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ABSTRACT

Neural Processes (NPs) are popular meta-learning methods for efficiently mod-
elling predictive uncertainty. Recent state-of-the-art methods, however, leverage
expensive attention mechanisms, limiting their applications, particularly in low-
resource settings. In this work, we propose Constant Memory Attention Block
(CMAB), a novel general-purpose attention block that (1) is permutation invari-
ant, (2) computes its output in constant memory, and (3) performs updates in con-
stant computation. Building on CMAB, we propose Constant Memory Attentive
Neural Processes (CMANPs), an NP variant which only requires constant mem-
ory. Empirically, we show CMANPs achieve state-of-the-art results on popular
NP benchmarks (meta-regression and image completion) while being significantly
more memory efficient than prior methods.

1 INTRODUCTION

Memory efficiency is important for a variety of reasons, for example: (1) Modern hardware,
such as GPUs and TPUs, are often memory-constrained for applications and computing atten-
tion mechanisms is memory-intensive. This issue is accentuated now due to the ubiquity of low-
memory/compute domains (e.g., IoT devices). (2) Memory efficiency is important in embedded
platforms where memory access energy intensive. This is particularly important in mobile robots
where a limited energy supply needs to be allocated (Li et al., 2022a).

Neural Processes (NPs) have been popular meta-learning methods for efficiently modelling pre-
dictive uncertainty. They have been applied to a wide variety of settings such as graph link predic-
tion (Liang & Gao, 2022), continual learning (Requeima et al., 2019), and geographical precipitation
modeling (Foong et al., 2020) – many of which can have high-dimensional inputs. NPs are partic-
ularly useful in low-resource settings due to not requiring retraining from scratch given new data.
State-of-the-art methods, however, rely on attention mechanisms which require a substantial amount
of memory and do not scale well with the number of tokens (Jha et al., 2022), limiting their applica-
tions in low compute domains (e.g., IoT devices, mobile phones and other battery-powered devices).
For example, Transformer Neural Processes (TNPs) (Nguyen & Grover, 2022) scale quadratically
with the size of the context and query dataset. Latent Bottlenecked Attentive Neural Processes
(LBANPs) (Feng et al., 2023) is O(NL) where N is the size of the context dataset and L is a
hyperparameter that scales with the difficulty of the task and the size of the context dataset.

As such, in this work, we propose (1) Constant Memory Attention Block (CMAB), a novel general-
purpose attention block that (i) is permutation invariant, (ii) computes its output in constant memory,
and (iii) performs updates in constant computation. To the best of our knowledge, we are the first to
propose an attention mechanism with the aforementioned properties. Due to having memory usage
independent of the number of inputs, CMABs naturally scale to large amounts of inputs.

Building on CMABs, we propose (2) Constant Memory Attentive Neural Processes (CMANPs).
By leveraging the efficiency properties of CMABs, CMANPs are (i) scalable in the number of
datapoints and (ii) allow for efficient updates. Leveraging the efficient updates property, we further
introduce an Autoregressive Not-Diagonal extension, namely, CMANP-AND which only requires
constant memory unlike the quadratic memory required by all prior Not-Diagonal extensions. In the
experiments, CMANPs achieve state-of-the-art results on meta-regression and image completion
tasks. We empirically show that CMANPs only require constant memory, making it significantly
more efficient than prior state-of-the-art methods.
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2 BACKGROUND

2.1 META-LEARNING FOR PREDICTIVE UNCERTAINTY ESTIMATION

In meta-learning for predictive uncertainty estimation, models are trained on a distribution of tasks
Ω(T ) to model a probabilistic predictive distribution. A task T is a tuple (X , Y , L, q) where
X ,Y are the input and output space respectively, L is the task-specific loss function, and q(x, y)
is the task-specific distribution over data points. During each meta-training iteration, B tasks T =
{Ti}Bi=1 are sampled from the task distribution Ω(T ). For each task Ti ∈ T, a context dataset
Di

C = {(x, y)i,j}Nj=1 and a target dataset Di
T = {(x, y)i,j}Mj=1 are sampled from the task-specific

data point distribution qTi
. N is a fixed number of context datapoints and M is a fixed number of

target datapoints. The model is adapted using the context dataset. Afterwards, the target dataset is
used to evaluate the effectiveness of the adaptation and adjust the adaptation rule accordingly.

2.2 NEURAL PROCESSES

Neural Processes (NPs) are meta-learned models that define a family of conditional distributions.
Specifically, NPs condition on an arbitrary amount of context datapoints (labelled datapoints) and
make predictions for a batch of target datapoints, while preserving invariance in the ordering of the
context dataset. NPs consist of three phases: conditioning, querying, and updating

Conditioning: In the conditioning phase, the model encodes the context dataset DC . Neural
Processes (Garnelo et al., 2018b) model functional uncertainty by encoding the context dataset
as a Gaussian latent variable: zC ∼ q(z|DC) where q(z|DC) = N (z;µC , σ

2
C) and µC , σC =

fencoder(DC). Conditional variants (Garnelo et al., 2018a) instead compute a deterministic encod-
ing, i.e., zC = fencoder(DC).

Querying: In the querying phase, given target datapoints xT to make predictions for, the NP models
the predictive distribution p(yT |xT , zC).

Updating: In the updating phase, the model receives new datapoints DU , and new encodings are
computed, i.e., re-computing zC given DC ← DC ∪ DU .

The deterministic variant maximizes the log-likelihood directly. In contrast, the stochastic variant
maximizes an evidence lower bound (ELBO) of the log-likelihood instead:

log p(yT |xT ,DC) ≥ Eq(z|DC∪DT ) [log p(yT |xT , z)]−KL(q(z|DC ∪ DT )||p(z|DC))

3 METHODOLOGY

In this section, we introduce the Constant Memory Attention Block (CMAB), a novel attention
mechanism which preserves permutation invariance while only requiring (1) constant memory to
compute its output and (2) constant computation to perform updates. Leveraging the efficiency
properties of CMAB, we propose Constant Memory Attentive Neural Processes (CMANPs). We
also introduce CMANP-AND (Autoregressive Not-Diagonal) extensions which only require con-
stant memory in contrast to the quadratic memory required by prior Not-Diagonal extensions, al-
lowing for scalability to a larger number of datapoints.

3.1 CONSTANT MEMORY ATTENTION BLOCK (CMAB)

Constant Memory Attention Block (Figure 1) takes as input the input dataD and a set of input latent
vectors LI and outputs a set of output latent vectors L′

I . The objective of the block is to encode
the information of the input data D into a fixed-sized representation |LI |. Each CMAB comprises
two cross-attention modules, two self-attention modules, and one set of block-wise latent vectors
LB whose value is learned during training. When stacking CMABs, the output latent vectors of
the previous CMAB are fed as the input latent vectors to the next, i.e., LI ← L′

I . Similar in style
to that of iterative attention (Jaegle et al., 2021), the value of LI of the first stacked CMAB block
is learned. A fundamental difference, however, is that iterative attention can neither compute the
output in constant memory nor perform the updates in constant computation.
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Figure 1: Constant Memory Attention Block (CMAB).

CMAB initially compresses the input data by applying a cross-attention between the input data and
the block-wise latent vectors LB . Next, self-attention is used to compute higher-order information:

L′
B = SelfAttention(CrossAttention(LB ,D))

Afterwards, another cross-attention between the input vectors LI and L′
B is performed and an ad-

ditional self-attention is used to further compute higher-order information, resulting in the output
vectors L′

I :

L′
I = SelfAttention(CrossAttention(LI , L

′
B))

In summary, CMAB (Figure 1) works as follows:

CMAB(LI ,D) = L′
I = SA(CA(LI , SA(CA(LB ,D )) ))

where SA represents SelfAttention and CA represents CrossAttention. The two cross-attentions
have a linear computational complexity of O(|D||LB |) and a constant computational complexity
O(|LB ||LI |). The self-attentions have constant complexities of O(|LB |2) and O(|LI |2). As such,
the total computation required to produce the output of the block isO(|D||LB |+|LB |2+|LB ||LI |+
|LI |2) where the number of latents |LB | and |LI | are hyperparameter constants which bottleneck
the amount of information which can be encoded.

3.1.1 CONSTANT COMPUTATION UPDATES

A significant advantage of CMABs is that when given new inputs, CMABs can compute the updated
output1 in constant computation per new datapoint. In contrast, a transformer block would require
re-computing its output from scratch, requiring quadratic computation to perform a similar update.

Having previously computed CMAB(LI ,D) and given new datapoints DU (e.g., from
sequential settings such as contextual bandits), CMAB(LI ,D ∪ DU ) can be computed in
O(|DU |), i.e., a constant amount of computation per new datapoint.

Proof Outline: Since |LB | and |LI | are constants (hyperparameters), CMAB’s complex-
ity is constant except for the contributing complexity part of the first attention block:
CrossAttention(LB ,D), which has a complexity of O(|D||LB |). As such, to achieve constant
computation updates, it suffices that the updated output of this cross-attention can be updated in
constant computation per datapoint. Simplified, CrossAttention(LB ,D) is computed as follows:

CrossAttention(LB ,D) = softmax(QKT )V

where K and V are key-value matrices respectively that represent the embeddings of the input data
D, and Q is the query matrix representing the embeddings of the block-wise latents LB . When an
update with |DU | new datapoints occurs, |DU | rows are added to the key, value matrices. Crucially,
the query matrix is constant due to the block-wise latent vectors LB being a fixed set of latent vectors

1CMABs also allow for efficient removal of datapoints (and consequently edits as well) to the input data,
but this is outside the scope of this work.
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whose values are learned. As a result, the output of the cross-attention can be computed via a rolling
average in O(|DU |). A formal proof and description of this process is included in the Appendix.

As a result, we have the following update function:

CrossAttention(LB ,D ∪ DU ) = UPDATE(DU ,CrossAttention(LB ,D))

where the UPDATE operation has a complexity of O(|DU |). Each of the remaining self-attention
and cross-attention blocks only requires constant computation. As such, CMAB can compute its
updated output in O(|DU |), i.e., a constant amount of computation per new datapoint.

3.1.2 COMPUTING OUTPUT IN CONSTANT MEMORY

Leveraging the efficient updates property, CMABs can compute their output in constant memory re-
gardless of the number of inputs. Naive computation of the output of CMAB requires non-constant
memory due to CrossAttention(LB ,D) having a linear memory complexity of O(|D||LB |). To
achieve constant memory computation, we split the input data D into |D|/bC batches of input dat-
apoints of size up to bC (a pre-specified constant), i.e., D = ∪|D|/bC

i=1 Di. Instead of computing the
output at once, it is equivalent to performing an update |D|/bC − 1 times:

CA(LB ,D) = UPDATE(D1,UPDATE(D2, . . .UPDATE(D|D|/bC−1,CA(LB ,D|D|/bC ))))

Computing CrossAttention(LB ,D|D|/BC
) requires O(bC |LB |), i.e., constant memory since bC

and |LB | are both constants. After its computation, the memory can be freed up, so that each of
the subsequent UPDATE operations can re-use the memory space one by one. Each of the update
operations also costs O(bC |LB |) constant memory, resulting in CrossAttention(LB ,D) only
needing constant memory O(bC |LB |) in total. As a result, CMAB’s output can be computed in
constant memory.

3.1.3 ADDITIONAL USEFUL PROPERTIES

Since CMABs leverage only cross-attention and self-attention modules where both are permutation
invariant, CMABs are also permutation invariant by nature. Similar to transformers, CMABs can
leverage positional encodings for sequence and temporal data. Another advantage of CMABs over
prior attention works is that the original input data D does not need to be stored when performing
updates, meaning the model has privacy-preserving properties and is applicable to streaming data
settings where data cannot be stored. CMABs only require (1) constant memory regardless of the
number of inputs, making them particularly useful for scaling to large amounts of inputs, and (2)
constant computation to perform updates, making them particularly useful for settings where the
data comes in a stream and updates need to be performed to the dataset (e.g., contextual bandits,
bayesian optimization, active learning, and temporal data). The efficiency of CMABs allows for
modern attention models to be highly accessible for low-compute domains (e.g, IoT devices). To
showcase CMABs general applicability, we included in the Appendix a model for next-event pre-
diction (Temporal Point Processes) that also leverages CMABs.

3.2 CONSTANT MEMORY ATTENTIVE NEURAL PROCESS (CMANP)

In this section, we introduce Constant Memory Attentive Neural Processes (CMANPs), a memory
efficient variant of Neural Processes (Figure 2) based on CMAB blocks. The conditioning, querying,
and updating phases in CMANPs work as follows:

Conditioning Phase: In the conditioning phase, the CMAB blocks encode the context dataset into
a set of latent vectors Li. The first block takes as input a set of meta-learned latent vectors L0 (i.e.,
LI in CMABs) and the context dataset DC , and outputs a set of encodings L1 (i.e., L′

I in CMABs).
The output latents of each block are passed as the input latents to the next CMAB block.

Li = CMAB(Li−1,DC)

Since CMAB can compute its output in constant memory, CMANPs can also perform this condi-
tioning phase in constant memory.
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Figure 2: Constant Memory Attentive Neural Processes.

Memory Complexity
Conditioning Querying Updating

In Terms of |DC | |DC | M |DC | |DU |
TNP-D N/A N/A N/A
TNP-ND N/A N/A N/A
EQTNP
LBANP
LBANP-ND
CMANP (Ours)
CMANP-AND (Ours)

Table 1: Comparison of Memory Complexities of top-performing Neural Processes with respect to
the number of context datapoints |DC |, number of target datapoints in a batch M , and the num-
ber of new datapoints in an update |DU |. (Green) Checkmarks represent requiring constant mem-
ory, (Orange) half checkmarks represent requiring linear memory, and (Red) Xs represent requiring
quadratic or more memory. A larger table with all baselines is included in the Appendix.

Querying Phase: In the querying phase, the deployed model retrieves information from the fixed
size outputs of the CMAB blocks (Li) to make predictions for the query datapoints (Xquery). Be-
ginning with X0

query ← Xquery, when making a prediction for the query datapoints Xquery, infor-
mation is retrieved via cross-attention.

Xi
query = CrossAttention(Xi−1

query, Li)

Update Phase: In the update phase, the NP receives a batch of new datapoints DU to include in the
context dataset. CMANPs leverage the efficient update mechanism of CMABs to achieve efficient
updates (constant per datapoint) to its context dataset, i.e., computing updated latents Lupdated

i given
the new datapointsDU . Beginning with Lupdated

0 ← L0, the CMAB blocks are updated sequentially
using the updated output of the previous CMAB block as follows:

Lupdated
i = CMAB(Lupdated

i−1 ,DC ∪ DU )

Since CMAB can compute the output and perform updates in constant memory irrespective of the
number of context datapoints, CMANPs can also compute its output and perform updates in constant
memory. In Table 1, we compare the memory complexities of top-performing Neural Processes,
showcasing the efficiency gains of CMANP over prior state-of-the-art methods.

3.2.1 AUTOREGRESSIVE NOT-DIAGONAL EXTENSION

In many settings where NPs are applied such as Image Completion, the target datapoints are cor-
related and their predictive distribution are evaluated altogether. As such, prior works (Nguyen &
Grover, 2022; Feng et al., 2023) have proposed a Not-Diagonal variant of NPs which predicts the
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mean and a full covariance matrix, typically via a low-rank approximation. This is in contrast to the
vanilla (Diagonal) variants which predict the mean and a diagonal covariance matrix. Not-Diagonal
methods, however, are not scalable, requiring quadratic memory in the number of target datapoints
due to outputting a full covariance matrix.

Leveraging the efficient updates property of CMABs, we propose CMANP-AND (Autoregres-
sive Not-Diagonal). During training, CMANP-AND follows the framework of prior Not-Diagonal
variants. When deployed, the model is treated as an autoregressive model that makes predic-
tions in blocks of size bQ datapoints. For each block prediction, a mean and full covariance
matrix is computed via a low-rank approximation. Sampled predictions of prior blocks are used
to make predictions for later blocks. The first block is sampled as follows: ŷN+1:N+bQ ∼
N (µθ(D0

C , xN+1:N+bQ),Σθ(D0
C , xN+1:N+bQ)). Afterwards, by leveraging the efficient update

mechanism, CMANP-AND performs an update using the predictions {(xi, ŷi)}
N+bQ
N+1 as new con-

text datapoints, meaning that CMANP-AND is now conditioned on a new context datasetD1
C where

D1
C = D0

C ∪ {(xi, ŷi)}
N+bQ
N+1 . Formally, the general formulation is as follows:

ŷN+kbQ+1:N+(k+1)bQ ∼ N (µθ(Dk
C , xN+kbQ+1:N+(k+1)bQ),Σθ(Dk

C , xN+kbQ+1:N+(k+1)bQ))

where k is the number of blocks already processed andDk
C = {(xi, yi)}Ni=1∪{(xi, ŷi)}

N+kbQ
N+1 is the

context dataset. The hyperparameter bQ controls (1) the computational cost of the model in terms of
memory and sequential computation length and (2) the performance of the model. Lower values of
bQ allow for modelling more complex distributions, offering better performance but requiring more
forward passes of the model. Since bQ is a constant, this Autoregressive Not-Diagonal extension
makes predictions in constant memory, unlike prior Not-Diagonal variants which were quadratic in
memory. As such, CMANP-AND can scale to a larger number of datapoints than prior methods
(LBANP-ND and TNP-ND). The big-O complexity analysis is included in the Appendix.

4 EXPERIMENTS

In this section, we aim to evaluate the empirical performance of CMANPs and provide an anal-
ysis of CMANPs, showcasing their versatility. To do so, we compare CMANPs against a large
variety of members of the Neural Process family on standard NP benchmarks: image completion
and meta-regression. Specifically, we compare against Conditional Neural Processes (CNPs) (Gar-
nelo et al., 2018a), Neural Processes (NPs) (Garnelo et al., 2018b), Bootstrapping Neural Pro-
cesses (BNPs) (Lee et al., 2020), (Conditional) Attentive Neural Processes (C)ANPs (Kim et al.,
2019), Bootstrapping Attentive Neural Processes (BANPs) (Lee et al., 2020), Latent Bottlenecked
Attentive Neural Processes (LBANPs) (Feng et al., 2023), and Transformer Neural Processes
(TNPs) (Nguyen & Grover, 2022). We also compare against the Not-Diagonal variants of the state-
of-the-art methods (LBANP-ND and TNP-ND). Notably, our proposed CMANPs leverage CMABs,
LBANPs (Feng et al., 2023) leverage iterative attention (Jaegle et al., 2021), and TNPs leverage
transformers (Vaswani et al., 2017).

For the purpose of consistency, we set the number of latents (i.e., bottleneck size) |LI | = |LB | =
128 across all experiments. We also set bQ = 5. To fairly compare iterative attention and CMABs,
we report results for LBANPs with the same sized bottleneck (i.e., number of latents L = 128)
as CMANPs across all experiments. We later show in the analysis section (Section 4.2.1) that our
reported performance of CMANPs can be further improved by increasing the number of latents (|LI |
or |LB |) and decreasing the prediction block size bQ.

Due to space limitations, several details are included in the appendix (1) experiments on contextual
multi-armed bandits with a setting where data comes in a stream; (2) implementation details2 such as
hyperparameters and their selection; and (3) an application of CMABs on Temporal Point Processes,
showing CMABs’ general applicability.

4.1 IMAGE COMPLETION

In this setting, we consider the image completion setting with two datasets: EMNIST (Cohen et al.,
2017) and CelebA (Liu et al., 2015). The model is given a set of pixel values of an image and aims

2The code will be released upon acceptance.
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Method CelebA EMNIST
32x32 64x64 128x128 Seen (0-9) Unseen (10-46)

CNP 2.15 ± 0.01 2.43 ± 0.00 2.55 ± 0.02 0.73 ± 0.00 0.49 ± 0.01
CANP 2.66 ± 0.01 3.15 ± 0.00 — 0.94 ± 0.01 0.82 ± 0.01

NP 2.48 ± 0.02 2.60 ± 0.01 2.67 ± 0.01 0.79 ± 0.01 0.59 ± 0.01
ANP 2.90 ± 0.00 — — 0.98 ± 0.00 0.89 ± 0.00
BNP 2.76 ± 0.01 2.97 ± 0.00 — 0.88 ± 0.01 0.73 ± 0.01

BANP 3.09 ± 0.00 — — 1.01 ± 0.00 0.94 ± 0.00
TNP-D 3.89 ± 0.01 5.41 ± 0.01 — 1.46 ± 0.01 1.31 ± 0.00
LBANP 3.97 ± 0.02 5.09 ± 0.02 5.84 ± 0.01 1.39 ± 0.01 1.17 ± 0.01

CMANP (Ours) 3.93 ± 0.05 5.02 ± 0.14 5.55 ± 0.01 1.36 ± 0.01 1.09 ± 0.01
TNP-ND 5.48 ± 0.02 — — 1.50 ± 0.00 1.31 ± 0.00

LBANP-ND 5.57 ± 0.03 — — 1.42 ± 0.01 1.14 ± 0.01
CMANP-AND (Ours) 6.31 ± 0.04 6.96 ± 0.07 7.15 ± 0.14 1.48 ± 0.03 1.19 ± 0.03

Table 2: Image Completion Experiments. Each method is evaluated with 5 different seeds according
to the log-likelihood (higher is better). The ”dash” represents methods that could not be run because
of the large memory requirement.

to predict the remaining pixels of the image. Each image corresponds to a unique function (Garnelo
et al., 2018b). In this experiment, the x values are rescaled to [-1, 1] and the y values are rescaled to
[−0.5, 0.5]. For each task, a randomly selected set of pixels are selected as context datapoints and
target datapoints.

EMNIST comprises black and white images of handwritten letters of 32× 32 resolution. 10 classes
are used for training. The context and target datapoints are sampled according to N ∼ U [3, 197) and
M ∼ U [3, 200 −N) respectively. CelebA comprises coloured images of celebrity faces. Methods
are evaluated on various resolutions to show the scalability of the methods. In CelebA32, images are
downsampled to 32× 32 and the number of context and target datapoints are sampled according to
N ∼ U [3, 197) and M ∼ U [3, 200−N) respectively. In CelebA64, the images are down-sampled to
64× 64 and N ∼ U [3, 797) and M ∼ U [3, 800−N). In CelebA128, the images are down-sampled
to 128× 128 and N ∼ U [3, 1597) and M ∼ U [3, 1600−N).

Results. Although all NP baselines (see Table 2) were able to be evaluated on CelebA (32 x 32)
and EMNIST, many were not able to scale to CelebA (64 x 64) and CelebA (128 x 128). All
Not-Diagonal variants were not able to be trained on CelebA (64 x 64) and CelebA (128 x 128)
due to being too computationally expensive and requiring quadratic computation and memory. In
contrast, CMANP(-AND) was not affected by this limitation, showing empirically CMANP-AND is
scalable to more datapoints than prior Not-Diagonal variants. The results show that CMANP-AND
achieves clear state-of-the-art results on CelebA (32x32), CelebA (64x64), and CelebA (128x128).
Furthermore, CMANP-AND achieves results competitive with state-of-the-art on EMNIST.

Notably, the vanilla variants of CMANP (CMAB-based model) and LBANP (iterative attention-
based model (Jaegle et al., 2021)) achieve similar performance while having the same sized bottle-
neck, i.e., the number of latents in both baselines is 128. These results suggest that the improved
efficiency properties (constant memory and constant computation updates) of CMABs come at little
cost in performance compared to iterative attention.

4.2 1-D REGRESSION

In this experiment, the goal is to model an unknown function f and make predictions for a batch of
M target datapoints given a batch of N context datapoints. During each training epoch, a batch of
B = 16 functions are sampled from a GP prior with an RBF kernel fi ∼ GP (m, k) where m(x) = 0

and k(x, x′) = σ2
f exp(

−(x−x′)2

2l2 ). The hyperparameters are sampled according to l ∼ U [0.6, 1.0),
σf ∼ U [0.1, 1.0), N ∼ U [3, 47), and M ∼ U [3, 50 −N). After training, the models are evaluated
according to the log-likelihood of the targets on functions sampled from GPs with RBF and Matern
5/2 kernels.
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Figure 3: (Left) Comparison of memory usage of state-of-the-art NPs relative to the number of
context datapoints. (Right) Comparison of memory usage of state-of-the-art NPs relative to the
number of target datapoints.

Results. As shown in Table 3, CMANP-AND outperforms all baselines (except for TNP-ND) by
a significant margin. CMANP-AND achieves comparable results to TNP-ND while only requiring
constant memory. Once again, we see that the vanilla version of CMANP (CMAB-based model) and
LBANP (iterative attention-based model (Jaegle et al., 2021)) achieve similar performance, further
suggesting that CMABs’ improves upon iterative attention in terms of efficiency (constant memory
and constant computation updates) at little cost in performance.

4.2.1 ANALYSIS Method RBF Matern 5/2
CNP 0.26 ± 0.02 0.04 ± 0.02

CANP 0.79 ± 0.00 0.62 ± 0.00
NP 0.27 ± 0.01 0.07 ± 0.01

ANP 0.81 ± 0.00 0.63 ± 0.00
BNP 0.38 ± 0.02 0.18 ± 0.02

BANP 0.82 ± 0.01 0.66 ± 0.00
TNP-D 1.39 ± 0.00 0.95 ± 0.01
LBANP 1.27 ± 0.02 0.85 ± 0.02

CMANP (Ours) 1.24 ± 0.01 0.80 ± 0.01
TNP-ND 1.46 ± 0.00 1.02 ± 0.00

LBANP-ND 1.24 ± 0.03 0.78 ± 0.02
CMANP-AND (Ours) 1.48 ± 0.03 0.96 ± 0.01

Table 3: 1-D Meta-Regression Experiments with
log-likelihood metric (higher is better).

Empirical Memory: Figure 3 compares the
empirical memory cost of various state-of-the-
art NP methods during evaluation. Comparing
the vanilla variants of NPs, we see that TNP-
D (transformer-based model) scales quadrat-
ically with respect to the number of context
datapoints while LBANP (iterative attention-
based model) scales linearly. In contrast,
CMANP (CMAB-based model) only requires
a low constant amount of memory regardless
of the number of context datapoints. Com-
paring the Not-Diagonal variant of NPs, we
see that both TNP-ND and LBANP-ND scale
quadratically with respect to the number of
target datapoints, limiting their applications.
In contrast, CMANP-AND can scale to a far
larger number of target datapoints. As a result, we can note that CMANPs are significantly more
memory efficient and scalable to more datapoints than prior state-of-the-art methods.

Effect of bQ: Figure 4 compares performance with respect to varying query block sizes bQ for
CMANP-AND. We see that smaller block sizes achieve significantly better performance. This is
expected as the autoregressive nature of the Neural Process results in a more flexible predictive
distribution and hence better performance at the cost of an increased time complexity. We provide
an analysis of the time complexity in the appendix (Figures 6 and 7).

Varying Number of Latents In Figure 4, we evaluated the result of varying the number of input
latents (LI ) and the number of latents per block (LB). We found that increasing the size of the
bottleneck (i.e., number of latents LI and LB) considerably improves the performance of the model.
This, however, naturally comes at an increased memory cost.

5 RELATED WORK

Transformers (Vaswani et al., 2017) have achieved a large amount of success in a wide range of ap-
plications. However, the quadratic scaling of Transformers limits their applications. As such, there
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Figure 4: (Left) CMANP’s performance relative to the size of the predictive block size (bQ). (Mid-
dle) CMANP’s performance relative to the number of input latent vectors (|LI |). (Right) CMANP’s
performance relative to the number of block-wise latent vectors (|LB |).

have been many follow-up works on efficient variants. However, very few works have achieved con-
stant memory complexity. To the best of our knowledge, we are aware of only two works which have
achieved a constant memory complexity. Rabe & Staats (2022) showed that self-attention can be
computed in constant memory at the expense of an overall quadratic computation. Wu et al. (2022)
proposed Memformer, a constant memory version of transformer specifically for sequence mod-
elling problems by leveraging an external dynamic memory to encode and decode information that
is updated over timesteps. As such, the memory/latent state of Memformer changes depending on
the order of the datapoints. In contrast, CMABs only require linear computation, constant memory,
and are by default permutation-invariant, i.e., not limited to sequence modelling. For an in-depth
overview of follow-up works to Transformers, we refer the reader to the recent survey works (Khan
et al., 2022; Lin et al., 2022).

Although CMABs have an efficient update mechanism reminiscent of RNNs (Cho et al., 2014;
Chung et al., 2014; Hochreiter & Schmidhuber, 1997), their applications are different. RNNs are
sensitive to input order, making their ideal setting applications which use sequential data. In con-
trast, by design, CMABs are by default permutation-invariant. Due to their long computation graph,
RNNs also have issues such as vanishing gradients, making training these models with a large num-
ber of datapoints difficult. CMABs do not have issues with vanishing gradients since their ability to
update efficiently is a fixed property of the module rather than RNN’s learned mechanism.

NPs are applied in a wide range of applications which include Temporal Point Processes (Bae
et al., 2023), sequence data (Singh et al., 2019; Willi et al., 2019), modelling stochastic physics
fields (Holderrieth et al., 2021), robotics (Chen et al., 2022; Li et al., 2022b), and climate model-
ing (Vaughan et al., 2021). In doing so, there have been several methods proposed for encoding the
context dataset. For example, CNPs (Garnelo et al., 2018a) encode the context set via a deep sets
encoder (Zaheer et al., 2017), NPs (Garnelo et al., 2018b) propose to encode functional stochasticity
via a latent variable. ConvCNPs (Gordon et al., 2019) use convolutions to build in translational
equivariance. ANPs (Kim et al., 2019), LBANPs (Feng et al., 2023), and TNPs (Nguyen & Grover,
2022) use various kinds of attention. Recent work (Bruinsma et al., 2023) builds on CNPs and Con-
vCNPs by proposing to make them autoregressive at deployment. For an in-depth overview of NPs
and their applications, we refer the reader to the recent survey work (Jha et al., 2022).

6 CONCLUSION

In this work, we introduced CMAB (Constant Memory Attention Block), a novel general-purpose
attention block that (1) is permutation invariant, (2) computes its output in constant memory, and
(3) performs updates in constant computation. Building on CMAB, we proposed Constant Memory
Attentive Neural Processes (CMANPs), a new NP variant requiring only constant memory. Lever-
aging the efficient updates property of CMAB, we introduced CMANP-AND (Autoregressive Not-
Diagonal extension). Empirically, we show that CMANP(-AND) achieves state-of-the-art results,
while being significantly more efficient than prior state-of-the-art methods. In our analysis, we also
showed that either by increasing the size of the latent bottleneck (LI and LB) or decreasing the
block size (BQ), we can further improve the model performance.
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A APPENDIX: ADDITIONAL PROOF DETAILS

In this section, we (1) provide formal proof for CMAB’s constant computation updates property,
(2) include practical considerations to avoid numerical issues in the computation, (3) show that
CMANPs uphold context and target invariance properties, and (4) include complexity analysis for
CMANP-AND.

A.1 CMAB’S CONSTANT COMPUTATION UPDATES PROOF

Recall, CMAB works as follows:

CMAB(LI ,D) = SA(CA(LI , SA(CA(LB ,D )) ))

where SA represents SelfAttention and CA represents CrossAttention. The two cross-attentions
have a linear complexity of O(N |LB |) and a constant complexity O(|LB ||LI |), respectively where
N = |D|. The self-attentions have constant complexities of O(|LB |2) and O(|LI |2), respectively.
As such, the total computation required to compute the output of the block is O(N |LB |+ |LB |2 +
|LB ||LI |+ |LI |2) where |LB | and |LI | are hyperparameter constants which bottleneck the amount
of information which can be encoded.

Importantly, since |LB | and |LI | are constants (hyperparameters), CMAB’s complexity is constant
except for the contributing complexity part of the first attention block: CrossAttention(LB ,D),
which has a complexity of O(N |LB |). To achieve constant computation updates, it suffices that
the updated output of this cross-attention can be updated in constant computation per datapoint.
Simplified, CrossAttention(LB ,D) is computed as follows:

emb = CrossAttention(LB ,D) = softmax(QKT )V

where K and V are key, value matrices respectively that represent the embeddings of the context
dataset DC and Q is the query matrix representing the embeddings of the block-wise latent vectors
LB . When an update withDU new datapoints occurs, |DU | rows are added to the key, value matrices.
However, the query matrix is constant due to LB being a fixed set of latent vectors whose values are
learned.

Without loss of generality, for simplicity, we consider the j− th output vector of the cross-attention
(embj). Let si = Qj,:(Ki,:)

T and vi = Vi,:, then we have the following:

embj =

N∑
i=1

exp(si)

C
vi

where C =
∑N

i=1 exp(si). Performing an update with a set of new inputs DU , results in adding
|DU | rows to the K,V matrices:

emb′j =

N+|DU |∑
i=1

exp(si)

C ′ vi

where C ′ =
∑N+|DU |

i=1 exp(si) = C +
∑N+|DU |

i=N+1 exp(si). As such, the updated embedding emb′j
can be computed via a rolling average:

emb′j =
C

C ′ × embj +

N+|DU |∑
i=N+1

esi

C ′ vi

Computing emb′j and C ′ via this rolling average only requires O(|DU |) operations when given C
and emb as required. In practice, however, this is not stable. The computation can quickly run into
numerical issues such as overflow problems.

Practical Implementation: In practice, instead of computing and storing C and C ′, we instead
compute and store log(C) and log(C ′).
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The update is instead computed as follows: log(C ′) = log(C) + softplus(T ) where T =

log(
∑N+|DU |

i=N+1 exp(si − log(C))). T can be computed efficiently and accurately using the log-
sum-exp trick in O(|DU |). This results in an update as follows:

emb′j = exp(log(C)− log(C ′))× embj +

N+|DU |∑
i=N+1

exp(si − log(C ′))vi

This method of implementation avoids the numerical issues that will occur while resulting in com-
puting the same emb′. We detail how to derive the practical implementation below:

Practical Implementation (Derivation):

C =

N∑
i=1

exp(si) C ′ =

N+|DU |∑
i=1

exp(si)

log(C ′)− log(C) = log(

N+|DU |∑
i=1

exp(si))− log(

N∑
i=1

exp(si))

log(C ′) = log(C) + log(

∑N+|DU |
i=1 exp(si)∑N

i=1 exp(si)
)

log(C ′) = log(C) + log(1 +

∑N+|DU |
i=N+1 exp(si)∑N

i=1 exp(si)
)

log(C ′) = log(C) + log(1 +

∑N+|DU |
i=N+1 exp(si)

exp(log(C))
)

log(C ′) = log(C) + log(1 +

N+|DU |∑
i=N+1

exp(si − log(C)))

Let T = log(
∑N+|DU |

i=N+1 exp(si − log(C))). Note that T can be computed efficiently using the log-
sum-exp trick in O(|DU |). Also, recall the softplus function is defined as follows: softplus(k) =
log(1 + exp(k)). As such, we have the following:

log(C ′) = log(C) + log(1 + exp(T ))

= log(C) + softplus(T )

Recall:

emb′j =
C

C ′ × embj +

N+|DU |∑
i=N+1

exp(si)

C ′ vi

Re-formulating it using log(C) and log(C ′) instead of C and C ′ we have the following update:

emb′j = exp(log(C)− log(C ′))× embj +

N+|DU |∑
i=N+1

exp(si − log(C ′))vi

which only requiresO(|DU |) computation (i.e., constant computation per datapoint) while avoiding
numerical issues.

A.2 ADDITIONAL PROPERTIES

In this section, we show that CMANPs uphold the context and target invariance properties.
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Property: Context Invariance. A Neural Process pθ is context invariant if for any choice of per-
mutation function π, context datapoints {(xi, yi)}Ni=1, and target datapoints xN+1:N+M ,

pθ(yN+1:N+M |xN+1:N+M , x1:N , y1:N ) = pθ(yN+1:N+M |xN+1:N+M , xπ(1):π(N), yπ(1):π(N))

Proof Outline: Since CMANPs retrieve information from a compressed encoding of the context
dataset computed by CMAB (Constant Memory Attention Block). It suffices to show that CMABs
compute their output while being order invariant in their input (i.e., context dataset in CMANPs)
(D).

Recall CMAB’s work as follows:

CMAB(LI ,D) = SA(CA(LI ,SA(CA(LB ,D))))

where LI is a set of vectors outputted by prior blocks, LB is a set of vectors whose values are learned
during training, and D are the set of inputs in which we wish to be order invariant in.

The first cross-attention to be computed is CA(LB ,D). A nice feature of cross-attention is that its
order-invariant in the keys and values; in this case, these are embeddings of D. In other words, the
output of CA(LB ,D) is order invariant in the input data D.

Since the remaining self-attention and cross-attention blocks take as input: LI and the output of
CA(LB ,D), both of which are order invariant inD, therefore the output of CMAB is order invariant
in D.

As such, CMANPs are also context invariant as required.

Property: Target Equivariance. A model pθ is target equivariant if for any choice of permutation
function π, context datapoints {(xi, yi)}Ni=1, and target datapoints xN+1:N+M ,

pθ(yN+1:N+M |xN+1:N+M , x1:N , y1:N ) = pθ(yπ(N+1):π(N+M)|xπ(N+1):π(N+M), x1:N , y1:N )

Proof Outline: The vanilla variant of CMANPs makes predictions similar to that of LBANPs (Feng
et al., 2023) by retrieving information from a set of latent vectors via cross-attention and uses an
MLP (Predictor). The architecture design of LBANPs ensure that the result is equivalent to mak-
ing the predictions independently. As such, CMANPs preserve target equivariance the same way
LBANPs do.

However, for the Autoregressive Not-Diagonal variant (CMANP-AND), the target equivariance is
not held as it depends on the order in which the datapoints are processed. This is in common with
that of prior methods by Nguyen & Grover (2022) and Bruinsma et al. (2023).

A.3 COMPLEXITY ANALYSIS FOR CMANP-AND

For a batch of M datapoints and a prediction block size of bQ (hyperparameter constant), there
are ⌈MbQ ⌉ batches of datapoints whose predictions are made autoregressively. Each batch incurs a
constant complexity of O(bQ)2 due to predicting a full covariance matrix. As such for a batch of
M target datapoints, CMANP-AND requires a sub-quadratic total computation of O(⌈MbQ ⌉b

2
Q) =

O(MbQ) with a sequential computation length of O(MbQ ). Crucially, CMANP-AND only requires
constant memory in |DC | and linear memory in M , making it significantly more efficient than prior
works which required at least quadratic memory.

B APPENDIX: ADDITIONAL EXPERIMENTS AND ANALYSES

In this section, we (1) showcase the versatility of CMABs by applying them to Temporal Point
Processes, (2) show results for CMANPs on Contextual Bandits, a setting where the amount of data
increases over time, (3) include a memory complexity table which includes all baselines, and (4)
analyse the time cost and performance relative to several hyperparameters.
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Mooc Reddit
RMSE NLL ACC RMSE NLL ACC

THP 0.202 ± 0.017 0.267 ± 0.164 0.336 ± 0.007 0.238 ± 0.028 0.268 ± 0.098 0.610 ± 0.002
CMHP 0.168 ± 0.011 -0.040 ± 0.620 0.237 ± 0.024 0.262 ± 0.037 0.528 ± 0.209 0.609 ± 0.003

Table 4: Temporal Point Processes Experiments.

B.1 APPLYING CMABS TO TEMPORAL POINT PROCESSES (TPPS)

In this section, we highlight the effectiveness of our proposed Constant Memory Attention Block by
applying it to settings beyond that of Neural Processes. Specifically, we apply CMABs to Temporal
Point Processes (TPPs). In brief, Temporal Point Processes are stochastic processes composed of
a time series of discrete events. Recent works have proposed to model this via a neural network.
Notably, models such as THP (Zuo et al., 2020) encode the history of past events to predict the
next event, i.e., modelling the predictive distribution of the next event pθ(τl+1|τ≤l) where θ are
the parameters of the model, τ represents an event, and l is the number of events that have passed.
Typically, an event comprises a discrete temporal (time) stamp and a mark (categorical class).

B.1.1 CONSTANT MEMORY HAWKES PROCESSES (CMHPS)

Building on CMABs, we introduce the Constant Memory Hawkes Process (CMHPs) (Figure 5),
a model which replaced the transformer layers in Transformer Hawkes Process (THP) (Zuo et al.,
2020) with Constant Memory Attention Blocks. However, unlike THPs which summarise the infor-
mation for prediction in a single vector, CMHPs summarise it into a set of latent vectors. As such, a
flattening operation is added at the end of the model. Following prior work (Bae et al., 2023; Shchur
et al., 2020), we use a mixture of log-normal distribution as the decoder for both THP and CMHP.

Figure 5: Constant Memory Hawkes Processes

B.1.2 CMHPS: EXPERIMENTS

In this experiment, we compare CMHPs against THPs on standard TPP datasets: Mooc and Reddit.

Mooc Dataset. comprises of 7, 047 sequences. Each sequence contains the action times of an
individual user of an online Mooc course with 98 categories for the marks.

Reddit Dataset. comprises of 10, 000 sequences. Each sequence contains the action times from the
most active users with marks being one of the 984 the subreddit categories of each sequence.

The results (Table 4) suggest that replacing the transformer layer with CMAB (Constant Memory
Attention Block) results in a small drop in performance. Crucially, unlike THP, CMHP has the
ability to efficiently update the model with new data as it arrives over time which is typical in time
series data such as in Temporal Point Processes. CMHP only pays constant computation to update
the model unlike the quadratic computation required by THP.

B.2 ADDITIONAL CMANPS EXPERIMENTS: CONTEXTUAL BANDITS

In the Contextual Bandit setting introduced by Riquelme et al. (2018), a unit circle is divided into 5
sections which contain 1 low reward section and 4 high reward sections δ defines the size of the low
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Method δ = 0.7 δ = 0.9 δ = 0.95 δ = 0.99 δ = 0.995
Uniform 100.00 ± 1.18 100.00 ± 3.03 100.00 ± 4.16 100.00 ± 7.52 100.00 ± 8.11

CNP 4.08 ± 0.29 8.14 ± 0.33 8.01 ± 0.40 26.78 ± 0.85 38.25 ± 1.01
CANP 8.08 ± 9.93 11.69 ± 11.96 24.49 ± 13.25 47.33 ± 20.49 49.59 ± 17.87

NP 1.56 ± 0.13 2.96 ± 0.28 4.24 ± 0.22 18.00 ± 0.42 25.53 ± 0.18
ANP 1.62 ± 0.16 4.05 ± 0.31 5.39 ± 0.50 19.57 ± 0.67 27.65 ± 0.95
BNP 62.51 ± 1.07 57.49 ± 2.13 58.22 ± 2.27 58.91 ± 3.77 62.50 ± 4.85

BANP 4.23 ± 16.58 12.42 ± 29.58 31.10 ± 36.10 52.59 ± 18.11 49.55 ± 14.52
TNP-D 1.18 ± 0.94 1.70 ± 0.41 2.55 ± 0.43 3.57 ± 1.22 4.68 ± 1.09
LBANP 1.11 ± 0.36 1.75 ± 0.22 1.65 ± 0.23 6.13 ± 0.44 8.76 ± 0.15

CMANP (Ours) 0.93 ± 0.12 1.56 ± 0.10 1.87 ± 0.32 9.04 ± 0.42 13.02 ± 0.03

Table 5: Contextual Multi-Armed Bandit Experiments with varying δ. Models are evaluated accord-
ing to cumulative regret (lower is better). Each model is run 50 times for each value of δ.

reward section while the 4 high reward sections have equal sizes. In each round, the agent has to
select 1 of 5 arms that each represent one of the regions. For context during the selection, the agent
is given a 2-D coordinate X and the actions it selected and rewards it received in previous rounds.

If ||X|| < δ, then the agent is within the low reward section. If the agent pulls arm 1, then the
agent receives a reward of r ∼ N (1.2, 0.012). Otherwise, if the agent pulls a different arm, then it
receives a reward r ∼ N (1.0, 0.012). Consequently, if ||X|| ≥ δ, then the agent is within one of the
four high-reward sections. If the agent is within a high reward region and selects the corresponding
arm to the region, then the agent receives a large reward of N ∼ N (50.0, 0.012). Alternatively,
pulling arm 1 will reward the agent with a small reward of r ∼ N (1.2, 0.012). Pulling any of the
other 3 arms rewards the agent with an even smaller reward of r ∼ N (1.0, 0.012).

During each training iteration, B = 8 problems are sampled. Each problem is defined by {δi}Bi=1
which are sampled according to a uniform distribution δ ∼ U(0, 1). N = 512 points are sampled
as context datapoints and M = 50 points are sampled for evaluation. Each datapoint comprises of a
tuple (X, r) where X is the coordinate and r is the reward values for the 5 arms. The objective of the
model during training is to predict the reward values for the 5 arms given the coordinates (context
datapoints).

During the evaluation, the model is run for 2000 steps. At each step, the agent selects the arm
which maximizes its UCB (Upper-Confidence Bound). After which, the agent receives the reward
value corresponding to the arm. The performance of the agent is measured by cumulative regret.
For comparison, we evaluate the modes with varying δ values and report the mean and standard
deviation for 50 seeds.

Results. In Table 5, we compare CMANPs with other NP baselines, including the recent state-
of-the-art methods TNP-D, EQTNP, and LBANP. We see that CMANP achieves competitive per-
formance with state-of-the-art for δ ∈ {0.7, 0.9, 0.95}. However, the performance degrades as δ
reaches extreme values close to the limit such as 0.99 and 0.995 – settings that are at the edge of the
training distribution.

B.3 ADDITIONAL ANALYSES

Memory Complexity: In Table 6, we include a comparison of CMANPs with all NP baselines,
showing that CMANPs are amongst the best in terms of memory efficiency when compared to
prior NP methods. Notably, the methods with a similar memory complexity to CMANPs perform
significantly worse in terms of performance across the various experiments (Tables 2 and 3)). As
such, CMANPs provide the best trade-off in terms of memory and performance.

Time Cost and Performance Scatterplot: In Figure 6, we evaluate the empirical time cost of
CMANP-AND with varying number of context datapoints (N = |DC |), number of target datapoints
(M ), and block size (bQ). The number of context datapoints and the number of target datapoints are
shown as labels in the scatterplot. The colour of the points on the scatterplot represents its respective
block size. Depending on the amount of available resources (e.g., time), the value of the block size
can be chosen equivalently.
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Conditioning Querying Updating
In Terms of |DC | |DC | M |DC | |DU |

CNP
CANP

NP
ANP
BNP

BANP
TNP-D N/A N/A N/A
LBANP

CMANP (Ours)

TNP-ND N/A N/A N/A
LBANP-ND

CMANP-AND (Ours)

Table 6: Comparison of Memory Complexities of Neural Processes with respect to the number
of context datapoints |DC |, number of target datapoints in a batch M , and the number of new
datapoints in an update |DU |. (Green) Checkmarks represent requiring constant memory, (Orange)
half checkmarks represent requiring linear memory, and (Red) Xs represent requiring quadratic or
more memory. A table with all baselines are included in the Appendix.

Figure 6: Scatterplot comparing the empirical time cost of CMANP-AND with respect to the block
size (bQ), number of context datapoints (N ), and number of target datapoints (M ).
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Figure 7: Additional Analyses Graphs

(a) y = sin(x) + sin(10/3) ∗ x (b) y = e−x ∗ sin(π ∗ x)/2 (c) y = −x ∗ sin(3 ∗ x)

Figure 8: CMANPs 1-D Regression Visualizations

Generalisation Ability: In Figure 7, we evaluated CMANP-AND’s potential to generalize to set-
tings with significantly more context datapoints than originally trained on. During training, the
model was trained on tasks with a maximum of 800 context datapoints. In contrast, during eval-
uation, we conditioned on up to 2000 context datapoints and evaluated on 800 target datapoints.
Empirically, we found that the model’s performance grows consistently as the number of context
datapoints increases. However, the performance slows down at large number of contexts. We hy-
pothesize that the cause of the saturation is due to two main factors: (1) the information gained from
new context datapoints is dependent on the size of the current context dataset. For example, adding
400 new datapoints to a context dataset of size 400 results in 100% more data. Alternatively, adding
400 new datapoints to a context dataset of size 1600 results in 25% more data. As such, it is expected
to see such saturation with a linear x-axis scaling. (2) in this case, CelebA (64 x 64) comprising of
only 4096 pixels in total. 2000 comprises of a substantial amount of the data, i.e., approximately
half. As such, saturation is expected as the amount of information gained by additional datapoints
is minimal.

Effect of Block Size (bQ) on Empirical Time Cost: In Figure 7, we evaluated the time required
for CMANP-AND with respect to the block size (bQ). The results are as expected, showing that the
time required during deployment is lower as the block size increases. In the main paper, we showed
that lower block sizes improve the model’s performance. In conjunction, these plots show that there
is a trade-off between the time cost and performance. These results suggest that during deployment
it is advisable to select smaller block sizes if allowed for the time constraint.

Visualizations: In Figures 8 and 10, we show visualizations for the 1-D regression and Image
Completion tasks respectively. Figure 9 show out-of-distribution visualizations where the context
datapoints are only sampled from part of the distribution.

Number of Latents Comparison with LBANPs: A major factor that affects the performance in
iterative attention-based models is the size of the bottleneck (i.e., the number of latents). Feng
et al. (2023) showed that the performance of LBANPs (iterative attention based Neural Process) can
change significantly depending on |LLBANPs| (the number of latents). As such, for the sake of
fairness, in our paper, we similarly set the number of latents in CMANPs to match the same number
of latents used in LBANPs’ paper, i.e., |LI | = |LB | = |LLBANPs|.
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(a) y = sin(x) + sin(10/3) ∗ x (b) y = e−x ∗ sin(π ∗ x)/2 (c) y = −x ∗ sin(3 ∗ x)

Figure 9: CMANPs 1-D Out-of-Distribution Regression Visualizations. The model is evalu-
ated between [−2.0, 2.0]. However, context datapoints are sampled from only (a) [−1.0, 2.0], (b)
[−2.0, 1.0], and (c) [−2.0,−1.0] ∪ [1.0, 2.0].

Figure 10: CMANPs Image Completion Visualizations
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Num Latents CMANPs LBANPs
8 3.49± 0.02 3.54± 0.01

16 3.60± 0.03 3.64± 0.02
32 3.73± 0.03 3.77± 0.01
64 3.79± 0.06 3.88± 0.01
128 3.92± 0.03 3.97± 0.02

Table 7: Comparison of CMANPs with LBANPs for varying number of latents on the CelebA
(32x32) image completion task. The number of latents in CMANPs matches the same number
of latents used in LBANPs’ paper, i.e., |LI | = |LB | = |LLBANPs|. We see that CMANPs are
competitive with LBANPs performing slightly worse. However, unlike LBANPs, CMANPs (1)
computes their output in constant memory, and (2) perform updates in constant computation given
new context tokens (in this case, pixels)

(a) Runtime analysis of the update process. (b) Runtime analysis of the query process.

Figure 11: Analyses Graphs comparing the runtime of CMANPs with various baselines. (a) Com-
parison of the update procedure of CMAB-based NP (CMANPs) with Perceiver’s iterative attention-
based NP model (LBANPs) and a transformer-based NP model (EQTNP). CMANP (fast) refers to
the CMAB’s efficient update mechanism. CMANP (slow) refers to the traditional update mecha-
nism. (b) Comparison of the query/inference process of CMANPs with LBANPs (Perceiver’s iter-
ative attention-based model), TNPs (Transformer-based model), and EQTNPs (Transformer-based
model with an efficient query mechanism).

For completeness, we have included in Table 7 a comparison of the performance of CMANPs and
LBANPs for varying number of latents for the CelebA (32x32) image completion task. We see
that CMANPs are competitive with LBANPs performing slightly worse. However, unlike LBANPs,
CMANPs (1) computes their output in constant memory, and (2) perform updates in constant com-
putation given new context tokens (in this case, pixels).

Empirical Time Comparison with Baselines: In Figure 11a, we compare CMANP using the
efficient update process with CMANP using the traditional update process, showing that the effi-
cient update process is initially similar in runtime to the traditional update process. However, as
the number of context datapoints increases (i.e., updates are performed) over time, the traditional
update process requires linear runtime while our proposed efficient update process still only requires
constant runtime.

In Figure 11a, we also compare the runtime of the update process of CMAB-based NP (CMANPs)
with Perceiver’s iterative attention-based NP model (LBANPs) and a transformer-based NP model.
We see that the CMAB-based model only requires a constant amount of time to perform the up-
date. In contrast, Perceiver’s iterative attention-based model’s update runtime scales linearly and
Transformer model’s update runtime scales quadratically.

In Figure 11b, we compare the querying (inference) runtime of CMANP with LBANPs (Perceiver’s
iterative attention-based model), TNPs (Transformer-based model). We see that CMANPs and
LBANPs stay constant while the transformer-based model (TNP) scales quadratically in runtime.
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Figure 12: Comparison of our proposed Constant Memory Attention Block and that of LBANP’s
Attention Block (i.e., Perceiver’s iterative attention). The green blocks indicate constant complex-
ity. Naively computing the outputs, the white blocks indicate linear complexity. CMAB, however,
can compute its white cross attention block in constant memory via a rolling average. LBANP’s
Attention block (Perceiver’s iterative attention) cannot compute their white cross attention block in
constant memory.

We would like to note, however, that runtime is highly dependent on the efficiency of the imple-
mentation and the hardware. Since our work focused primarily on the memory aspect rather than
runtime, our implementation was that of a simple sequential version of CMABs and CMANPs.
However, CMANPs have an architecture which allows for several modules within CMABs to be
parallelized when performing updates for improved runtime. As such, we expect that an optimized
codebase will be able to significantly improve CMAB’s and CMANP’s runtime.

C APPENDIX: DISCUSSION

In this section, we (1) compare Perceiver’s iterative attention with CMABs, detailing why Perceiver
cannot achieve the efficiency properties of CMAB, (2) compare the likelihood computation of Au-
toregressive Not-Diagonal extension with Not-Diagonal extension, and (3) compare NPs with other
existing methods for uncertainty estimation.

C.1 COMPARISON OF ITERATIVE ATTENTION WITH CMABS

Figure 12 compares Perceiver’s iterative attention (used in LBANPs) with CMABs (used in
CMANPs). In this subsection, we detail why Perceiver’s iterative attention cannot achieve com-
puting its output in constant memory and performing updates in constant computation. Notably, the
property of constant memory is dependent on constant computation updates. Below, we detail why
Perceiver’s iterative attention does not have the constant computation updates property. Previously,
we proved that the output of CrossAttention can be updated in constant computation per datapoint
via a rolling summation given that the query vectors are constants. The efficiency gains revolve
around CMABs’ block-wise learnable latent vectors denoted as LB being a learned constant.

When stacked, CMABs work as follows: Li+1 = SA(CA(Li, L
′
B)) where L′

B = SA(CA(Li
B ,D))

and Li
B denote the block-wise latent vectors for the i-th CMAB.

Perceiver’s iterative attention block works as follows: Li+1 = SA(CA(Li,D)).

When new datapoints DU is added to the input, i.e., D ← D∪DU , the input latents (Lupdated
i ̸= Li

where i > 0) change and is thus not a constant. As such, Perceiver’s iterative attention do not allow
for (1) constant computation updates and (2) computing output in constant memory, making it more
expensive in terms of memory compared to CMABs.

For CMABs, computing Li+1 = SA(CA(Li, L
′
B)) is always constant in computation since |Li| and

|L′
B | are constant in size. Computing the updated output: Li

B = SA(CA(LB ,D∪DU )) can always
be computed in constant computation because LB is a constant.
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C.2 COMPARISON OF THE LIKELIHOOD COMPUTATION OF AUTOREGRESSIVE
NOT-DIAGONAL EXTENSION WITH NOT-DIAGONAL EXTENSION:

In brief, the Autoregressive Not-Diagonal extension is different from Not-Diagonal extension in
that the predictions are made autoregressively which allows for more flexible distributions than
prior Not-Diagonal variants. As such, it is expected that the autoregressive not-diagonal variant’s
likelihood is higher than that of the non-autoregressive baselines which only model an unimodal
gaussian distribution. Consider the following didactic example where BQ = 1 (the block prediction
size).

Since -AND feeds earlier samples back into the model for making predictions, the likelihood of the
target datapoints: {(xi, yi)}Mi=1 for our -AND model is computed as follows:

log pAND(y1:M |x1:M , Dcontext) = log

M∏
i=1

p(yi|x1:i−1, y1:i−1, xi, Dcontext)

=

M∑
i=1

log p(yi|x1:i−1, y1:i−1, xi, Dcontext)

In contrast, consider the likelihood of -ND: log pND(y1:M |x1:M , Dcontext). By Boole’s Inequality
(or Union Bound), we have that

log pND(y1:M |x1:M , Dcontext) ≤
M∑
i=1

log p(yi|x1:M , Dcontext) =

M∑
i=1

log p(yi|xi, Dcontext)

(x1:i−1, y1:i−1) provides relevant information for predicting the value of the function at xi, e.g.,
nearby pixel values in image completion. As a result, it is likely the case that:

p(yi|xi, Dcontext) ≤ p(yi|x1:i−1, y1:i−1, xi, Dcontext)

Summing from i = 1 . . .M , this means:

log pND(y1:M |x1:M , Dcontext) ≤ log pAND(y1:M |x1:M , Dcontext)

As such, it is expected that the autoregressive not-diagonal variant’s likelihood is higher than that of
the non-autoregressive baselines.

C.3 COMPARISON OF NPS WITH OTHER EXISTING METHODS FOR UNCERTAINTY
ESTIMATION

Other popular methods which can perform uncertainty estimation, include and are not limited to
MC-Dropout, Ensembles, Gaussian Processes (GPs), and Bayesian Neural Networks (BNNs).

Ensembles is an approximate Bayesian method which trains a group of neural networks on the same
set of datapoints. The predictions of this group of neural networks are used to provide uncertainty
predictions. Ensembles require retraining several models with gradient descent when new datapoints
are received which is very costly.

GPs specify a Gaussian distribution over the function values that fit the datapoints. However, GPs
scale cubically with the number of datapoints, making it only practical in settings with a small
number of datapoints.

Bayesian Neural Networks is a stochastic neural network with a prior over weights trained using
Bayesian inference. BNNs suffer their own respective challenges such as difficulty in tuning, diffi-
culty in specifying weight priors, and cold posteriors. They also often perform worse compared to
approximate bayesian methods.
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D APPENDIX: IMPLEMENTATION, HYPERPARAMETER DETAILS, AND
COMPUTE

D.1 IMPLEMENTATION AND HYPERPARAMETER DETAILS

We use the implementation of the baselines from the official repository of TNPs
(https://github.com/tung-nd/TNP-pytorch) and LBANPs (https://github.com/BorealisAI/latent-
bottlenecked-anp). The datasets are standard for Neural Processes and are available in the same
link. We follow closely the hyperparameters of TNPs and LBANPs. In CMANP, the number of
blocks for the conditioning phase is equivalent to the number of blocks in the conditioning phase of
LBANP. Similarly, the number of cross-attention blocks for the querying phase is equivalent to that
of LBANP. We used an ADAM optimizer with a standard learning rate of 5e − 4. We performed
a grid search over the weight decay term {0.0, 0.00001, 0.0001, 0.001}. Consistent with prior
work (Feng et al., 2023) who set their number of latents L = 128, we also set the number of latents
to the same fixed value LI = LB = 128 without tuning. Due to CMANPs and CMABs architecture,
they allow for varying embedding sizes for the learned latent values (LI and LB). For simplicity,
we set the embedding sizes to 64 consistent with prior works (Nguyen & Grover, 2022; Feng et al.,
2023). The block size for CMANP-AND is set as BQ = 5. During training, CelebA (128x128),
(64x64), and (32x32) used a mini-batch size of 25, 50, and 100 respectively. All experiments
are run with 5 seeds. For the Autoregressive Not-Diagonal experiments, we follow TNP-ND and
LBANP-ND (Nguyen & Grover, 2022; Feng et al., 2023) and use cholesky decomposition for
our LBANP-AND experiments. Focusing on the efficiency aspect, we follow LBANPs in the
experiments and consider the conditional variant of NPs, optimizing the log-likelihood directly.

D.2 COMPUTE

All experiments were run on a Nvidia GTX 1080 Ti (12 GB) or Nvidia Tesla P100 (16 GB) GPU.
1-D regression experiments took 4 hours to train. EMNIST took 2 hours to train. CelebA (32x32)
took 16 hours to train. CelebA (64x64) took 2 days to train. CelebA (128x128) took 3 days to train.

D.3 COMPARISON OF MODEL PARAMETERS

Each CMAB consists of 2 self-attention blocks and 2 cross-attention blocks compared to LBANP’s
attention block which consists of 1 self-attention block and 1 cross-attention block. In our exper-
iments, the models have 6 encoder layers (e.g., 6 CMABs) and 6 querying decoder layers (i.e.,
CrossAttention). As a result, CMANP uses an overall 30 attention blocks and LBANP uses an
overall 18 attention blocks, i.e., CMANP uses approximately 67% more parameters than LBANPs.
Although CMANPs use more parameters than LBANPs, CMANPs ultimately use less memory (only
constant!) since the number of inputs is the bottleneck in terms of memory usage for attention-based
methods.

D.4 RUNTIME

Previously, we analyzed the runtime for our method. Unfortunately, comparing the runtime of
existing baselines is difficult as they have been optimized differently, making it hard to compare
the runtimes fairly. NP models such as LBANPs and CMANPs have an architecture which inter-
leaves modules, allowing for different modules to be computed in parallel at the same time for
improved efficiency. For example, CMANPs compute encodings of the context dataset via: Li =
CrossAttention(SelfAttention(Li−1,DC) and retrieves information from this context dataset for
prediction via: Xi

query = CrossAttention(Xi−1
query, Li). In an optimized codebase, computing Li+1

and Xquery
i can actually be computed in parallel, resulting in a significantly more efficient model

in terms of runtime. However, the publicly available codebase for LBANPs does not support this.
Another example is that of Conditional Neural Processes (CNPs), a variant of NPs which leverages
DeepSets. CNPs are able to efficiently compute updates via a rolling averaging mechanism. How-
ever, the available codebases do not support this by default either. Specialized implementations for
comparing the runtime of NP methods are outside the scope of our work. Nonetheless, we detail
below how to implement an efficient version of CMANPs.
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D.5 EFFICIENT IMPLEMENTATION

In our code, we implemented a sequential variant of CMANPs that computes each CrossAttention
and Self-Attention module sequentially. However, computing parts of the stacked CMAB blocks
in a model can be done in parallel to improve the processing speed. All CMAB blocks can com-
pute the following costly operation L′

B = SelfAttention(CrossAttention(LB ,DC)) in parallel. In
addition, CMAB can perform all updates to L′

B in parallel as well. This is particularly important
for the Autoregressive Not-Diagonal extension. When the prediction block size (bQ) decreases, this
corresponds to performing more CMAB updates since the predictions are made autoregressively.
As such, a properly optimized codebase which computes in parallel would significantly reduce the
runtime. Note that using the model this way would still be constant memory since the number of
stacked CMAB blocks is a fixed hyperparameter.
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