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Abstract

Text-to-Audio-Video (T2AV) generation aims to produce temporally and semanti-
cally aligned visual and auditory content from natural language descriptions. While
recent progress in text-to-audio and text-to-video models has improved generation
quality within each modality, jointly modeling them remains challenging due to in-
complete and asymmetric correspondence: audio often reflects only a subset of the
visual scene, and vice versa. Naively enforcing full alignment introduces semantic
noise and temporal mismatches. To address this, we propose a novel framework that
performs selective cross-modal alignment through a learnable masking mechanism,
enabling the model to isolate and align only the shared latent components relevant
to both modalities. This mechanism is integrated into an adaptation module that
interfaces with pretrained encoders and decoders from latent video and audio diffu-
sion models, preserving their generative capacity with reduced training overhead.
Theoretically, we show that our masked objective provably recovers the minimal set
of shared latent variables across modalities. Empirically, our method achieves state-
of-the-art performance on standard T2AV benchmarks, demonstrating significant
improvements in audiovisual synchronization and semantic consistency.
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Figure 1: Visual-auditory feature alignment is essential in text-to-audio-video (T2AV) generation,
yet assuming full correspondence between audio and visual modalities is often problematic. For
example, visual elements like roads or buildings may not produce sound, while audio events such
as wind may lack visual presence. Aligning such mismatched features introduces semantic noise,
resulting in reduced cross-modal consistency and temporal mismatch in the generated outputs.
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1 Introduction

Recent advances in multimodal generative models [2, 24, 28, 37, 39, 48, 42] have enabled high-quality
content creation across text, image, audio, and video modalities. While notable progress has been
made in text-to-video [3, 10, 21, 13, 38] and text-to-audio [6, 26, 27, 32] generation individually, they
are typically studied in isolation, leaving joint audiovisual generation from text largely underexplored.
Text-to-Audio-Video (T2AV) generation addresses this gap by aiming to synthesize audio and video
streams that are both semantically and temporally aligned, conditioned on a single text prompt. This
involves not only generating high-quality content for each modality, but also ensuring that the output
audio and video remain contextually consistent and synchronized.

Achieving this requires modeling cross-modal alignment, where both audio and visual representations
capture the informative content conveyed by the other modality. To facilitate such alignment, existing
approaches often project multimodal features into a shared embedding space [33, 41, 52]. This
facilitates the model to capture joint semantics across modalities. However, forcing all audio and
visual features to align can be problematic. In real-world settings, audio and visual streams may
exhibit only partial alignment: audio may describe only parts of a visual scene, or visual frames
may contain elements absent from the audio (See Figure 1). Enforcing full alignment under such
conditions introduces mismatched information into the joint representations, resulting in semantically
inconsistent or temporally desynchronized outputs during T2AV generation.

To address the challenge of partial correspondence between modalities, we introduce SAVA, a
framework for Selective Audio-Visual Alignment in text-to-audio-video generation. Comparing
with existing approaches [31, 33, 41, 45, 52] that assume full alignment between audio and visual
features, SAVA identifies and aligns only those latent components that are jointly predictive across
modalities, while disregarding modality-specific information that could otherwise introduce noise or
conflict. The overall pipeline, as shown in Figure 3, proceeds in three stages: Align and Fine-tune, it
learns to map multimodal latents by selectively filtering out irrelevant dimensions in the latent space
using a learnable mask, allowing the model to focus only on features that contribute meaningfully to
both modalities. The alignment is learned through adapter networks applied to pretrained encoders.
Then, we fine-tune the generator using the aligned multi-condition inputs. Inference, it operates in a
cascaded manner, projecting features from video and audio into an aligned subspace, and conditioning
the corresponding generator on both the text and the aligned video/audio signals. This design enables
synchronized and consistent audio-visual generation while preserving efficiency and modularity.

SAVA is grounded in a causal view of multimodal generation, where audio and visual signals are
generated from a mixture of shared and distinct latent factors. We provably show that the masked
alignment objective recovers the minimal set of shared latent variables (those which constitute the
true semantic interface between modalities). This not only ensures interpretability and robustness
but also mitigates the entanglement issues observed in prior alignment-based models. Our empirical
results across diverse benchmarks confirm that SAVA significantly improves semantic alignment and
temporal synchronization in T2AV generation, outperforming existing baselines. A brief review of
related works is provided in Appendix A.

2 Problem Formulation

Figure 2: The data generative process of
audiovisual data. Audio features ZA are
selectively derived from visual features
Zv guided by a learned mask m. Each
modality-specific latent combines with
residual noise ϵ to produce the outputs.

Text-to-Audio-Video (T2AV) generation requires accu-
rate alignment between audio-visual representations to
preserve meaningful cross-modal correspondence. In par-
ticular, semantic misalignment, where visual and auditory
components do not reflect the same underlying content,
can mislead generative models and degrade the consis-
tency of the resulting outputs. Our objective is to enable
selective and reliable alignment by identifying and pre-
serving only the semantically relevant components across
modalities during training. To this end, we begin by re-
viewing the text-to-audio-video generative process.

Data Generative Process As illustrated in Figure 2, we
model the audiovisual data generation process using a
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structured causal model composed of three latent variable sets: video-specific latent variables ZV ,
audio-specific latent variables ZA, and cross-modal latent variables ZC , which encode shared content
factors underlying both modalities. ZC may include semantically grounded, temporally evolving
entities that manifest in both the visual and auditory domains (e.g., a barking dog or a moving vehicle).
In contrast, the modality-specific latents ZV and ZA capture factors that are unique to the video and
audio domains, respectively. The latent variables are causally connected and evolve over time, with
each group at time step t potentially influenced by their own past states and the past states of other
groups. Formally, the evolution of these latent variables follows:

Zt
V ← {Z t-1

V , Z t-1
A , Z t-1

C }, Zt
A ← {Z t-1

V , Z t-1
A , Z t-1

C }, Zt
C ← {Z t-1

V , Z t-1
A , Z t-1

C }, (1)

where the superscript “past” denotes historical latent states (e.g., from time t− 1), and the arrows
represent causal influence. These relationships reflect the potential bidirectional statistical and causal
dependencies [44] across modalities.

The observable variables: video XV and audio XA, are generated from their corresponding modality-
specific latent variables in conjunction with the cross-modal latent:

XV ← {ZV , ZC}, XA ← {ZA, ZC}. (2)

This formulation reflects that while ZC captures semantically aligned and temporally correlated
content, ZV and ZA may contain orthogonal information that should not be forced into alignment.
Therefore, when attempting to recover cross-modal structure, it is critical to distinguish shared factors
from modality-specific ones.

3 Methods

Selective Latent Alignment Let xv ∈ XV , XV ⊆ RT×H×W×3 be a video clip and xa ∈
XA, XA ⊆ RT ′×M its corresponding audio spectrogram. We extract frozen modality-specific
embeddings ẑv = fv(xv), ẑa = fa(xa),, where fv is a pretrained video VAE encoder [10] and fa is
a pretrained audio diffusion encoder [49, 26]. These raw embeddings may contain modality-specific
noise and are not guaranteed to lie in a common semantic subspace. To expose the shared latent
structure ZC ⊆ Rd, we apply learnable reparameterizations (i.e., adapter networks):

z̃v = qV (ẑv), z̃a = qA(ẑa). (3)

This projection step adapts the output of each frozen encoder and is subsequently trained to isolate
cross-modal features. We then introduce two mask networks:

MV ,MA : R2d → [0, 1]d, (4)

each taking both z̃v and z̃a as input. Due to the semantic ambiguity and contextual diversity in
audio-visual alignment, the relevant latent dimensions within the visual representation can vary
depending on the specific context. For example, a single video clip may be paired with different types
of audio, such as background music or voiceover narration, each requiring attention to distinct visual
regions or semantic features. Accordingly, the masking function should be conditioned on both video
and audio inputs. Conditioning on only one modality impairs the model’s ability to disambiguate
cross-modal variations, leading to suboptimal or unstable mask learning.

Cross-Modal Reconstruction Let SV ⊆ [d] and SA ⊆ [d] represent the indices of dimensions
selected by the soft masks. After applying a thresholding operation, we obtain binary supports
S̃V ⊆ [d] and S̃A ⊆ [d], which indicate the dimensions where the mask value equals 1 (i.e.,
S̃V = {i ∈ [d] | MV (z̃v, z̃a)i = 1}, S̃A = {i ∈ [d] | MA(z̃v, z̃a)i = 1}). These binary masks are
then used to construct the masked latent representations by retaining only the selected dimensions:

z̃v = MV (z̃v, z̃a)⊙ z̃v, z̃a = MA(z̃v, z̃a)⊙ z̃a, (5)

and decode each using the corresponding latent diffusion decoders gA and gV :

x̂a = gA(z̃v), x̂v = gV (z̃a). (6)

To ensure that the masked latent remains informative, we reconstruct each modality from the masked
latent of the other. This reconstruction objective acts as a constraint that prevents degenerate masking
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Figure 3: Overview of our proposed T2AV framework. The system involves training a learnable mask
that selectively aligns the latents of each modality, filtering out irrelevant visual content (e.g., tree
trunks) while preserving meaningful cues (e.g., bamboo being eaten). The aligned representations are
then used to fine-tune the generator, adapting the multimodal conditions alongside the text condition,
followed by generation through a latent diffusion model.
solutions. Without it, the sparsity loss alone would encourage all-zero masks, as they trivially
minimize the L1 penalty while discarding all information [23, 50]. We reconstruct across modalities
(i.e., audio from masked video latent and video from masked audio latent) rather than within the same
modality. This cross-modal reconstruction forces the mask to preserve only the latent dimensions
that are predictive of the other modality, thereby isolating the shared semantic structure. As a result,
the model learns compact and meaningful latent supports that are truly cross-modally informative.

3.1 SAVA-Diffusion

In this section, we present the implementation of the proposed SAVA-Diffusion framework for
Text-to-Audio-Video (T2AV) generation (See Figure 3). The framework consists of three stages:
(1) a masked latent adaptation stage in which we train aligned projections of video-audio latents
via selective masking, and (2) a fine-tuning stage that adapts the aligned latents as a joint condition
alongside the text condition. (3) a cascaded diffusion generation stage, where high-fidelity audio and
video outputs are synthesized using latent diffusion models in sequential orders.

Stage I: Masked Latent Adaptation In first stage, our method implements selective cross-modal
alignment by learning to isolate the latent dimensions that are predictive of the other modality. We
first obtain reparameterized embeddings z̃v and z̃a from the frozen encoders [53, 26] and adapters.
These are passed to the modality-specific mask functions, each conditioned on both modalities, to
produce binary masks that filter the latent features. The masked latents are then decoded to reconstruct
the opposite modality. To encourage a consistent embedding geometry between modalities [51], we
further include a direct alignment loss between z̃v and z̃a prior to masking. This stabilizes training
and promotes representational coherence across modalities. The total objective is:

Ltotal =
1

N

N∑
i=1

[
ℓA(x

(i)
a , gA(MV ⊙ z̃(i)v )) + ℓV (x

(i)
v , gV (MA ⊙ z̃(i)a )) + α · Lalign(z̃

(i)
v , z̃(i)a )

]
+λ (∥MV ∥1 + ∥MA∥1) ,

(7)

where ℓA and ℓV are cross-modal reconstruction losses, and the ℓ1 regularization encourages sparsity
in the learned supports. Lalign measures the distance (e.g., normalized ℓ2) between the unmasked
latent representations, and α controls the alignment strength.
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Stage II: Multi-condition Fine-tuning In Stage II, the TV2A and TA2V diffusion backbones
are fine-tuned separately, each to use the cross-modal latent learned in Stage I, while keeping the
decoders gV , gA frozen. For audio, given the text embedding zt = ft(xt) and the aligned visual
latent z̃v = qV (z

T
v ), we form cA = [ zt; ϕA(z̃v) ] and adapt the conditioning pathway via LoRA [12],

similarly, for video we form cV = [ zt; ϕV (z̃a) ] from the aligned audio latent z̃a = qA(z
T
a ), the

objective is the diffusion loss:

LFT-A = Exa,ϵ,t

∥∥∥ϵ− ϵθA
(
x(t)
a , t, cA

)∥∥∥2
2

LFT-V = Exv,ϵ,t

∥∥∥ϵ− ϵθV
(
x(t)
v , t, cV

)∥∥∥2
2
. (8)

with LoRA parameterization W ′ = W + BA on selected cross-attention or FiLM layers. The
total objective is not coupled during optimization, instead, we run distinct trainings. LoRA only
on conditioning layers (mid-block and a few down/up blocks), and all backbone convolutions and
decoders frozen to preserve pretrained priors while teaching each model, in isolation, to respond to its
new cross-modal condition. In addition, we fine-tune the individual T2A and T2V models to further
enhance generation quality across modalities for the inference pipeline.

Stage III: Cascaded Diffusion Inference Building on the aligned latent representations from
stage I and fine-tuned diffusion models from stage II, we generate video and audio in a cascaded
manner using independently finetuned single-modal diffusion models (T2A, T2V) [53, 26] and
multi-model diffusion models (TA2V, TV2A). As illustrated in Figure 3, the process begins by
generating a video from a text prompt using a T2V diffusion model. The resulting visual latent zTv is
then adapted through a lightweight projection network Pθ, producing an audio-guiding latent z̃a that
encodes visually grounded cues. This latent conditions the subsequent audio generation, serves as a
supervision signal to finetune the audio diffusion model for improved semantic coherence. Similarly,
we can generate video conditioned on both audio and text latents. By structuring the process in this
cascaded fashion, we ensure that the audio is aligned with the generated visual/audible content. The
detailed formulation of the reverse diffusion process for both modalities is provided in Appendix C.
Notably, the pretrained diffusion encoders remain frozen during Stage I, and only the adapters are
updated; fine-tuning of the diffusion models is performed in Stage II to enhance generation quality
while maintaining modularity and efficiency.

4 Theoretical Analysis

In this section we show that our masked cross-modal reconstruction with an ℓ1-penalty provably
recovers exactly the shared latent factors between video and audio, i.e. the minimal Markov blankets
on the pretrained features, even when those features are entangled. By faithfulness and d-separation
on the latent DAG [35] over (ZV , ZA, XV , XA), there exist unique index sets S†

V ⊆ [d], S†
A ⊆ [d],

which are the minimal Markov blankets of XA in ZV and of XV in ZA, respectively. Equivalently,
S†
V is the smallest subset satisfying that conditioning on {ZV,i : i ∈ S†

V } renders all other latent
coordinates irrelevant to XA. The analogous property holds for S†

A.

To make precise what it means for two sets of latent factors to capture all and only the shared
information, we introduce the following definition.

Definition 1 (Minimum Sufficient Latents). Given index sets S̃V , S̃A ⊆ [d], we say that the pairs(
Z̃S̃V

V , Z̃S̃A

A

)
are Minimum Sufficient Latents if they satisfy

I
(
Z̃S̃V

V ; XA

)
= I

(
Z

S†
V

V ; XA

)
, I

(
Z̃Vj ; XA | Z̃S̃V

V

)
= 0 ∀ j /∈ S̃V ,

I
(
Z̃S̃A

A ; XV

)
= I

(
Z

S†
A

A ; XV

)
, I

(
Z̃Aj

; XV | Z̃S̃A

A

)
= 0 ∀ j /∈ S̃A.

Key Assumptions We require four conditions (see Appendix B for formal definitions):

1. (DAG & d-Separation) There is a latent DAG over (ZV , ZA, XV , XA) whose minimal Markov
blankets S†

V , S
†
A correspond to the truly shared factors.

2. (Block-wise Reparameterization) The class of invertible maps qV , qA is rich enough that there
exists a reparameterization under which the shared block S†

V (resp. S†
A) becomes an axis-aligned

subset S̃†
V (resp. S̃†

A) of the coordinates.
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3. (Decoder Universality) The decoder families QgA , QgV can approximate any conditional distri-
bution, so that minimizing cross-entropy is equivalent to minimizing true conditional entropy.

4. (Mask Universality & Penalty-Range) The masks can implement any support selection per
example, and the sparsity weight λ lies strictly between the smallest shared-factor contribution
and the largest non-shared contribution (see Assumption 4).

Above assumptions are commonly used. First, a latent-variable DAG with faithfulness (Assump-
tion 1) underlies most generative models in vision and audio, and the Markov blanket then exactly
characterizes the shared information. This is the fundamental assumption in Causality [35]. Sec-
ond, block-wise reparameterization (Assumption 2) merely requires that our invertible networks
qV , qA have sufficient capacity to “whiten” or disentangle the small block of truly shared latents;
in practice modern normalizing-flow and invertible-residual architectures easily satisfy this. Third,
decoder universality (Assumption 3) is standard in representation learning deep decoders with enough
width and nonlinearity can approximate any conditional density arbitrarily well, so cross-entropy
minimization recovers true conditional entropy. Mask universality implies stipulate that our mask
networks are expressive enough to pick any subset of coordinates per example. All these universality
have been supported by universal approximation theory of deep learning methods [14]. Finally,
penalty-range requirement (Assumptions 4) implies that the sparsity weight λ can be chosen (e.g.
via cross-validation) to lie between the minimal utility of a shared factor and the maximal spurious
contribution of a non-shared factor. In practice, we can just make λ be sufficiently small. Together,
these common assumptions ensure our theoretical guarantees apply to many practical architectures.
Lemma 1 (Sufficientness of Reconstruction). Fix any invertible qV . Under Assumptions 1-4, any
mask–decoder pair (MV , gA) that minimizes E[− logQgA(XA |MV ⊙ Z̃V )] must satisfy, for every

example, I
(
Z̃

SV (Z̃V ,Z̃A)
V ;XA

)
= I

(
Z̃V ;XA

)
. In other words, the selected coordinates form a

sufficient statistic for XA.

This lemma shows that if we only optimize the reconstruction loss (cross-entropy) then the learned
mask necessarily keeps all the information in Z̃V that is relevant to predicting XA. In other words,
the selected subset of coordinates forms a sufficient statistic for the audio modality, capturing every
bit of shared information from the video embedding.
Lemma 2 (Sparsity-Induced Minimality). Fix any invertible qV . Under Assumptions 3-4, the joint
minimizer (M∗

V , g
∗
A) = argminMV ,gA

{
E
[
− logQgA(XA |MV ⊙Z̃V )

]
+ λE[∥MV ∥1]

}
satisfies,

for every example,

S∗
V (Z̃V , Z̃A) = S̃†

V , I
(
Z̃V,j ;XA | Z̃

S̃†
V

V

)
= 0 ∀j /∈ S̃†

V . (9)

That is, the mask prunes away non-shared coordinates, recovering exactly the minimal shared block.

This lemma establishes that once we add a sparsity penalty on the mask, the model discards every
coordinate that does not uniquely contribute to cross-modal reconstruction. The result is the minimal
subset of features which are precisely the shared latent block. Therefore no redundant or modality-
specific information remains.
Theorem 1 (Global Block-Alignment and Recovery). Under Assumptions 1, 2, 3, and 4 the global

minimizer of Objective 7 yields
(
Z̃

S̃∗
V

V , Z̃
S̃∗
A

A

)
that satisfies Definition 2.

This theorem combines the sufficiency and minimality results in both directions (i.e., video→audio
and audio→video) and shows that our simple mask-and-reconstruct framework provably extracts
exactly the shared latent variables and eliminates all modality-specific components.

5 Experiments

5.1 Experiment Setup

Dataset We conduct experiments on two benchmark datasets: VGGSound [5] and AudioCaps [22].
VGGSound comprises approximately 200K 10-second video clips spanning 310 sound classes, with
strong audio-visual correspondence ensured by the presence of visible sound sources. Following the
protocol in [52], we sample 5k and 3K clips from the train and test split, respectively, and annotate
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Screaming in the air a wolf with a white head and a 
yellowish-brown body lay on the ground. a golden leaf 
that has fallen to the ground is covered in snow. the wolf 
kept barking and it was really loud.

The white ambulance is traveling quickly. buildings and 
parked automobiles line the road. alongside the road are 
lush trees. sound of an ambulance siren.

Animatediff 

AudioLDM 

Diff-Foley 

TAVDiffusion 

Ours 

Text Prompt 

Temporal evolution 
of “kept” barking

Visible patterns that could 
represent distinct wolf barks

various brighter spots that 
could represent the 
variation in siren sounds

more complexity that would 
better capture both the 
environmental context

Figure 4: Text-to-Audio-Video generation results. We use the same text prompt as in [33] for our
demonstration and compare our method against multiple baselines (Animatediff [8], AudioLDM [26],
Diff-Foley [31], and TAVDiffusion [33]). Compared to prior methods, our approach (unidirectional
setting as illustrated) produces higher quality and aligned video and audio content.

VGGSound+ AudioCaps

Method FVD ↓ FAD ↓ AVHScore ↑ CAVPSIM ↑ FVD ↓ FAD ↓ AVHScore ↑ CAVPSIM ↑
Two-Streams 768.5 6.29 0.058 0.104 961.4 7.36 0.041 0.165
CasC-Diff 768.5 7.53 0.144 0.126 961.4 9.51 0.092 0.192
TAVDiff [33] 956.3 8.94 0.162 0.098 1131.9 8.43 0.105 0.182
CoDi [41] 709.4 8.36 0.108 0.149 902.5 9.07 0.098 0.211
JavisDiT [29] 697.4 6.17 0.153 0.140 801.2 7.55 0.104 0.207

Unidirectional 662.9 5.49 0.206 0.165 817.6 7.32 0.142 0.230
Bidirectional 701.4 - 0.217 0.183 852.4 - 0.157 0.242

Table 1: Quantitative comparison. Our method outperforms existing baselines in both generative
quality metrics and alignment metrics, demonstrating improvements in fidelity as well as cross-modal
consistency. For the unidirectional setting, we directly adopt the fine-tuned T2V model for video
generation. The generated audio for both the bidirectional and unidirectional settings is identical.

them with text prompts using VideoBlip [54], as adopted in [33]. AudioCaps consists of 46K
audio clips paired with human-written captions sourced from AudioSet, and serves as a standard
benchmark for audio-language grounding. We also sample 5K paired clips from the training split. To
facilitate alignment learning and fine-tuning, we merge the training sets of both datasets, and perform
evaluation separately on each test set.

Implementation Details To adapt the diffusion models to the target data domains, we first fine-tune
the video and audio diffusion models independently using the training set, respectively. For video
generation, we employ the pretrained CogVideoX1.5 [53], and extract latent representations using its
VAE encoder. For audio, we adopt AudioLDM [26], which integrates a pretrained CLAP encoder [49]
for audio feature extraction. The latent dimensionality of aligned embeddings for audio generation is
fixed at 512. Each generated sample has a duration of 10 seconds, with video rendered at 16 frames
per second and audio sampled at 48 kHz. Our adapter and masking modules are implemented as
multilayer perceptrons. For the masking mechanism, we evaluate both soft masks (sigmoid outputs as
weights) and hard masks, obtained by thresholding at 0.5. The loss weights λ1 and λ2 are empirically
set to 5 and 0.1, respectively.
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Vertical striations → Guitar strumming 

Text prompt: A man playing guitar in the park.

Figure 5: Temporal alignment between visual motion and acoustic patterns. The strumming motion
of the guitarist’s hand aligns with vertical striations in the spectrogram, indicating synchronized
transient audio events.

Evaluation Metrics We assess perceptual quality of the generated video and audio using Fréchet
Video Distance (FVD) [43] and Fréchet Audio Distance (FAD) [37], respectively. Cross-modal
semantic alignment is measured by AVHScore [33], while CAVP similarity [31] evaluates temporal
synchronization. For V2A performance, we adopt the evaluation protocol from [52], including KL
divergence, Inception Score (ISc), Fréchet Distance (FD), and FAD.

Baselines We compare our method against two state-of-the-art T2AV approaches: TAVDiffusion [33]
and CoDi [41], using the same text prompts for all models. Additionally, we include: (1) a Cascaded
pipeline that uses Animatediff [8] for video generation followed by V2A-Mapper [45] for audio
synthesis, and (2) a Two-Stream approach in which video and audio are independently generated
from the same text prompt using Animatediff and AudioLDM. For V2A generation, we also compare
with the contrastive alignment method in [52] and SpecVQGAN [20], a spectrogram-based audio
generator employing vector quantization.

5.2 Main Results

T2AV Generative Quality Table 1 presents the quantitative comparison of our proposed method
against existing T2AV generation baselines on the text-labeled VGGSound and AudioCaps datasets.
Our method consistently achieves the best performance across all reported metrics. On VGGSound,
it reduces FVD and FAD to 662.9 and 5.49, respectively, reflecting significant improvements in both
video and audio generation fidelity. Compared to the best-performing baseline [41], our method
achieve a relative reduction of 6.5% in FVD and 16.0% in FAD. In terms of semantic alignment, our
model achieves the highest AVHScore of 0.206 and 0.142 on VGGSound and AudioCaps, respectively,
demonstrating improved correspondence between generated content and the input descriptions. A
similar trend is observed in the qualitative results shown in Figure 4. For example, in the wolf scenario,
our generated video better captures key semantic attributes such as the white head and yellow-brown
body, while the visual background and ambient objects more faithfully reflect the textual prompt.
Likewise, the ambulance scene displays correct object types, vehicle motion, and contextual elements
like roadside greenery and traffic, showing high semantic fidelity across modalities.

Semantic and Temporal Alignment As shown in Table 1, our method achieves the highest CAVP-
SIM scores on both VGGSound and AudioCaps, indicating improvement on cross-modal temporal
alignment. This is further illustrated in Figure 4, where the temporal evolution of audio patterns
(e.g., barking or sirens) closely corresponds with visual events. In the wolf example, distinct spectro-
gram patterns align with repeated barking motions, while the ambulance scenario shows dynamic
spectrogram textures matching siren intensity and vehicle motion. To further highlight this property,
Figure 5 visualizes a man strumming a guitar, where the rhythmic hand motion aligns with vertically
striated spectrogram features indicative of transient guitar strokes. These results collectively confirm
that our method not only generates high-quality content but also preserves temporal synchronization
across modalities. Additional examples are provided in Appendix D.

V2A Generation To further evaluate the effectiveness of cross-model alignment, we assess the video-
to-audio (V2A) generation performance using a subcomponent of our model. As shown in Table 2,
our approach outperforms existing V2A baselines: SpecVQGAN [20] and SeeHear [52] across most
metrics, achieving better KL, ISc and FAD. These results indicate that our model effectively captures
the shared semantic and temporal information between video and audio, enabling high-quality cross-

8



Method KL↓ ISc↑ FD↓ FAD↓
SpecVQGAN [20] 3.290 5.108 37.269 7.736
SeeHear-Vani [52] 3.203 5.625 40.457 6.850
SeeHear-Full [52] 2.619 5.831 32.920 7.316
Ours 2.128 5.677 39.534 6.155

Table 2: Video-to-Audio Generation Results.
Our method outperforms existing V2A baselines
across most evaluation metrics, demonstrating
noticeable improvements in audio fidelity.

Mask FVD ↓ FAD ↓ AVHScore ↑ CAVPSIM ↑
□ 662.9 6.95 0.175 0.141
⃝ 662.9 6.08 0.192 0.144
△ 662.9 5.49 0.206 0.165

Table 3: Ablation study on masking input modal-
ities. □: no masking, direct alignment,⃝: only
takes video modality embeddings as the input,
△: takes both video and audio modality embed-
dings as the input.

modal generation. The performance of this subcomponent further validates the robustness of our
alignment strategy.

5.3 Ablation Study

Figure 6: Ablation on different time seg-
ment lengths. We find that longer seg-
ments improve generative quality, while
shorter segments benefit alignment .

Study on Mask Input We conduct an ablation study to
assess the impact of different mask input configurations
on cross-modal generation quality in Table 3. We observe
that when no masking is applied (□), performance is sig-
nificantly lower across all metrics, indicating that direct
alignment without filtering introduces noise and misalign-
ment. Conditioning the mask on video alone (⃝) yields
moderate improvements, suggesting that video features
contain partial cues for predicting shared content. How-
ever, the best performance is achieved when the mask is
conditioned on both video and audio embeddings (△),
resulting in the lowest FAD and highest AVHScore and
CAVPSIM. This confirms our hypothesis that observing
both modalities enables the mask to more accurately iso-
late cross-modally relevant dimensions, thereby enhancing
semantic consistency and temporal alignment in the gen-
erated outputs.

Effect of Temporal Segmentation We conduct an abla-
tion study to investigate the impact of different temporal
segmentation strategies on the performance of T2AV gen-
eration. Specifically, given a 10-second video/audio clip,
we divide the content into sub-clips of varying lengths
(ranging from 1s to 10s) and use the aligned segments for
fine-tuning the pretrained diffusion models and training
the alignment modules, including the masking functions and adapters. As illustrated in Figure 6,
longer segment durations consistently improve generative quality, as measured by FAD and FVD,
likely due to providing richer temporal context for fine-tuning the diffusion backbones. In contrast,
shorter segments yield stronger performance in alignment metrics such as AVHScore and CAVPSIM,
suggesting that temporally concise segments reduce misalignment and noise during cross-modal
training. Based on this trade-off, we select a 5-second segment length as a balanced choice that
supports both high generative fidelity and accurate audio-visual alignment.

6 Conclusion

We presented a multi-stage framework for text-to-audio-video (T2AV) generation that addresses
the challenge of semantic and temporal misalignment between modalities. Our method introduces
a masked latent adaptation mechanism that selectively aligns video representations with audio
embeddings using a learnable adapter and relevance mask. During inference, we leverage a cascaded
diffusion structure in which video is generated from text, and audio is subsequently synthesized
conditioned on both text and the adapted video latent. This design ensures coherence across modalities
while maintaining flexibility by reusing single-modal diffusion models. Extensive experiments
demonstrate that our approach improves cross-modal consistency and achieves state-of-the-art results
on multimodal generation benchmarks.
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Appendix

A Related Works

Text-to-Audio-Video Generation Text-to-Audio-Video (T2AV) generation aims to synthesize
audio and video streams that are semantically and temporally aligned, conditioned on a single text
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prompt. The task extends beyond text-to-video (T2V) and text-to-audio (T2A) generation by requiring
consistency across modalities. Recent advances in T2V [4, 8, 21, 47, 55, 25] and T2A [1, 17, 27,
32, 40] have enabled high-quality content generation in each modality. However, generating them
independently often results in misaligned outputs, as the modalities are not conditioned on each other.
A simple alternative is a cascaded approach, where one modality (e.g., video) is generated first and
used to condition the other (e.g., audio). While this improves synchronization, it may propagate errors
and lead to inconsistencies with the original text. To address these issues, recent T2AV methods
propose joint modeling strategies. CoDi [41] unifies generation across multiple modalities in a single
diffusion framework via aligning prompt encoders (text, image, video, audio) into a shared input
space using contrastive learning, with text as the central bridging modality. [52] aligns pretrained
T2V and T2A models via a shared semantic space using ImageBind. TAVDiffusion [33] adopts
a two-stream latent diffusion model and addresses alignment via cross-attention and contrastive
learning. Nevertheless, joint modeling of audio and visual modalities requires careful alignment of
representations to preserve both semantic consistency and temporal synchronization. Our framework
complements existing approaches by introducing a targeted alignment mechanism that mitigates the
impact of noisy or partial correspondences, leading to more faithful and consistent T2AV generation.

Cross-Modal Alignment Cross-modal alignment is crucial for integrating information from differ-
ent modalities, facilitating tasks such as retrieval, recognition [56, 9], and generation [19, 58, 57, 46].
The goal is to project modality-specific features into a shared embedding space where semantically
related inputs are closely aligned. In the vision-language domain [18, 15, 16, 30], CLIP [36] has
become a standard framework, while CLAP [49] and CAVP [31] extend contrastive alignment to
audio-language and vision-audio pairs, respectively. ImageBind [7] further generalizes this approach
to unify multiple modalities in a single embedding space. Such alignment modules are integral to
conditional generative models [31]. While early approaches trained modality encoders from scratch,
recent work shows that frozen foundation models can be effectively adapted using lightweight projec-
tors [11, 34]. In video-to-audio generation, V2A-Mapper [45] learns a projection from CLIP to CLAP
features using a simple MLP, enabling audio generation conditioned on vision without retraining
large-scale models. Despite these advances, aligning the correct semantic content across modalities
remains challenging. Representations often entangle modality-specific and irrelevant information,
leading to noisy alignment. SmartCLIP [51] identifies this issue in vision-language models, showing
that CLIP embeddings often entangle unrelated concepts due to coarse-grained alignment. These
findings underscore a broader challenge in multimodal generation: how to align information across
modalities such that the learned representations do not introduce inconsistencies in the generated
outputs. Our work addresses this by introducing a masked adapter module that enables efficient
and selective alignment between pretrained modality-specific encoders. By focusing alignment on
semantically relevant regions, our method mitigates noisy correspondence and improves consistency
in T2AV generations.

B Theoretical Results and Proofs

B.1 Notations and Definitions

We introduce key notations and definitions as follows.

Let XV ∈ XV (video) and XA ∈ XA (audio) be two modalities. Pretrained encoders produce

ẐV = (ẐV,1, . . . , ẐV,d), ẐA = (ẐA,1, . . . , ẐA,d) ∈ Rd. (10)

We introduce learnable invertible reparameterizations

qV , qA : Rd → Rd, (11)

and define
Z̃V = qV (ẐV ), Z̃A = qA(ẐA). (12)

We learn mask functions

MV : Rd × Rd → {0, 1}d, MA : Rd × Rd → {0, 1}d, (13)

so that for each sample the model produces binary masks

MV (Z̃V , Z̃A), MA(Z̃V , Z̃A) ∈ {0, 1}d, (14)
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Denote their supports (or selected indices) by

S̃V := SV (Z̃V , Z̃A) = { i : MV,i(Z̃V , Z̃A) = 1}, (15)

S̃A := SA(Z̃V , Z̃A) = { i : MA,i(Z̃V , Z̃A) = 1}. (16)

Let Z̃S̃V

V ⊆ Z̃V and Z̃S̃A

A ⊆ Z̃A be the selected variables induced by learnable masks, i.e.,

Z̃S̃V

V = (Z̃V,i)i∈S̃V
, Z̃S̃A

A = (Z̃A,i)i∈S̃A
, S̃V = [d] \ S̃V and S̃A = [d] \ S̃A, (17)

for any set S̃V ⊆ [d] and set S̃A ⊆ [d].

Write S†
V ⊆ [d] (resp. S†

A) for the true minimal Markov blanket of XA in ZV (resp. of XV in ZA).
In other words, S†

V is the smallest subset satisfying that conditioning on {ZV,i : i ∈ S†
V } renders all

other latent coordinates irrelevant to XA. The analogous property holds for S†
A.

Reconstruction quality is measured via true conditional entropy:

H(XA | Z̃S̃V

V ) = −E
[
log p(XA | Z̃S̃V

V )
]
, H(XV | Z̃S̃A

A ) = −E
[
log p(XV | Z̃S̃A

A )
]
. (18)

Let QgA(XA | ·) and QgV (XV | ·) be decoder families. We optimize

LV (MV , qV , gA) = E
[
− logQgA

(
XA |MV (Z̃V , Z̃A)⊙ Z̃V

)]
+ λE

[
∥MV (Z̃V , Z̃A)∥1

]
, (19)

and symmetrically LA(gV , qV ,MA) for audio→video.

Definition 2 (Minimum Sufficient Latents). Given index sets S̃V , S̃A ⊆ [d], we say that the pairs(
Z̃S̃V

V , Z̃S̃A

A

)
are Minimum Sufficient Latents if they satisfy

I
(
Z̃S̃V

V ; XA

)
= I

(
Z

S†
V

V ; XA

)
, I

(
Z̃Vj ; XA | Z̃S̃V

V

)
= 0 ∀ j /∈ S̃V ,

I
(
Z̃S̃A

A ; XV

)
= I

(
Z

S†
A

A ; XV

)
, I

(
Z̃Aj

; XV | Z̃S̃A

A

)
= 0 ∀ j /∈ S̃A.

B.2 Assumptions

We introduce the assumptions required by our method as follows.
Assumption 1 (DAG & d-Separation). The joint distribution of (ZV , ZA, XV , XA) factors according
to a DAG satisfying the global Markov property and faithfulness.

Hence for any SV ⊆ [d],

XA ⊥ ZSV

V | ZSV

V ⇐⇒ I
(
ZV,i;XA | ZSV

V

)
= 0 ∀i /∈ SV , (20)

and the same condition holds when V and A are interchanged.
Assumption 2 (Block-wise Reparameterization). The joint function class for (qV , qA) is rich enough
that there exist invertible maps

q∗V , q
∗
A : Rd → Rd (21)

and index-sets S̃†
V , S̃

†
A ⊆ [d] satisfying

I
(
q∗V (ZV )

S̃†
V ;XA

)
= I

(
Z

S†
V

V ;XA

)
, I

(
q∗V (ZV )j ;XA | q∗V (ZV )

S̃†
V

)
= 0 ∀j /∈ S̃†

V . (22)

Assumption 3 (Decoder Universality). For any S ⊆ [d], mingA E[− logQgA(XA | Z̃S̃V

V )] →
H(XA | Z̃S̃V

V ) and similarly for XV | Z̃S
A.

Assumption 4 (Mask Universality). The mask networks MV ,MA are sufficiently expressive to realize
any mapping Rd × Rd → {0, 1}d, i.e. choose any support S ⊆ [d] for each sample.

Assumption 5 (Penalty-Range). For any subset S̃V ⊆ [d] and index i ∈ [d], define

∆V,i(S̃V ) = I
(
Z̃V,i;XA | Z̃ (S̃V \{i})

V

)
,

which is the mutual information between Z̃V,i and XA conditioned on the remaining variables

Z̃
(S̃V \{i})
V = {Z̃V,j : j ∈ S̃V \ {i}}. There exists a constant λ such that

max
j /∈S̃†

V

∆V,j([d]) < λ < min
i∈S̃†

V

∆V,i(S̃
†
V ),

and the same condition holds when V and A are interchanged.
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Note that above assumptions are common. Assumption 1 is a fundamental assumption in causality
[35]. Assumption 2 merely requires that our networks qV , qA have sufficient capacity to “whiten” or
disentangle the small block of truly shared latents. Assumption 3 assumes that deep decoders can
approximate any conditional density arbitrarily well, so cross-entropy minimization recovers true
conditional entropy. Assumption 4 implies stipulate that our mask networks are expressive enough
to pick any subset of coordinates per example. All these assumptions 2, 3, 4 have been supported
by universal approximation theory of deep learning methods [14]. Finally, Assumptions 5 implies
that the sparsity weight λ can be chosen to lie between the minimal utility of a shared factor and the
maximal spurious contribution of a non-shared factor. In practice, we can just make λ be sufficiently
small.

B.3 Theoretical Results

The following lemma shows that, by minimizing the cross-entropy loss of a decoder trained to
reconstruct a short audio segments from the selected learned representations of video frames, one
asymptotically recovers the conditional entropy of reconstructed short audio segments given those
representations. The same result holds when swapping the roles of video V and the audio A.

Lemma 3 (Cross-Entropy Reduction to Conditional Entropy). Under Assumption 3, for any fixed
mask function MV and fixed qV , we have

min
gA

E
[
− logQgA

(
XA |MV (Z̃V , Z̃A)⊙ Z̃V

)]
−→ E

[
H
(
XA | Z̃ S̃V

V

)]
, (23)

where Z̃V = qV (ZV ) and SV (z̃V , z̃A) = support
(
MV (z̃V , z̃A)

)
.

Proof. Let

L(MV , gA) = E
[
− logQgA

(
XA |MV (Z̃V , Z̃A)⊙ Z̃V

)]
. (24)

By the interchange of minima,

min
MV ,gA

L(MV , gA) = min
MV

[
min
gA

L(MV , gA)
]
. (25)

Fix any mask MV . Then by Assumption 3 (Decoder Universality),

min
gA

L(MV , gA) = min
gA

E
[
− logQgA(XA | Z̃S̃V

V )
]
−→ E

[
H(XA | Z̃S̃V

V )
]
. (26)

Note that (XA | MV (Z̃V , Z̃A) ⊙ Z̃V = ZS̃V

V by definition, since the mask selects exactly those
components. Therefore, the proof is complete.

The following lemma shows that any mask–decoder pair minimizing the cross-entropy reconstruction
loss inevitably selects a subset of video representations that retains the full mutual information with
the audio segment, i.e., it forms a sufficient statistic for the audio segment. The same result holds
when swapping the roles of video V and the audio A.

Lemma 4 (Sufficientness of Reconstruction). Fix any invertible qV . Under Assumptions 1–4, any
mask–decoder pair (MV , gA) that minimizes E[− logQgA(XA |MV ⊙ Z̃V )] must satisfy, for every
sample,

I
(
Z̃ S̃V

V ;XA

)
= I

(
Z̃V ;XA

)
. (27)

In other words, the selected coordinates form a sufficient statistic for XA.

Proof. For notational simplicity, we omit the arguments (Z̃V , Z̃A) when writing M̂V (Z̃V , Z̃A). Fix
qV and consider any minimizer (M̂V , ĝA) of the cross-entropy. By Lemma 3, this pair also minimizes
E[H(XA | Z̃S̃V

V )]. Under Assumption 4, the mask MV is expressive enough to choose the index set
S̃V arbitrarily for each sample. Hence the minimization decomposes per sample: for each (z̃V , z̃A),
we pick

SV (z̃V , z̃A) ∈ arg min
S̃⊆[d]

H
(
XA | Z̃S̃V

V = z̃S̃V

V

)
. (28)
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Recall that for any fixed S̃v ,

H(XA | Z̃S̃V

V ) = H(XA)− I(Z̃S̃V

V ;XA), (29)

By the causal faithfulness and causal Markov properties [35] (analogous to Assumption 1, but applied
to the variables produced by the neural network), it gives

I(Z̃S̃V

V ;XA) ≤ I(Z̃V ;XA) ⇐⇒ H(XA | Z̃S̃V

V ) ≥ H(XA | Z̃V ). (30)

Hence the unique minimizer of H(XA | Z̃S̃V

V ) is any S satisfying

H(XA | Z̃S̃V

V ) = H(XA | Z̃V ), (31)

which is equivalent to
I(Z̃S̃V

V ;XA) = I(Z̃V ;XA). (32)

Thus for each sample, I(Z̃
SV (z̃V ,z̃A)
V ;XA) = I(Z̃V ;XA), completing the proof.

The following lemma shows that adding an ℓ1-penalty on the mask encourages sparsity: the optimal
mask discards all non-shared coordinates and exactly recovers the minimal shared block of the
variables produced by the neural network.
Lemma 5 (Sparsity-Induced Minimality). Fix any invertible qV . Under Assumptions 3–5, the joint
minimizer

(M∗
V , g

∗
A) = arg min

MV ,gA

{
E
[
− logQgA(XA |MV ⊙ Z̃V )

]
+ λE[∥MV ∥1]

}
(33)

satisfies, for almost every sample,

S∗
V (Z̃V , Z̃A) = S̃†

V , I
(
Z̃V,j ;XA | Z̃

S̃†
V

V

)
= 0 ∀j /∈ S̃†

V . (34)

That is, the mask prunes away all non-shared coordinates, recovering exactly the minimal shared
block.

Proof of Lemma 5 (Sparsity-Induced Minimality). Fix qV . As before, by Decoder Universality
(Lemma 3) the joint minimization over (MV , gA) is equivalent to

min
MV

E
[
H
(
XA | Z̃S̃V

V

)
+ λ |S̃V |

]
. (35)

Since MV can choose S̃V per sample (Assumption 4), we solve for each (z̃V , z̃A):

min
S̃⊆[d]

f(S̃) where f(S̃) = H
(
XA | z̃S̃V

V

)
+ λ |S̃|. (36)

For any j /∈ S̃, adding j changes f by

f(S̃ ∪ {j})− f(S̃) = −I
(
Z̃V,j ;XA | Z̃S̃V

V

)
+ λ. (37)

By Assumption 5, I(Z̃V,j ;XA | Z̃S̃V

V ) ≤ ∆V,j([d]) < λ, so f(S ∪ {j}) > f(S) and no non-blanket
index is added. Similarly, for any i ∈ S, dropping i changes f by

f(S̃ \ {i})− f(S̃) = I
(
Z̃V,i;XA | Z̃S̃\{i}

V

)
− λ, (38)

and Assumption 5 ensures this is positive for all i ∈ S̃†
V . Hence the unique minimizer is S̃ = S̃†

V ,

and I(Z̃V,j ;XA | Z̃
S̃†
V

V ) = 0 for j /∈ S̃†
V , as required.

The following theorem shows that, when jointly optimizing encoders, masks, and decoders with our
bidirectional objective over both video and audio representations, the global minimizer precisely
aligns and recovers the shared latent blocks—i.e. it achieves exactly the block-alignment specified in
Definition 2.
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Theorem 2 (Global Block-Alignment and Recovery). Under Assumptions 1, 2, 3, 4 and 5, the global

minimizer of Objective 7 yields
(
Z̃

S̃∗
V

V , Z̃
S̃∗
A

A

)
that satisfies Definition 2.

Proof. We decompose the total training objective into two symmetric parts,

L = LV→A(qV ,MV , gA) + LA→V (qA,MA, gV ),

where, for instance,

LV→A(qV ,MV , gA) = E
[
− logQgA

(
XA |MV (Z̃V , Z̃A)⊙ qV (ZV )

)]
+ λE

[
∥MV ∥1

]
.

1. Existence of an optimal block-aligned configuration. By Assumption 2, there exist (q†V ,M
†
V )

and g†A such that

M†
V (z̃V , z̃A) ≡ S̃†

V , LV→A(q
†
V ,M

†
V , g

†
A) = H

(
XA | Z̃

S̃†
V

V

)
+ λ |S̃†

V |.

The same argument applies to the audio-to-video term, yielding (q†A,M
†
A, g

†
V ).

2. Optimality of the shared supports. Fix any candidate (qV ,MV , gA). First, for a fixed encoder
qV , Lemma 3 (Decoder Universality) shows that

min
gA
LV→A(qV ,MV , gA) = E

[
H(XA | Z̃ S̃V

V )
]
+ λE

[
|S̃V |

]
.

Lemma 4 then implies any minimizer MV must satisfy

I
(
Z̃ S̃V

V ;XA

)
= I

(
Z̃V ;XA

)
.

Next, we allow qV itself to vary. By Assumption 2, the encoder family contains some q†V that

minimizes the conditional entropy E[H(XA | Z̃
S̃†
V

V )]. Lemma 5 ensures the unique sparsest choice
of S̃V is S̃†

V . Altogether, when λ is sufficiently small, the global minimizer of the video→audio term
satisfy

q∗V = q†V , M∗
V (·) = S̃†

V .

An identical chain of reasoning on LA→V yields

q∗A = q†A, M∗
A(·) = S̃†

A.

Therefore, at the global optimum both pairs
(
Z̃

S̃∗
V

V , Z̃
S̃∗
A

A

)
thus coincide with the unique minimal

sufficient latents
(
Z̃

S̃†
V

V , Z̃
S̃†
A

A

)
, so they satisfy Definition 1.

C Cascade Diffusion Model

Building on the aligned latent representations from Stage I, we generate video and audio in a cascaded
manner using independently finetuned single-modal diffusion models. As illustrated in Figure 3 (II),
the process begins by generating a video from a text prompt using a video latent diffusion model. The
resulting visual latent zTv is then adapted through a lightweight projection network Pθ, producing
an audio-guiding latent z̃a that encodes visually grounded cues. This latent, along with the original
text embedding, conditions the subsequent audio generation. By structuring the process in this
cascaded fashion, we ensure that the audio is temporally and semantically aligned with the generated
video content. Notably, the pretrained diffusion backbones remain frozen during training, and only
the adapters are updated, preserving modularity and enabling efficient adaptation to downstream
multimodal generation tasks.
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As music plays in the background, a group of people can 
be seen chatting and applauding in the video, which 
captures various scenes and attractions from Disneyland. 
Visitors are shown enjoying rides, meeting characters, 
and exploring different themed lands throughout the 
park.

A pristine sky with a few white clouds, white 
snow-capped mountains in the distance and the sound of 
birds chirping in the background.

Animatediff 

AudioLDM 

Diff-Foley 

TAVDiffusion 

Ours 

Text Prompt 

Figure 7: Additional Text-to-Audio-Video generation results compared with other baselines. We
use the same text prompt as in [33] for our demonstration and compare the method against multiple
baselines (Animatediff [8], AudioLDM [26], Diff-Foley [31], and TAVDiffusion [33]).

Diffusion Formulation Let xt denote the input text prompt, which is encoded via a pretrained
text encoder ft(·) to obtain zt = ft(xt). The video generation begins by sampling Gaussian noise
z0v ∼ N (0, I), which is progressively denoised through the reverse diffusion process:

zt−1
v =

1
√
αt

(
ztv −

1− αt√
1− ᾱt

· ϵθv (ztv, zt, t)
)
+ σt · ϵ, ϵ ∼ N (0, I). (39)

Once the final video latent zTv is obtained, it is projected into an audio-guiding latent z̃a = Pθ(z
T
v ).

Audio generation is then conditioned on both z̃a and zt using an analogous denoising process:

zt−1
a =

1
√
αt

(
zta −

1− αt√
1− ᾱt

· ϵθa(zta, z̃a, zt, t)
)
+ σt · ϵ, ϵ ∼ N (0, I). (40)

The generated latents are subsequently decoded using pretrained decoders to obtain the final outputs:
x̂v = gv(z

T
v ) and x̂a = ga(z

T
a ).
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A black horse gallops through a misty valley its hooves echoing loudly.

A boy runs across a frozen lake under the northern lights.

A marching band parades down a city street during a festival.

A cyclist races down a mountain trail.

A lion roars in the middle of the savannah.

A firefighter sprays water at a burning building and fire alarm beeping.

Figure 8: Additional Text-to-Audio-Video generation results by our proposed framework.
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A dog barking in the snow.A dog barking under the sun.

A man in blue suit playing guitar. A man in white suit playing guitar.

A panda eating bamboo. An elephant eating bamboo.

Figure 9: Change of audible or non-audible attributes to the generative results.

D Additional Results

We present additional visualizations of our T2AV-generated results in Figure 7. Using the same text
prompts as those in [33], we generate audio-video pairs and compare them against existing baselines.
In the Disneyland scene, our model produces vertically structured spectrogram features that plausibly
correspond to discrete auditory events such as applause or exclamations, reflecting a diverse and
dynamic soundscape. In the sky with bird chirping scene, we observe consistent, rhythmic patterns in
the spectrogram that align with natural bird calls, indicating accurate temporal grounding of audio
events. These results highlight the model’s ability to synthesize semantically coherent and temporally
aligned audio conditioned on visual content. Additional examples are provided in Figure 7.

E Sensitivity Test

We conduct a sensitivity analysis to probe how the system responds to prompt variations that (i)
alter non-audible attributes (e.g., background, static non-audible objects) while keeping the sound-
causing event unchanged, and (ii) alter audible attributes (e.g., object/action that produces sound)
while holding non-audible details fixed. As shown in Figure 9, for each prompt pair, we generate
matched video-audio samples under identical random seeds. Qualitatively, we visualize spectrograms
alongside key video frames to inspect whether non-audible edits leave the soundtrack invariant and
whether audible edits induce commensurate changes in rhythm and energy. Ideally, non-audible
edits should produce minimal shifts in audio metrics, while audible edits should yield significant,
directionally consistent changes. This analysis clarifies which aspects of the prompt our model treats
as causally relevant for sound synthesis and highlights residual entanglements where visual-only
edits still perturb the audio.
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α AVH↑ CAVP↑ FAD↓
0.001 0.174 0.150 5.52
0.01 0.197 0.159 5.60
0.1 0.206 0.165 5.49
1 0.199 0.154 5.31

Table 4: Grid search summary for α.

λ AVH↑ CAVP↑ FAD↓
1 0.208 0.161 7.03
5 0.206 0.165 5.49

10 0.174 0.150 7.42
100 0.172 0.141 6.97

Table 5: Grid search summary for λ.

F Hyperparameter Studies

We study how the alignment weight α and sparsity weight λ affect performance in Table 4 and 5. We
sweep α ∈ {0.001, 0.01, 0.1, 1} and λ ∈ {1, 5, 10, 100} on a validation split, measuring AVHScore
and CAVP similarity (alignment), FAD (audio quality). In unidirectional setting the FVD is not
affected by alignment. We Find that: Reducing α too much weakens the latent coupling, leading
to semantic drift between modalities (e.g., misaligned motion and sound). Excessively high λ over-
prunes the mask. Disabling sparsity results in overly dense masks, which fail to isolate cross-modal
signals and slightly reduce performance in AVHScore and CAVP similarity.

G Limitations

While our cascaded T2AV framework demonstrates strong performance in both generative quality
and cross-modal alignment, several limitations remain. First, the reliance on sequential generation,
where video is produced before audio, introduces unidirectional dependency that may constrain
expressiveness in audio-visual co-synchronization, particularly for content requiring tight mutual
feedback. Second, the alignment mechanism is trained on temporally segmented clips, which may
limit its ability to generalize to complex or highly dynamic temporal structures in longer sequences.
Third, although we finetune the diffusion models to better adapt to generated embeddings, the overall
generation quality remains bounded by the capacity and resolution of the pretrained backbones, which
are not jointly optimized with the alignment modules. Finally, our framework assumes the availability
of high-quality paired data for training, extending it to settings with weak or noisy supervision
remains an open challenge.

H Social Impact and Safeguards

Our work focuses on improving the quality and coherence of text-to-audio-video (T2AV) generation
through aligned latent representations and cascaded diffusion models. While such generative capabil-
ities hold potential for positive applications in assistive technologies, content creation, and education,
they also raise ethical concerns related to misinformation, deepfakes, and unauthorized content
synthesis. In particular, the ability to generate realistic audio-visual content conditioned on arbitrary
text inputs could be misused to fabricate misleading media or impersonate individuals. To mitigate
these risks, we recommend deploying the model with usage constraints such as content watermarking,
access control mechanisms, and human-in-the-loop verification. Moreover, our system is not trained
on or intended for real-person likeness reproduction, and safeguards should be established before
applying it in socially sensitive domains. We also advocate for transparency in model provenance and
responsible dataset curation, ensuring compliance with copyright, privacy, and fairness standards.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed limitation in the Appendix.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
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whether the code and data are provided or not.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
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either be a way to access this model for reproducing the results or a way to reproduce
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes] .

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: We include a discussion about potential societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes] .

Justification: We include a discussion about safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: All assets used are under CC-BY 4.0 license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28



16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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