-to-image models While it is well-
established that language and vision models are
prone to biases individually, recent work has shown
that text-to-image models display similar biases.
Several works analyze various biases in text-to-
image models, including geographical disparities
(Basu et al., 2023; Naik and Nushi, 2023) and in-
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(a) “A photo of the face of an
attorney” (42.8%)

ﬂ%&

(b) “A portrait photo of an
attorney” (9.4%)

(c) “A photo of an attorney
smiling” (43.1%)

(d) “A photo of an attorney at
work” (65.1%)

Figure 6: Generations for “attorney’ using different prompts. Specific wording choices in prompts lead to
notable differences in the percentage of generated images that are predicted as female.

tersectional biases (Fraser et al., 2023; Luccioni
et al., 2023). Bianchi et al. (2023) demonstrate
that stereotypes persist even after using counter-
stereotypes. However, these works solely evaluate
model biases, and do not examine the training data.

8 Discussion
Our results bring up a number of key issues.

Generalizability Our work demonstrates that us-
ing naive procedures to evaluate bias amplification
can lead to exaggerated amplification measures.
While our analysis does not account for all sources
of distribution shift that contribute to amplification,
it is meant to be illustrative. We encourage future
studies to build on our findings by examining dif-
ferent experimental setups (i.e., datasets, models,
and types of bias) to gain a more comprehensive
understanding of bias amplification and the impact
of confounding factors.

Variation Across Prompts As we highlight in
Figure 6, small changes to prompts can have a re-
sounding effect on conclusions about model bias.
For example, “A portrait photo of an attorney”
skews heavily male while “A photo of an attorney
at work” skews female in generated images. Fur-
thermore, reductions in amplification differ based
on the prompt (e.g., 89% reduction for Prompt #1
vs. 49% for Prompt 2), indicating that there are
prompt-specific sources of distribution shift.

Amplification Baseline Our interpretation of am-
plification is centered around models exacerbating
biases in the training data as opposed to real-world
statistics (Kirk et al., 2021; Bianchi et al., 2023).
Both approaches are useful to study but answer
fundamentally different questions. Our approach
offers insights into whether model behavior reflects
the training data, while real-world amplification
captures how well the model reflects reality.

Connection to Simpson’s Paradox The title of
our paper alludes to Simpson’s Paradox (Simpson,
1951), a phenomenon in which a trend or relation-
ship observed in subgroups within the data reverses
or disappears when subgroups are combined. We
draw direct parallels to our analysis and insights;
although we observe substantial amplification in
our initial setup, amplification reduces drastically
after selecting specific subsets of the training data
and decreasing the impact of confounding factors.

Recommendations Our findings underscore how
distribution shifts contribute to bias amplification,
which has important implications. Those involved
in data-focused efforts should consider how practi-
tioners specify prompts and interact with models
when curating training data. Alternatively, crowd-
sourcing or automatically rewriting existing train-
ing captions to reflect real-world model usage may
result in lower amplification. Additionally, we rec-
ommend that evaluations use multiple prompts and
remove prompt-specific confounding factors (e.g.,
by using NN to select relevant training examples).

9 Conclusion

In summary, we investigate whether Stable Diffu-
sion amplifies gender-occupation biases by com-
paring training data and model biases. We high-
light how naive evaluations of amplification fail to
consider distributional differences between train-
ing and generation, which leads to a misleading
understanding of model behavior. Although am-
plification is not eliminated entirely, we observe
that reducing discrepancies between captions and
prompts during evaluation results in substantially
lower measurements. We recommend that any anal-
ysis comparing training data and model biases, or
any dataset and model properties more generally,
account for various distribution shifts that skew
evaluations.



Limitations

Beyond the training data, another source of bias is
the text embeddings obtained from CLIP. By solely
comparing biases in the data vs. those exhibited by
Stable Diffusion, our analysis overlooks biases that
arise from encoding prompts. As a result, we can-
not disentangle how much this component impacts
overall amplification. Note that the effect of such
an external embedding cannot be easily accounted
for, since CLIP’s training data is not public. More
work is needed to understand the impact of using
external, frozen models as a model component.

Additionally, we automate gender classification
using CLIP because previous works have shown
that CLIP gender predictions align with human
annotations and CLIP gender classification perfor-
mance on the FairFace dataset'? is strong (> 95%)
across various racial categories. Nevertheless, we
recognize the limitations of using a model to clas-
sify gender in images, since CLIP inherits biases
from its training data.

Ethics Statement

Scope of Work Our work centers around criti-
cally examining bias amplification evaluation. The
approaches we propose to reduce distribution shifts
observed during evaluation do not solve underlying
gaps between the data used to train models and how
users interact with models. Rather, they serve to
deepen our understanding of why models amplify
biases present in the training data. Ideally, our find-
ings will motivate future work on 1) thorough and
nuanced evaluations of bias amplification and 2)
fundamentally addressing training and generation
discrepancies from a data perspective.

Bias Definition Our work focuses on a narrow
slice of social bias analysis by studying gender-
occupation stereotypes. Since models exhibit vari-
ous types of discriminatory bias (e.g., racial, age,
geographical, socioeconomic, disability, etc.), as
well as intersectional biases, it is equally impor-
tant to perform evaluations for these definitions of
bias. Furthermore, we only consider binary gen-
der, which has clear drawbacks. Our analysis ig-
nores how text-to-image models perpetuate biases
for non-binary identities and relies on information
such as appearance and facial features to infer gen-
der in training and generated images, which can
propagate gender stereotypes.

Zhttps://github.com/joojs/fairface

Geographical Diversity The captions and
prompts used to study bias are solely written in
English. We hope future work will shed light on
multilingual bias amplification in text-to-image
models. It is also worth noting that the gender-
guesser library (infers gender from names) likely
performs worse on non-Western names. The
documentation mentions that the library supports
over 40,000 names and covers a ‘“vast majority
of first names in all European countries and in
some overseas countries (e.g., China, India, Japan,
USA)”. Therefore, the name coverage (or lack
thereof) impacts our ability to identify captions
with gender information.
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A Appendix

A.1 Occupations

A full list of occupations is shown in Table 4. We
exclude occupations that exhibit different direc-
tions of bias at training and generation from our
amplification results, since this behavior does not
adhere to our definition of amplification. There
are 5 occupations (assistant, author, dentist, painter,
supervisor) that exhibit switching behavior consis-
tently for all prompts, using both SD 1.4 and 1.5.
More research is needed to understand and explain
this behavior.

Tables 6 (SD 1.4) and 7 (SD 1.5) show bias val-
ues for each occupation at training and generation.
For some occupations (e.g., attorney, cook, sur-
geon), the gender distributions in generated images
can vary considerably depending on the prompt.

A.2 LAION

LAION is a freely available dataset of image-
caption pairs released under CC-BY 4.0. Instead of
saving scraped images, LAION stores URLSs that
correspond to the images, which we then use to
download images. We only download a subset of
examples that pertain to the occupations in Table 4.

While LAION is an open dataset, there are no-
table issues to point out. For example, the dataset
includes copyrighted and NSFW content. We ac-
knowledge these issues and emphasize that our use
of LAION is for research purposes to 1) analyze
gender-occupation biases in the data and 2) evalu-
ate bias amplification.

A.3 Generating Images

Stable Diffusion 1.4 and 1.5 contain roughly 1 bil-
lion parameters. Using a single TITAN RTX GPU,
it takes 3.5 seconds to generate one image. To
generate 500 images for each occupation (x62),
prompt (x4), and model version (x2), it takes ap-
proximately 240 hours. We use the default genera-
tion parameters, which include a guidance scale of
7.5 and 50 inference steps.

A.4 Image Gender Classification

While CLIP is susceptible to biases (Hall et al.,
2023), its gender predictions have been shown to
align with human-annotated gender labels (Bansal
et al., 2022; Cho et al., 2022). In addition, we per-
form human evaluation with 7 participants on 200
randomly selected training and generated images.
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We ask participants to provide binary gender anno-
tations (or indicate that they are unsure), and find
that Krippendorff’s coefficient, which measures
inter-annotator agreement, is high (« 0.948).
Additionally, 98% of CLIP predictions match the
majority vote annotations.

A.5 Explicit Gender Indicators

To identify captions with explicit gender infor-
mation, we consider 1) gender words (male,
female, man, woman, gent, gentleman, lady,
boy, girl), 2) binary gender pronouns (he, him,
his, himself, she, her, hers, herself), and
3) names. We perform named entity recog-
nition using the en_core_web_lg model from
spaCy to identify name mentions, and then use
the gender-guesser library https://pypi.org/
project/gender-guesser/ to infer gender. We
include example training captions with explicit gen-
der mentions in Table 5.

A.6 Paraphrasing Captions

In Section 6, we align the train and test distribu-
tions by directly prompting the model with training
captions. We show that amplification is minimal
when eliminating distributional differences. As a
follow-up, we study what happens to amplification
if we instead use prompts that are similar but not
identical to training captions. To construct similar
examples, we paraphrase the original captions
using gpt-3.5-turbo. We set the temperature
to 0 and use the following prompt to generate
paraphrases:

Please paraphrase the phrase/sentence below.
You can change words without changing the
original meaning or intent. You must include
the word [OCCUPATION].

Phrase/Sentence: [CAPTION]

Using the training subset S, from Section 6 and
the paraphrased captions as prompts P,, we find
that amplification remains low — amplification
is 0.69% for all captions (compared to 0.68% in
Section 6) and 2.49% for captions without explicit
gender indicators (compared to 2.05% in Section
6). These findings indicate that our original anal-
ysis from Section 6 is robust to specific wording
and phrasing choices in training captions. In other
words, these results suggest the model can gener-
alize, and does not rely solely on memorization to
achieve low amplification.


https://pypi.org/project/gender-guesser/
https://pypi.org/project/gender-guesser/
https://pypi.org/project/gender-guesser/

Occupations

dentist

accountant journalist poet singer
architect dietitian lawyer politician student
assistant doctor librarian president supervisor
athlete engineer manager prime minister surgeon
attorney entrepreneur mechanic professor teacher
author fashion designer musician programmer technician
baker filmmaker nurse psychologist therapist
bartender firefighter nutritionist receptionist tutor

ceo graphic designer painter reporter veterinarian
chef hairdresser pharmacist researcher writer
comedian housekeeper photographer salesperson

cook intern physician scientist

dancer janitor pilot senator

Table 4: List of 62 occupations used to study gender-occupation biases.

Amplification=6.48%

Amplification=3.59%

Amplification=1.11%

1.0

0.8

0.6

Generation (% female)

ee o 04 ° oo e oo .
. . : o o0 °® . L
L] & L]
se o ° o
e 024 )
& % ° ? 0 - :,‘ LA
- ®
eyt °, 0ol 4% e °® u}.. o
0.0 0.2 0.4 0.6 0.8 10 0.‘0 O.‘Z 0:4 0.‘5 O.‘S 1.'0 0.0 0.2 0.4 0.6 0.8 10
Training (% female) Training (% female) Training (% female)
(a) Captions without Gender Indicators (b) Nearest Neighbors (c) Combined Approach

Figure 7: Bias amplification for various approaches to address discrepancies between training and generation.
The proposed approaches yield lower bias amplification, especially the combined method (c). Results are shown for

Prompt #1. Regions are shaded based on

Amplification=8.66%

and

Amplification=6.76%

Amplification=4.35%

- oe
S [ ] ) et e
LI [ [ ] °
L] L} L L] ]
o % o? . > ® et e
(] . L]
L] L] L]
L] L]
[N ] ° L 3 Y [ ] L ] °
° L ° * . . G
L P o ® o ¢e o o>t -
° L] ° \d L] . LN ]
e % ‘e ..' . ‘e e, 3 . * e
4 AR ve %8 R
O.‘O 0.‘2 0.4 0.6 OIB 1.‘0 0.‘0 0.‘2 0.4 0.6 0.‘B l.‘O O.‘O O.‘Z 0.4 0.6 O.‘B l.‘l)
Training (% female) Training (% female) Training (% female)
(a) Captions without Gender Indicators (b) Nearest Neighbors (c) Combined Approach

Figure 9: Bias amplification for various approaches to address discrepancies between training and generation.
The proposed approaches yield lower bias amplification, especially the combined method (c). Results are averaged

across all prompts. Regions are shaded based on

and

13




Caption

Gender Indicator

Portrait of young woman programmer working at a computer in the data center
filled with display screens

woman

Tired young indian programmer almost sleeping at his desk after working on | his
difficult project all day long

Female accountant very busy in office female
Accountant managing manual bill monitoring tasks in his home office his

Iowa Republican Senator Chuck Grassley first name
U.S. Senator Kirsten Gillibrand (D-NY) pauses during a news conference on | first name
Capitol Hill in Washington

Portrait of young male mechanic in bicycle store, Beijing male
African american woman mechanic repairing a motorcycle in a workshop woman
Attractive woman photographer taking images with dslr camera outdoors in park. | woman

Photographer John G. Zimmerman with his pipe and Hucher camera, 1972.

first name/his

14

Table 5: Example training images and captions with explicit gender indicators for select occupations (in bold).




Occupation \ Training \ Prompt #1  Prompt#2  Prompt#3  Prompt #4

accountant 29.8 29.5 34 43.8 35.7
architect 314 42 22 3.0 0.0
assistant 44.6 67.1 56.3 71.9 75.6
athlete 44.8 80.0 51.9 69.3 71.3
attorney 29.2 42.8 9.4 43.1 65.1
author 42.8 83.6 53.0 81.5 61.0
baker 414 81.1 31.2 58.8 59.3
bartender 36.8 16.8 2.6 12.9 229
ceo 15.0 2.6 1.8 4.8 11.9
chef 28.0 7.0 1.2 14 5.8
comedian 21.8 24 0.0 3.6 1.0
cook 35.0 34.7 8.6 494 69.3
dancer 81.0 88.7 98.8 99.0 100.0
dentist 58.6 41.4 4.4 29.2 41.8
dietitian 95.2 100.0 100.0 100.0 99.8
doctor 40.8 33.7 3.8 14.6 57.6
engineer 20.6 2.6 0.2 1.2 0.0
entrepreneur 43.6 42.8 1.8 12.8 34.6
fashion_designer 76.0 93.4 80.8 89.8 97.2
filmmaker 29.2 12.6 32 8.3 14.9
firefighter 14.6 1.6 1.0 15.9 32
graphic_designer 52.8 11.8 14.4 32.7 41.6
hairdresser 79.2 97.0 95.6 94.6 97.6
housekeeper 914 99.0 99.8 100.0 100.0
intern 57.6 65.8 315 77.2 53.4
janitor 204 1.6 3.0 14.6 5.7
journalist 384 49.9 59.9 68.8 64.0
lawyer 27.6 26.5 8.0 39.0 47.7
librarian 74.4 88.1 83.6 93.6 94.8
manager 13.0 20.6 7.8 29.7 42.8
mechanic 17.6 1.6 0.0 0.2 353
musician 22.6 54 4.2 7.2 32
nurse 88.8 100.0 100.0 100.0 100.0
nutritionist 83.6 99.8 92.8 96.6 97.5
painter 52.6 36.4 12.2 17.6 3.6
pharmacist 68.0 84.2 26.9 54.9 91.7
photographer 55.0 52.0 27.5 46.5 13.2
physician 394 35.5 2.0 37.5 59.3
pilot 304 34.7 12.2 66.3 159
poet 30.8 15.2 2.0 19.5 32.8
politician 21.6 14.5 4.2 15.9 9.6
president 19.6 1.4 0.2 8.0 0.8
prime_minister 24.0 15.7 10.6 13.2 214
professor 28.2 7.8 2.8 9.2 53
programmer 23.0 0.2 0.0 0.2 0.0
psychologist 58.6 44.3 21.6 57.2 52.9
receptionist 91.4 99.8 100.0 99.8 99.8
reporter 44.4 54.8 55.2 55.1 67.8
researcher 44.6 80.2 41.8 67.6 50.9
salesperson 39.8 43.0 5.2 33.1 33.7
scientist 334 25.7 24.0 29.3 232
senator 35.0 13.4 2.0 8.2 54
singer 57.6 732 60.3 69.2 60.1
student 63.0 55.3 48.5 62.1 43.3
supervisor 65.2 18.3 4.8 16.6 14.9
surgeon 30.2 82.5 15.6 67.6 82.5
teacher 63.0 75.8 55.7 94.0 88.0
technician 31.2 0.6 0.0 0.6 0.0
therapist 74.8 82.6 63.3 79.2 87.5
tutor 59.2 48.1 23.1 32.7 43.5
veterinarian 552 66.7 44.7 64.1 89.9
writer 30.2 73.3 30.1 76.0 63.8

Table 6: The percentage of females across occupations in training images (using our initial approach from Section
4) and generated images using SD 1.4. We display generation results for each prompt.

15



Occupation \ Training \ Prompt #1  Prompt#2  Prompt#3  Prompt #4

accountant 29.8 34.9 54 42.1 45.2
architect 314 10.0 22 22 34
assistant 44.6 69.2 60.8 58.6 77.8
athlete 44.8 76.6 46.0 50.0 74.3
attorney 29.2 50.8 11.7 44.3 68.3
author 42.8 88.2 574 754 69.0
baker 414 82.3 339 533 66.6
bartender 36.8 10.0 22 4.8 12.2
ceo 15.0 14 2.0 54 18.5
chef 28.0 12.0 0.8 14 7.0
comedian 21.8 1.6 0.0 1.4 0.6
cook 35.0 384 16.4 43.5 75.1
dancer 81.0 83.8 97.4 97.6 100.0
dentist 58.6 41.9 54 22.7 204
dietitian 95.2 100.0 100.0 100.0 99.8
doctor 40.8 38.2 8.8 12.6 534
engineer 20.6 10.6 0.6 1.6 0.0
entrepreneur 43.6 59.7 4.6 16.9 41.6
fashion_designer 76.0 97.4 90.3 92.2 98.6
filmmaker 29.2 18.4 52 8.8 7.8
firefighter 14.6 1.4 0.2 12.5 4.5
graphic_designer 52.8 22.6 15.3 29.5 63.3
hairdresser 79.2 99.6 98.0 95.4 97.3
housekeeper 914 99.6 100.0 100.0 100.0
intern 57.6 72.6 37.1 68.8 60.4
janitor 204 3.6 32 8.4 6.2
journalist 384 57.2 60.2 59.7 60.7
lawyer 27.6 34.1 8.8 36.8 48.2
librarian 74.4 934 85.8 87.8 94.6
manager 13.0 24.0 14.2 28.7 413
mechanic 17.6 6.4 0.2 1.0 20.8
musician 22.6 54 1.4 2.8 2.8
nurse 88.8 100.0 100.0 100.0 100.0
nutritionist 83.6 99.8 97.8 97.2 98.0
painter 52.6 43.7 20.0 10.6 2.7
pharmacist 68.0 87.3 26.1 49.6 83.8
photographer 55.0 58.1 325 44.8 26.0
physician 394 46.4 3.2 36.5 62.0
pilot 304 20.9 114 353 7.5
poet 30.8 12.4 2.6 11.6 42.1
politician 21.6 249 10.2 16.7 15.7
president 19.6 4.6 0.4 12.9 22
prime_minister 24.0 25.5 23.0 20.0 429
professor 28.2 9.2 3.0 5.6 8.6
programmer 23.0 0.8 0.0 1.0 0.0
psychologist 58.6 51.0 224 40.8 52.2
receptionist 91.4 99.6 100.0 99.2 99.8
reporter 44.4 53.7 52.5 44.0 57.6
researcher 44.6 71.3 47.8 52.8 55.0
salesperson 39.8 56.8 7.0 37.4 30.5
scientist 334 23.0 22.1 15.9 453
senator 35.0 22.7 8.0 12.0 12.5
singer 57.6 74.0 54.1 66.6 61.2
student 63.0 44.6 323 51.8 40.5
supervisor 65.2 20.9 5.6 18.2 15.0
surgeon 30.2 82.0 20.4 50.8 81.6
teacher 63.0 78.7 58.2 87.4 84.6
technician 31.2 0.4 0.2 1.6 0.0
therapist 74.8 88.5 80.8 82.2 88.7
tutor 59.2 48.8 24.1 244 50.4
veterinarian 552 65.6 48.9 48.7 89.5
writer 30.2 79.2 34.7 69.1 76.6

Table 7: The percentage of females across occupations in training images (using our initial approach from Section
4) and generated images using SD 1.5. We display generation results for each prompt.
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