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Abstract

Bias amplification is a phenomenon in which001
models exacerbate biases or stereotypes present002
in the training data. In this paper, we study bias003
amplification in the text-to-image domain using004
Stable Diffusion by comparing gender ratios in005
training vs. generated images. We find that the006
model appears to amplify gender-occupation007
biases found in the training data (LAION) con-008
siderably. However, we discover that amplifica-009
tion can be largely attributed to discrepancies010
between training captions and model prompts.011
For example, an inherent difference is that cap-012
tions from the training data often contain ex-013
plicit gender information while our prompts014
do not, which leads to a distribution shift and015
consequently inflates bias measures. Once we016
account for distributional differences between017
texts used for training and generation when018
evaluating amplification, we observe that am-019
plification decreases drastically. Our findings020
illustrate the challenges of comparing biases in021
models and their training data, and highlight022
confounding factors that impact analyses.023

1 Introduction024

Breakthroughs in machine learning have been fu-025

eled in large part by training models on massive026

unlabeled datasets (Gao et al., 2020; Raffel et al.,027

2020; Schuhmann et al., 2022). However, several028

studies have shown that these datasets exhibit bi-029

ases and undesirable stereotypes (Birhane et al.,030

2021; Dodge et al., 2021; Garcia et al., 2023),031

which in turn impact model behavior. Given that032

models are trained to represent the data distribution,033

it is not surprising that models perpetuate biases034

found in the training data (De-Arteaga et al., 2019;035

Sap et al., 2019; Adam et al., 2022, among others).036

To introduce bias amplification, let us take a037

model that generates images of engineers that are038

female 10% of the time. When examining the train-039

ing data, we may assume that the model reflects as-040

sociations in the data and expect to observe roughly041

Figure 1: Comparing generated and training images
for engineer, the model clearly seems to amplify bias
by generating 10% female images, as compared to 25%
female in training images. However, when looking at the
subset of training examples without gender indicators
in captions (10% female), similar to our prompts, the
model does not amplify bias.

10% female as well.1 However, it would be prob- 042

lematic for the model to instead exacerbate existing 043

imbalances by generating engineer images that are 044

only 10% female, while the training engineer im- 045

ages are 25% female, as shown in Figure 1. This 046

phenomenon, known as bias amplification (Zhao 047

et al., 2017), is concerning because it further rein- 048

forces stereotypes and widens disparities. While 049

previous works suggest that models amplify biases 050

(Zhao et al., 2017; Wang et al., 2018; Hall et al., 051

2022; Hirota et al., 2022; Friedrich et al., 2023), 052

there remain unanswered questions about the para- 053

doxical nature of bias amplification: Given that 054

models learn to fit the training data, why do mod- 055

els amplify biases found in the data as opposed to 056

strictly representing them? 057

1Note that even such bias preservation may be undesirable.
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In this paper, we investigate how model biases058

compare with biases found in the training data.059

We focus on the text-to-image domain and ana-060

lyze gender-occupation biases in Stable Diffusion,061

(Rombach et al., 2022) as well as its publicly avail-062

able training dataset LAION (Schuhmann et al.,063

2022), which consists of image-caption pairs in En-064

glish (§2). To select training examples, we identify065

captions that mention occupations (e.g., engineer)066

and obtain corresponding images. We follow pre-067

vious work (Bianchi et al., 2023; Luccioni et al.,068

2023) and use prompts that contain a given occupa-069

tion (e.g., “A photo of the face of an engineer”) to070

generate images. For each occupation, we then clas-071

sify binary gender to measure bias in corresponding072

training and generated images, and compare the re-073

spective quantities to determine whether the model074

amplifies biases2 from its training data (§3).075

At first glance, it appears that the model am-076

plifies bias considerably (on average, generation077

bias is 12.57% higher than training bias) using ex-078

isting approaches (§4). When comparing train-079

ing captions and prompts, however, we discover080

clear distributional differences that impact ampli-081

fication measurements. For example, one inher-082

ent distinction is that captions often contain ex-083

plicit gender mentions while prompts used to study084

gender-occupation biases do not.3 More generally,085

captions often contain additional context and de-086

tails that are absent from the prompts we use.087

Based on our observations, it is clear the cur-088

rent approach of directly using all training captions089

that contain a given occupation provides a naive090

characterization of bias amplification. Instead, we091

propose evaluating amplification on subsets of the092

training data that reduce distribution shifts between093

training and generation (§5). We introduce two ap-094

proaches to account for distributional differences:095

(1) Excluding captions with explicit gender infor-096

mation and (2) Using nearest neighbors (NN) on097

text embeddings to select training captions that098

closely resemble prompts. Both approaches restrict099

the search space of training texts to more closely100

match prompts, which results in considerably lower101

amplification measures. We then eliminate differ-102

ences between training captions and prompts by103

2We define bias as a deviation from the 50% balanced
(binary) gender ratio. This definition differs from measur-
ing performance gaps between groups (e.g., TPR difference),
which is common in classification setups.

3Since we study gender bias, prompts exclude explicit
gender information to avoid skewing generations.

utilizing the captions themselves to generate im- 104

ages (§6), and show that amplification is minimal. 105

By modifying either the captions or prompts used 106

to evaluate amplification, we provide insights into 107

how the subsets of data used to measure bias at 108

training and generation impact amplification. 109

To summarize, we study gender-occupation bias 110

amplification in Stable Diffusion and highlight no- 111

table discrepancies between texts used for training 112

and generation. We demonstrate that naively quan- 113

tifying bias provides an incomplete and misleading 114

depiction of model behavior. Our work empha- 115

sizes that comparisons of dataset and model biases 116

should factor in distributional differences and eval- 117

uate comparable distributions. We hope that our 118

work encourages future studies that analyze model 119

behavior through the lens of the data. 120

2 Experimental Setup 121

Before discussing how we define and evaluate am- 122

plification in the following section, we first outline 123

the dataset and models in our experiments, as well 124

as how we infer gender from images. 125

2.1 Dataset and Models 126

To study bias amplification, we use Stable Diffu- 127

sion (Rombach et al., 2022), a text-to-image model 128

that generates images based on a textual descrip- 129

tion (prompt). Stable Diffusion is trained on pairs 130

of captions and images taken from LAION-5B 131

(Schuhmann et al., 2022), a public dataset created 132

by scraping images and their captions from the web. 133

We focus on two versions, Stable Diffusion 1.4 and 134

1.5, which are both trained on text-image pairs from 135

the 2.3 billion English portion of LAION-5B.4 136

2.2 Gender Classification 137

We analyze bias in images with respect to perceived 138

gender.5 To classify binary gender at scale, we 139

utilize an automated approach. Therefore, it is im- 140

portant to verify that images include faces, and that 141

perceived gender is discernible from these images. 142

We first check whether an image contains a single 143

face using a face detector.6 Then, we use CLIP 144

(Radford et al., 2021), a multimodal model with 145

4Stable Diffusion 1.5 is finetuned for a longer duration on
LAION-Aesthetics (a subset of higher quality images).

5Classifying binary gender based on appearance has limita-
tions and perpetuates stereotypes. While our analysis excludes
non-binary individuals, inferring non-binary gender from ap-
pearance alone risks misrepresenting a marginalized group.

6https://developers.google.com/mediapipe/
solutions/vision/face_detector/python.
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# Prompt

1 A photo of the face of a/an [OCCUPATION]
2 A portrait photo of a/an [OCCUPATION]
3 A photo of a/an [OCCUPATION] smiling
4 A photo of a/an [OCCUPATION] at work

Table 1: The four prompts we use to generate images.
“[OCCUPATION]” is a placeholder we replace with one
of the 62 occupations we use (e.g., engineer).

zero-shot image classification capabilities, to pre-146

dict gender (note that Stable Diffusion also uses147

CLIP’s text encoder to encode prompts). To ex-148

clude cases where gender is difficult to infer (e.g.,149

faces might be blurred or obscured), we only con-150

sider images for which the predicted gender proba-151

bility is greater than or equal to 0.9. We apply these152

filtering steps to training and generated images.153

2.3 Occupations154

Similar to previous works, we analyze gender-155

occupation biases for occupations that exhibit vary-156

ing levels of bias (Rudinger et al., 2018; Zhao et al.,157

2018; De-Arteaga et al., 2019). These include occu-158

pations that skew male (e.g., CEO, engineer), fairly159

balanced (e.g., attorney, journalist), and female160

(e.g., dietitian, receptionist) based on the training161

data. In total, we consider 62 job occupations,162

which can be found in Table 4 in the Appendix.163

3 Methodology164

3.1 Measuring Model Bias165

To measure biases exhibited by the model, we gen-166

erate images using four prompts, shown in Table167

1. These prompts deliberately do not contain gen-168

der information since we want to capture biases169

learned by the model. Both prompts #1 and #2170

also direct the model to generate faces by includ-171

ing “face”/“portrait”. We generate 500 images per172

occupation and prompt using various random seeds173

to initialize random noise. We define GPo as the174

percentage of females in generated images for a175

prompt P describing an occupation o.176

3.2 Measuring Data Bias177

Given that the training data consists of image-178

caption pairs, we use captions to obtain relevant179

training examples. In doing so, we assume that180

the training captions relating to a given occupa-181

tion mention the occupation. We use the search182

capabilities of WIMBD (Elazar et al., 2023), a tool183

that enables exploration of large text corpora, to184

Example Captions

Portrait of smiling young female mechanic inspecting
a CV joint on a car in an auto repair shop

Muscular bearded athlete drinks water after good work-
out session in city park

Portrait of a salesperson standing in front of electrical
wire spool with arms crossed in hardware store

Table 2: Training captions often include additional de-
tails (e.g., descriptions, activity information) that reduce
ambiguity, and may contain explicit and implicit gender
information. In contrast, the prompts we use to generate
images (Table 1) lack context and specificity.

query LAION. We define TSo as the percentage 185

of females in images for a training subset S corre- 186

sponding to occupation o (we provide more details 187

on example selection in Section 4). 188

3.3 Evaluating Bias Amplification 189

We compute bias amplification by comparing the
percentage female in generated (GPo) vs. training
(TSo) images for a specific occupation o using the
approach outlined in Zhao et al. (2017):

APo,So = |GPo − 50| − |TSo − 50|

This formulation takes into account that ampli- 190

fication for a given occupation is specific to the 191

prompt Po used to generate images, as well as the 192

chosen subset of training examples So. For a set of 193

occupations O, the expected amplification is: 194

E
o∈O

[APo,So ] =
1

|O|
∑
o∈O

APo,So

APo,So is calculated for each occupation and 195

aggregated across occupations (O) to obtain 196

E[APo,So ] for each prompt. We then average 197

E[APo,So ] across all four prompts. For occupations 198

that skew male in the training data, bias is ampli- 199

fied if it skews further male in generated images, 200

and vice versa for occupations that skew female. 201

Bias decreasing from training to generation is con- 202

sidered de-amplification. We exclude occupations 203

that exhibit different directions of bias at training 204

and generation from our analysis. 205

4 Baseline Approach 206

We examine the extent to which Stable Diffusion 207

amplifies gender-occupation biases from the data 208

by selecting training examples that contain a given 209

occupation in the caption (e.g., all captions that 210
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(a) Training captions for President: 1) “Leana Wen, Planned
Parenthood president...” 2) “New Schaumburg Business
Association President...” 3) “BCCI president N Srinivasan...”
4) “Indiana Pacers president of basketball operations...”

(b) Training captions for Teacher: 1) “Brad Draper, percus-
sion teacher...” 2) “teacher/author in the 80s sits in yoga
lotus pose...” 3) “Jo Anne Young Art Teacher...” 4) “Classi-
cal Guitar Teacher...”

Figure 2: Differences between training and generated examples using our baseline approach. Here, we
handpick examples of discrepancies in how occupations are depicted in training vs. generated examples for
President (left) and Teacher (right) professions.

contain the word “president”). In practice, we ran-211

domly sample a subset of 500 training examples212

instead of using all examples. We find that Stable213

Diffusion amplifies bias relative to the training data214

by 12.57%7 on average across all occupations and215

prompts (10.24% for Prompt #1, as shown in Fig-216

ure 3). This behavior is concerning because instead217

of reflecting the training data and its statistics, the218

model compounds bias by further underrepresent-219

ing groups. However, when qualitatively inspecting220

examples, we observe discrepancies in how occu-221

pations are presented in captions vs. prompts due222

to varying levels of ambiguity.223

For example, we notice the use of explicit gender224

indicators to emphasize deviations from stereotypi-225

cal gender-occupation associations, such as female226

mechanics. While gender information is used fre-227

quently in captions, we hypothesize that usage is228

more common for underrepresented groups. If this229

hypothesis holds, the gender distribution would230

shift closer towards balanced in resulting training231

images. As a result, the decision to focus on all232

captions vs. captions without any gender indicators233

might exaggerate amplification measures.234

More generally, prompts commonly used to235

study gender-occupation bias are intentionally un-236

derspecified, or lack detail. Underspecification re-237

sults in the model having to generate images from238

textual inputs that are vague and open to interpreta-239

tion (Hutchinson et al., 2022; Mehrabi et al., 2023).240

For instance, the prompt “A photo of the face of241

a/an [OCCUPATION]” does not contain any adjec-242

tives or information about surroundings, activities,243

7We report values for Stable Diffusion 1.4 throughout the
paper, but results for both model versions are presented in
Table 3. Overall, we observe similar trends for both models.

Figure 3: Bias is amplified consistently using our
baseline approach. The x-axis corresponds to the %
female in training images, and the y-axis corresponds
to the % female in generated images (using Prompt
#1). Each point represents an occupation. Shading:
Amplification and De-Amplification.

etc. In contrast, captions may contain context and 244

details that result in less ambiguous descriptions, 245

as shown in Table 2.8 246

Discrepancies in how captions and prompts are 247

written also impact how occupations are depicted in 248

training and generated images. These differences 249

are especially notable for occupations that have 250

multiple interpretations. For example, when query- 251

ing for training examples containing “president”, 252

the resulting captions may refer to various types of 253

presidents, including the president of a company 254

or organization, as shown in Figure 2a. However, 255

when generating images using the prompt “A photo 256

of the face of a president”, the model appears to 257

interpret president as a leader of a country, often 258

the United States (we also showcase similar dif- 259

ferences for the occupation teacher in Figure 2b). 260

Given that there are evident qualitative differences 261

in images, we should not expect the training and 262

8We showcase examples that include descriptions of indi-
viduals and activities they are engaged in.
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generation gender distributions to match.263

To compare bias at training and generation, we264

need to consider gender ratios for similar cap-265

tions and prompts. Therefore, we cannot conclude266

whether differences in gender ratios are due solely267

to the model amplifying bias, or other confound-268

ing factors that contribute to amplification. Next,269

we focus on decreasing the impact of distribution270

shifts on bias amplification evaluation.271

5 Reducing Discrepancies272

In this section, we reduce training and generation273

discrepancies by restricting the search space of274

training examples. The prompts Po remain fixed,275

while the subset of training examples So varies.276

5.1 Excluding Explicit Gender Indicators277

A notable distinction between training and genera-278

tion is the use of explicit gender indicators, which279

is absent from prompts. On average, more than half280

the captions (59.5%) contain explicit gender infor-281

mation. Furthermore, gender usage in captions282

varies depending on which gender is underrepre-283

sented for a given occupation. For example, images284

of female mechanics in the training data frequently285

accompany captions that indicate the mechanic is286

female. In comparison, this specification is less287

common for male mechanics (only 30% of male288

mechanic examples contain explicit gender indica-289

tors, as opposed to 68% for female mechanics).290

To validate these observations, we compute the291

correlation between the percentage of females in292

training images and the percentage of captions with293

female indicators. We expect that female-skewing294

occupations are less likely to contain explicit fe-295

male gender indicators in captions, resulting in a296

negative correlation. The Pearson’s correlation co-297

efficient is indeed negative, with a coefficient value298

of -0.458 and statistically significant (significance299

level < 0.05). These results suggest that including300

training examples with gender information during301

evaluation may exaggerate amplification.302

Addressing Gender Indicators To assess303

whether amplification differs for the subset of304

captions without indicators, we split the training305

examples selected in Section 4 by detecting direct306

gender mentions in the captions (more details in307

Appendix A.5). We focus on the subset of captions,308

So, without explicit male or female indicators.309

Reduced Bias Amplification We observe that310

bias amplification is noticeably lower when focus-311

(a) Training captions for
President: 1) “The presi-
dent is pictured smiling.” 2)
“President Donald J. Trump -
Official Photo” 3) “Portrait
of President George H. W.
Bush” 4) “Official Portrait of
President Ronald Reagan”

(b) Training captions for
Teacher: 1) “Picture of a
teacher in the classroom” 2)
“Portrait of a smiling teacher
in a classroom.” 3) “Portrait
of teacher woman working”
4) “Teacher smiling in class-
room, portrait”

Figure 4: Training examples chosen with Nearest
Neighbors. Selected training captions and images are
more similar to prompts and generated images as com-
pared to the examples in Figure 2.

ing on the no-gender indicator subset of training 312

examples. Compared to the initial amplification 313

of 12.57% for keyword querying, the average am- 314

plification for captions without gender indicators 315

is 8.66% (↓ 31%), as shown in Table 3. This be- 316

havior aligns with the reasoning described above — 317

gender indicators are more likely to delineate the 318

presence of the underrepresented gender, which in 319

turn inflates amplification measures. 320

5.2 Nearest Neighbor Captions (NN) 321

Beyond explicit gender indicators, there are clear 322

differences in the information conveyed by prompts 323

vs. captions. The prompts we use are concise and 324

structured, but lack concrete details. On the other 325

hand, randomly sampled training captions are more 326

diverse and vary in their usage of the occupation 327

and contextual information, as highlighted in Table 328

2 and Figure 2. Furthermore, captions may contain 329

implicit gender information (e.g., descriptors, attire, 330

activities) that is absent from prompts. 331

These qualitative differences are also apparent 332

when comparing caption and prompt text embed- 333

dings. We use SBERT (Reimers and Gurevych, 334

2019) to compute text embeddings,9 and calculate 335

the average pairwise cosine similarity between cap- 336

tion and prompt embeddings for each occupation. 337

We find that the average cosine similarity across 338

occupations is 0.385, indicating that captions and 339

prompts are highly dissimilar (relative to nearest 340

neighbors, which we will see next). 341

9We use the all-MiniLM-L6-v2 model for text embeddings.
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SD 1.4 SD 1.5

Approach #1 #2 #3 #4 Average #1 #2 #3 #4 Average

Naive Approach 10.24 17.57 10.77 11.68 12.57 10.87 16.36 11.15 9.91 12.07
No Gender Indicators 6.49 13.58 7.09 7.49 8.66 6.76 12.41 6.82 5.87 7.97
Nearest Neighbors (NN) 3.59 12.62 5.58 5.27 6.76 4.01 11.14 5.21 3.65 6.01
NN + No Indicators 1.11 8.72 3.06 4.05 4.35 1.55 7.29 2.78 2.72 3.59

Table 3: Bias Amplification across occupations using Stable Diffuson (SD) 1.4 and 1.5, for each prompt and averaged
across prompts. Amplification lowers considerably when using nearest neighbors to select training captions and
excluding captions with gender indicators. We see further reductions when combining approaches.

Addressing Similarity Discrepancies To ac-342

count for these gaps, we propose using nearest343

neighbors (NN) to select captions that closely re-344

semble prompts. We can find NN by considering345

all captions that contain a given occupation, and346

selecting examples based on the similarity between347

caption and prompt text embeddings instead of sam-348

pling randomly. As a result, the chosen captions349

are closer in structure and wording to prompts. We350

compute the cosine similarity between text embed-351

dings to measure the similarity between captions352

and prompts.10 For a given occupation, we con-353

sider the top-k similar captions, where k = 500.354

Applying NN, the average cosine similarity be-355

tween caption and prompt embeddings increases356

to 0.704 (↑ 83% from keyword querying), which357

occurs by design since we directly target exam-358

ples that resemble prompts. Note however, that359

the increase in similarity is also reflected in image360

embeddings. The pairwise similarity of CLIP im-361

age embeddings increases with NN (↑ 13% from362

keyword querying), indicating that chosen training363

and generated images are slightly more similar.364

There are noticeable qualitative improvements365

as well. NN chooses captions that are closer in366

structure and meaning to prompts (e.g., “Picture of367

a teacher in the classroom”), which also impacts368

corresponding training images. In contrast to the369

naive approach, the training images corresponding370

to NN captions for “president” primarily represent371

world leaders (often US presidents), while captions372

for “teacher” depict educators in classroom settings,373

as shown in Figure 4.374

Reduced Bias Amplification When selecting375

training examples So using NN, we see that bias376

amplification reduces considerably across occupa-377

tions and prompts, as shown in Table 3. The aver-378

age amplification drops to 6.76% (↓ 46% relative379

10Text embedding used to compute NN can reinforce biases.
By using SBERT, we avoid leaking biases from Stable Diffu-
sion’s text encoder (CLIP) when selecting training examples.

to keyword querying). While NN yields increased 380

similarity between training and generated exam- 381

ples, there are still unresolved sources of distribu- 382

tion shift that impact amplification measures. 383

5.3 Combining Approaches 384

We observe that amplification further reduces when 385

combining the no-gender indicator subset with NN, 386

as shown in the last rows in Table 3. The average 387

amplification decreases to 4.35%, which is notice- 388

ably lower compared to the values for each method 389

individually. Both methods work in tandem to re- 390

duce distributional differences in complementary 391

ways, perhaps by targeting both explicit and im- 392

plicit gender information. We also observe greater 393

reductions for specific prompts; for example, am- 394

plification is just 1.11% for Prompt #1. 395

We perform a one-sample t-test to test the null 396

hypothesis that the expected amplification is 0 for 397

each of the prompts; we fail to reject the null hy- 398

pothesis for prompts #1 and #3 and reject the null 399

hypothesis for prompts #2 and #4 (significance 400

level < 0.05). Our results indicate a portion of 401

amplification is unexplained for all prompts, espe- 402

cially prompts #2 and #4, and may involve more 403

subtle confounding factors. Although the proposed 404

methods do not account for all possible discrepan- 405

cies between training and generation, we observe 406

that the bias measures become closer as we select 407

subsets of training captions that resemble prompts. 408

6 Removing Distributional Differences: A 409

Lower Bound 410

The previous approaches reduce discrepancies be- 411

tween training and generation by evaluating am- 412

plification with captions that are more similar to 413

prompts. Instead, we can focus our efforts in the 414

other direction and modify the prompts we use 415

to align with captions more closely. One way to 416

achieve this is to eliminate differences altogether 417

by making prompts and captions identical. We then 418

ask: Does using identical texts to measure training 419
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(a) All Captions (b) No Gender Indicators

Figure 5: Bias amplification when prompting with
training captions. We observe minimal amplification
when Po = So (left). This behavior mostly holds when
focusing on captions without explicit gender indicators
(right). Shading: Amplification and De-Amplification.

and generation bias lower amplification? We use420

the original training subset (So) from Section 4 and421

make the prompts (Po) match the captions verba-422

tim. In this setup, we generate 10 images for every423

prompt in Po, and then compute amplification us-424

ing Po := So for each occupation.425

We hypothesize that enforcing prompts and cap-426

tions to match yields similar bias measurements,427

which reduces amplification. As shown in Figure428

5a, amplification is small when Po = So and most429

occupations reside along the diagonal (no amplifi-430

cation). The average amplification drops to 0.68%,431

indicating that the model mostly reflects training432

bias.11 Furthermore, amplification remains consis-433

tently low, even for highly imbalanced occupations.434

For captions that contain either male or female435

gender indicators, the model generates images that436

match the gender of corresponding training im-437

ages (with 98.41% accuracy), since this informa-438

tion is directly provided in the prompt. Therefore,439

we analyze results separately on the subset of cap-440

tions without gender indicators. As shown in Fig-441

ure 5b, bias amplification is larger for the no gen-442

der indicator subset as compared to all captions.443

That being said, the average amplification remains444

low at 2.05% (↓ 84% relative to keyword query-445

ing).11 We also observe similar results when using446

paraphrased versions of the training captions as447

prompts, as discussed in Appendix A.6.448

Although practitioners are unlikely to utilize449

prompts that exactly match training captions (nor450

do we make this recommendation), this experiment451

highlights the impact of distributional similarity452

between captions and prompts when comparing bi-453

ases. In addition, it provides a lower bound to the454

bias amplification problem. In summary, we con-455

clude that the model nearly mimics biases from the456

11However, we reject the null hypothesis that the expected
amplification is 0 using a one-sample t-test.

data when we eliminate distributional differences. 457

7 Related Work 458

Relating pretraining data to model behavior 459

There is a growing body of work focused on study- 460

ing pretraining data properties and their relation 461

to model behavior. This type of large-scale data 462

and model analysis provides useful insights into 463

model learning and generalization capabilities (Car- 464

lini et al., 2023). Recent work shows that few-shot 465

capabilities of large language models are highly 466

correlated with pretraining term frequencies, and 467

that models struggle to learn long-tail knowledge 468

(Kandpal et al., 2023; Razeghi et al., 2022). Several 469

works have also explored the relationship between 470

pretraining data and model performance from a 471

causal perspective (Biderman et al., 2023; Elazar 472

et al., 2022; Longpre et al., 2023). For example, 473

Longpre et al. (2023) comprehensively investigate 474

how various data curation choices and pretraining 475

data slices affect downstream task performance. 476

Bias Amplification Our work is strongly in- 477

spired by the findings of Zhao et al. (2017), who 478

show that structured prediction models amplify bi- 479

ases present in the data. However, there are im- 480

portant differences to note. First, their task jointly 481

predicts multiple target labels (including gender), 482

as opposed to generating images. Additionally, 483

their work focuses on mitigating amplification, as 484

opposed to investigating underlying factors that af- 485

fect amplification. Hall et al. (2022) consider how 486

data, training, and model-related choices influence 487

amplification using a classification setup with syn- 488

thetic bias, but do not examine distribution shifts. 489

Friedrich et al. (2023) also compare biases ex- 490

hibited by LAION and Stable Diffusion, and show 491

that the model demonstrates amplification. Instead 492

of identifying relevant training examples using 493

captions, they use text-image similarity between 494

prompts and training images. Furthermore, their 495

work primarily focuses on bias mitigation, while 496

our work is centered around analyzing confounding 497

factors that impact amplification. 498

Bias in text-to-image models While it is well- 499

established that language and vision models are 500

prone to biases individually, recent work has shown 501

that text-to-image models display similar biases. 502

Several works analyze various biases in text-to- 503

image models, including geographical disparities 504

(Basu et al., 2023; Naik and Nushi, 2023) and in- 505
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(a) “A photo of the face of an
attorney” (42.8%)

(b) “A portrait photo of an
attorney” (9.4%)

(c) “A photo of an attorney
smiling” (43.1%)

(d) “A photo of an attorney at
work” (65.1%)

Figure 6: Generations for “attorney” using different prompts. Specific wording choices in prompts lead to
notable differences in the percentage of generated images that are predicted as female.

tersectional biases (Fraser et al., 2023; Luccioni506

et al., 2023). Bianchi et al. (2023) demonstrate507

that stereotypes persist even after using counter-508

stereotypes. However, these works solely evaluate509

model biases, and do not examine the training data.510

8 Discussion511

Our results bring up a number of key issues.512

Generalizability Our work demonstrates that us-513

ing naive procedures to evaluate bias amplification514

can lead to exaggerated amplification measures.515

While our analysis does not account for all sources516

of distribution shift that contribute to amplification,517

it is meant to be illustrative. We encourage future518

studies to build on our findings by examining dif-519

ferent experimental setups (i.e., datasets, models,520

and types of bias) to gain a more comprehensive521

understanding of bias amplification and the impact522

of confounding factors.523

Variation Across Prompts As we highlight in524

Figure 6, small changes to prompts can have a re-525

sounding effect on conclusions about model bias.526

For example, “A portrait photo of an attorney”527

skews heavily male while “A photo of an attorney528

at work” skews female in generated images. Fur-529

thermore, reductions in amplification differ based530

on the prompt (e.g., 89% reduction for Prompt #1531

vs. 49% for Prompt 2), indicating that there are532

prompt-specific sources of distribution shift.533

Amplification Baseline Our interpretation of am-534

plification is centered around models exacerbating535

biases in the training data as opposed to real-world536

statistics (Kirk et al., 2021; Bianchi et al., 2023).537

Both approaches are useful to study but answer538

fundamentally different questions. Our approach539

offers insights into whether model behavior reflects540

the training data, while real-world amplification541

captures how well the model reflects reality.542

Connection to Simpson’s Paradox The title of 543

our paper alludes to Simpson’s Paradox (Simpson, 544

1951), a phenomenon in which a trend or relation- 545

ship observed in subgroups within the data reverses 546

or disappears when subgroups are combined. We 547

draw direct parallels to our analysis and insights; 548

although we observe substantial amplification in 549

our initial setup, amplification reduces drastically 550

after selecting specific subsets of the training data 551

and decreasing the impact of confounding factors. 552

Recommendations Our findings underscore how 553

distribution shifts contribute to bias amplification, 554

which has important implications. Those involved 555

in data-focused efforts should consider how practi- 556

tioners specify prompts and interact with models 557

when curating training data. Alternatively, crowd- 558

sourcing or automatically rewriting existing train- 559

ing captions to reflect real-world model usage may 560

result in lower amplification. Additionally, we rec- 561

ommend that evaluations use multiple prompts and 562

remove prompt-specific confounding factors (e.g., 563

by using NN to select relevant training examples). 564

9 Conclusion 565

In summary, we investigate whether Stable Diffu- 566

sion amplifies gender-occupation biases by com- 567

paring training data and model biases. We high- 568

light how naive evaluations of amplification fail to 569

consider distributional differences between train- 570

ing and generation, which leads to a misleading 571

understanding of model behavior. Although am- 572

plification is not eliminated entirely, we observe 573

that reducing discrepancies between captions and 574

prompts during evaluation results in substantially 575

lower measurements. We recommend that any anal- 576

ysis comparing training data and model biases, or 577

any dataset and model properties more generally, 578

account for various distribution shifts that skew 579

evaluations. 580
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Limitations581

Beyond the training data, another source of bias is582

the text embeddings obtained from CLIP. By solely583

comparing biases in the data vs. those exhibited by584

Stable Diffusion, our analysis overlooks biases that585

arise from encoding prompts. As a result, we can-586

not disentangle how much this component impacts587

overall amplification. Note that the effect of such588

an external embedding cannot be easily accounted589

for, since CLIP’s training data is not public. More590

work is needed to understand the impact of using591

external, frozen models as a model component.592

Additionally, we automate gender classification593

using CLIP because previous works have shown594

that CLIP gender predictions align with human595

annotations and CLIP gender classification perfor-596

mance on the FairFace dataset12 is strong (> 95%)597

across various racial categories. Nevertheless, we598

recognize the limitations of using a model to clas-599

sify gender in images, since CLIP inherits biases600

from its training data.601

Ethics Statement602

Scope of Work Our work centers around criti-603

cally examining bias amplification evaluation. The604

approaches we propose to reduce distribution shifts605

observed during evaluation do not solve underlying606

gaps between the data used to train models and how607

users interact with models. Rather, they serve to608

deepen our understanding of why models amplify609

biases present in the training data. Ideally, our find-610

ings will motivate future work on 1) thorough and611

nuanced evaluations of bias amplification and 2)612

fundamentally addressing training and generation613

discrepancies from a data perspective.614

Bias Definition Our work focuses on a narrow615

slice of social bias analysis by studying gender-616

occupation stereotypes. Since models exhibit vari-617

ous types of discriminatory bias (e.g., racial, age,618

geographical, socioeconomic, disability, etc.), as619

well as intersectional biases, it is equally impor-620

tant to perform evaluations for these definitions of621

bias. Furthermore, we only consider binary gen-622

der, which has clear drawbacks. Our analysis ig-623

nores how text-to-image models perpetuate biases624

for non-binary identities and relies on information625

such as appearance and facial features to infer gen-626

der in training and generated images, which can627

propagate gender stereotypes.628

12https://github.com/joojs/fairface

Geographical Diversity The captions and 629

prompts used to study bias are solely written in 630

English. We hope future work will shed light on 631

multilingual bias amplification in text-to-image 632

models. It is also worth noting that the gender- 633

guesser library (infers gender from names) likely 634

performs worse on non-Western names. The 635

documentation mentions that the library supports 636

over 40,000 names and covers a “vast majority 637

of first names in all European countries and in 638

some overseas countries (e.g., China, India, Japan, 639

USA)”. Therefore, the name coverage (or lack 640

thereof) impacts our ability to identify captions 641

with gender information. 642
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A Appendix883

A.1 Occupations884

A full list of occupations is shown in Table 4. We885

exclude occupations that exhibit different direc-886

tions of bias at training and generation from our887

amplification results, since this behavior does not888

adhere to our definition of amplification. There889

are 5 occupations (assistant, author, dentist, painter,890

supervisor) that exhibit switching behavior consis-891

tently for all prompts, using both SD 1.4 and 1.5.892

More research is needed to understand and explain893

this behavior.894

Tables 6 (SD 1.4) and 7 (SD 1.5) show bias val-895

ues for each occupation at training and generation.896

For some occupations (e.g., attorney, cook, sur-897

geon), the gender distributions in generated images898

can vary considerably depending on the prompt.899

A.2 LAION900

LAION is a freely available dataset of image-901

caption pairs released under CC-BY 4.0. Instead of902

saving scraped images, LAION stores URLs that903

correspond to the images, which we then use to904

download images. We only download a subset of905

examples that pertain to the occupations in Table 4.906

While LAION is an open dataset, there are no-907

table issues to point out. For example, the dataset908

includes copyrighted and NSFW content. We ac-909

knowledge these issues and emphasize that our use910

of LAION is for research purposes to 1) analyze911

gender-occupation biases in the data and 2) evalu-912

ate bias amplification.913

A.3 Generating Images914

Stable Diffusion 1.4 and 1.5 contain roughly 1 bil-915

lion parameters. Using a single TITAN RTX GPU,916

it takes 3.5 seconds to generate one image. To917

generate 500 images for each occupation (×62),918

prompt (×4), and model version (×2), it takes ap-919

proximately 240 hours. We use the default genera-920

tion parameters, which include a guidance scale of921

7.5 and 50 inference steps.922

A.4 Image Gender Classification923

While CLIP is susceptible to biases (Hall et al.,924

2023), its gender predictions have been shown to925

align with human-annotated gender labels (Bansal926

et al., 2022; Cho et al., 2022). In addition, we per-927

form human evaluation with 7 participants on 200928

randomly selected training and generated images.929

We ask participants to provide binary gender anno- 930

tations (or indicate that they are unsure), and find 931

that Krippendorff’s coefficient, which measures 932

inter-annotator agreement, is high (α = 0.948). 933

Additionally, 98% of CLIP predictions match the 934

majority vote annotations. 935

A.5 Explicit Gender Indicators 936

To identify captions with explicit gender infor- 937

mation, we consider 1) gender words (male, 938

female, man, woman, gent, gentleman, lady, 939

boy, girl), 2) binary gender pronouns (he, him, 940

his, himself, she, her, hers, herself), and 941

3) names. We perform named entity recog- 942

nition using the en_core_web_lg model from 943

spaCy to identify name mentions, and then use 944

the gender-guesser library https://pypi.org/ 945

project/gender-guesser/ to infer gender. We 946

include example training captions with explicit gen- 947

der mentions in Table 5. 948

A.6 Paraphrasing Captions 949

In Section 6, we align the train and test distribu- 950

tions by directly prompting the model with training 951

captions. We show that amplification is minimal 952

when eliminating distributional differences. As a 953

follow-up, we study what happens to amplification 954

if we instead use prompts that are similar but not 955

identical to training captions. To construct similar 956

examples, we paraphrase the original captions 957

using gpt-3.5-turbo. We set the temperature 958

to 0 and use the following prompt to generate 959

paraphrases: 960

961

Please paraphrase the phrase/sentence below. 962

You can change words without changing the 963

original meaning or intent. You must include 964

the word [OCCUPATION]. 965

Phrase/Sentence: [CAPTION] 966

967

Using the training subset So from Section 6 and 968

the paraphrased captions as prompts Po, we find 969

that amplification remains low — amplification 970

is 0.69% for all captions (compared to 0.68% in 971

Section 6) and 2.49% for captions without explicit 972

gender indicators (compared to 2.05% in Section 973

6). These findings indicate that our original anal- 974

ysis from Section 6 is robust to specific wording 975

and phrasing choices in training captions. In other 976

words, these results suggest the model can gener- 977

alize, and does not rely solely on memorization to 978

achieve low amplification. 979
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Occupations

accountant dentist journalist poet singer
architect dietitian lawyer politician student
assistant doctor librarian president supervisor
athlete engineer manager prime minister surgeon
attorney entrepreneur mechanic professor teacher
author fashion designer musician programmer technician
baker filmmaker nurse psychologist therapist
bartender firefighter nutritionist receptionist tutor
ceo graphic designer painter reporter veterinarian
chef hairdresser pharmacist researcher writer
comedian housekeeper photographer salesperson
cook intern physician scientist
dancer janitor pilot senator

Table 4: List of 62 occupations used to study gender-occupation biases.

(a) Captions without Gender Indicators (b) Nearest Neighbors (c) Combined Approach

Figure 7: Bias amplification for various approaches to address discrepancies between training and generation.
The proposed approaches yield lower bias amplification, especially the combined method (c). Results are shown for
Prompt #1. Regions are shaded based on Amplification and De-Amplification.

(a) Captions without Gender Indicators (b) Nearest Neighbors (c) Combined Approach

Figure 9: Bias amplification for various approaches to address discrepancies between training and generation.
The proposed approaches yield lower bias amplification, especially the combined method (c). Results are averaged
across all prompts. Regions are shaded based on Amplification and De-Amplification.
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Image Caption Gender Indicator
Portrait of young woman programmer working at a computer in the data center
filled with display screens

woman

Tired young indian programmer almost sleeping at his desk after working on
difficult project all day long

his

Female accountant very busy in office female

Accountant managing manual bill monitoring tasks in his home office his

Iowa Republican Senator Chuck Grassley first name

U.S. Senator Kirsten Gillibrand (D-NY) pauses during a news conference on
Capitol Hill in Washington

first name

Portrait of young male mechanic in bicycle store, Beijing male

African american woman mechanic repairing a motorcycle in a workshop woman

Attractive woman photographer taking images with dslr camera outdoors in park. woman

Photographer John G. Zimmerman with his pipe and Hucher camera, 1972. first name/his

Table 5: Example training images and captions with explicit gender indicators for select occupations (in bold).
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Occupation Training Prompt #1 Prompt #2 Prompt #3 Prompt #4

accountant 29.8 29.5 3.4 43.8 35.7
architect 31.4 4.2 2.2 3.0 0.0
assistant 44.6 67.1 56.3 71.9 75.6
athlete 44.8 80.0 51.9 69.3 77.3
attorney 29.2 42.8 9.4 43.1 65.1
author 42.8 83.6 53.0 81.5 61.0
baker 41.4 81.1 31.2 58.8 59.3
bartender 36.8 16.8 2.6 12.9 22.9
ceo 15.0 2.6 1.8 4.8 11.9
chef 28.0 7.0 1.2 1.4 5.8
comedian 21.8 2.4 0.0 3.6 1.0
cook 35.0 34.7 8.6 49.4 69.3
dancer 81.0 88.7 98.8 99.0 100.0
dentist 58.6 41.4 4.4 29.2 41.8
dietitian 95.2 100.0 100.0 100.0 99.8
doctor 40.8 33.7 3.8 14.6 57.6
engineer 20.6 2.6 0.2 1.2 0.0
entrepreneur 43.6 42.8 1.8 12.8 34.6
fashion_designer 76.0 93.4 80.8 89.8 97.2
filmmaker 29.2 12.6 3.2 8.3 14.9
firefighter 14.6 1.6 1.0 15.9 3.2
graphic_designer 52.8 11.8 14.4 32.7 41.6
hairdresser 79.2 97.0 95.6 94.6 97.6
housekeeper 91.4 99.0 99.8 100.0 100.0
intern 57.6 65.8 31.5 77.2 53.4
janitor 20.4 1.6 3.0 14.6 5.7
journalist 38.4 49.9 59.9 68.8 64.0
lawyer 27.6 26.5 8.0 39.0 47.7
librarian 74.4 88.1 83.6 93.6 94.8
manager 13.0 20.6 7.8 29.7 42.8
mechanic 17.6 1.6 0.0 0.2 35.3
musician 22.6 5.4 4.2 7.2 3.2
nurse 88.8 100.0 100.0 100.0 100.0
nutritionist 83.6 99.8 92.8 96.6 97.5
painter 52.6 36.4 12.2 17.6 3.6
pharmacist 68.0 84.2 26.9 54.9 91.7
photographer 55.0 52.0 27.5 46.5 13.2
physician 39.4 35.5 2.0 37.5 59.3
pilot 30.4 34.7 12.2 66.3 15.9
poet 30.8 15.2 2.0 19.5 32.8
politician 21.6 14.5 4.2 15.9 9.6
president 19.6 1.4 0.2 8.0 0.8
prime_minister 24.0 15.7 10.6 13.2 21.4
professor 28.2 7.8 2.8 9.2 5.3
programmer 23.0 0.2 0.0 0.2 0.0
psychologist 58.6 44.3 21.6 57.2 52.9
receptionist 91.4 99.8 100.0 99.8 99.8
reporter 44.4 54.8 55.2 55.1 67.8
researcher 44.6 80.2 41.8 67.6 50.9
salesperson 39.8 43.0 5.2 33.1 33.7
scientist 33.4 25.7 24.0 29.3 23.2
senator 35.0 13.4 2.0 8.2 5.4
singer 57.6 73.2 60.3 69.2 60.1
student 63.0 55.3 48.5 62.1 43.3
supervisor 65.2 18.3 4.8 16.6 14.9
surgeon 30.2 82.5 15.6 67.6 82.5
teacher 63.0 75.8 55.7 94.0 88.0
technician 31.2 0.6 0.0 0.6 0.0
therapist 74.8 82.6 63.3 79.2 87.5
tutor 59.2 48.1 23.1 32.7 43.5
veterinarian 55.2 66.7 44.7 64.1 89.9
writer 30.2 73.3 30.1 76.0 63.8

Table 6: The percentage of females across occupations in training images (using our initial approach from Section
4) and generated images using SD 1.4. We display generation results for each prompt.
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Occupation Training Prompt #1 Prompt #2 Prompt #3 Prompt #4

accountant 29.8 34.9 5.4 42.1 45.2
architect 31.4 10.0 2.2 2.2 3.4
assistant 44.6 69.2 60.8 58.6 77.8
athlete 44.8 76.6 46.0 50.0 74.3
attorney 29.2 50.8 11.7 44.3 68.3
author 42.8 88.2 57.4 75.4 69.0
baker 41.4 82.3 33.9 53.3 66.6
bartender 36.8 10.0 2.2 4.8 12.2
ceo 15.0 1.4 2.0 5.4 18.5
chef 28.0 12.0 0.8 1.4 7.0
comedian 21.8 1.6 0.0 1.4 0.6
cook 35.0 38.4 16.4 43.5 75.1
dancer 81.0 83.8 97.4 97.6 100.0
dentist 58.6 41.9 5.4 22.7 20.4
dietitian 95.2 100.0 100.0 100.0 99.8
doctor 40.8 38.2 8.8 12.6 53.4
engineer 20.6 10.6 0.6 1.6 0.0
entrepreneur 43.6 59.7 4.6 16.9 41.6
fashion_designer 76.0 97.4 90.3 92.2 98.6
filmmaker 29.2 18.4 5.2 8.8 7.8
firefighter 14.6 1.4 0.2 12.5 4.5
graphic_designer 52.8 22.6 15.3 29.5 63.3
hairdresser 79.2 99.6 98.0 95.4 97.3
housekeeper 91.4 99.6 100.0 100.0 100.0
intern 57.6 72.6 37.1 68.8 60.4
janitor 20.4 3.6 3.2 8.4 6.2
journalist 38.4 57.2 60.2 59.7 60.7
lawyer 27.6 34.1 8.8 36.8 48.2
librarian 74.4 93.4 85.8 87.8 94.6
manager 13.0 24.0 14.2 28.7 41.3
mechanic 17.6 6.4 0.2 1.0 20.8
musician 22.6 5.4 1.4 2.8 2.8
nurse 88.8 100.0 100.0 100.0 100.0
nutritionist 83.6 99.8 97.8 97.2 98.0
painter 52.6 43.7 20.0 10.6 2.7
pharmacist 68.0 87.3 26.1 49.6 83.8
photographer 55.0 58.1 32.5 44.8 26.0
physician 39.4 46.4 3.2 36.5 62.0
pilot 30.4 20.9 11.4 35.3 7.5
poet 30.8 12.4 2.6 11.6 42.1
politician 21.6 24.9 10.2 16.7 15.7
president 19.6 4.6 0.4 12.9 2.2
prime_minister 24.0 25.5 23.0 20.0 42.9
professor 28.2 9.2 3.0 5.6 8.6
programmer 23.0 0.8 0.0 1.0 0.0
psychologist 58.6 51.0 22.4 40.8 52.2
receptionist 91.4 99.6 100.0 99.2 99.8
reporter 44.4 53.7 52.5 44.0 57.6
researcher 44.6 77.3 47.8 52.8 55.0
salesperson 39.8 56.8 7.0 37.4 30.5
scientist 33.4 23.0 22.1 15.9 45.3
senator 35.0 22.7 8.0 12.0 12.5
singer 57.6 74.0 54.1 66.6 61.2
student 63.0 44.6 32.3 51.8 40.5
supervisor 65.2 20.9 5.6 18.2 15.0
surgeon 30.2 82.0 20.4 50.8 81.6
teacher 63.0 78.7 58.2 87.4 84.6
technician 31.2 0.4 0.2 1.6 0.0
therapist 74.8 88.5 80.8 82.2 88.7
tutor 59.2 48.8 24.1 24.4 50.4
veterinarian 55.2 65.6 48.9 48.7 89.5
writer 30.2 79.2 34.7 69.1 76.6

Table 7: The percentage of females across occupations in training images (using our initial approach from Section
4) and generated images using SD 1.5. We display generation results for each prompt.
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