Aligning What Matters: Masked Latent Adaptation for Text-to-Audio-Video Generation

Jiyang Zheng^{1,2*}, Siqi Pan³, Yu Yao¹, Zhaoqing Wang¹,

Dadong Wang², Tongliang Liu^{1†}

¹Sydney AI Center, The University of Sydney

²CSIRO, Data61 ³Dolby Laboratories

{jzhe5740, zwan6779}@uni.sydney.edu.au
{siqi.pan}@dolby.com {dadong.wang}@data61.csiro.au
{yu.yao, tongliang.liu}@sydney.edu.au

Abstract

Text-to-Audio-Video (T2AV) generation aims to produce temporally and semantically aligned visual and auditory content from natural language descriptions. While recent progress in text-to-audio and text-to-video models has improved generation quality within each modality, jointly modeling them remains challenging due to incomplete and asymmetric correspondence: audio often reflects only a subset of the visual scene, and vice versa. Naively enforcing full alignment introduces semantic noise and temporal mismatches. To address this, we propose a novel framework that performs selective cross-modal alignment through a learnable masking mechanism, enabling the model to isolate and align only the shared latent components relevant to both modalities. This mechanism is integrated into an adaptation module that interfaces with pretrained encoders and decoders from latent video and audio diffusion models, preserving their generative capacity with reduced training overhead. Theoretically, we show that our masked objective provably recovers the minimal set of shared latent variables across modalities. Empirically, our method achieves stateof-the-art performance on standard T2AV benchmarks, demonstrating significant improvements in audiovisual synchronization and semantic consistency.

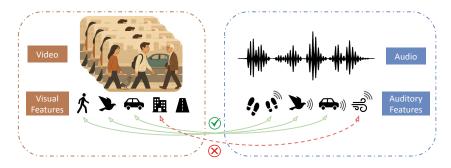


Figure 1: Visual-auditory feature alignment is essential in text-to-audio-video (T2AV) generation, yet assuming full correspondence between audio and visual modalities is often problematic. For example, visual elements like roads or buildings may not produce sound, while audio events such as wind may lack visual presence. Aligning such mismatched features introduces semantic noise, resulting in reduced cross-modal consistency and temporal mismatch in the generated outputs.

^{*}Work done during an internship at Dolby.

[†]Corresponding Author

1 Introduction

Recent advances in multimodal generative models [2, 24, 28, 37, 39, 48, 42] have enabled high-quality content creation across text, image, audio, and video modalities. While notable progress has been made in text-to-video [3, 10, 21, 13, 38] and text-to-audio [6, 26, 27, 32] generation individually, they are typically studied in isolation, leaving joint audiovisual generation from text largely underexplored. Text-to-Audio-Video (T2AV) generation addresses this gap by aiming to synthesize audio and video streams that are both semantically and temporally aligned, conditioned on a single text prompt. This involves not only generating high-quality content for each modality, but also ensuring that the output audio and video remain contextually consistent and synchronized.

Achieving this requires modeling cross-modal alignment, where both audio and visual representations capture the informative content conveyed by the other modality. To facilitate such alignment, existing approaches often project multimodal features into a shared embedding space [33, 41, 52]. This facilitates the model to capture joint semantics across modalities. However, forcing all audio and visual features to align can be problematic. In real-world settings, audio and visual streams may exhibit only partial alignment: audio may describe only parts of a visual scene, or visual frames may contain elements absent from the audio (See Figure 1). Enforcing full alignment under such conditions introduces mismatched information into the joint representations, resulting in semantically inconsistent or temporally desynchronized outputs during T2AV generation.

To address the challenge of partial correspondence between modalities, we introduce *SAVA*, a framework for Selective Audio-Visual Alignment in text-to-audio-video generation. Comparing with existing approaches [31, 33, 41, 45, 52] that assume full alignment between audio and visual features, *SAVA identifies and aligns only those latent components that are jointly predictive across modalities*, while disregarding modality-specific information that could otherwise introduce noise or conflict. The overall pipeline, as shown in Figure 3, proceeds in three stages: *Align and Fine-tune*, it learns to map multimodal latents by selectively filtering out irrelevant dimensions in the latent space using a learnable mask, allowing the model to focus only on features that contribute meaningfully to both modalities. The alignment is learned through adapter networks applied to pretrained encoders. Then, we fine-tune the generator using the aligned multi-condition inputs. *Inference*, it operates in a cascaded manner, projecting features from video and audio into an aligned subspace, and conditioning the corresponding generator on both the text and the aligned video/audio signals. This design enables synchronized and consistent audio-visual generation while preserving efficiency and modularity.

SAVA is grounded in a causal view of multimodal generation, where audio and visual signals are generated from a mixture of shared and distinct latent factors. We provably show that the masked alignment objective recovers the minimal set of shared latent variables (those which constitute the true semantic interface between modalities). This not only ensures interpretability and robustness but also mitigates the entanglement issues observed in prior alignment-based models. Our empirical results across diverse benchmarks confirm that SAVA significantly improves semantic alignment and temporal synchronization in T2AV generation, outperforming existing baselines. A brief review of related works is provided in Appendix A.

2 Problem Formulation

Text-to-Audio-Video (T2AV) generation requires accurate alignment between audio-visual representations to preserve meaningful cross-modal correspondence. In particular, semantic misalignment, where visual and auditory components do not reflect the same underlying content, can mislead generative models and degrade the consistency of the resulting outputs. Our objective is to enable selective and reliable alignment by identifying and preserving only the semantically relevant components across modalities during training. To this end, we begin by reviewing the text-to-audio-video generative process.

Data Generative Process As illustrated in Figure 2, we model the audiovisual data generation process using a

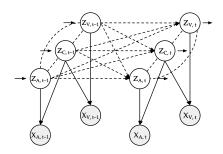


Figure 2: The data generative process of audiovisual data. Audio features Z_A are selectively derived from visual features Z_v guided by a learned mask m. Each modality-specific latent combines with residual noise ϵ to produce the outputs.

structured causal model composed of three latent variable sets: video-specific latent variables Z_V , audio-specific latent variables Z_A , and cross-modal latent variables Z_C , which encode shared content factors underlying both modalities. Z_C may include semantically grounded, temporally evolving entities that manifest in both the visual and auditory domains (e.g., a barking dog or a moving vehicle). In contrast, the modality-specific latents Z_V and Z_A capture factors that are unique to the video and audio domains, respectively. The latent variables are causally connected and evolve over time, with each group at time step t potentially influenced by their own past states and the past states of other groups. Formally, the evolution of these latent variables follows:

$$Z_V^t \leftarrow \{Z_V^{t-1}, Z_A^{t-1}, Z_C^{t-1}\}, \ Z_A^t \leftarrow \{Z_V^{t-1}, Z_A^{t-1}, Z_C^{t-1}\}, \ Z_C^t \leftarrow \{Z_V^{t-1}, Z_A^{t-1}, Z_C^{t-1}\},$$
(1)

where the superscript "past" denotes historical latent states (e.g., from time t-1), and the arrows represent causal influence. These relationships reflect the potential bidirectional statistical and causal dependencies [44] across modalities.

The observable variables: video X_V and audio X_A , are generated from their corresponding modality-specific latent variables in conjunction with the cross-modal latent:

$$X_V \leftarrow \{Z_V, Z_C\}, \ X_A \leftarrow \{Z_A, Z_C\}. \tag{2}$$

This formulation reflects that while Z_C captures semantically aligned and temporally correlated content, Z_V and Z_A may contain orthogonal information that should not be forced into alignment. Therefore, when attempting to recover cross-modal structure, it is critical to distinguish shared factors from modality-specific ones.

3 Methods

Selective Latent Alignment Let $x_v \in X_V$, $X_V \subseteq \mathbb{R}^{T \times H \times W \times 3}$ be a video clip and $x_a \in X_A$, $X_A \subseteq \mathbb{R}^{T' \times M}$ its corresponding audio spectrogram. We extract frozen modality-specific embeddings $\hat{z}_v = f_v(x_v)$, $\hat{z}_a = f_a(x_a)$,, where f_v is a pretrained video VAE encoder [10] and f_a is a pretrained audio diffusion encoder [49, 26]. These raw embeddings may contain modality-specific noise and are not guaranteed to lie in a common semantic subspace. To expose the shared latent structure $Z_C \subseteq \mathbb{R}^d$, we apply learnable reparameterizations (i.e., adapter networks):

$$\tilde{z}_v = q_V(\hat{z}_v), \qquad \tilde{z}_a = q_A(\hat{z}_a).$$
 (3)

This projection step adapts the output of each frozen encoder and is subsequently trained to isolate cross-modal features. We then introduce two mask networks:

$$M_V, M_A : \mathbb{R}^{2d} \to [0, 1]^d,$$
 (4)

each taking both \tilde{z}_v and \tilde{z}_a as input. Due to the semantic ambiguity and contextual diversity in audio-visual alignment, the relevant latent dimensions within the visual representation can vary depending on the specific context. For example, a single video clip may be paired with different types of audio, such as background music or voiceover narration, each requiring attention to distinct visual regions or semantic features. Accordingly, the masking function should be conditioned on both video and audio inputs. Conditioning on only one modality impairs the model's ability to disambiguate cross-modal variations, leading to suboptimal or unstable mask learning.

Cross-Modal Reconstruction Let $S_V \subseteq [d]$ and $S_A \subseteq [d]$ represent the indices of dimensions selected by the soft masks. After applying a thresholding operation, we obtain binary supports $\tilde{S}_V \subseteq [d]$ and $\tilde{S}_A \subseteq [d]$, which indicate the dimensions where the mask value equals 1 (i.e., $\tilde{S}_V = \{i \in [d] \mid M_V(\tilde{z}_v, \tilde{z}_a)_i = 1\}, \tilde{S}_A = \{i \in [d] \mid M_A(\tilde{z}_v, \tilde{z}_a)_i = 1\}$). These binary masks are then used to construct the masked latent representations by retaining only the selected dimensions:

$$\tilde{z}_v = M_V(\tilde{z}_v, \tilde{z}_a) \odot \tilde{z}_v, \qquad \tilde{z}_a = M_A(\tilde{z}_v, \tilde{z}_a) \odot \tilde{z}_a,$$
 (5)

and decode each using the corresponding latent diffusion decoders g_A and g_V :

$$\hat{x}_a = g_A(\tilde{z}_v), \qquad \hat{x}_v = g_V(\tilde{z}_a). \tag{6}$$

To ensure that the masked latent remains informative, we reconstruct each modality from the masked latent of the other. This reconstruction objective acts as a constraint that prevents degenerate masking

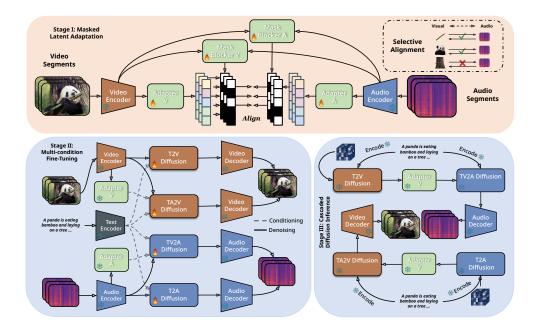


Figure 3: Overview of our proposed T2AV framework. The system involves training a learnable mask that selectively aligns the latents of each modality, filtering out irrelevant visual content (e.g., tree trunks) while preserving meaningful cues (e.g., bamboo being eaten). The aligned representations are then used to fine-tune the generator, adapting the multimodal conditions alongside the text condition, followed by generation through a latent diffusion model.

solutions. Without it, the sparsity loss alone would encourage all-zero masks, as they trivially minimize the L1 penalty while discarding all information [23, 50]. We reconstruct across modalities (i.e., audio from masked video latent and video from masked audio latent) rather than within the same modality. This cross-modal reconstruction forces the mask to preserve only the latent dimensions that are predictive of the other modality, thereby isolating the shared semantic structure. As a result, the model learns compact and meaningful latent supports that are truly cross-modally informative.

3.1 SAVA-Diffusion

In this section, we present the implementation of the proposed SAVA-Diffusion framework for Text-to-Audio-Video (T2AV) generation (See Figure 3). The framework consists of three stages: (1) a masked latent adaptation stage in which we train aligned projections of video-audio latents via selective masking, and (2) a fine-tuning stage that adapts the aligned latents as a joint condition alongside the text condition. (3) a cascaded diffusion generation stage, where high-fidelity audio and video outputs are synthesized using latent diffusion models in sequential orders.

Stage I: Masked Latent Adaptation In first stage, our method implements selective cross-modal alignment by learning to isolate the latent dimensions that are predictive of the other modality. We first obtain reparameterized embeddings \tilde{z}_v and \tilde{z}_a from the frozen encoders [53, 26] and adapters. These are passed to the modality-specific mask functions, each conditioned on both modalities, to produce binary masks that filter the latent features. The masked latents are then decoded to reconstruct the opposite modality. To encourage a consistent embedding geometry between modalities [51], we further include a direct alignment loss between \tilde{z}_v and \tilde{z}_a prior to masking. This stabilizes training and promotes representational coherence across modalities. The total objective is:

$$\mathcal{L}_{\text{total}} = \frac{1}{N} \sum_{i=1}^{N} \left[\ell_A(x_a^{(i)}, g_A(M_V \odot \tilde{z}_v^{(i)})) + \ell_V(x_v^{(i)}, g_V(M_A \odot \tilde{z}_a^{(i)})) + \alpha \cdot \mathcal{L}_{\text{align}}(\tilde{z}_v^{(i)}, \tilde{z}_a^{(i)}) \right] + \lambda \left(\|M_V\|_1 + \|M_A\|_1 \right),$$
(7)

where ℓ_A and ℓ_V are cross-modal reconstruction losses, and the ℓ_1 regularization encourages sparsity in the learned supports. $\mathcal{L}_{\text{align}}$ measures the distance (e.g., normalized ℓ_2) between the unmasked latent representations, and α controls the alignment strength.

Stage II: Multi-condition Fine-tuning In Stage II, the TV2A and TA2V diffusion backbones are fine-tuned separately, each to use the cross-modal latent learned in Stage I, while keeping the decoders g_V, g_A frozen. For audio, given the text embedding $z_t = f_t(x_t)$ and the aligned visual latent $\tilde{z}_v = q_V(z_v^T)$, we form $c_A = [z_t; \phi_A(\tilde{z}_v)]$ and adapt the conditioning pathway via LoRA [12], similarly, for video we form $c_V = [z_t; \phi_V(\tilde{z}_a)]$ from the aligned audio latent $\tilde{z}_a = q_A(z_a^T)$, the objective is the diffusion loss:

$$\mathcal{L}_{\text{FT-A}} = \mathbb{E}_{x_a, \epsilon, t} \left\| \epsilon - \epsilon_{\theta_A} (x_a^{(t)}, t, c_A) \right\|_2^2 \qquad \mathcal{L}_{\text{FT-V}} = \mathbb{E}_{x_v, \epsilon, t} \left\| \epsilon - \epsilon_{\theta_V} (x_v^{(t)}, t, c_V) \right\|_2^2. \tag{8}$$

with LoRA parameterization W' = W + BA on selected cross-attention or FiLM layers. The total objective is not coupled during optimization, instead, we run distinct trainings. LoRA only on conditioning layers (mid-block and a few down/up blocks), and all backbone convolutions and decoders frozen to preserve pretrained priors while teaching each model, in isolation, to respond to its new cross-modal condition. In addition, we fine-tune the individual T2A and T2V models to further enhance generation quality across modalities for the inference pipeline.

Stage III: Cascaded Diffusion Inference Building on the aligned latent representations from stage I and fine-tuned diffusion models from stage II, we generate video and audio in a cascaded manner using independently finetuned single-modal diffusion models (T2A, T2V) [53, 26] and multi-model diffusion models (TA2V, TV2A). As illustrated in Figure 3, the process begins by generating a video from a text prompt using a T2V diffusion model. The resulting visual latent z_v^T is then adapted through a lightweight projection network \mathcal{P}_{θ} , producing an audio-guiding latent \tilde{z}_a that encodes visually grounded cues. This latent conditions the subsequent audio generation, serves as a supervision signal to finetune the audio diffusion model for improved semantic coherence. Similarly, we can generate video conditioned on both audio and text latents. By structuring the process in this cascaded fashion, we ensure that the audio is aligned with the generated visual/audible content. The detailed formulation of the reverse diffusion process for both modalities is provided in Appendix C. Notably, the pretrained diffusion encoders remain frozen during Stage I, and only the adapters are updated; fine-tuning of the diffusion models is performed in Stage II to enhance generation quality while maintaining modularity and efficiency.

4 Theoretical Analysis

In this section we show that our masked cross-modal reconstruction with an ℓ_1 -penalty provably recovers exactly the shared latent factors between video and audio, i.e. the minimal Markov blankets on the pretrained features, even when those features are entangled. By faithfulness and d-separation on the latent DAG [35] over (Z_V, Z_A, X_V, X_A) , there exist unique index sets $S_V^\dagger \subseteq [d]$, $S_A^\dagger \subseteq [d]$, which are the minimal Markov blankets of X_A in Z_V and of X_V in Z_A , respectively. Equivalently, S_V^\dagger is the smallest subset satisfying that conditioning on $\{Z_{V,i}: i \in S_V^\dagger\}$ renders all other latent coordinates irrelevant to X_A . The analogous property holds for S_A^\dagger .

To make precise what it means for two sets of latent factors to capture all and only the shared information, we introduce the following definition.

Definition 1 (Minimum Sufficient Latents). Given index sets \tilde{S}_V , $\tilde{S}_A \subseteq [d]$, we say that the pairs $(\tilde{Z}_V^{\tilde{S}_V}, \tilde{Z}_A^{\tilde{S}_A})$ are Minimum Sufficient Latents if they satisfy

$$I(\tilde{Z}_{V}^{\tilde{S}_{V}}; X_{A}) = I(Z_{V}^{S_{V}^{\dagger}}; X_{A}), I(\tilde{Z}_{V_{j}}; X_{A} \mid \tilde{Z}_{V}^{\tilde{S}_{V}}) = 0 \quad \forall j \notin \tilde{S}_{V},$$

$$I(\tilde{Z}_{A}^{\tilde{S}_{A}}; X_{V}) = I(Z_{A}^{S_{A}^{\dagger}}; X_{V}), I(\tilde{Z}_{A_{j}}; X_{V} \mid \tilde{Z}_{A}^{\tilde{S}_{A}}) = 0 \quad \forall j \notin \tilde{S}_{A}.$$

Key Assumptions We require four conditions (see Appendix B for formal definitions):

- 1. (DAG & d-Separation) There is a latent DAG over (Z_V, Z_A, X_V, X_A) whose minimal Markov blankets $S_V^{\dagger}, S_A^{\dagger}$ correspond to the truly shared factors.
- 2. (Block-wise Reparameterization) The class of invertible maps q_V, q_A is rich enough that there exists a reparameterization under which the shared block S_V^{\dagger} (resp. S_A^{\dagger}) becomes an axis-aligned subset \tilde{S}_V^{\dagger} (resp. \tilde{S}_A^{\dagger}) of the coordinates.

- 3. (**Decoder Universality**) The decoder families Q_{g_A} , Q_{g_V} can approximate any conditional distribution, so that minimizing cross-entropy is equivalent to minimizing true conditional entropy.
- 4. (Mask Universality & Penalty-Range) The masks can implement any support selection per example, and the sparsity weight λ lies strictly between the smallest shared-factor contribution and the largest non-shared contribution (see Assumption 4).

Above assumptions are commonly used. First, a latent-variable DAG with faithfulness (Assumption 1) underlies most generative models in vision and audio, and the Markov blanket then exactly characterizes the shared information. This is the fundamental assumption in Causality [35]. Second, block-wise reparameterization (Assumption 2) merely requires that our invertible networks q_V, q_A have sufficient capacity to "whiten" or disentangle the small block of truly shared latents; in practice modern normalizing-flow and invertible-residual architectures easily satisfy this. Third, decoder universality (Assumption 3) is standard in representation learning deep decoders with enough width and nonlinearity can approximate any conditional density arbitrarily well, so cross-entropy minimization recovers true conditional entropy. Mask universality implies stipulate that our mask networks are expressive enough to pick any subset of coordinates per example. All these universality have been supported by universal approximation theory of deep learning methods [14]. Finally, penalty-range requirement (Assumptions 4) implies that the sparsity weight λ can be chosen (e.g. via cross-validation) to lie between the minimal utility of a shared factor and the maximal spurious contribution of a non-shared factor. In practice, we can just make λ be sufficiently small. Together, these common assumptions ensure our theoretical guarantees apply to many practical architectures.

Lemma 1 (Sufficientness of Reconstruction). Fix any invertible q_V . Under Assumptions 1-4, any mask-decoder pair (M_V, g_A) that minimizes $\mathbb{E}[-\log Q_{g_A}(X_A \mid M_V \odot \tilde{Z}_V)]$ must satisfy, for every example, $I(\tilde{Z}_V^{S_V(\tilde{Z}_V,\tilde{Z}_A)}; X_A) = I(\tilde{Z}_V; X_A)$. In other words, the selected coordinates form a sufficient statistic for X_A .

This lemma shows that if we only optimize the reconstruction loss (cross-entropy) then the learned mask necessarily keeps all the information in \tilde{Z}_V that is relevant to predicting X_A . In other words, the selected subset of coordinates forms a sufficient statistic for the audio modality, capturing every bit of shared information from the video embedding.

Lemma 2 (Sparsity-Induced Minimality). Fix any invertible q_V . Under Assumptions 3-4, the joint minimizer $(M_V^*, g_A^*) = \arg\min_{M_V, g_A} \left\{ \mathbb{E} \left[-\log Q_{g_A}(X_A \mid M_V \odot \tilde{Z}_V) \right] + \lambda \mathbb{E}[\|M_V\|_1] \right\}$ satisfies, for every example,

$$S_V^*(\tilde{Z}_V, \tilde{Z}_A) = \tilde{S}_V^{\dagger}, \ I(\tilde{Z}_{V,j}; X_A \mid \tilde{Z}_V^{\tilde{S}_V^{\dagger}}) = 0 \ \forall j \notin \tilde{S}_V^{\dagger}. \tag{9}$$

That is, the mask prunes away non-shared coordinates, recovering exactly the minimal shared block.

This lemma establishes that once we add a sparsity penalty on the mask, the model discards every coordinate that does not uniquely contribute to cross-modal reconstruction. The result is the *minimal* subset of features which are precisely the shared latent block. Therefore no redundant or modality-specific information remains.

Theorem 1 (Global Block-Alignment and Recovery). *Under Assumptions 1*, 2, 3, and 4 the global minimizer of Objective 7 yields $(\tilde{Z}_{V}^{\tilde{S}_{A}^{*}})$ that satisfies Definition 2.

This theorem combines the sufficiency and minimality results in both directions (i.e., video—audio and audio—video) and shows that our simple mask-and-reconstruct framework provably extracts exactly the shared latent variables and eliminates all modality-specific components.

5 Experiments

5.1 Experiment Setup

Dataset We conduct experiments on two benchmark datasets: VGGSound [5] and AudioCaps [22]. VGGSound comprises approximately 200K 10-second video clips spanning 310 sound classes, with strong audio-visual correspondence ensured by the presence of visible sound sources. Following the protocol in [52], we sample 5k and 3K clips from the train and test split, respectively, and annotate

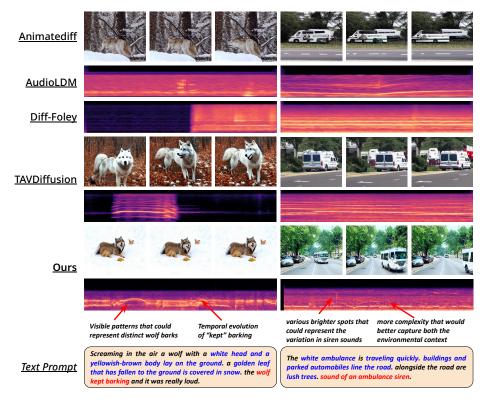


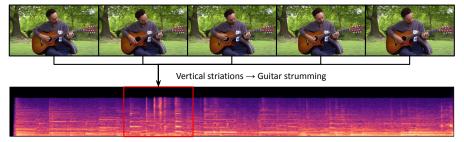
Figure 4: Text-to-Audio-Video generation results. We use the same text prompt as in [33] for our demonstration and compare our method against multiple baselines (Animatediff [8], AudioLDM [26], Diff-Foley [31], and TAVDiffusion [33]). Compared to prior methods, our approach (unidirectional setting as illustrated) produces higher quality and aligned video and audio content.

	VGGSound+			AudioCaps				
Method	FVD ↓	FAD ↓	AVHScore ↑	CAVPSIM ↑	FVD ↓	FAD ↓	AVHScore ↑	CAVPSIM ↑
Two-Streams	768.5	6.29	0.058	0.104	961.4	7.36	0.041	0.165
CasC-Diff	768.5	7.53	0.144	0.126	961.4	9.51	0.092	0.192
TAVDiff [33]	956.3	8.94	0.162	0.098	1131.9	8.43	0.105	0.182
CoDi [41]	709.4	8.36	0.108	0.149	902.5	9.07	0.098	0.211
JavisDiT [29]	697.4	6.17	0.153	0.140	801.2	7.55	0.104	0.207
Unidirectional	662.9	5.49	0.206	0.165	817.6	7.32	0.142	0.230
Bidirectional	701.4	-	0.217	0.183	852.4	-	0.157	0.242

Table 1: Quantitative comparison. Our method outperforms existing baselines in both generative quality metrics and alignment metrics, demonstrating improvements in fidelity as well as cross-modal consistency. For the unidirectional setting, we directly adopt the fine-tuned T2V model for video generation. The generated audio for both the bidirectional and unidirectional settings is identical.

them with text prompts using VideoBlip [54], as adopted in [33]. AudioCaps consists of 46K audio clips paired with human-written captions sourced from AudioSet, and serves as a standard benchmark for audio-language grounding. We also sample 5K paired clips from the training split. To facilitate alignment learning and fine-tuning, we merge the training sets of both datasets, and perform evaluation separately on each test set.

Implementation Details To adapt the diffusion models to the target data domains, we first fine-tune the video and audio diffusion models independently using the training set, respectively. For video generation, we employ the pretrained CogVideoX1.5 [53], and extract latent representations using its VAE encoder. For audio, we adopt AudioLDM [26], which integrates a pretrained CLAP encoder [49] for audio feature extraction. The latent dimensionality of aligned embeddings for audio generation is fixed at 512. Each generated sample has a duration of 10 seconds, with video rendered at 16 frames per second and audio sampled at 48 kHz. Our adapter and masking modules are implemented as multilayer perceptrons. For the masking mechanism, we evaluate both soft masks (sigmoid outputs as weights) and hard masks, obtained by thresholding at 0.5. The loss weights λ_1 and λ_2 are empirically set to 5 and 0.1, respectively.



Text prompt: A man playing guitar in the park.

Figure 5: Temporal alignment between visual motion and acoustic patterns. The strumming motion of the guitarist's hand aligns with vertical striations in the spectrogram, indicating synchronized transient audio events.

Evaluation Metrics We assess perceptual quality of the generated video and audio using Fréchet Video Distance (FVD) [43] and Fréchet Audio Distance (FAD) [37], respectively. Cross-modal semantic alignment is measured by AVHScore [33], while CAVP similarity [31] evaluates temporal synchronization. For V2A performance, we adopt the evaluation protocol from [52], including KL divergence, Inception Score (ISc), Fréchet Distance (FD), and FAD.

Baselines We compare our method against two state-of-the-art T2AV approaches: TAVDiffusion [33] and CoDi [41], using the same text prompts for all models. Additionally, we include: (1) a Cascaded pipeline that uses Animatediff [8] for video generation followed by V2A-Mapper [45] for audio synthesis, and (2) a Two-Stream approach in which video and audio are independently generated from the same text prompt using Animatediff and AudioLDM. For V2A generation, we also compare with the contrastive alignment method in [52] and SpecVQGAN [20], a spectrogram-based audio generator employing vector quantization.

5.2 Main Results

T2AV Generative Quality Table 1 presents the quantitative comparison of our proposed method against existing T2AV generation baselines on the text-labeled VGGSound and AudioCaps datasets. Our method consistently achieves the best performance across all reported metrics. On VGGSound, it reduces FVD and FAD to 662.9 and 5.49, respectively, reflecting significant improvements in both video and audio generation fidelity. Compared to the best-performing baseline [41], our method achieve a relative reduction of 6.5% in FVD and 16.0% in FAD. In terms of semantic alignment, our model achieves the highest AVHScore of 0.206 and 0.142 on VGGSound and AudioCaps, respectively, demonstrating improved correspondence between generated content and the input descriptions. A similar trend is observed in the qualitative results shown in Figure 4. For example, in the wolf scenario, our generated video better captures key semantic attributes such as the white head and yellow-brown body, while the visual background and ambient objects more faithfully reflect the textual prompt. Likewise, the ambulance scene displays correct object types, vehicle motion, and contextual elements like roadside greenery and traffic, showing high semantic fidelity across modalities.

Semantic and Temporal Alignment As shown in Table 1, our method achieves the highest CAVP-SIM scores on both VGGSound and AudioCaps, indicating improvement on cross-modal temporal alignment. This is further illustrated in Figure 4, where the temporal evolution of audio patterns (e.g., barking or sirens) closely corresponds with visual events. In the wolf example, distinct spectrogram patterns align with repeated barking motions, while the ambulance scenario shows dynamic spectrogram textures matching siren intensity and vehicle motion. To further highlight this property, Figure 5 visualizes a man strumming a guitar, where the rhythmic hand motion aligns with vertically striated spectrogram features indicative of transient guitar strokes. These results collectively confirm that our method not only generates high-quality content but also preserves temporal synchronization across modalities. Additional examples are provided in Appendix D.

V2A Generation To further evaluate the effectiveness of cross-model alignment, we assess the video-to-audio (V2A) generation performance using a subcomponent of our model. As shown in Table 2, our approach outperforms existing V2A baselines: SpecVQGAN [20] and SeeHear [52] across most metrics, achieving better KL, ISc and FAD. These results indicate that our model effectively captures the shared semantic and temporal information between video and audio, enabling high-quality cross-

Method	KL↓	ISc↑	FD↓	FAD↓
SpecVQGAN [20]	3.290	5.108	37.269	7.736
SeeHear-Vani [52]	3.203	5.625	40.457	6.850
SeeHear-Full [52]	2.619	5.831	32.920	7.316
Ours	2.128	5.677	39.534	6.155

Table 2: Video-to-Audio Generation Results. Our method outperforms existing V2A baselines across most evaluation metrics, demonstrating noticeable improvements in audio fidelity.

Mask	FVD ↓	FAD ↓	AVHScore ↑	CAVPSIM ↑
	662.9	6.95	0.175	0.141
0	662.9	6.08	0.192	0.144
Δ	662.9	5.49	0.206	0.165

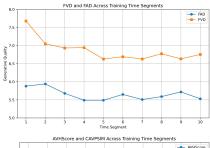
Table 3: Ablation study on masking input modalities. \square : no masking, direct alignment, \bigcirc : only takes video modality embeddings as the input, \triangle : takes both video and audio modality embeddings as the input.

modal generation. The performance of this subcomponent further validates the robustness of our alignment strategy.

5.3 Ablation Study

Study on Mask Input We conduct an ablation study to assess the impact of different mask input configurations on cross-modal generation quality in Table 3. We observe that when no masking is applied (\square) , performance is significantly lower across all metrics, indicating that direct alignment without filtering introduces noise and misalignment. Conditioning the mask on video alone (()) yields moderate improvements, suggesting that video features contain partial cues for predicting shared content. However, the best performance is achieved when the mask is conditioned on both video and audio embeddings (\triangle). resulting in the lowest FAD and highest AVHScore and CAVPSIM. This confirms our hypothesis that observing both modalities enables the mask to more accurately isolate cross-modally relevant dimensions, thereby enhancing semantic consistency and temporal alignment in the generated outputs.

Effect of Temporal Segmentation We conduct an ablation study to investigate the impact of different temporal segmentation strategies on the performance of T2AV generation. Specifically, given a 10-second video/audio clip, we divide the content into sub-clips of varying lengths (ranging from 1s to 10s) and use the aligned segments for fine-tuning the pretrained diffusion models and training



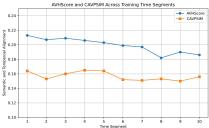


Figure 6: Ablation on different time segment lengths. We find that longer segments improve generative quality, while shorter segments benefit alignment.

the alignment modules, including the masking functions and adapters. As illustrated in Figure 6, longer segment durations consistently improve generative quality, as measured by FAD and FVD, likely due to providing richer temporal context for fine-tuning the diffusion backbones. In contrast, shorter segments yield stronger performance in alignment metrics such as AVHScore and CAVPSIM, suggesting that temporally concise segments reduce misalignment and noise during cross-modal training. Based on this trade-off, we select a 5-second segment length as a balanced choice that supports both high generative fidelity and accurate audio-visual alignment.

6 Conclusion

We presented a multi-stage framework for text-to-audio-video (T2AV) generation that addresses the challenge of semantic and temporal misalignment between modalities. Our method introduces a masked latent adaptation mechanism that selectively aligns video representations with audio embeddings using a learnable adapter and relevance mask. During inference, we leverage a cascaded diffusion structure in which video is generated from text, and audio is subsequently synthesized conditioned on both text and the adapted video latent. This design ensures coherence across modalities while maintaining flexibility by reusing single-modal diffusion models. Extensive experiments demonstrate that our approach improves cross-modal consistency and achieves state-of-the-art results on multimodal generation benchmarks.

7 Acknowledgement

The authors would like to thank Suqin Yuan and Muyang Li for their valuable feedback during the project. Jiyang Zheng is supported by the CSIRO Next Generation Graduates and AI for Missions PhD program. Tongliang Liu is partially supported by the following Australian Research Council projects: FT220100318, DP220102121, LP220100527, LP220200949.

References

- [1] Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon, Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musiclm: Generating music from text. *arXiv preprint arXiv:2301.11325*, 2023.
- [2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022.
- [3] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 22563–22575, 2023.
- [4] Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, et al. Videocrafter1: Open diffusion models for high-quality video generation. *arXiv preprint arXiv:2310.19512*, 2023.
- [5] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-visual dataset. In *International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 2020.
- [6] Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, and Soujanya Poria. Text-to-audio generation using instruction guided latent diffusion model. In *Proceedings of the 31st ACM International Conference on Multimedia*, pages 3590–3598, 2023.
- [7] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In *CVPR*, 2023.
- [8] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.
- [9] Jie Hong, Weihao Li, Junlin Han, Jiyang Zheng, Pengfei Fang, Mehrtash Harandi, and Lars Petersson. Goss: Towards generalized open-set semantic segmentation. *The Visual Computer*, 40(4):2391–2404, 2024.
- [10] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pretraining for text-to-video generation via transformers. In *The Eleventh International Conference on Learning Representations*, 2023.
- [11] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In *International conference on machine learning*, pages 2790–2799. PMLR, 2019.
- [12] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- [13] Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8153–8163, 2024.

- [14] Guang-Bin Huang, Lei Chen, and Chee-Kheong Siew. Universal approximation using incremental constructive feedforward networks with random hidden nodes. *IEEE transactions on neural networks*, 17(4):879–892, 2024.
- [15] Jiaxin Huang, Runnan Chen, Ziwen Li, Zhengqing Gao, Xiao He, Yandong Guo, Mingming Gong, and Tongliang Liu. Mllm-for3d: Adapting multimodal large language model for 3d reasoning segmentation. *arXiv preprint arXiv:2503.18135*, 2025.
- [16] Jiaxin Huang, Ziwen Li, Hanlve Zhang, Runnan Chen, Xiao He, Yandong Guo, Wenping Wang, Tongliang Liu, and Mingming Gong. Surprise3d: A dataset for spatial understanding and reasoning in complex 3d scenes. *arXiv preprint arXiv:2507.07781*, 2025.
- [17] Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced diffusion models. In *International Conference on Machine Learning*, pages 13916–13932. PMLR, 2023.
- [18] Zhuo Huang, Chang Liu, Yinpeng Dong, Hang Su, Shibao Zheng, and Tongliang Liu. Machine vision therapy: Multimodal large language models can enhance visual robustness via denoising in-context learning. In *Forty-first International Conference on Machine Learning*, 2024.
- [19] Zhuo Huang, Xiaobo Xia, Li Shen, Bo Han, Mingming Gong, Chen Gong, and Tongliang Liu. Harnessing out-of-distribution examples via augmenting content and style. In *The Eleventh International Conference on Learning Representations*, 2023.
- [20] Vladimir Iashin and Esa Rahtu. Taming visually guided sound generation. *arXiv preprint* arXiv:2110.08791, 2021.
- [21] Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models are zero-shot video generators. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 15954–15964, 2023.
- [22] Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Generating captions for audios in the wild. In NAACL-HLT, 2019.
- [23] Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor Akinwande, and Kun Zhang. Partial disentanglement for domain adaptation. In *International conference on machine learning*, pages 11455–11472. PMLR, 2022.
- [24] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *International conference* on machine learning, pages 19730–19742. PMLR, 2023.
- [25] Yexiong Lin, Yu Yao, and Tongliang Liu. Beyond optimal transport: Model-aligned coupling for flow matching. arXiv preprint arXiv:2505.23346, 2025.
- [26] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. In *International Conference on Machine Learning*, pages 21450–21474. PMLR, 2023.
- [27] Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu Wang, Yuxuan Wang, and Mark D Plumbley. Audioldm 2: Learning holistic audio generation with self-supervised pretraining. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 2024.
- [28] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.
- [29] Kai Liu, Wei Li, Lai Chen, Shengqiong Wu, Yanhao Zheng, Jiayi Ji, Fan Zhou, Rongxin Jiang, Jiebo Luo, Hao Fei, and Tat-Seng Chua. Javisdit: Joint audio-video diffusion transformer with hierarchical spatio-temporal prior synchronization. In *arxiv*, 2025.
- [30] Run Luo, Renke Shan, Longze Chen, Ziqiang Liu, Lu Wang, Min Yang, and Xiaobo Xia. Vcm: Vision concept modeling based on implicit contrastive learning with vision-language instruction fine-tuning. *arXiv preprint arXiv:2504.19627*, 2025.

- [31] Simian Luo, Chuanhao Yan, Chenxu Hu, and Hang Zhao. Diff-foley: Synchronized videoto-audio synthesis with latent diffusion models. *Advances in Neural Information Processing Systems*, 36:48855–48876, 2023.
- [32] Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, and Soujanya Poria. Tango 2: Aligning diffusion-based text-to-audio generations through direct preference optimization. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 564–572, 2024.
- [33] Yuxin Mao, Xuyang Shen, Jing Zhang, Zhen Qin, Jinxing Zhou, Mochu Xiang, Yiran Zhong, and Yuchao Dai. Tavgbench: Benchmarking text to audible-video generation. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 6607–6616, 2024.
- [34] Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning. arXiv preprint arXiv:2111.09734, 2021.
- [35] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of causal inference: foundations and learning algorithms*. The MIT Press, 2017.
- [36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PmLR, 2021.
- [37] Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu, Nicholas Jing Yuan, Qin Jin, and Baining Guo. Mm-diffusion: Learning multi-modal diffusion models for joint audio and video generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10219–10228, 2023.
- [38] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video data. In *The Eleventh International Conference on Learning Representations*, 2023.
- [39] Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Emu: Generative pretraining in multimodality. In *The Twelfth International Conference on Learning Representations*, 2024.
- [40] Xu Tan, Jiawei Chen, Haohe Liu, Jian Cong, Chen Zhang, Yanqing Liu, Xi Wang, Yichong Leng, Yuanhao Yi, Lei He, et al. Naturalspeech: End-to-end text-to-speech synthesis with human-level quality. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(6):4234–4245, 2024.
- [41] Zineng Tang, Ziyi Yang, Chenguang Zhu, Michael Zeng, and Mohit Bansal. Any-to-any generation via composable diffusion. Advances in Neural Information Processing Systems, 36:16083–16099, 2023.
- [42] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
- [43] Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and Sylvain Gelly. Fvd: A new metric for video generation. 2019.
- [44] Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably isolates content from style. *Advances in neural information processing systems*, 34:16451–16467, 2021.
- [45] Heng Wang, Jianbo Ma, Santiago Pascual, Richard Cartwright, and Weidong Cai. V2a-mapper: A lightweight solution for vision-to-audio generation by connecting foundation models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2024.

- [46] Zhaoqing Wang, Xiaobo Xia, Runnan Chen, Dongdong Yu, Changhu Wang, Mingming Gong, and Tongliang Liu. Lavin-dit: Large vision diffusion transformer. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 20060–20070, 2025.
- [47] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion models for text-to-video generation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 7623–7633, 2023.
- [48] Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. NExt-GPT: Any-to-any multimodal LLM. In *Forty-first International Conference on Machine Learning*, 2024.
- [49] Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption augmentation. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE, 2023.
- [50] Shaoan Xie, Lingjing Kong, Mingming Gong, and Kun Zhang. Multi-domain image generation and translation with identifiability guarantees. In *The Eleventh International Conference on Learning Representations*, 2023.
- [51] Shaoan Xie, Lingjing Kong, Yujia Zheng, Yu Yao, Zeyu Tang, Eric P. Xing, Guangyi Chen, and Kun Zhang. Smartclip: Modular vision-language alignment with identification guarantees. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025.
- [52] Yazhou Xing, Yingqing He, Zeyue Tian, Xintao Wang, and Qifeng Chen. Seeing and hearing: Open-domain visual-audio generation with diffusion latent aligners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 7151–7161, 2024.
- [53] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.
- [54] Keunwoo Yu, Zheyuan Zhang, Fengyuan Hu, Shane Storks, and Joyce Chai. Eliciting in-context learning in vision-language models for videos through curated data distributional properties. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 20416–20431, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
- [55] Yabo Zhang, Yuxiang Wei, Dongsheng Jiang, Xiaopeng Zhang, Wangmeng Zuo, and Qi Tian. Controlvideo: Training-free controllable text-to-video generation. *arXiv* preprint *arXiv*:2305.13077, 2023.
- [56] Jiyang Zheng, Weihao Li, Jie Hong, Lars Petersson, and Nick Barnes. Towards open-set object detection and discovery. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 3961–3970, 2022.
- [57] Jiyang Zheng, Jialiang Shen, Yu Yao, Min Wang, Yang Yang, Dadong Wang, and Tongliang Liu. Chain-of-focus prompting: Leveraging sequential visual cues to prompt large autoregressive vision models. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [58] Jiyang Zheng, Yu Yao, Bo Han, Dadong Wang, and Tongliang Liu. Enhancing contrastive learning for ordinal regression via ordinal content preserved data augmentation. In *The Twelfth International Conference on Learning Representations*, 2024.

Appendix

A Related Works

Text-to-Audio-Video Generation Text-to-Audio-Video (T2AV) generation aims to synthesize audio and video streams that are semantically and temporally aligned, conditioned on a single text

prompt. The task extends beyond text-to-video (T2V) and text-to-audio (T2A) generation by requiring consistency across modalities. Recent advances in T2V [4, 8, 21, 47, 55, 25] and T2A [1, 17, 27, 32, 40] have enabled high-quality content generation in each modality. However, generating them independently often results in misaligned outputs, as the modalities are not conditioned on each other. A simple alternative is a cascaded approach, where one modality (e.g., video) is generated first and used to condition the other (e.g., audio). While this improves synchronization, it may propagate errors and lead to inconsistencies with the original text. To address these issues, recent T2AV methods propose joint modeling strategies. CoDi [41] unifies generation across multiple modalities in a single diffusion framework via aligning prompt encoders (text, image, video, audio) into a shared input space using contrastive learning, with text as the central bridging modality. [52] aligns pretrained T2V and T2A models via a shared semantic space using ImageBind. TAVDiffusion [33] adopts a two-stream latent diffusion model and addresses alignment via cross-attention and contrastive learning. Nevertheless, joint modeling of audio and visual modalities requires careful alignment of representations to preserve both semantic consistency and temporal synchronization. Our framework complements existing approaches by introducing a targeted alignment mechanism that mitigates the impact of noisy or partial correspondences, leading to more faithful and consistent T2AV generation.

Cross-Modal Alignment Cross-modal alignment is crucial for integrating information from different modalities, facilitating tasks such as retrieval, recognition [56, 9], and generation [19, 58, 57, 46]. The goal is to project modality-specific features into a shared embedding space where semantically related inputs are closely aligned. In the vision-language domain [18, 15, 16, 30], CLIP [36] has become a standard framework, while CLAP [49] and CAVP [31] extend contrastive alignment to audio-language and vision-audio pairs, respectively. ImageBind [7] further generalizes this approach to unify multiple modalities in a single embedding space. Such alignment modules are integral to conditional generative models [31]. While early approaches trained modality encoders from scratch, recent work shows that frozen foundation models can be effectively adapted using lightweight projectors [11, 34]. In video-to-audio generation, V2A-Mapper [45] learns a projection from CLIP to CLAP features using a simple MLP, enabling audio generation conditioned on vision without retraining large-scale models. Despite these advances, aligning the correct semantic content across modalities remains challenging. Representations often entangle modality-specific and irrelevant information, leading to noisy alignment. SmartCLIP [51] identifies this issue in vision-language models, showing that CLIP embeddings often entangle unrelated concepts due to coarse-grained alignment. These findings underscore a broader challenge in multimodal generation: how to align information across modalities such that the learned representations do not introduce inconsistencies in the generated outputs. Our work addresses this by introducing a masked adapter module that enables efficient and selective alignment between pretrained modality-specific encoders. By focusing alignment on semantically relevant regions, our method mitigates noisy correspondence and improves consistency in T2AV generations.

B Theoretical Results and Proofs

B.1 Notations and Definitions

We introduce key notations and definitions as follows.

Let $X_V \in \mathcal{X}_V$ (video) and $X_A \in \mathcal{X}_A$ (audio) be two modalities. Pretrained encoders produce

$$\hat{Z}_V = (\hat{Z}_{V,1}, \dots, \hat{Z}_{V,d}), \quad \hat{Z}_A = (\hat{Z}_{A,1}, \dots, \hat{Z}_{A,d}) \in \mathbb{R}^d.$$
 (10)

We introduce learnable invertible reparameterizations

$$q_V, q_A : \mathbb{R}^d \to \mathbb{R}^d,$$
 (11)

and define

$$\tilde{Z}_V = q_V(\hat{Z}_V), \quad \tilde{Z}_A = q_A(\hat{Z}_A).$$
 (12)

We learn mask functions

$$M_V: \mathbb{R}^d \times \mathbb{R}^d \to \{0, 1\}^d, \quad M_A: \mathbb{R}^d \times \mathbb{R}^d \to \{0, 1\}^d,$$
 (13)

so that for each sample the model produces binary masks

$$M_V(\tilde{Z}_V, \tilde{Z}_A), \ M_A(\tilde{Z}_V, \tilde{Z}_A) \in \{0, 1\}^d,$$
 (14)

Denote their supports (or selected indices) by

$$\tilde{S}_V := S_V(\tilde{Z}_V, \tilde{Z}_A) = \{ i : M_{V,i}(\tilde{Z}_V, \tilde{Z}_A) = 1 \},$$
 (15)

$$\tilde{S}_A := S_A(\tilde{Z}_V, \tilde{Z}_A) = \{ i : M_{A,i}(\tilde{Z}_V, \tilde{Z}_A) = 1 \}.$$
 (16)

Let $\tilde{Z}_V^{\tilde{S}_V}\subseteq \tilde{Z}_V$ and $\tilde{Z}_A^{\tilde{S}_A}\subseteq \tilde{Z}_A$ be the selected variables induced by learnable masks, i.e.,

$$\tilde{Z}_{V}^{\tilde{S}_{V}} = (\tilde{Z}_{V,i})_{i \in \tilde{S}_{V}}, \quad \tilde{Z}_{A}^{\tilde{S}_{A}} = (\tilde{Z}_{A,i})_{i \in \tilde{S}_{A}}, \quad \overline{\tilde{S}_{V}} = [d] \setminus \tilde{S}_{V} \text{ and } \overline{\tilde{S}_{A}} = [d] \setminus \tilde{S}_{A},$$
 (17)

for any set $\tilde{S}_V \subseteq [d]$ and set $\tilde{S}_A \subseteq [d]$.

Write $S_V^{\dagger} \subseteq [d]$ (resp. S_A^{\dagger}) for the *true* minimal Markov blanket of X_A in Z_V (resp. of X_V in Z_A). In other words, S_V^{\dagger} is the smallest subset satisfying that conditioning on $\{Z_{V,i}:i\in S_V^{\dagger}\}$ renders all other latent coordinates irrelevant to X_A . The analogous property holds for S_A^{\dagger} .

Reconstruction quality is measured via true conditional entropy:

$$H(X_A \mid \tilde{Z}_V^{\tilde{S}_V}) = -\mathbb{E}\left[\log p(X_A \mid \tilde{Z}_V^{\tilde{S}_V})\right], \quad H(X_V \mid \tilde{Z}_A^{\tilde{S}_A}) = -\mathbb{E}\left[\log p(X_V \mid \tilde{Z}_A^{\tilde{S}_A})\right]. \tag{18}$$
 Let $Q_{q_A}(X_A \mid \cdot)$ and $Q_{q_V}(X_V \mid \cdot)$ be decoder families. We optimize

$$\mathcal{L}_{V}(M_{V}, q_{V}, g_{A}) = \mathbb{E}\Big[-\log Q_{g_{A}}\big(X_{A} \mid M_{V}(\tilde{Z}_{V}, \tilde{Z}_{A}) \odot \tilde{Z}_{V}\big)\Big] + \lambda \,\mathbb{E}\big[\|M_{V}(\tilde{Z}_{V}, \tilde{Z}_{A})\|_{1}\big], \quad (19)$$
and symmetrically $\mathcal{L}_{A}(g_{V}, q_{V}, M_{A})$ for audio \rightarrow video.

Definition 2 (Minimum Sufficient Latents). Given index sets $\tilde{S}_V, \tilde{S}_A \subseteq [d]$, we say that the pairs $(\tilde{Z}_{V}^{\tilde{S}_{V}}, \tilde{Z}_{A}^{\tilde{S}_{A}})$ are Minimum Sufficient Latents if they satisfy

$$I(\tilde{Z}_{V}^{\tilde{S}_{V}}; X_{A}) = I(Z_{V}^{S_{V}^{\dagger}}; X_{A}), I(\tilde{Z}_{V_{j}}; X_{A} \mid \tilde{Z}_{V}^{\tilde{S}_{V}}) = 0 \quad \forall j \notin \tilde{S}_{V},$$
$$I(\tilde{Z}_{A}^{\tilde{S}_{A}}; X_{V}) = I(Z_{A}^{S_{A}^{\dagger}}; X_{V}), I(\tilde{Z}_{A_{j}}; X_{V} \mid \tilde{Z}_{A}^{\tilde{S}_{A}}) = 0 \quad \forall j \notin \tilde{S}_{A}.$$

B.2 Assumptions

We introduce the assumptions required by our method as follows.

Assumption 1 (DAG & d-Separation). The joint distribution of (Z_V, Z_A, X_V, X_A) factors according to a DAG satisfying the global Markov property and faithfulness.

Hence for any $S_V \subseteq [d]$,

$$X_A \perp Z_V^{\overline{S}_V} \mid Z_V^{S_V} \quad \iff \quad I(Z_{V,i}; X_A \mid Z_V^{S_V}) = 0 \ \forall i \notin S_V, \tag{20}$$

and the same condition holds when V and A are interchanged.

Assumption 2 (Block-wise Reparameterization). The joint function class for (q_V, q_A) is rich enough that there exist invertible maps

$$q_V^*, q_A^* : \mathbb{R}^d \to \mathbb{R}^d \tag{21}$$

and index-sets \tilde{S}_{V}^{\dagger} , $\tilde{S}_{A}^{\dagger} \subseteq [d]$ satisfying

$$I(q_V^*(Z_V)^{\tilde{S}_V^{\dagger}}; X_A) = I(Z_V^{S_V^{\dagger}}; X_A), \quad I(q_V^*(Z_V)_i; X_A \mid q_V^*(Z_V)^{\tilde{S}_V^{\dagger}}) = 0 \quad \forall i \notin \tilde{S}_V^{\dagger}. \tag{22}$$

Assumption 3 (Decoder Universality). For any $S\subseteq [d]$, $\min_{g_A}\mathbb{E}[-\log Q_{g_A}(X_A\mid \tilde{Z}_V^{\tilde{S}_V})]$ $H(X_A \mid \tilde{Z}_V^{\tilde{S}_V})$ and similarly for $X_V \mid \tilde{Z}_A^S$. **Assumption 4** (Mask Universality). The mask networks M_V , M_A are sufficiently expressive to realize

any mapping $\mathbb{R}^d \times \mathbb{R}^d \to \{0,1\}^d$, i.e. choose any support $S \subseteq [d]$ for each sample.

Assumption 5 (Penalty-Range). For any subset $\tilde{S}_V \subseteq [d]$ and index $i \in [d]$, define

$$\Delta_{V,i}(\tilde{S}_V) = I(\tilde{Z}_{V,i}; X_A \mid \tilde{Z}_V^{(\tilde{S}_V \setminus \{i\})}),$$

which is the mutual information between $\tilde{Z}_{V,i}$ and X_A conditioned on the remaining variables $\tilde{Z}_{V}^{(\tilde{S}_{V}\setminus\{i\})}=\{\tilde{Z}_{V,j}:j\in\tilde{S}_{V}\setminus\{i\}\}.$ There exists a constant λ such that

$$\max_{j \notin \tilde{S}_V^\dagger} \Delta_{V,j}([d]) \; < \; \lambda \; < \; \min_{i \in \tilde{S}_V^\dagger} \Delta_{V,i}(\tilde{S}_V^\dagger),$$

and the same condition holds when V and A are interchanged.

Note that above assumptions are common. Assumption 1 is a fundamental assumption in causality [35]. Assumption 2 merely requires that our networks q_V , q_A have sufficient capacity to "whiten" or disentangle the small block of truly shared latents. Assumption 3 assumes that deep decoders can approximate any conditional density arbitrarily well, so cross-entropy minimization recovers true conditional entropy. Assumption 4 implies stipulate that our mask networks are expressive enough to pick any subset of coordinates per example. All these assumptions 2, 3, 4 have been supported by universal approximation theory of deep learning methods [14]. Finally, Assumptions 5 implies that the sparsity weight λ can be chosen to lie between the minimal utility of a shared factor and the maximal spurious contribution of a non-shared factor. In practice, we can just make λ be sufficiently small.

B.3 Theoretical Results

The following lemma shows that, by minimizing the cross-entropy loss of a decoder trained to reconstruct a short audio segments from the selected learned representations of video frames, one asymptotically recovers the conditional entropy of reconstructed short audio segments given those representations. The same result holds when swapping the roles of video V and the audio A.

Lemma 3 (Cross-Entropy Reduction to Conditional Entropy). *Under Assumption 3, for any fixed mask function M_V and fixed q_V, we have*

$$\min_{g_A} \mathbb{E}\Big[-\log Q_{g_A}\big(X_A \mid M_V(\tilde{Z}_V, \tilde{Z}_A) \odot \tilde{Z}_V\big)\Big] \longrightarrow \mathbb{E}\Big[H\big(X_A \mid \tilde{Z}_V^{\tilde{S}_V}\big)\Big], \tag{23}$$

where $\tilde{Z}_V = q_V(Z_V)$ and $S_V(\tilde{z}_V, \tilde{z}_A) = support(M_V(\tilde{z}_V, \tilde{z}_A))$.

Proof. Let

$$L(M_V, g_A) = \mathbb{E}\left[-\log Q_{g_A}\left(X_A \mid M_V(\tilde{Z}_V, \tilde{Z}_A) \odot \tilde{Z}_V\right)\right]. \tag{24}$$

By the interchange of minima,

$$\min_{M_V, g_A} L(M_V, g_A) = \min_{M_V} \left[\min_{g_A} L(M_V, g_A) \right]. \tag{25}$$

Fix any mask M_V . Then by Assumption 3 (Decoder Universality),

$$\min_{q_A} L(M_V, g_A) = \min_{q_A} \mathbb{E}\left[-\log Q_{g_A}(X_A \mid \tilde{Z}_V^{\tilde{S}_V})\right] \longrightarrow \mathbb{E}\left[H(X_A \mid \tilde{Z}_V^{\tilde{S}_V})\right]. \tag{26}$$

Note that $(X_A \mid M_V(\tilde{Z}_V, \tilde{Z}_A) \odot \tilde{Z}_V = Z_V^{\tilde{S}_V}$ by definition, since the mask selects exactly those components. Therefore, the proof is complete.

The following lemma shows that any mask–decoder pair minimizing the cross-entropy reconstruction loss inevitably selects a subset of video representations that retains the full mutual information with the audio segment, i.e., it forms a sufficient statistic for the audio segment. The same result holds when swapping the roles of video V and the audio A.

Lemma 4 (Sufficientness of Reconstruction). Fix any invertible q_V . Under Assumptions 1–4, any mask–decoder pair (M_V, g_A) that minimizes $\mathbb{E}[-\log Q_{g_A}(X_A \mid M_V \odot \tilde{Z}_V)]$ must satisfy, for every sample,

$$I(\tilde{Z}_V^{\tilde{S}_V}; X_A) = I(\tilde{Z}_V; X_A). \tag{27}$$

In other words, the selected coordinates form a sufficient statistic for X_A .

Proof. For notational simplicity, we omit the arguments $(\tilde{Z}_V, \tilde{Z}_A)$ when writing $\hat{M}_V(\tilde{Z}_V, \tilde{Z}_A)$. Fix q_V and consider any minimizer (\hat{M}_V, \hat{g}_A) of the cross-entropy. By Lemma 3, this pair also minimizes $\mathbb{E}[H(X_A \mid \tilde{Z}_V^{\tilde{S}_V})]$. Under Assumption 4, the mask M_V is expressive enough to choose the index set \tilde{S}_V arbitrarily for each sample. Hence the minimization decomposes per sample: for each $(\tilde{z}_V, \tilde{z}_A)$, we pick

$$S_V(\tilde{z}_V, \tilde{z}_A) \in \arg\min_{\tilde{S} \subseteq [d]} H(X_A \mid \tilde{Z}_V^{\tilde{S}_V} = \tilde{z}_V^{\tilde{S}_V}). \tag{28}$$

Recall that for any fixed \tilde{S}_v ,

$$H(X_A \mid \tilde{Z}_V^{\tilde{S}_V}) = H(X_A) - I(\tilde{Z}_V^{\tilde{S}_V}; X_A),$$
 (29)

By the causal faithfulness and causal Markov properties [35] (analogous to Assumption 1, but applied to the variables produced by the neural network), it gives

$$I(\tilde{Z}_{V}^{\tilde{S}_{V}}; X_{A}) \leq I(\tilde{Z}_{V}; X_{A}) \iff H(X_{A} \mid \tilde{Z}_{V}^{\tilde{S}_{V}}) \geq H(X_{A} \mid \tilde{Z}_{V}).$$
 (30)

Hence the unique minimizer of $H(X_A \mid \tilde{Z}_V^{\tilde{S}_V})$ is any S satisfying

$$H(X_A \mid \tilde{Z}_V^{\tilde{S}_V}) = H(X_A \mid \tilde{Z}_V), \tag{31}$$

which is equivalent to

$$I(\tilde{Z}_{V}^{\tilde{S}_{V}}; X_{A}) = I(\tilde{Z}_{V}; X_{A}). \tag{32}$$

Thus for each sample, $I(\tilde{Z}_{V}^{S_{V}(\tilde{z}_{V},\tilde{z}_{A})};X_{A})=I(\tilde{Z}_{V};X_{A})$, completing the proof.

The following lemma shows that adding an ℓ_1 -penalty on the mask encourages sparsity: the optimal mask discards all non-shared coordinates and exactly recovers the minimal shared block of the variables produced by the neural network.

Lemma 5 (Sparsity-Induced Minimality). Fix any invertible q_V . Under Assumptions 3–5, the joint minimizer

$$(M_V^*, g_A^*) = \arg\min_{M_V, g_A} \left\{ \mathbb{E} \left[-\log Q_{g_A}(X_A \mid M_V \odot \tilde{Z}_V) \right] + \lambda \, \mathbb{E}[\|M_V\|_1] \right\}$$
(33)

satisfies, for almost every sample,

$$S_V^*(\tilde{Z}_V, \tilde{Z}_A) = \tilde{S}_V^{\dagger}, \quad I(\tilde{Z}_{V,j}; X_A \mid \tilde{Z}_V^{\tilde{S}_V^{\dagger}}) = 0 \quad \forall j \notin \tilde{S}_V^{\dagger}. \tag{34}$$

That is, the mask prunes away all non-shared coordinates, recovering exactly the minimal shared block.

Proof of Lemma 5 (Sparsity-Induced Minimality). Fix q_V . As before, by Decoder Universality (Lemma 3) the joint minimization over (M_V, g_A) is equivalent to

$$\min_{M_{V}} \mathbb{E}\Big[H\big(X_{A} \mid \tilde{Z}_{V}^{\tilde{S}_{V}}\big) + \lambda \mid \tilde{S}_{V} \mid \Big]. \tag{35}$$

Since M_V can choose \tilde{S}_V per sample (Assumption 4), we solve for each $(\tilde{z}_V, \tilde{z}_A)$:

$$\min_{\tilde{S} \subseteq [d]} f(\tilde{S}) \quad \text{where} \quad f(\tilde{S}) = H(X_A \mid \tilde{z}_V^{\tilde{S}_V}) + \lambda \mid \tilde{S} \mid.$$
 (36)

For any $j \notin \tilde{S}$, adding j changes f by

$$f(\tilde{S} \cup \{j\}) - f(\tilde{S}) = -I(\tilde{Z}_{V,j}; X_A \mid \tilde{Z}_V^{\tilde{S}_V}) + \lambda. \tag{37}$$

By Assumption 5, $I(\tilde{Z}_{V,j}; X_A \mid \tilde{Z}_V^{\tilde{S}_V}) \leq \Delta_{V,j}([d]) < \lambda$, so $f(S \cup \{j\}) > f(S)$ and no non-blanket index is added. Similarly, for any $i \in S$, dropping i changes f by

$$f(\tilde{S} \setminus \{i\}) - f(\tilde{S}) = I(\tilde{Z}_{V,i}; X_A \mid \tilde{Z}_V^{\tilde{S} \setminus \{i\}}) - \lambda, \tag{38}$$

and Assumption 5 ensures this is positive for all $i \in \tilde{S}_V^{\dagger}$. Hence the unique minimizer is $\tilde{S} = \tilde{S}_V^{\dagger}$, and $I(\tilde{Z}_{V,j}; X_A \mid \tilde{Z}_V^{\tilde{S}_V^{\dagger}}) = 0$ for $j \notin \tilde{S}_V^{\dagger}$, as required.

The following theorem shows that, when jointly optimizing encoders, masks, and decoders with our bidirectional objective over both video and audio representations, the global minimizer precisely aligns and recovers the shared latent blocks—i.e. it achieves exactly the block-alignment specified in Definition 2.

Theorem 2 (Global Block-Alignment and Recovery). *Under Assumptions 1*, 2, 3, 4 and 5, the global minimizer of Objective 7 yields $(\tilde{Z}_{V}^{\tilde{S}_{V}^{*}}, \tilde{Z}_{A}^{\tilde{S}_{A}^{*}})$ that satisfies Definition 2.

Proof. We decompose the total training objective into two symmetric parts,

$$\mathcal{L} = \mathcal{L}_{V \to A}(q_V, M_V, q_A) + \mathcal{L}_{A \to V}(q_A, M_A, q_V),$$

where, for instance,

$$\mathcal{L}_{V \to A}(q_V, M_V, g_A) = \mathbb{E} \Big[-\log Q_{g_A} \big(X_A \mid M_V(\tilde{Z}_V, \tilde{Z}_A) \odot q_V(Z_V) \big) \Big] + \lambda \, \mathbb{E} \big[\|M_V\|_1 \big].$$

1. Existence of an optimal block-aligned configuration. By Assumption 2, there exist $(q_V^{\dagger}, M_V^{\dagger})$ and g_A^{\dagger} such that

$$M_V^{\dagger}(\tilde{z}_V, \tilde{z}_A) \equiv \tilde{S}_V^{\dagger}, \quad \mathcal{L}_{V \to A}(q_V^{\dagger}, M_V^{\dagger}, g_A^{\dagger}) = H(X_A \mid \tilde{Z}_V^{\tilde{S}_V^{\dagger}}) + \lambda \mid \tilde{S}_V^{\dagger} \mid.$$

The same argument applies to the audio-to-video term, yielding $(q_A^{\dagger}, M_A^{\dagger}, g_V^{\dagger})$.

2. Optimality of the shared supports. Fix any candidate (q_V, M_V, g_A) . First, for a fixed encoder q_V , Lemma 3 (Decoder Universality) shows that

$$\min_{q_A} \mathcal{L}_{V \to A}(q_V, M_V, g_A) = \mathbb{E} \big[H(X_A \mid \tilde{Z}_V^{\tilde{S}_V}) \big] + \lambda \, \mathbb{E} \big[|\tilde{S}_V| \big].$$

Lemma 4 then implies any minimizer M_V must satisfy

$$I(\tilde{Z}_{V}^{\tilde{S}_{V}}; X_{A}) = I(\tilde{Z}_{V}; X_{A}).$$

Next, we allow q_V itself to vary. By Assumption 2, the encoder family contains some q_V^{\dagger} that minimizes the conditional entropy $\mathbb{E}[H(X_A \mid \tilde{Z}_V^{\tilde{S}_V^{\dagger}})]$. Lemma 5 ensures the unique sparsest choice of \tilde{S}_V is \tilde{S}_V^{\dagger} . Altogether, when λ is sufficiently small, the global minimizer of the video—audio term satisfy

$$q_V^* = q_V^{\dagger}, \quad M_V^*(\cdot) = \tilde{S}_V^{\dagger}.$$

An identical chain of reasoning on $\mathcal{L}_{A \to V}$ yields

$$q_A^* = q_A^{\dagger}, \quad M_A^*(\cdot) = \tilde{S}_A^{\dagger}.$$

Therefore, at the global optimum both pairs $(\tilde{Z}_{V}^{\tilde{S}_{V}^{*}}, \tilde{Z}_{A}^{\tilde{S}_{A}^{*}})$ thus coincide with the unique minimal sufficient latents $(\tilde{Z}_{V}^{\tilde{S}_{V}^{\dagger}}, \tilde{Z}_{A}^{\tilde{S}_{A}^{\dagger}})$, so they satisfy Definition 1.

C Cascade Diffusion Model

Building on the aligned latent representations from Stage I, we generate video and audio in a cascaded manner using independently finetuned single-modal diffusion models. As illustrated in Figure 3 (II), the process begins by generating a video from a text prompt using a video latent diffusion model. The resulting visual latent z_v^T is then adapted through a lightweight projection network \mathcal{P}_{θ} , producing an audio-guiding latent \tilde{z}_a that encodes visually grounded cues. This latent, along with the original text embedding, conditions the subsequent audio generation. By structuring the process in this cascaded fashion, we ensure that the audio is temporally and semantically aligned with the generated video content. Notably, the pretrained diffusion backbones remain frozen during training, and only the adapters are updated, preserving modularity and enabling efficient adaptation to downstream multimodal generation tasks.

Figure 7: Additional Text-to-Audio-Video generation results compared with other baselines. We use the same text prompt as in [33] for our demonstration and compare the method against multiple baselines (Animatediff [8], AudioLDM [26], Diff-Foley [31], and TAVDiffusion [33]).

Diffusion Formulation Let x_t denote the input text prompt, which is encoded via a pretrained text encoder $f_t(\cdot)$ to obtain $z_t = f_t(x_t)$. The video generation begins by sampling Gaussian noise $z_v^0 \sim \mathcal{N}(0, I)$, which is progressively denoised through the reverse diffusion process:

$$z_v^{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(z_v^t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \cdot \epsilon_{\theta_v}(z_v^t, z_t, t) \right) + \sigma_t \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I).$$
 (39)

Once the final video latent z_v^T is obtained, it is projected into an audio-guiding latent $\tilde{z}_a = \mathcal{P}_{\theta}(z_v^T)$. Audio generation is then conditioned on both \tilde{z}_a and z_t using an analogous denoising process:

$$z_a^{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(z_a^t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \cdot \epsilon_{\theta_a} (z_a^t, \tilde{z}_a, z_t, t) \right) + \sigma_t \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I).$$
 (40)

The generated latents are subsequently decoded using pretrained decoders to obtain the final outputs: $\hat{x}_v = g_v(z_v^T)$ and $\hat{x}_a = g_a(z_a^T)$.

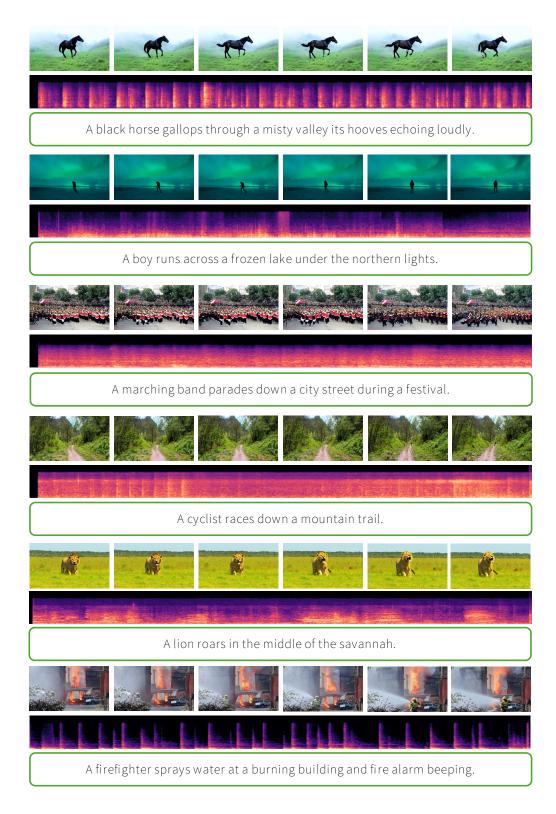


Figure 8: Additional Text-to-Audio-Video generation results by our proposed framework.

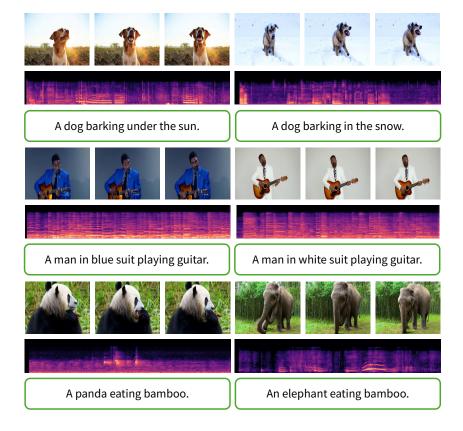


Figure 9: Change of audible or non-audible attributes to the generative results.

D Additional Results

We present additional visualizations of our T2AV-generated results in Figure 7. Using the same text prompts as those in [33], we generate audio-video pairs and compare them against existing baselines. In the *Disneyland* scene, our model produces vertically structured spectrogram features that plausibly correspond to discrete auditory events such as applause or exclamations, reflecting a diverse and dynamic soundscape. In the *sky with bird chirping* scene, we observe consistent, rhythmic patterns in the spectrogram that align with natural bird calls, indicating accurate temporal grounding of audio events. These results highlight the model's ability to synthesize semantically coherent and temporally aligned audio conditioned on visual content. Additional examples are provided in Figure 7.

E Sensitivity Test

We conduct a sensitivity analysis to probe how the system responds to prompt variations that (i) alter non-audible attributes (e.g., background, static non-audible objects) while keeping the sound-causing event unchanged, and (ii) alter audible attributes (e.g., object/action that produces sound) while holding non-audible details fixed. As shown in Figure 9, for each prompt pair, we generate matched video-audio samples under identical random seeds. Qualitatively, we visualize spectrograms alongside key video frames to inspect whether non-audible edits leave the soundtrack invariant and whether audible edits induce commensurate changes in rhythm and energy. Ideally, non-audible edits should produce minimal shifts in audio metrics, while audible edits should yield significant, directionally consistent changes. This analysis clarifies which aspects of the prompt our model treats as causally relevant for sound synthesis and highlights residual entanglements where visual-only edits still perturb the audio.

α	AVH↑	CAVP↑	FAD↓
0.001	0.174	0.150	5.52
0.01	0.197	0.159	5.60
0.1	0.206	0.165	5.49
1	0.199	0.154	5.31

λ	AVH↑	CAVP↑	FAD↓
1	0.208	0.161	7.03
5	0.206	0.165	5.49
10	0.174	0.150	7.42
100	0.172	0.141	6.97

Table 5: Grid search summary for λ .

F Hyperparameter Studies

We study how the alignment weight α and sparsity weight λ affect performance in Table 4 and 5. We sweep $\alpha \in \{0.001, 0.01, 0.1, 1\}$ and $\lambda \in \{1, 5, 10, 100\}$ on a validation split, measuring AVHScore and CAVP similarity (alignment), FAD (audio quality). In unidirectional setting the FVD is not affected by alignment. We Find that: Reducing α too much weakens the latent coupling, leading to semantic drift between modalities (e.g., misaligned motion and sound). Excessively high λ overprunes the mask. Disabling sparsity results in overly dense masks, which fail to isolate cross-modal signals and slightly reduce performance in AVHScore and CAVP similarity.

G Limitations

While our cascaded T2AV framework demonstrates strong performance in both generative quality and cross-modal alignment, several limitations remain. First, the reliance on sequential generation, where video is produced before audio, introduces unidirectional dependency that may constrain expressiveness in audio-visual co-synchronization, particularly for content requiring tight mutual feedback. Second, the alignment mechanism is trained on temporally segmented clips, which may limit its ability to generalize to complex or highly dynamic temporal structures in longer sequences. Third, although we finetune the diffusion models to better adapt to generated embeddings, the overall generation quality remains bounded by the capacity and resolution of the pretrained backbones, which are not jointly optimized with the alignment modules. Finally, our framework assumes the availability of high-quality paired data for training, extending it to settings with weak or noisy supervision remains an open challenge.

H Social Impact and Safeguards

Our work focuses on improving the quality and coherence of text-to-audio-video (T2AV) generation through aligned latent representations and cascaded diffusion models. While such generative capabilities hold potential for positive applications in assistive technologies, content creation, and education, they also raise ethical concerns related to misinformation, deepfakes, and unauthorized content synthesis. In particular, the ability to generate realistic audio-visual content conditioned on arbitrary text inputs could be misused to fabricate misleading media or impersonate individuals. To mitigate these risks, we recommend deploying the model with usage constraints such as content watermarking, access control mechanisms, and human-in-the-loop verification. Moreover, our system is not trained on or intended for real-person likeness reproduction, and safeguards should be established before applying it in socially sensitive domains. We also advocate for transparency in model provenance and responsible dataset curation, ensuring compliance with copyright, privacy, and fairness standards.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed limitation in the Appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provide full set of assumptions and a complete and correct proof. Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully disclose all the information needed to reproduce the main experimental results

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: In accordance to the company policy.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes].

Justification: The paper specify all the training and test details.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA].

Justification: Not applicable to our case.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes].

Justification: The paper provide sufficient information on the computer resources

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes].

Justification: The research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes].

Justification: We include a discussion about potential societal impact.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes].

Justification: We include a discussion about safeguards.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes].

Justification: All assets used are under CC-BY 4.0 license.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

 If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA].

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA].

Justification: The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA].

Justification: The core method development in this research does not involve LLMs. Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.