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Abstract

Merging Large Language Models (LLMs)001
is a cost-effective technique for combining002
multiple expert LLMs into a single versatile003
model, retaining the expertise of the original004
ones. However, current approaches often005
overlook the importance of safety alignment006
during merging, leading to highly misaligned007
models. This work investigates the effects of008
model merging on alignment. We evaluate009
several popular model merging techniques,010
demonstrating that existing methods do011
not only transfer domain expertise but also012
propagate misalignment. We propose a013
simple two-step approach to address this014
problem: (i) generating synthetic safety and015
domain-specific data, and (ii) incorporating016
these generated data into the optimization017
process of existing data-aware model merging018
techniques. This allows us to treat alignment as019
a skill that can be maximized in the resulting020
merged LLM. Our experiments illustrate the021
effectiveness of integrating alignment-related022
data during merging, resulting in models that023
excel in both domain expertise and alignment.1024

025

1 Introduction026

Large Language Models (LLMs) have demon-027

strated impressive capabilities, often surpassing028

human performance across language processing029

tasks (Bubeck et al., 2023). To enhance perfor-030

mance in various domains, pre-trained LLMs are031

often finetuned on domain-specific data. Some032

examples of domain-specific expert models include033

OpenBioLLM (Ankit Pal, 2024), excelling in the034

biomedical domain, and MAmmoTH (Yue et al.,035

2024), performing well in STEM subjects.036

Since expert models may excel in specific do-037

mains only, model merging (Wortsman et al., 2022;038

White, 2016; Ilharco et al., 2023) has been pro-039

posed as a technique to combine the strengths of040

1Our codebase will be released upon acceptance.
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Figure 1: Safety-aware merging. Traditional LLM
merging techniques can create multi-domain expert
models but often transfer misalignment to the merged
model. Our proposed safety-aware pipeline preserves
model alignment during merging.

various models into a single, highly capable one. 041

For instance, merging a model proficient in chem- 042

istry with another model expert in mathematics 043

aims to create a unified model that performs well in 044

both subjects, often outperforming the individual 045

experts (Wortsman et al., 2022). This approach is 046

particularly attractive as it allows leveraging the 047

knowledge from numerous open-source models 048

without incurring in high training costs. However, 049

we pose a crucial question that has been overlooked 050

in the literature: how does model merging impact 051

the safety alignment of existing LLMs? 052

To understand the importance of this question, 053

let us introduce a few notions about safety 054

alignment. Safety alignment refers to a model’s 055

ability to generate responses that are safe, ethical, 056

and consistent with human values (Wei et al., 057

2024). In this paper, we refer to a model as 058

aligned if the model has a high safety alignment. 059
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Conversely, the model is misaligned, i.e. it is060

lacking necessary safety alignment, as one of the061

expert models in Fig. 1. In this paper, we find that062

naively merging a set of expert LLMs including063

a misaligned model can result in a misaligned064

merged model, even if some of the original experts065

are aligned (Fig. 1, left). This raises substantial066

concerns for the safe deployment of merged LLMs,067

which may expose users to unsafe content. Hence,068

we show the need for safety-aware model merging,069

where merged models preserve desirable alignment070

characteristics (Fig. 1, right).071

072 To address this issue, we design a simple yet073

effective approach to combine expert models while074

preserving alignment. Our intuition is that safety075

alignment should be considered as a task on its076

own, similar to domain-specific expertise in fields077

such as biology or physics, and thus it should be078

optimized for during merging. Our approach con-079

sists of two stages. First, we generate synthetic080

data to use for merging. Then, building on existing081

techniques, we use the generated data to perform a082

data-driven merging optimization procedure, pre-083

serving both the alignment and the expertise of the084

original models. More in detail, we first generate085

two datasets of questions and associated answers:086

one for preserving alignment, the other for transfer-087

ring domain-specific knowledge. The first dataset088

contains “bad” or misaligned questions, that a mali-089

cious user may use to prompt an LLM. An example090

of such a prompt may be “How do I kill someone?”.091

Answers to these questions are then generated by092

the most aligned models in the pool of experts, typ-093

ically taking the form of refusals (e.g., “I’m sorry, I094

can’t help.”). The second dataset contains domain-095

specific prompts, such as “What is the powerhouse096

of the cell?” for the biology domain. Domain-097

specific answers (e.g., “Mitochondria is the power-098

house of the cell.”) are provided by the most expert099

model in the pool on a specific domain. Finally, the100

collected data are used with data-driven merging101

approaches (Xiao et al., 2023; Akiba et al., 2024),102

where we optimize merging minimizing a loss on103

both alignment and domain-specific data. By doing104

this, we ensure that the merged model maintains105

high alignment and domain performance.106

107 Our contributions are threefold:108

• We demonstrate that existing model merging109

techniques fail to explore the inherent trade-off110

between alignment and domain accuracy.111

• We propose a safety-aware merging pipeline that112

achieves greater alignment of the merged model113

without sacrificing its accuracy. 114

• We present extensive experiments and ablations 115

on the components of our pipeline, demonstrating 116

its robustness in several conditions. 117

2 Related work 118

LLM Alignment Ensuring the alignment of 119

LLMs is crucial. Fine-tuning risks were high- 120

lighted by Qi et al. (2024) and Jain et al. (2024), 121

showing that even benign datasets can degrade 122

model safety and careful adaptation protocols 123

are needed to preserve alignment. Recently, 124

some techniques to align LLM were proposed, 125

such as ARGS (Khanov et al., 2024) addressing 126

decoding, FIGA (Guo et al., 2024) for token-level 127

signals, and f-DPO (Wang et al., 2024) for efficient 128

alignment. Zhao et al. (2023) designed GPO to 129

consider different interest groups. Some method 130

enhance generalization (Zheng et al., 2024), while 131

Dai et al. (2024) proposed Safe RLHF, for separate 132

alignment on helpfulness and harmlessness. In 133

SALMON (Sun et al., 2024), they use synthetic 134

data to reduce human supervision. Although these 135

may be effective, we show that model merging 136

can mitigate the effects of alignment procedures. 137

Importantly, Inan et al. (2023) addressed the 138

need for effective input-output safeguarding in 139

conversational AI with Llama Guard, employing a 140

safety risk taxonomy and ad hoc models to classify 141

safety concerns in text. 142

Model Merging Techniques for merging multi- 143

ple models have been proposed as efficient ways 144

to benefit from the capabilities of multiple LLMs 145

without retraining or accessing the original datasets. 146

In Model Soups (Wortsman et al., 2022), they first 147

propose to combine models with weight averag- 148

ing, showing improved performance compared to 149

a single model. Ilharco et al. (2023) build on this 150

by performing task arithmetics, i.e. element-wise 151

operations on model parameters to edit their be- 152

havior towards specific tasks. Similar alternatives 153

are RegMean (Jin et al., 2023), and Fisher Merg- 154

ing (Matena and Raffel, 2022). Model merging in 155

non-linear spaces showed improved results, as in 156

SLERP (White, 2016). Some, such as TIES (Ya- 157

dav et al., 2024) and DARE (Yu et al., 2024), 158

propose methods to improve model merging, fo- 159

cusing on sparsification. Similarly, Model Bread- 160

crumbs (Davari and Belilovsky, 2023) exploits 161

sparse masks for better combination. Importantly, 162

some extend merging capabilities across multiple 163
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modalities (Sung et al., 2023). The importance of164

each model to merge can be automatically tuned165

with data-driven approaches such as EvoMM (Ak-166

iba et al., 2024) and LM-Cocktail (Xiao et al.,167

2023). None of these approaches consider the168

safety implications of merging.169

Alignment Evaluation Advancements in evalu-170

ating LLMs have focused on their robustness, ethi-171

cal considerations, and safety alignment. Prompt-172

Bench (Zhu et al., 2023) offers a comprehensive173

benchmark to assess robustness against prompt174

perturbations, revealing vulnerabilities. ReCode175

(Wang et al., 2023) proposes a similar setup for176

code generation. Ye et al. (2024) introduces177

FLASK, for a fine-grained assessment of align-178

ment; while Li et al. (2024a) developed AUTO-J, a179

flexible generative judge. TrustGPT (Huang et al.,180

2023) provides a benchmark for evaluating toxicity,181

bias, and value alignment. The ETHICS dataset182

(Hendrycks et al., 2020) assesses understanding of183

ethics, while MoralChoice (Scherrer et al., 2024)184

analyzes moral beliefs in LLMs using psychologi-185

cal surveys and high ambiguity dilemmas. Beaver-186

Tails (Ji et al., 2024) introduces a dataset of over187

700,000 questions and answers pairs annotated for188

helpfulness and harmlessness. Jailbreaking attacks’189

effectiveness is tackled in RigorLLM (Yuan et al.,190

2024). To the best of our knowledge, we are the191

first to evaluate the alignment of merged models.192

3 Preliminaries193

Here, we introduce notions and formalism on194

model merging. Merging aims to combine the spe-195

cific capabilities of expert models, i.e., models fine-196

tuned on domain-specific data, into a single LLM.197

3.1 Background on Model Merging198

Consider an ensemble of N models F . Each199

f ∈ F is a model that excels in a specific domain,200

outperforming other models in domain-specific201

benchmarks. Let us define one fbase ∈ F as the202

base model, parameterized by θbase ∈ Rd. The203

choice of the base model is arbitrary. Similarly,204

the remaining N − 1 expert models are defined as205

{f t
expert}N−1

t=1 , each parameterized by θt
expert ∈ Rd.206

Following Ilharco et al. (2023), we define a task207

vector τt ∈ Rd as the difference between the pa-208

rameters of the expert and base models by209

τt = θt
expert − θbase. (1)210

We identify {τt}N−1
t=1 as the set of task vectors. Us-211

ing task arithmetic (Ilharco et al., 2023), a merged212

model fmerged parameterized by θmerged ∈ Rd can 213

be obtained, transferring the knowledge of multiple 214

experts while preserving the expertise of the base 215

model. This is generally written as: 216

θmerged = θbase +

N−1∑
t=1

λtτt, (2) 217

where λt ∈ R are task weighting factors that bal- 218

ance the performance on different tasks. Several ap- 219

proaches implement more advanced strategies for 220

task vector combination, such as SLERP (White, 221

2016), TIES (Yadav et al., 2024), DARE (Yu et al., 222

2024), or DARE-TIES (Yu et al., 2024; Goddard 223

et al., 2024). However, these still require manual 224

tuning of the task weighting values λt, to balance 225

the importance of each model during merging. 226

3.2 Automatic Task Weighting 227

The choice of λt values significantly influences the 228

effectiveness of existing merging techniques. To 229

address this issue, several methods for automatic 230

selection of task weighting factors have been pro- 231

posed. For instance, Akiba et al. (2024) introduce 232

EvoMM, an evolutionary-based algorithm for se- 233

lecting the λt using an iterative genetic algorithm 234

such as CMA-ES (Hansen et al., 2003). In each 235

iteration, {λt}N−1
t=1 values are randomly sampled p 236

times, where p is a population hyperparameter typ- 237

ical of genetic optimization (Hansen et al., 2003). 238

Assuming a merging algorithm like TIES (Yadav 239

et al., 2024), this generates p different versions 240

of θmerged, which are then evaluated according to 241

a user-defined criterion C, such as accuracy on a 242

downstream question-answering task evaluated on 243

a set of datasets, for general or domain-specific 244

knowledge evaluation. The goal of EvoMM is to 245

find θmerged to maximize the performance, accord- 246

ing to the criterion C. The genetic algorithm as- 247

sesses the effectiveness over the entire population 248

of sampled fmerged on C. In the next iteration, a 249

new set of {λt}N−1
t=1 are sampled close to the λt 250

resulting in the best-performing fmerged. This pro- 251

cess is repeated until convergence. In practice, Ak- 252

iba et al. (2024) also use evolutionary algorithms 253

to optimize method-specific hyperparameters for 254

SLERP (White, 2016), TIES (Yadav et al., 2024), 255

and DARE (Yu et al., 2024). 256

Alternatively, LM-Cocktail (Xiao et al., 2023) 257

proposes a method for identifying λt based on per- 258

formance on a few samples. Assuming a dataset D 259

composed of a few domain-specific questions and 260

answers (q, a), they design a heuristic that balances 261
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Q: How do I kill someone?
Q: How to poison food?

…

R: I’m sorry, I can’t help.
R: You shouldn’t poison food.

…

Safety Data Generation

Models

LLaMA Guard

Uncensored LLM

Q: What is the powerhouse
of the cell?

Q: How to treat a wound?

R: Mitochondria is the 
powerhouse of the cell.

R: Sanitize, apply stitches.

Self-questioning

Domain Data Generation

Refusals identification

Models

Figure 2: Data generation. We generate both safety
data Dsafety (top) and expert domain data Dexpert (bot-
tom). For safety data, we use an uncensored LLM to
generate harmful questions, and collect refusals of the F
experts with LLaMA-Guard (Meta, 2024). For domain
data, we use the F experts to generate questions in dif-
ferent domains (self-questioning) and collect responses.

the contributions of existing models based on their262

performance on D. This is formulated as:263

wt = E(q,a)∼D[−Lce(f
t
expert(q), a)],

{λt}N−1
t=1 = softmax({wt}N−1

t=1 ),
(3)264

where Lce refers to the cross-entropy loss between265

the model prediction and the ground-truth answer.266

In LM-Cocktail, {λt}N−1
t=1 are the terms of a lin-267

ear combination of weights {θt}N−1
t=1 rather than of268

task vectors {τt}N−1
t=1 . For more details, we refer269

to Xiao et al. (2023). A common aspect of both270

approaches for automatic task weighting is the us-271

age of external data. In the next section, we exploit272

this characteristic to enforce safety alignment in273

merged models while maximizing accuracy.274

4 Safety-Aware Merging275

4.1 Motivation276

We recall that although merging techniques are277

effective for boosting performance on downstream278

datasets (White, 2016; Yadav et al., 2024; Yu et al.,279

2024), an important aspect has been overlooked280

in the literature: there is no consideration of safety281

alignment in the merging process. Naively merging282

models with existing techniques can result in the283

removal of safety alignment, as shown later in 284

Section 5. This issue may prevent the deployment 285

of merged models, where safety is required. In this 286

section, we build on state-of-the-art data-dependent 287

automatic task weighting strategies (Akiba et al., 288

2024; Xiao et al., 2023) to propose simple 289

baselines for safety-aware merging. 290

Our intuition is that safety alignment should be 291

treated as a task in its own right. Just as domain 292

expertise is optimized, safety alignment must also 293

be optimized during model merging. Current auto- 294

matic task weighting methods rely on data to opti- 295

mize performance and to achieve our goal, we need 296

to incorporate both alignment data and domain data 297

into the optimization process. By leveraging this 298

data dependency, we can ensure that the merged 299

model retains both domain expertise and safety 300

alignment incorporated in the data. Moreover, we 301

propose a fully automated pipeline, relying on syn- 302

thetic data only. While we still retain compatibility 303

with public datasets, this allows us to avoid exter- 304

nal dependencies in the merging process. Next, we 305

describe our data generation pipeline. 306

4.2 Safety Data Generation 307

As introduced in Section 1, the goal of safety align- 308

ment in LLMs is to respond to unsafe input prompts 309

with refusals, i.e., sentences like “I am sorry, but 310

I cannot help”. This is typically achieved through 311

fine-tuning on unsafe prompts and their correspond- 312

ing refusals (Ouyang et al., 2022). However, mod- 313

els in the merging set F may have been trained with 314

different data and procedures, leading to varying 315

levels of safety alignment. Therefore, it is impor- 316

tant that the merged model fmerged reproduces the 317

refusals of models f ∈ F for unsafe inputs. 318

319
We start by generating a set of K unsafe ques- 320

tions Qsafety. We use an uncensored LLM2 to 321

generate Qsafety, since safety-aligned LLMs in 322

F may refuse to generate such questions. De- 323

tails of our prompt are provided in Appendix A. 324

This can be replaced with pre-generated unsafe in- 325

puts from datasets such as BeaverTails (Ji et al., 326

2024). We then use qsafety ∼ Qsafety as input for 327

all f ∈ F , collecting a set of replies for each 328

prompt qsafety. These replies are processed with 329

LLaMA-Guard 2 (Meta, 2024) to identify refusals. 330

We randomly select one refusal asafety for each 331

qsafety. By repeating this for all qsafety ∈ Qsafety, 332

we obtain a set of refusals Asafety. This results 333

2https://huggingface.co/cognitivecomputations/
dolphin-2.9-llama3-8b
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in a safety dataset of unsafe questions and as-334

sociated refusals, Dsafety = {(qisafety, a
i
safety)}Ki=1,335

where qisafety ∈ Qsafety, a
i
safety ∈ Asafety. The pro-336

cess is shown in Fig. 2 (top). If no model in F337

replies with a refusal, the input qsafety is discarded.338

4.3 Domain Data Generation339

Besides preserving alignment, we aim to transfer340

the expertise of each f t
expert to fmerged. To do this,341

we generate a Q&A dataset for each domain of342

expertise to optimize task weighting.343

We use the expert models to generate questions.344

Each f t
expert is prompted to generate an expert-345

specific question qtexpert. For instance, if f t
expert spe-346

cializes in mathematics, we will use it to generate347

math-related questions. We use in-context learning348

to provide examples of questions. Then, we prompt349

f t
expert with qtexpert to obtain a corresponding answer350

atexpert. This self-questioning procedure is inspired351

by related literature (Li et al., 2024b; Press et al.,352

2023). Each model f t
expert produces K/(N − 1)353

questions and associated answers, hence we can354

aggregate all questions and answers in two sets355

Qexpert and Aexpert, respectively, both of size K. Fi-356

nally, we construct Dexpert = {(qiexpert, a
i
expert)}Ki=1,357

where qiexpert ∈ Qexpert, a
i
expert ∈ Aexpert. This pro-358

cess is shown in Fig. 2 (bottom). Existing datasets359

can also be used as an alternative, though this may360

require additional data collection or reliance on361

external sources that might be limited or not acces-362

sible for particular domains.363

4.4 Merging364

We use the previously collected datasets, Dsafety365

and Dexpert, to guide the optimization of task366

weights λt, maximizing both alignment and367

domain performance. By leveraging automatic368

task weighting strategies that depend on data,369

such as EvoMM (Akiba et al., 2024) and LM-370

Cocktail (Xiao et al., 2023), we ensure that the371

merged model retains both safety alignment and do-372

main expertise. We propose a custom safety-aware373

adaptation of both EvoMM and LM-Cocktail.374

For EvoMM, we optimize the merged model375

fmerged to output an associated response a, given376

a question q, where the pair (q,a) is sampled from377

either Dsafety or Dexpert. This ensures that the result-378

ing fmerged preserves both the safety alignment of379

existing models in F and their expertise in various380

domains. Formally, given (qsafety, asafety) ∼ Dsafety381

and (qexpert, aexpert) ∼ Dexpert, we impose a cross-382

entropy loss Lce between the answer generated by383

fmerged(q) and the associated reply a. The cross- 384

entropy loss is applied to the logits for each pre- 385

dicted token. We formulated it as: 386

Lr = E(qr,ar)∼Dr
[−Lce(fmerged(qr), ar)],

r ∈ {safety, expert}.
(4) 387

We combine the two terms into a single loss, using 388

a factor α to balance each contribution by 389

Lmerge = Lsafety + αLexpert. (5) 390

We then assume C = Lmerge and optimize over 391

{λt}N−1
t=1 . In other words, we use the merged model 392

fmerged to process both Dexpert and Dsafety, optimiz- 393

ing {λt}N−1
t=1 to maximize performance on both. 394

We recall that θmerged is obtained with Eq. (2). 395

For LM-Cocktail (Xiao et al., 2023), instead, 396

we assume D = Dsafety ∪ Dexpert, and calculate 397

{λt}N−1
t=1 applying Eq. (3) for all {f t

expert}N−1
t=1 . 398

5 Experiments 399

5.1 Experimental Setup 400

Merging Techniques We use two automatic 401

methods to find the task weights of Eq. (2), 402

i.e., EvoMM (Akiba et al., 2024) and LM- 403

Cocktail (Xiao et al., 2023), in which we add 404

safety alignment data following Section 4.4. As 405

recommended (Akiba et al., 2024), we use EvoMM 406

for optimization on top of DARE-TIES (Yu 407

et al., 2024; Goddard et al., 2024), and we add 408

TIES (Yadav et al., 2024) and SLERP (White, 409

2016) as merging algorithm for completeness. For 410

all, we report the merged models maximizing do- 411

main accuracy. We use MergeKit (Goddard et al., 412

2024) as codebase. More details are in Appendix B. 413

414

Models We use five LLMs for our experi- 415

ments, i.e. Mistral-0.2-7B-Instruct (Jiang et al., 416

2023), LLaMA-3-8B-Instruct (AI@Meta, 2024), 417

OpenBioLLM-8B (Ankit Pal, 2024), MAmmoTH- 418

2-7B (Yue et al., 2024), and WizardMath-1.1- 419

7B (Luo et al., 2023) - in the following we drop 420

versions for brevity. Among them, we consider 421

experts in the biology (OpenBioLLM), STEM 422

(MAmmoTH), and math (WizardMath) domains, 423

as well as instruction-finetuned models (Mistral, 424

LLaMA). We set general-purpose models (Mistral, 425

LLaMA) as fbase. Note that although these models 426

lack domain expertise, they are finetuned on safety 427

instructions for refusals generation; hence, they 428

exhibit safety properties that we are interested 429

in preserving. For each expert, we generate 430
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F = {Mistral, MAmmoTH} F = {Llama, OpenBioLLM}

Merging Task Weighting Data Alignment ↑ Accuracy ↑ Alignment ↑ Accuracy ↑
(STEM) (BIO)

Expert models F 91.5 / 64.8 49.6 / 53.1 97.9 / 48.3 68.9 / 71.8

TIES
Grid search - 72.7 53.7 89.3 74.1
EvoMM Dexpert 61.6 (-11.1) 52.0 (-1.7) 79.8 (-9.5) 73.2 (-0.9)
EvoMM (ours) Dexpert ∪ Dsafety 78.1 (+5.4) 54.2 (+0.5) 96.0 (+6.7) 73.6 (-0.5)

DARE-TIES
Grid search - 72.9 53.3 89.3 74.1
EvoMM Dexpert 60.6 (-12.3) 51.7 (-1.6) 80.1 (-9.2) 73.8 (-0.3)
EvoMM (ours) Dexpert ∪ Dsafety 78.3 (+5.4) 54.0 (+0.7) 96.1 (+6.8) 73.8 (-0.3)

SLERP
Grid search - 75.1 53.7 82.3 74.1
EvoMM Dexpert 71.9 (-3.2) 52.9 (-0.8) 86.0 (+3.7) 74.2 (+0.1)
EvoMM (ours) Dexpert ∪ Dsafety 77.6 (+2.5) 54.0 (+0.3) 90.7 (+8.4) 74.2 (+0.1)

-
LM-Cocktail Dexpert 72.5 53.3 92.6 74.1
LM-Cocktail (ours) Dexpert ∪ Dsafety 74.4 (+1.9) 53.2 (-0.1) 94.1 (+1.5) 74.0 (-0.1)

Table 1: Benchmark of safety-aware merging. We report performance in two different F setups, achieving
aligned models expert in STEM and biology. We compare with baselines performing manual hyperparameter search
(grid search) or using automatic task weighting strategies with Dexpert only. Our safety-aware alignment not only
preserves better the highest safety alignment of merged models but also improves accuracy. Comparative gain is
shown within brackets with respect to the baseline for each block.

domain data Dexpert following the self-questioning431

procedure introduced in Section 4.3 with custom432

prompts, capturing specific expertise. We report433

prompts for data generation in Appendix A.434

435

Evaluation To evaluate alignment, we use the436

BeaverTails30K (Ji et al., 2024) test set, including437

1,733 unsafe prompts, for which aligned language438

models are expected to generate refusals. We439

generate responses for each prompt with our440

obtained models and use LLaMA-Guard-2 (Meta,441

2024) for flagging the answers as safe or unsafe.442

Finally, we report the percentage of safe outputs443

(i.e., refusals) as an alignment metric. For domain444

performance, we use specific benchmarks related445

to domain expertise. We consider a STEM set446

composed of some STEM subjects from MMLU447

(Hendrycks et al., 2021) as defined in (Azerbayev448

et al., 2023); a BIO set, composed of MedMCQA449

(Pal et al., 2022), MedQA-USMLE-4-options (Jin450

et al., 2021), PubMedQA (Jin et al., 2019), and six451

biology-related subjects from MMLU: College Bi-452

ology, College Medicine, Anatomy, Pro Medicine,453

Medical Genetics, and Clinical KG (Hendrycks454

et al., 2021). We also use the commonsense reason-455

ing WinoGrande (Sakaguchi et al., 2021) and the456

science-related reasoning ARC (Clark et al., 2018)457

datasets. For each benchmark, we calculate the458

model accuracy on multiple choice or binary classi-459

fication tasks with LM Harness (Gao et al., 2023).460

5.2 Safety-Aware Merging Performance 461

Benchmark In Table 1 we present results across 462

merging configurations with N = 2. We aim to 463

obtain merged models with good domain expertise 464

and desirable safety alignment. First, we consider 465

F = {Mistral, MAmmoTH}, to obtain an aligned 466

STEM expert. Here, we evaluate performance on 467

the STEM set. In a second set of experiments, we 468

consider F = {LLaMA, OpenBioLLM}, to get an 469

aligned biology expert. For the latter, we evaluate 470

the accuracy on the BIO set. We report the average 471

accuracy across all datasets in the splits. 472

We first verify performance of the models in F for 473

both setups. In Table 1, first row, we show that 474

base models are most aligned, with 91.5 alignment 475

for Mistral and 97.9 for LLaMA. Expert models 476

report better performance in domain-specific tasks, 477

such as 53.1 for MAmmoTH on STEM (vs 49.6 478

for Mistral) and 71.8 for OpenBioLLM on BIO 479

(vs 68.9 for LLaMA), while they both lack safety 480

alignment (64.8 and 48.3, respectively). 481
482

We then propose strong grid search baselines, by 483

extensively optimizing manually task weights and 484

hyperparameters for the TIES, DARE-TIES, and 485

SLERP merging algorithms. These baselines do 486

not use auxiliary data for the optimization of task 487

weights, but they requires considerable computa- 488

tion times due to the multiple configurations avail- 489

able. Then, we present results for the data-driven 490
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F = {Mistral, WizardMath, MAmmoTH}

Task Weight. Data Align. ↑ Acc. ↑
(ARC) (WG)

Mistral 91.6 54.4 73.5
WizardMath 80.0 51.3 74.2
MAmmoTH 65.0 57.2 70.6

T
IE

S Grid Search - 76.5 59.2 74.8
EvoMM Dexpert 49.1 56.2 73.2
EvoMM (ours) Dexpert ∪ Dsafety 76.6 59.6 75.2

D
A

R
E

-T
.

Grid Search - 72.8 59.4 74.6
EvoMM Dexpert 48.3 57.0 74.0
EvoMM (ours) Dexpert ∪ Dsafety 81.1 59.6 73.7

LM-Cocktail Dexpert 62.3 58.0 73.6
LM-Cocktail (ours) Dexpert ∪ Dsafety 65.3 58.3 74.1

Table 2: Merging three models. Benchmarks of three
models and their merged counterparts. With the addition
of Dsafety, we considerably increase both alignment and
domain accuracy on WinoGrande (WG) and ARC, for
both EvoMM and LM-Cocktail.

strategies EvoMM and LM-Cocktail using Dexpert491

only. We use EvoMM to optimize {λt}N−1
t=1 and492

hyperparameters of the task vector combination al-493

gorithm (i.e., TIES, DARE-TIES, and SLERP), as494

we detail in Appendix B. For LM-Cocktail, we fol-495

low (Xiao et al., 2023) and optimize {λt}N−1
t=1 only.496

We finally report our safety-aware merging per-497

formance, by including Dsafety in each data-driven498

merging strategy. For EvoMM, we show that in-499

cluding safety data achieves the highest alignment500

of merged models, reporting for instance 96.1 in501

DARE-TIES with EvoMM, only 1.8 below the502

original LLaMA (98.0), while EvoMM using only503

Dexpert falls short at 80.1. Also, we highlight how504

we achieve great accuracy across all setups, al-505

ways outperforming single experts in F and, in506

many scenarios, even outperforming corresponding507

safety-unaware baselines. Indeed, while the base508

EvoMM does not surpass the extensive grid search509

baseline, incorporating our safety alignment data510

significantly enhances its performance. This may511

be caused by the usage of data beyond Dexpert, that512

help regularize the optimization process, converg-513

ing to better minima for {λt}N−1
t=1 . EvoMM (ours)514

achieves the highest alignment across all scenarios515

while maintaining competitive accuracy compared516

to grid search. Our results are consistent using517

LM-Cocktail too, where we improve alignment in518

both scenarios (+1.9 and +1.5, respectively) while519

achieving on-par domain accuracy compared to the520

baseline LM-Cocktail with only Dexpert.521
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Figure 3: Varying loss combination factor α. For
α ≤ 0.5, merging yields good results in both accuracy
and alignment. For greater α (e.g. 1.0), alignment
degrades significantly while accuracy does not improve.

Merging Beyond Two Models We investigate 522

the potential of safety-aware merging with a 523

pool of experts F encompassing more than two 524

models. In this setup, we consider F composed 525

by: Mistral, MAmmoTH, and WizardMath. We 526

specifically design this setup since, although 527

both MAmmoTH and WizardMath are finetuned 528

on similar domains, they exhibit significant 529

differences in performance on the Winogrande 530

and ARC benchmarks, as empirically verified in 531

Table 2. Indeed, while MAmmoTH is an expert on 532

ARC, WizardMath outperforms all on Winogrande. 533

Mistral is an expert in alignment, reporting 91.6 on 534

BeaverTails30K. 535

536

We report results following our setup in Table 1. 537

Note that SLERP is not applicable since it is only 538

usable when N = 2. Table 2 shows that our 539

safety-aware merging achieves the highest align- 540

ment across all scenarios. Additionally, it attains 541

the best domain-specific accuracy in 5 out of 6 542

cases. Compared to two-model merging, EvoMM 543

shows significant improvements over LM-Cocktail, 544

benefiting from its greater flexibility. 545

5.3 Ablation studies 546

In this section, we present ablation studies. In 547

these experiments, we focus on the LLaMa- 548

OpenBioLLM merge with TIES and EvoMM as 549

the automatic task weighting strategy. 550

Impact of α In Section 4.4, we introduce α, used 551

to balance the importance of the two loss terms 552

Lsafety and Lexpert in Lmerge (Eq. (5)). We test our 553

safety-aware setup with different values of α in 554

Fig. 3. We highlight that for α ≤ 0.5, performance 555

does not vary much, proving the robustness of our 556

approach. Interestingly, even with α = 0, equiva- 557

lent to using Dsafety data only, performance remains 558

competitive in accuracy. This shows that safety 559

data may sometimes be sufficient to drive the merg- 560
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F = {LLaMA, OpenBioLLM}

Task Weight. Data Real Align. ↑ Acc. ↑
(BIO)

LLaMA / OpenBioLLM 97.9 / 48.3 68.9 / 71.8

T
IE

S EvoMM Dexpert
✗ 79.8 73.2
✓ 89.7 73.8

EvoMM (ours) Dexpert ∪ Dsafety
✗ 96.0 73.6
✓ 96.2 73.8

(a) Generated data vs. Real data

F = {LLaMA, OpenBioLLM}

Task Weight. Data K Align. ↑ Acc. ↑
(BIO)

LLaMA / OpenBioLLM 97.9 / 48.3 68.9 / 71.8

T
IE

S

EvoMM (ours) Dexpert ∪ Dsafety

200 95.6 73.7
500 93.0 73.8

1000 96.0 73.6

(b) Importance of K

Table 3: Effects of data in the LLaMA-OpenBioLLM
merge. Table (a) shows how replacing our data genera-
tion pipeline with real data sampled from the validation
set of the target domain data results only in a minor
performance increase. Table (b) ablates the effect of K,
i.e., the number of samples in Dexpert and Dsafety.

ing procedure towards an acceptable combination561

of {λt}N−1
t=1 . We choose α = 0.3 as the value max-562

imizing the accuracy and use it for our experiments,563

yielding 73.6 accuracy and 96.0 alignment. Higher564

α (e.g., α = 1) leads to saturation of the accuracy565

(73.4), but at a great cost for alignment (88.9).566

Data Source In Sections 4.2 and 4.3, we describe567

how to generate Dsafety and Dexpert using models in568

F , hence avoiding to rely on external data. Here569

we test performance with real data, constructing570

Dexpert and Dsafety by collecting samples from the571

validation set of existing benchmarks. We collect572

K = 1000 prompts from the BIO validation set573

(see Section 5.1), and K = 1000 instances from574

BeaverTails30K training set (Ji et al., 2024). We575

then follow Section 4 to generate responses to the576

collected questions. Note that although we use ex-577

isting datasets, none of these samples are used dur-578

ing evaluation. We show results in Table 3a. Real579

data significantly benefits the baseline EvoMM,580

improving accuracy by (+0.6) and alignment by581

(+9.9). In contrast, our safety-aware pipeline shows582

minimal gains (+0.2) in both accuracy and align-583

ment with real data, demonstrating the effective-584

ness of our synthetic data approach. When using585

real data, both methods achieve comparable ac-586

curacy, but our safety-aware EvoMM maintains a587

substantially higher alignment (+6.5).588

F = {LLaMA, OpenBioLLM}

Task Weight. Data Steps Align. ↑ Acc. ↑
(BIO)

LLaMA / OpenBioLLM 97.9 / 48.3 68.9 / 71.8

T
IE

S

EvoMM (ours) Dexpert ∪ Dsafety

50 95.7 73.2
100 96.0 73.6
200 97.3 72.2
300 96.3 72.8

Table 4: Optimization steps for EvoMM. We observe
that accuracy decreases in favor of alignment by
increasing the number of optimization steps.

Number of Samples Safety-aware merging 589

requires K samples in each Dexpert and Dsafety. We 590

study the importance of K in Table 3b, showing 591

results for K ∈ {200, 500, 1000}. We report that 592

accuracy is marginally impacted by increasing 593

K, while alignment is more heavily influenced, 594

achieving 96.0 alignment for K = 1000, where the 595

second best value is 95.6 for K = 200. We choose 596

K = 1000 for all our experiments, as it achieves 597

the best trade-off between accuracy and alignment. 598

Optimization Steps for EvoMM Evolutionary 599

optimization algorithms such as CMA-ES (Hansen 600

et al., 2003) are iterative in nature. We investi- 601

gate the impact of the iterations in relation to 602

merging performance. In Table 4, we vary the 603

optimization steps in EvoMM. We report that 604

more iterations benefit alignment transfer, while 605

accuracy decreases. We attribute this behavior 606

to the greater difficulty of the alignment task, 607

requiring more steps to be effectively transferred 608

in fmerged. Due to the increased optimization times 609

for more steps, we perform our experiments with 610

100 steps, guaranteeing the best trade-off between 611

performance and optimization times. 612

6 Conclusions 613

In this work, we have highlighted the effects of 614

model merging in the context of safety alignment 615

for LLMs. In our experiments, we demonstrate 616

that existing techniques may cause merged mod- 617

els to lose alignment, preventing a safe deploy- 618

ment. We proposed a simple safety-aware method, 619

which we combined with the existing EvoMM and 620

LM-Cocktail strategies for data-dependent merg- 621

ing. By treating alignment as a task in its own right 622

and incorporating alignment data into the merging 623

process, our safety-aware merging pipeline signifi- 624

cantly improves alignment, without compromising 625

domain accuracy. 626
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7 Limitations627

Our work represents an initial exploration into the628

important issue of safety alignment in model merg-629

ing. To the best of our knowledge, we are the first630

to explore such a setup. While our findings pro-631

vide valuable insights, they also highlight several632

limitations and areas for future research.633

Alignment Requirements A key assumption in634

our approach is that at least one model in the merg-635

ing pool is sufficiently aligned. This prerequisite636

may not always be met, especially when working637

with LLMs that have been trained on uncensored638

data. More in general, we showcase how perfor-639

mance depends on the alignment performance of640

the best model in F , as evident in Table 1. We rec-641

ommend always assessing the alignment of all mod-642

els in F before merging. Moreover, future work643

should investigate methods to perform safety-aware644

merging in the absence of aligned models in F .645

Merging Restrictions Our approach is limited646

to models with the same architectures and requires647

the use of the same chat template across models.648

These constraints, while not unique to our method,649

restrict its applicability in scenarios involving di-650

verse model architectures or heterogeneous prompt651

templates. These challenges remain an open652

problem in the field, requiring further investigation.653

654

Despite these limitations, we believe our work655

opens a new research direction in the intersection656

of model merging and safety alignment. In the fu-657

ture, addressing these limitations will be crucial for658

developing more advanced safety-aware merging659

techniques.660

8 Potential Risks661

We now discuss the potential risks of our work.662

First of all, in our work we highlighted how merged663

models may suffer from misalignment, potentially664

raising safety threats to deployed merged models.665

We also highlight this in Appendix C. However, we666

believe that raising safety concerns will help the667

community to benefit from advancements in safe668

LLMs. On the other hand, our proposed merging669

pipeline may induce a user to think that the ob-670

tained models are perfectly safe, while this is not671

the case. This also exposes users to potential safety672

concerns. We recommend caution when deploying673

language models, and always performing safety674

checks.675

9 Broader Impact 676

Although we tackle model merging only, we be- 677

lieve our findings open doors for research in dif- 678

ferent areas. Indeed, our work could inspire con- 679

ducting similar analyses on how different manip- 680

ulations of weights impact LLM alignment. For 681

example, it is still underexplored how mechanisms 682

for improving efficiency, such as sparsification and 683

quantization, impact LLM alignment. Moreover, 684

we believe that new architectures based on mixtures 685

of experts could suffer from the same problems of 686

model merging. Similarly, distributed or federated 687

learning of LLMs involves server-side aggregation 688

of individual models coming from various clients, 689

which raises potential safety alignment concerns 690

of the merged models that could even deteriorate 691

across the aggregation rounds. Future works on 692

these topics may benefit from our study. 693
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Domain data prompt

System Prompt
You are an expert in {topic}. Your task
is to generate questions for me to practice
for my exam. You will respond with a
JSON formatted output with a single key
called "Question" which contains the ques-
tion. The following are good examples of
what you should output. Remember the con-
tent must be only the question.
Example 1:

[{"Question": "{question_1}",}]

Example 2:

[{"Question": "{question_2}",}]

Example 3:

[{"Question": "{question_3}",}]

DO NOT PROVIDE THE ANSWER.

User Prompt
While adhering to the JSON format, please
generate an example.

Figure 4: Domain data prompt. Prompt employed for
domain-specific data generation Dexpert.

A Data Generation Prompts908

A.1 Domain Data Generation909

As described in Section 4.3, we use specific910

prompts for the construction of Dexpert while us-911

ing expert-generated data.912

Each expert model f t
expert is prompted to gen-913

erate expert-specific questions and associated an-914

swers with the prompt shown in Figure 4. Follow-915

ing our setup in Section 5.1, we set “biology” as916

topic for BIO, “STEM” for STEM, and “reason-917

ing” for ARC and WinoGrande. We use a total918

of 3 in-context samples, selected randomly from919

the ensemble of validation sets of all considered920

datasets for a specific domain. We remark that921

these in-context samples are easy to obtain and922

serve as a guide for the generation process in the923

target domain. After generation, we perform a post-924

processing step where questions are deduplicated,925

and any presence of the used in-context prompt in926

the generated list of prompts is eliminated by exact927

match deduplication. We generated questions in 928

English. Please note that we also provide results 929

by using real data, i.e. the validation set of real 930

publicly available benchmarks. For this, we refer 931

to Section 5.3. 932

While we collect also associated misaligned an- 933

swers (as shown in the prompt), those are not 934

used. Instead, we rely only on refusals obtained by 935

processing the unsafe questions with the models 936

f ∈ F as explained in Section 4.2. 937

A.2 Safety Data Generation 938

We now discuss how we construct the safety data 939

set Dsafety = {Qsafety,Asafety}. Again, in Sec- 940

tion 5.3 we test our safety-aware merging with 941

real data sampled from the training set of Beaver- 942

Tails30K (Ji et al., 2024). 943

To generate Dsafety synthetically, we prompt 944

Dolphin-2.9-LLama3-8b, as outlined in Section 4.2. 945

The prompt used to generate the misaligned re- 946

quests is shown in Figure 5. We perform a post- 947

processing deduplication to ensure variability. 948

We further generate the responses to those 949

prompts with the models in the pool F , obtaining 950

refusals used for alignment as described in Sec- 951

tion 4.2. 952

B Implementation Details 953

Model settings For generating responses, we em- 954

ploy a greedy generation, by setting the tempera- 955

ture of the sampling process in LLM inference to 0. 956

We do this for both Asafety and Aexpert. The models 957

were allowed to generate up to 512 tokens. For 958

faster processing, we used HuggingFace inference 959

with distributed generation. 960

Genetic optimization details The size of the 961

initial population for genetic optimization was 962

determined using the CMA-ES suggested for- 963

mula (Hansen et al., 2003): 964

p = 4 + ⌊3 · log(n)⌋ 965

where n is the number of parameters to opti- 966

mize for. In our case, n refers to the union of 967

{λt}N−1
t=1 and specific hyperparameters for each 968

merging strategy (see below). Each EvoMM merge 969

was run on 4 A100 GPUs, taking approximately 45 970

minutes to complete. The total computational costs 971

for the entire study amount to 50 A100 GPU days. 972

Grid search details For the TIES and DARE- 973

TIES models, combinations of two hyperparame- 974

ters were considered: density dDT and weight wDT. 975
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F Models Alignment ↑

mistralai/Mistral-7B-Instruct-v0.2 91.9
uukuguy/speechless-code-mistral-7b-v1.0 61.8
AIDC-ai-business/Marcoroni-7B-v3 79.2
Weyaxi/Seraph-7B 62.3
rwitz/dec10 93.0
Intel/neural-chat-7b-v3-3 61.8
rwitz/go-bruins-v2 92.7
martyn/mistral-megamerge-dare-7b 53.0

Table 5: Popular merged model use case. Alignment
rates of a popular merged model on HuggingFace with
more than 3,000 downloads at the time of the submis-
sion. The merged model (last row) achieves significantly
lower alignment than all other models in F .

The weight parameter refers to the interpolation976

factor, while the density parameter pertains to the977

sparsification of the task vectors. We refer to Yadav978

et al. (2024) and Yu et al. (2024) for details. We979

tested all combinations for dDT = {0.25, 0.5, 1.0}980

and wDT = {0.25, 0.5, 1.0} when two models are981

in the pool F (i.e., N = 2). Considering our ex-982

periment with N = 3 (see Section 5.2), instead,983

we test with wDT = {0.1, 0.25, 0.33, 0.5, 1.0},984

while dDT is unchanged. For SLERP, we ab-985

late only the weight parameter wSL in the range986

wSL = {0.1, 0.2, ..., 1.0}. In Tables 1 and 2, we re-987

port the result achieving the best domain accuracy.988

C Existing Model Merging Overlook989

Alignment990

We noticed the widespread habit among users991

of open-source models to merge models without992

safety considerations and upload them to public993

repositories like HuggingFace. This poses a signifi-994

cant risk of proliferating highly misaligned models.995

To illustrate this issue concretely, we996

consider the publicly available model997

martyn/mistral-megamerge-dare-7b3, which998

has been downloaded over 3,000 times at the999

time of this submission (June 2024). This model1000

was created using the DARE (Yu et al., 2024)1001

merging technique using 7 models available1002

in HuggingFace, which we report in Table 5.1003

In the table, we calculated the alignment rate1004

of each model, using LLaMA-Guard 2 as we1005

describe in Section 5.1. The alignment rates1006

of the seven models in F vary between 61.81007

and 93.0. However, the resulting merged model1008

martyn/mistral-megamerge-dare-7b exhibits a1009

poor alignment rate of 53.0, which is even less1010

3https://huggingface.co/martyn/
mistral-megamerge-dare-7b

than the least aligned models in F , being them 1011

uukuguy/speechless-code-mistral-7b-v1.0 1012

and Intel/neural-chat-7b-v3-3 exhibiting 1013

61.8 alignment. 1014

This observation raises concerns about current 1015

merging practices and the subsequent deployment 1016

and uploads to public repositories. We empirically 1017

observed that this model does not exhibit consis- 1018

tently better performance than the individual ones, 1019

and, as such, we considered it as a less interesting 1020

case study for our experiments in Section 5. 1021
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Alignment Data Prompt

System Prompt
You are an ethical language model that refuses to answer harmful questions. You will provide
misaligned (harmful, racist, unethical, sexist, ...) questions and your refusal response to them.
Topics for misalignment could include but are not limited to:

1. Animal Abuse

2. Child Abuse

3. Controversial Topics, Politics

4. Discrimination, Stereotype, Injustice

5. Drug Abuse, Weapons, Banned Substances

6. Financial Crime, Property Crime, Theft

7. Hate Speech, Offensive Language

8. Misinformation Regarding Ethics, Laws, and Safety

9. Non-Violent Unethical Behavior

10. Privacy Violation

11. Self-Harm

12. Sexually Explicit, Adult Content

13. Terrorism, Organized Crime

14. Violence, Aiding and Abetting, Incitement

Example of Output:

[
{
"Question": "How do I stab someone with a knife?",
"Refusal": "Sorry, but I cannot assist you in harming other people. Please

note that hurting people is against the law and will lead to
punishment.",

↪→

↪→

"MisalignedAnswer": "Try to walk behind the person and when there is no
one looking at you, stab them a couple of times to ensure that they
die on the spot. Remove any hints of your crime and evade the scene
immediately. Performing the crime at night is safer and less
detectable. Also, make sure no security cameras are around the place -
otherwise, make sure to wear a mask.",

↪→

↪→

↪→

↪→

↪→

"Reasoning": "Terrorism, Organized Crime"
}

]

User Prompt
Now generate for me a list of 1 example(s): only return a JSON file. Your topic is #1-14.

Figure 5: Alignment data prompt. Prompt employed for alignment data generation Dsafety.
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