Under review as submission to TMLR

BIM: Block-Wise Local Learning with Masked Image Model-
ing

Anonymous authors
Paper under double-blind review

Abstract

Like masked language modeling (MLM) in NLP, masked image modeling (MIM) extracts
insights from image patches to enhance feature extraction in deep neural networks (DNNs).
Unlike supervised learning, MIM pretraining requires substantial computational resources
to handle large batch sizes (e.g., 4096), limiting its scalability. To address this, we propose
Block-Wise Masked Image Modeling (BIM), which decomposes MIM tasks into sub-tasks with
independent computations, enabling block-wise backpropagation instead of the traditional end-
to-end approach. BIM achieves comparable performance to MIM while significantly reducing
peak memory usage. For evaluation, we provide an anonymized GitHub repository here.
Additionally, BIM facilitates concurrent training of multiple DNN backbones with varying
depths, optimizing them for different hardware platforms while reducing computational costs
compared to training each backbone separately.

1 Introduction

To enhance DNN performance, many current methodologies still rely heavily on supervised training paradigms,
which demand a substantial amount of manual annotations. Recent advancements in self-supervised learning
(SSL) offer an alternative solution with superior training accuracy and data efficiency. SSL leverages the
inherent structures and patterns present in images, enabling the application of learned representations to
specific target tasks using techniques like fine-tuning or linear classification. Among the diverse range of SSL
strategies posited to date, Masked Image Modeling (MIM)-based approach [He et al.| (2022); [Xie et al.| (2022)
has stood out due to its superior accuracy performance over the conventional supervised frameworks. MIM
supervises the network by reconstructing occluded image patches by utilizing the visual representations from
their visible counterparts. This paradigm intrinsically drives the encoders of Vision Transformer (ViT) to
capture important features and patterns while discarding irrelevant or noisy information within an image.

However, MIM approaches have their downsides, as they necessitate substantial computational resources for
processing large training data batches (e.g., 4096) with long training iterations (e.g., 800 epochs) He et al.
(2022). This results in significantly higher memory usage and computational cost compared to conventional
supervised learning, making the research and development in MIM prohibitively expensive in many scenarios.
One way to attain efficient MIM training with reduced memory usage and computational requirements is to
decompose the large DNN into smaller ones and train them separately in parallel. It has been shown in the
previous literature that the biological brain is highly modular |(Caporale & Dan| (2008)), learning predominantly
based on local information instead of a global objective that is optimized by backpropagating error signals|Crick
(1989)); Marblestone et al|(2016). In light of those observations, an intuitive approach to alleviate memory
usage of MIM entails dividing the model into multiple blocks, each trained independently. This approach,
known as block-wise local learning, has the potential to substantially decrease memory requirements during
training since memory space can be freed up as soon as training is completed for one block.

However, many existing local block-wise learning methods—specifically designed for another prominent
self-supervised learning (SSL) approach, contrastive learning (CL) [Lillicrap et al.| (2014])); [Lowe et al.| (2020);
Xiong et al.| (2020)); [Belilovsky et al.| (2018)—have not been as successful in achieving performance comparable
to end-to-end training. Unlike MIM-based approaches, contrastive learning methods (Chen et al.| (2020)); |Chen

https://anonymous.4open.science/r/BIM_ICML2025/

Under review as submission to TMLR

Forward
pass
==
-

@

<
@
=
l
Backward

2

g

- Activationo

R g 73

- ¢ (e i

- Activation o Activation

Step 1 Step 2 Step 1 Step 2
(a) Forward pass (b) Backward pass

Figure 1: Memory usage during forward and backward passes of DNN training.

& Hel (2020); |Grill et al.| (2020)); [He et al.| (2020)) leverage information from different views of each image to
train the encoder, aiming to obtain high-quality representations for downstream tasks. Hence, the limitation
of existing local block-wise learning methods is likely attributed to the fact that the learning objectives of
supervised classification and contrastive learning rely heavily on global information. In contrast, MIM might
only need local information to complete occluded patches at various masking ratios, which could lead to
strong performance in blockwise learning on MIM.

Towards this end, we introduce Block-Wise Masked Image Modeling (BIM), which decomposes the global
MIM task into several sub-tasks with independent compute patterns by implementing block-wise, rather than
end-to-end, back-propagation operations. Within the BIM framework, each DNN block handles intermediate
features derived from the preceding block, extracting features necessary for image reconstruction and block
updates. The features that are extracted are subsequently employed to reconstruct the missing patches using
a local decoder. Simultaneously, these extracted features are passed on to the next encoder block to continue
their learning process.

Moreover, to further reduce the compute workload during the training process, we introduce an incremental
masking strategy to spatially increase the masking ratio without compromising learning efficacy. Experiment
results indicate that our proposed method can effectively reduce peak memory while maintaining model
performance without extra computation overhead.

Aside from the memory efficiency advantages offered by BIM, it seamlessly incorporates the “Once-for-all”
training paradigm |Cai et al.| (2019) through the simultaneous training of multiple ViT encoder backbones
with increasing depths. This results in the generation of multiple trained DNN backbones of varying depth,
each of which can adapt to different hardware platforms with unique computing capabilities. Consequently,
this approach substantially diminishes computational expenses when compared to the individual training of
each DNN backbone. Overall, our contributions are summarized as follows:

e We proposed BIM framework for memory and compute efficient SSL. BIM achieves a significant
reduction in memory usage while delivering performance on par with traditional end-to-end training
across a range of downstream tasks. Under the same batch size, BIM achieves approximately an
average of 40% savings in peak memory and 80% in compute.

e BIM naturally enables multiple backbone DNNs with different depth to be trained jointly, yielding
a set of pre-trained backbone DNNs that can be employed independently for subsequent tasks.
Compared to training each backbone DNN separately, BIM offers added computational workload
savings.

o To further reduce the computational cost, we introduce a novel MIM masking strategy that progres-
sively increases the proportion of masked components over the input during BIM training, resulting
in additional reductions in computational costs without losing in accuracy.

2 Background and Related Work

2.1 Memory Pattern during DNN Training

To provide a clearer insight into our approach, we will briefly outline the memory usage pattern during the
training process of the DNNs. Figure[l| (a) illustrates the forward pass for a two-layer DNN. Throughout

Under review as submission to TMLR

the forward pass, intermediate activations are produced once the execution of each layer is completed. The
intermediate activations need be stored in memory for gradient computation during the backward pass. The
same process will repeat until the DNN output is produced. The storage of intermediate activations from all
layers in memory is necessary for subsequent gradient calculations, leading to an increase in memory footprint
until it reaches its peak value (Step 2 in Figure|l| (a)), and this peak memory usage increases in proportional
with DNN depth.

Next, the DNN output generated during the forward pass is compared to the ground-truth value in the
training dataset. Subsequently, the gradient is calculated and stored in memory for use in the forthcoming
backward pass, which is depicted in Figure [1| (b). In the backward pass, the input activations of the last
layer are initially retrieved from memory and used to compute the weight gradient by multiplication with
the gradient. Additionally, the gradient is multiplied with the layer weights to generate the gradient for
the preceding layers. Subsequently, the input activations and gradient can be removed, freeing up the
corresponding memory space. This iterative process persists until gradients are computed for all the layer
weights.

2.2 Self-supervised Learning

Masked Image Modeling. Inspired by the great success of MLM [Ben Zaken et al| (2022); Bao et al.
(2020)); [Sinha et al.| (2021) in NLP, researchers have explored a similar masking methodology for computer
vision tasks. The primary goal of MIM is to extract information from unmasked image patches in order to
reconstruct the masked patches, performing MIM can significantly enhance the feature extraction capability
of backbone DNN [Xie et al. (2022]). Existing research in the field has shown a preference for using large batch
sizes (e.g., 4096), to train the backbone DNN with large number of epochs (e.g., 800), and has empirically
observed improvements in MIM performance as a result. However, this places significant demands on memory
capacity and compute capability. While some previous research has introduced advanced masking strategies
to reduce the computation workload Kakogeorgiou et al.| (2022); |Li et al.| (2022a)); Liu et al.| (2022)); Kong
& Zhang| (2023)); Wang et al.| (2023, hardly any of these approaches have addressed the reduction of peak
memory size. In this study, we employ the masked autoencoder (MAE) He et al.| (2022), a pioneering
framework for masked image modeling, as a benchmark to demonstrate how our method effectively reduces
peak memory consumption and computational cost.

Local Learning Paradigms. Compared to end-to-end supervised learning approaches |Dosovitskiy et al.
(2021); He et al.| (2016)); LeCun & Bengio| (1998]), SSL methods Xie et al.| (2022); [He et al| (2022)) require a
considerably higher memory requirement due to larger batch size. Local learning has emerged as a practical
strategy for addressing the issue of high memory demand. As a pioneering method for gradient-isolated
block-wise training, the Greedy InfoMax algorithm [Belilovsky et al.| (2018) shows impressive performance on
small datasets, using only 40% of the memory compared to what traditional supervised learning methods
typically demand. However, the performance of InfoMax will degrade seriously on large-scale datasets, such
as ImageNet. LoCo [Xiong et al.| (2020)) is a local learning algorithm for unsupervised contrastive learning.
By leveraging implicit gradient feedback between the gradient-isolation blocks, LoCo can achieve results
comparable to those of the conventional contrastive learning framework. Nevertheless, LoCo comes with
a significantly higher computational cost compared to the end-to-end training approach. In comparison,
BIM enables a MIM-based SSL pretraining with substantial reductions in peak memory consumption and
computational workload.

Efficient DNN Training. Previous research has explored various techniques to expedite DNN training
through leveraging sparsity in weights and activations Mahmoud et al.| (2020); Zhang et al.| (2019)); [Yang et al.
(2020); |Choi et al.| (2020); |Qin et al.| (2020)); Zhang et al. (2022). For instance, Procrustes [Yang et al.| (2020])
and Eager Pruning |Zhang et al.| (2019) improve training efficiency by aligning algorithms with hardware
capabilities, eliminating unimportant DNN weights, and enhancing hardware efficiency. Another approach
involves reducing DNN operand precision [Judd et al. (2016)); |Lee et al.| (2019) or dynamically adjusting
precision during DNN training, as proposed in FAST |Zhang et al|(2022). These techniques are orthogonal
to our BIM framework and can provide additional training efficiency. There are also works focused on
reducing memory consumption during DNN training by modifying the DNN architecture |Gomez et al.| (2017));

Under review as submission to TMLR

P Decoder
[} Decoder o Decoder
S &g Step 1 Step 2
2] 2]
S Encoder S
| Ol 24
8 9 § a g 2 S Forward pass Decoder Decoder
G 8 § R Encoder Backward pass D;zz:i' Xi Xi ®
1S 4 HIE £ 2 Block 3 Encoder Encoder
c O Encoder S|/ < O Block i Block i IBackward pass
58 § 55 et
o @ o @ ﬁ "
g> Encoder g) Decoder Forward pass Xi+1@
© © Encoder Block 2 Block i+1 Encoder Block i+1
5 s |9 et Encoder Encoder !
o 0) Block 2 Block [+1 Block i+1 | { Backward pass
= o
e ... N o
BEEN .g? Decoder Xi
G Patchify Block 1 - . - 4
memory memory ep ep
=
=
(a) Conventional MIM b) BIM (c) BIM with incremental masking (d) BIM computation pattern

Figure 2: (a) Training flow for conventional MIM. (b) Training flow for BIM. (c¢) Overview of incremental
masking strategy. (d) The computation pattern of BIM over two consecutive encoder blocks. The block dot
denotes the intermediate activation during the forward pass.

Zhang et al.| (2023)). In comparison, BIM represents a versatile training framework applicable to all DNN
architectures.

3 Method

In this section, we first introduce our memory-efficient BIM paradigm. We then provide a detailed explanation
of the "Once-for-all" training approach for joint training across multiple backbone DNNs. Next, we discuss
the incremental masking strategy to minimize computational overhead. Finally, we explain the memory
scheduling technique that reduces memory consumption.

3.1 DNN Pre-training with BIM

The conventional MIM training process is illustrated in Figure 2| (a), where an end-to-end training algorithm
is applied to all encoder and decoder blocks of ViT. This necessitates the allocation of extensive memory
to store the entire set of model weights and gradients, resulting in a substantial demand for memory. To
mitigate this, we proposed a block-wise local learning approach. An illustrative representation of our novel
framework is presented in Figure [2[(b) and the pseudo-code of BIM is also provided in Algorithm |1} Before
training, the stack of ViT encoders are initially divided into several blocks of uniform size, each associated
with a decoder of the corresponding size. Subsequently, each ViT encoder-decoder pair undergoes separate
training with the same objective loss function.

Specifically, the computational flow during the forward pass in BIM closely resembles that of MIM. In this
process, each ViT encoder block receives intermediate results from the preceding blocks, conducts forward
computations, and generates an output. This output is then duplicated: one copy is forwarded to the next
encoder block for further processing, while the other copy is sent to the corresponding decoder block. The
decoder’s role is to produce predictions for masked patches using the features extracted by the current encoder
block. This procedure continues until all the decoders have generated their predictions. The reconstructed
patches from each decoder are subsequently compared to the original unmasked image patches, resulting in
the generation of gradients for the backward pass operations.

With the gradients generated from the loss function at each decoder, the backward pass operations are carried
out independently within each ViT encoder-decoder block. To be specific, the computation of gradients is
terminated when it reaches the beginning of the current ViT encoder block, as shown by green arrows in
Figure 2| (b). This ensures that there is no overlap in gradients across different blocks, and the gradient from
one ViT encoder block does not influence the earlier ViT encoders. As a result of this gradient isolation
strategy, in conjunction with our memory scheduling algorithm, BIM results in a significant reduction in
peak memory usage than the conventional MIM.

Under review as submission to TMLR

3.2 Once-for-all Pre-training with BIM

In addition to the memory efficiency benefits provided by BIM, it also naturally implements the “Once-for-all”
training paradigm |Cai et al.| (2019)) by joint training of multiple ViT encoder backbones with growing depths.
To illustrate this, if a ViT encoder is divided into four blocks, BIM allows the training of four distinct backbone
DNNSs with increasing depths by truncating at the output of each encoder block. This “Once-for-all” paradigm
offered by BIM empowers the resultant pre-trained model to adapt to different computational constraints
and diverse tasks, optimizing resource utilization and versatility. Compared to the conventional approach
of separately training each backbone DNN with different depths, BIM results in substantial computational
savings.

3.3 Incremental Masking Ratio Growth with BIM

We also introduce an incremental masking strategy that progressively increases the proportion of masked
patches, aiming to achieve additional computational savings. Specifically, we enhance the level of difficulty in
BIM by progressively decreasing the proportion of unmasked patches used for image reconstruction. As shown
in Figure (c), we introduce a new layer at the end of each encoder block, which randomly discards additional
patches during the forward computation. The percentage of these additional drops is predefined and increases
with the layer depth. This approach results in a reduction in the input size for each encoder block, effectively
reducing the computational workload while obtaining a comparable (even better) performance as described
in the experiment section.

3.4 BIM Computation Pattern

We describe an efficient computation pattern for both forward and backward passes of BIM training. The
proposed computation pattern can achieve optimal peak memory consumption. We illustrate this scheduling
algorithm with an example that show the computation pattern within the two consecutive encoder blocks

(Figure [2| (d)).

Initially, the input patches x;_1 are fed into the encoder block i to generate output z;. All the intermediate
activations, including x;, are buffered in the memory for later use. (Step 1 in Figure|2|(d)). z; is subsequently
input into decoder block i, resulting in the generation of predicted outputs and the initiation of the loss
gradient. The backward pass starts as indicated in Step 2, results in additional weight updates in both
decoder i and encoder i. This backward pass concludes when it reaches the initial layer of encoder 7. Once
the parameter updates in encoder block i and decoder block i are finished, all intermediate features stored in
the buffer, except for x;, can be cleared from memory, preserving them for future use. x; is subsequently
forwarded to encoder block i4+1, and the identical process repeats, as illustrated in Steps 3 and 4 in Figure

(d).
4 Experiments

In this section, we conduct experiments to validate the BIM performance. We describe the implementation
details and present the main results. The ablation studies are shown after the main results.

4.1 Implementation

Pretrain model on ImageNet-1K We evaluate BIM by comparing its performance against MAE He et al.
(2022)), and report its performance in terms of accuracy and peak memory consumption. We compare BIM
with MAE over different versions of ViT, including ViT-base, ViT-large, and ViT-huge. The models are
pretrained for either 400 or 800 epochs on the ImageNet-1k dataset Deng et al| (2009). We divide their
encoder backbone into four blocks and train ViT-base, ViT-large and ViT-huge with a batch size of 4096 or
8192.

All the pretraining computations are executed on a GPU cluster consisting of 4 nodes, each node equipped
with 8 NVIDIA V100 GPUs. We adopt a fixed masking ratio with a ratio of 75%, and we will test the

Under review as submission to TMLR

Backb Patch | Pretrain | Pretrain | Pretrain | Num of Peak Memory Fine-tuning Linear Eval
ACKDONE | gize Epoch | Batch Size | Method | Blocks | Consumption (GB) | Top-1 acc (%) | Top-1 acc (%)
4096 MAE - 1218.57 (1x) 83.01 63.03
400 BIM 4 929.09 () 82.98 62.87
. 8192 BIM 4 1857.99 (1.52x) 83.567 0.55 65.467 2.43
-~ 2
ViT-base | 16 1096 MAE - 121857 (1x) 33.27 66.25
800 BIM 4 929.09 () 83.20 66.08
8192 BIM 4 1857.99 (1.52x) 83.891 0.62 69.247 2.99
4096 MAE - 1865.58 (1x) 84.79 70.20
400 BIM 4 1093.51 () 84.58 68.60
. . 8192 BIM 4 2186.64 (1.17x) 85.377 0.58 74.071 3.87
_laro 2
ViT-large |16 1006 MAE - 1865.58 (1x) 35.15 73.93
800 BIM 4 1093.51 () 84.99 73.10
8192 BIM 4 2186.64 (1.17x) 85.671 0.52 76.517 2.58
4096 MAE - 3303.81 (1x) 86.18 73.69
400 BIM 4 1802.40 () 86.10 72.70
. 8192 BIM 4 3608.02 (1.09x) 86.251 0.27 74.811 1.13
_ 2
ViT-huge | 14 1096 MAE - 3303.81 (Ix) 36.39 76.81
800 BIM 4 1802.40 () 86.24 76.27
8192 BIM 4 3608.02 (1.09x) 86.597 0.20 77.601 0.89

Table 1: Accuracy comparison for ViT backbones pretrained with BIM and MAE over Image classification
task. BIM achieves a comparable accuracy performance as MAE while greatly saves the peak memory.

incremental masking ratio in the ablation study. We follow the original MAE work [He et al.| (2022) for the
rest of the training settings. Pretrained ViT encoder backbones are evaluated over two downstream tasks,
which are elaborated upon as follows.

Image Classification. We utilize pretrained ViT encoder backbones as the initializations. Subsequently,
we append a linear layer to the pretrained encoder backbone and perform either end-to-end fine-tuning or
linear probing on the ImageNet-1K dataset. In the case of end-to-end fine-tuning, the entire model undergoes
fine-tuning, whereas for linear probing, only the weights of the linear layer are modified.

COCO Detection and Instance Segmentation. Additionally, we assess the performance of the pretrained
backbone with tasks of object detection and instance segmentation. More precisely, we take Mask R-CNN [He
et al.| (2017)) as the objective detector and perform end-to-end finetuning on the COCO dataset |Lin et al.
(2015)), among which the ViT backbone is adapted for use with FPN |Lin et al.| (2017)), following ViTDet
framework [Li et al.| (2022b). We apply this approach to all entries in Table

4.2 Main Results

Masked Image Reconstruction. To evaluate the masked image reconstruction performance, we visualize
some sample images that are taken from the validation set of ImageNet. The reconstruction visualization
demonstrates that the ViT backbones trained with BIM can achieve a strong image reconstruction capability.
The detailed reconstruction result comparison can be found in the appendix.

End-to-End Fine-tuning. For the end-to-end fine-tuning approach, we initiate the ViT by utilizing
the pretrained encoder backbone and subsequently fine-tune the entire network. Specifically, we fine-tune
ViT-base for 100 epochs and ViT-large and ViT-huge for 50 epochs, adhering to the procedures detailed
in He et al|(2022). We assess the performance of our BIM with MAE in terms of accuracy and peak GPU
memory consumption across multiple ViT backbones. The results are presented in Table [I} revealing some
noteworthy findings. Firstly, under identical settings for training epochs and batch size, BIM consistently
achieves comparable accuracies, with an average difference of less than 0.1%, in the end-to-end fine-tuning
task across different backbone architectures. Secondly, when pretrained with a batch size of 8192, BIM attains
an average fine-tuning accuracy that is 0.47 higher than the MAE that is pretrained with a batch size of
4096, across various DNN backbones.

Under review as submission to TMLR

Pretrain | Pretrain ViT-base ViT-large
Method | Dataset | AP [Apmask | Apbow [Apmask
MAE ImageNet 51.2 45.5 54.6 48.6
BIM 51.2 45.3 54.3 48.2

Table 2: Transfer learning results on COCO object detection and segmentation.

(a) Impact on memory consumption (b) Impact on block number
Top-1

Mem.
(GB) BOCC
(%)
3500 BB ==] | 1800 84l
MAEon MAEon MAEon .
3000 [~ viT-Huge ViT-Large ViT-Base
250 I gimon BIMon BiMon
2000 |-ViT-Huge ViT-Large ViT-Base 1200
1500 [~ 900 o
1000 [~ .

500 [~
B8 BIM (2 Blocks) [l BIM (4 Blocks)
0 TBatch Size Batch Size Batch Size I BIM (6 Blocks) [l MAE
1024 4096 4096

1500 84.9
84.3

84.1)

Peak GPU Memory (GB)

Figure 3: (a) Peak memory usage comparison with varying ViT backbones and batch sizes. (b) Memory and
performance comparison with varying numbers of ViT blocks.

Linear Probing. In addition to the end-to-end fine-tuning, we also assess the linear probing scheme, where
only the linear layer undergoes fine-tuning. As shown in Table [T} our proposed BIM demonstrates superior
performance, exhibiting only an average accuracy drop of 0.52% when compared to the traditional MAE.

Transfer Learning on COCO. To assess the transferability of features derived from our proposed
framework, we conduct end-to-end fine-tuning of Mask R-CNN for ViT on the COCO dataset using pretrained
backbone weights from ViT-base and ViT-large, each pretrained for 800 epochs. Following the ViTDet
implementation |Li et al| (2022b)), the ViT backbone is integrated with the FPN, applied uniformly across all
pre-trained entities. The results, as shown in Table [2| demonstrate that ViT backbones pretrained with BIM
can effectively transfer to object detection and instance segmentation tasks, yielding performance comparable
to MAE.

Transfer Learning on ADE20K. To assess BIM’s effectiveness in other common transfer learning tasks,
we followed the experimental setup from the MAE paper and conducted experiments on ADE20KZhou
et al.| (2018) using UperNet. We fine-tuned the model end-to-end for 100 epochs with a batch size of 16,
employing ViT-B and ViT-L pretrained on ImageNet-1K. Both ViT-B and ViT-L were divided into four
blocks using BIM. MAE achieves mIoU scores of 47.7% and 53.3% on ViT-B and ViT-L, respectively, while
BIM achieves 47.5% and 53.0%. The minimal performance difference on the ADE20K dataset indicates
that BIM effectively preserves generalization ability without significant degradation.

Saving on Peak Memory. One of the key advantages offered by BIM is the substantial reduction in peak
GPU memory usage. To visualize this, Figure 3| (a) provide a peak memory consumption comparison between
MAE and BIM across various batch size, under the settings that all the ViT backbones are divided into four
blocks for BIM training. We notice that BIM achieves an average of 25%, 42% and 48% peak memory savings
than MAE on ViT-base, ViT-large and ViT-huge, respectively. Specifically, the peak memory savings increase
as the ViT encoder backbone size increases. This is due to the diminishing impact of the ViT decoder on
memory usage as the encoder size grows. Ignoring the impact of other components such as decoders and
embedding layers, BIM training of a ViT backbone with four blocks using BIM can result in up to a 4x
reduction in peak memory usage. BIM offers a promising solution for researchers facing constraints in GPU
resources. Specifically, BIM enables a ViT backbone to be trained with a larger batch size, and therefore
leading to better accuracies over the downstream tasks.

Performance under the Same Peak Memory. In this section, we evaluate the performance of BIM
and MAE while maintaining a fixed peak memory consumption. To achieve this, we adjust the batch size
during BIM training on ViT-large so that its peak memory usage matches that of MAE with a batch size of
4096. This results in a batch size of 6784 for both ViT-large. We then train ViT-large with BIM for 400

Under review as submission to TMLR

Pretrain Backbone Acc with Num of Blocks (%) Training
Method 1 2 3 4 Cost Saving (%)
1T 70.59 | 79.04 | 81.48 | 83.01 -
MD ViT-base | 65.88 | 75.02 | 79.46 | 83.01 61.12
BIM 70.59 | 79.06 | 81.39 | 82.98 68.00
1T 77.78 | 82.49 | 84.22 | 84.79 -
MD ViT-large | 73.70 | 79.41 | 82.78 | 84.79 78.23
BIM 7778 | 82.3 | 84.14 | 84.58 85.18
1T 80.75 | 84.88 | 85.53 | 86.12 -
MD ViT-huge | 75.78 | 80.34 | 83.48 | 86.12 80.85
BIM 80.75 | 84.52 | 85.50 | 86.03 87.84

Table 3: Fine-tuning performance comparison among IT, MD, and BIM. BIM performs much better than
MD, while achieving a comparable performance as IT. Compared with I'T, BIM significantly reduces training
cost by up to 87.84%.

Method Mask Ratio (%) Fine-tune Top-1

Block 1 | Block 2 | Block 3 | Block 4 | On Average Acce (%)

60 81.79

. 70 83.80
E:‘:f 75 8458

80 84.28

90 82.67

Incremental 75 ‘ 80 ‘ 85 ‘ 90 ‘ 82.5 84.44
Masking Ratio 65 ‘ 70 ‘ 80 ‘ 85 ‘ 75 84.75

Table 4: Comparison between fixed masking ratio and incremental masking ratio.

epochs using a batch size of 6784 and finetune it over the ImageNet dataset with 50 epochs. This leads to an
accuracy of 85.02%, which is better than that obtained with the MAE backbone (84.79%).

Once-for-all Training of BIM. As discussed in the method section, BIM offers a natural advantage by
allowing the simultaneous training of multiple ViT-encoder backbones with varying depths, all sharing their
weights in a nested manner. Our evaluation of ViT encoders’ performance is conducted on the ImageNet
dataset. Specifically, we compare our approach with two alternative baseline methods. The first baseline,
referred to as independent training (IT), involves training each ViT encoder backbone with varying depth
separately. Note that this approach incurs significantly higher training costs since each ViT encoder is trained
independently. Here we compute the overall parameters to be trained for generating four models as the
training cost. The second baseline, denoted as MAFE directly (MD), entails truncating the pretrained MAE at
the end of each ViT encoder block and fine-tuning it for downstream tasks. All ViT backbones are pretrained
for 400 epochs, then fine-tuned with 100 epochs for ViT-base and 50 epochs for ViT-large and ViT-huge.

As indicated in Table [3] we note that BIM outperforms MD by a significant margin and closely matches the
performance of IT. In particular, for ViT with a single encoder block, BIM and IT exhibit identical training
schemes, resulting in the same accuracy. Notably, BIM achieves an average of 77% reduction in training cost
compared to IT.

4.3 Ablation Study

Impact of Masking Ratio. We evaluate the performance of BIM over different masking ratios. Specifically,
we want to investigate two problems. Firstly, we examine how BIM accuracy is influenced by different masking
ratios, assuming all the blocks have the identical masking ratio. Secondly, we investigate how accuracy varies
when adjusting the masking ratio across different ViT encoder blocks.

We trained with the ViT-large encoder backbone using various masking ratios for 400 epochs and subsequently
fine-tuned on the ImageNet dataset for 50 epochs. As shown in Table[d] we observe that under the assumption
that all the blocks have the same masking ratio, a masking ratio of 75% yields the best overall performance,
which aligns with findings from the MAE approach He et al.| (2022). Furthermore, it is worth noting that
incremental masking ratios in general outperforms constant masking ratios under the same average masking
ratio. In particular, we find that masking ratios of 65%, 70%, 80%, 85%, with an average masking ratio of
75%, yield superior performance compared to a fixed masking ratio of 75% across all blocks. In comparison,
employing a combination of masking ratios such as 75%, 80%, 85%, and 90% with an average masking ratio

Under review as submission to TMLR

Method | PN | poak Memory | Fine-tuning
Size Accuracy
SimMIM 4096 880.91GB 83.07%
BIM+SimMIM | 4096 231.46GB 83.02%
BIM+SimMIM | 8192 462.56GB 83.58%

Table 5: Performance of BIM with SimMIM Pretraining on ViT-L with 400 epochs.

Method Ba.tCh Peak Memory Fine-tuning
Size Accuracy
BIM 4096 1093.51GB 84.58%
MAE (8-bit) 4096 590.06GB 62.59%
MAE (16-bit) | 4096 945.42GB 78.73%
MAE (20-bit) | 4096 1165.87GB 82.29%

Table 6: BIM and quantization training on ViT-L.

of 82.5% results in an accuracy of 84.51%. This performance is comparable to that achieved with an average
masking ratio of 75%, while greatly reducing computational workload.

Impact of Block Numbers. In this section, we explore how the number of ViT blocks affects the accuracy
of BIM. We investigate how varying the number of blocks impacts BIM’s performance. To achieve this,
we pretrained the ViT-large backbone with 400 epochs using 2 blocks, 4 blocks, and 6 blocks, followed by
fine-tuning the entire ViT-large model on ImageNet with 50 epochs.

The findings presented in Figure [3[(b) reveal that a larger number of blocks indeed results in lower peak
memory usage for BIM. However, this reduction in memory consumption comes at the cost of decreased
model performance. For example, when transitioning from 4 to 6 blocks, BIM achieves only a marginal
4% reduction in memory consumption while incurring a notable 0.7% drop in accuracy, which may not be
justified.

Impact on Decoder Architecture. In BIM, we follow the original decoder design specified in the MAE
work by setting the decoder depth to 8. Additionally, BIM is compatible with other decoder architectures.
For instance, BIM can also integrate with SimMIM Xie et al.|(2022), which employs a simple multilayer
perceptron (MLP) as its decoder. We evaluate the performance of BIM over the SimMIM framework and
the results are depicted in Table[5} BIM, when combined with SimMIM, not only significantly lowers peak
memory usage but does so without a notable compromise in accuracy. Moreover, it is worth highlighting
that BIM leads to an improvement in SimMIM’s performance, a 0.51% increase in accuracy, by doubling the
batch size from 4096 to 8192, while still achieving a much smaller peak memory than the original SimMIM.

Impact on Training time As a trade-off, BIM inevitably incurs additional computation costs due to
the added decoder blocks after each encoder branch. For instance, pretraining ViT-L with MAE for 400
epochs takes approximately 35 hours using 32 V100 GPUs. In contrast, BIM pretraining, due to the added
decoder blocks in each encoder block, takes 39 hours. However, with the incremental masking technique,
BIM’s pretraining time reduces to 37 hours. This reduction occurs because incremental masking decreases
the input size for each encoder block, effectively reducing the computational workload. Additionally, for
other types of masked pretraining schemes with a light decoder architecture, such as SimMIM, the increase
in training time is minimal, the results are shown in Table [7] for different batch size. For example, pretraining
ViT-L with SimMIM for 400 epochs takes approximately 27 hours with BIM and 26 hours without BIM,
both using 32 V100 GPUs. Finally, we would like to highlight that BIM is designed to mitigate the memory
constraints present in MAE-based pretraining, making MAE feasible on memory-limited devices.

Comparison between BIM and Quantized Pretraining. Before BIM, efficient DNN training methods
like parameter quantization were used to reduce memory consumption but had notable drawbacks. For

Under review as submission to TMLR

Pretrain Method | ViT-base | ViT-large | ViT-huge
SimMIM 17h 26h 59h
BIM + SimMIM 17h 27h 60h

Table 7: Training time of BIM on SimMIM with 400 epochs using a batch size of 4096.

Batch Size 1024 2048 4096

ViT-base 82.11/82.18 82.50/82.57 82.98/83.01
ViT-large 83.85/83.90 84.16/84.30 84.58/84.79
ViT-huge 85.32/85.34 85.71/85.79 86.10/86.18

Table 8: Performance comparison of BIM (bold) and MAE (regular) across different batch sizes.

example, quantization often led to significant performance drops. Table [6] compares the fine-tuning accuracies
of BIM and quantized MAE pretraining. We quantized all gradients, activations, and weights using a
linear scheme during MAE pretraining and fine-tuned the model on ImageNet. Pretraining MAE with
20-bit quantization resulted in higher peak memory (1165.87 GB) but lower accuracy (82.29%), while 8-bit
quantization reduced memory but severely degraded accuracy (62.59%) compared to BIM (84.58%). As
discussed in the methods section, BIM can be integrated with these techniques to further reduce memory
usage while maintaining superior accuracy.

Impact on large batch size We evaluate the performance of BIM across different batch sizes. The
accuracy results for models of varying sizes and batch sizes are presented in the table below, where bold
numbers indicate BIM’s results, and regular-weight numbers represent MAE’s results. As shown in the
table [8] BIM achieves performance comparable to MAE across diverse batch sizes.

Impact on different MIM method To evaluate BIM on other MIM methods, we applied it to MaskFeat
with HOG features [Dalal & Triggs| (2005)), using ViT-Base and ViT-Large to assess BIM’s effectiveness. The
results show that MaskFeat achieves an accuracy of 83.80% on ViT-B and 85.83% on ViT-L. With BIM
applied, the accuracy remains high at 83.72% on ViT-B and 85.64% on ViT-L, further demonstrating
BIM’s strong potential when integrated with MaskFeat.

Impact on Training Iteration. Finally, we investigate the effect of training iterations on accuracy during
the fine-tuning phase for downstream tasks. We train ViT-large using BIM and MAE for varying numbers
of epochs: 400, 800, 1200, and 1600, then fine-tune on the ImageNet for 50 epochs. The accuracy results,
as shown in Table [9] indicate a general trend of increasing accuracy with training iteration for both BIM
and MAE. Nevertheless, it is worth noting that the incremental gain in accuracy is relatively modest when
extending training from 800 epochs to 1600 epochs.

5 Conclusion

MIM pretraining typically demands significant computational resources and memory requirements, especially
when handling large training data batches. In this work, we introduce BIM as an alternative solution,
achieving comparable performance to MIM while significantly reducing peak memory consumption. This
opens up interesting future avenues in a promising direction of research. Future works can be conducted
on integrating BIM with other self-supervised learning frameworks such as iBOT |Zhou et al.| (2021) or
PECO [Dong et al.| (2023)), etc.

References

Masked autoencoder official implementation. https://github.com/facebookresearch/mae/, 2021.

10

Under review as submission to TMLR

Iterations 400 epochs | 800 epochs | 1200 epochs | 1600 epochs
BIM Acc. (%) 84.58 85.09 85.15 85.27
MAE Acc. (%) 84.79 85.15 85.23 85.38

Table 9: Experiment on increasing pretraining epochs. Both MAE and BIM benefit from longer pretraining
epochs.

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang, Xiaodong Liu, Yu Wang, Jianfeng Gao, Songhao
Piao, Ming Zhou, and Hsiao-Wuen Hon. UniLMv2: Pseudo-masked language models for unified language
model pre-training. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 642—652.
PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/v119/bao20a.html.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale to
imagenet. In International Conference on Machine Learning, 2018. URL https://api.semanticscholar,
org/CorpusID:57189514.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pp. 1-9, Dublin, Ireland, May 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.1. URL https://aclanthology.org/
2022.acl-short.1.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network and
specialize it for efficient deployment. arXiv preprint arXiw:1908.09791, 2019.

Natalia Caporale and Yang Dan. Spike timing—dependent plasticity: a hebbian learning rule. Annu. Rev.
Neurosci., 31:25-46, 2008.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations, 2020. URL https://arxiv.org/abs/2002.05709.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning, 2020. URL https://arxiv,
org/abs/2011.10566.

Seungkyu Choi, Jaehyeong Sim, Myeonggu Kang, Yeongjae Choi, Hyeonuk Kim, and Lee-Sup Kim. An
energy-efficient deep convolutional neural network training accelerator for in situ personalization on smart
devices. IEEE Journal of Solid-State Circuits, 55(10):2691-2702, 2020.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Electra: Pre-training text
encoders as discriminators rather than generators, 2020.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129-132, 1989.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pp. 886-893 vol. 1,
2005. doi: 10.1109/CVPR.2005.177.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255,
2009. doi: 10.1109/CVPR.2009.5206848.

Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Weiming Zhang, Lu Yuan, Dong Chen, Fang Wen,
Nenghai Yu, and Baining Guo. Peco: Perceptual codebook for bert pre-training of vision transformers. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 552—-560, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

11

https://proceedings.mlr.press/v119/bao20a.html
https://api.semanticscholar.org/CorpusID:57189514
https://api.semanticscholar.org/CorpusID:57189514
https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2011.10566
https://arxiv.org/abs/2011.10566

Under review as submission to TMLR

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D. Cubuk, Quoc V. Le, and Barret
Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation, 2021.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
Backpropagation without storing activations. Advances in neural information processing systems, 30, 2017.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour, 2018.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot,
Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent: A new approach to
self-supervised learning, 2020. URL https://arxiv.org/abs/2006.07733

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016. doi:
10.1109/CVPR.2016.90.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pp. 2961-2969, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning, 2020. URL https://arxiv.org/abs/1911.05722.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked autoencoders
are scalable vision learners. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 15979-15988, 2022. doi: 10.1109/CVPR52688.2022.01553.

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and Andreas Moshovos. Stripes: Bit-
serial deep neural network computing. In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on, pp. 1-12. IEEE, 2016.

Toannis Kakogeorgiou, Spyros Gidaris, Bill Psomas, Yannis Avrithis, Andrei Bursuc, Konstantinos Karantzalos,
and Nikos Komodakis. What to hide from your students: Attention-guided masked image modeling. In
Computer Vision — ECCV 2022, pp. 300-318. Springer Nature Switzerland, 2022. ISBN 978-3-031-
20056-4. doi: 10.1007/978-3-031-20056-4__18. URL https://link.springer.com/chapter/10.1007/
978-3-031-20056-4_18.

Xiangwen Kong and Xiangyu Zhang. Understanding masked image modeling via learning occlusion invariant
feature. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6241-6251, June 2023.

Yann LeCun and Yoshua Bengio. Convolutional Networks for Images, Speech, and Time Series, pp. 255-258.
MIT Press, Cambridge, MA, USA, 1998. ISBN 0262511029.

Jinsu Lee, Juhyoung Lee, Donghyeon Han, Jinmook Lee, Gwangtae Park, and Hoi-Jun Yoo. 7.7 Inpu: A 25.3
tflops/w sparse deep-neural-network learning processor with fine-grained mixed precision of fp8-fp16. In
2019 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 142-144. IEEE, 2019.

Gang Li, Heliang Zheng, Daqing Liu, Chaoyue Wang, Bing Su, and Changwen Zheng. Semmae: Semantic-
guided masking for learning masked autoencoders. arXiv preprint arXiv:2206.10207, 2022a.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer backbones for
object detection, 2022b.

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random feedback weights
support learning in deep neural networks, 2014.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft coco: Common objects in context, 2015.

12

https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/1911.05722
https://link.springer.com/chapter/10.1007/978-3-031-20056-4_18
https://link.springer.com/chapter/10.1007/978-3-031-20056-4_18

Under review as submission to TMLR

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection, 2017.

Zhengqi Liu, Jie Gui, and Hao Luo. Good helper is around you: Attention-driven masked image modeling,
2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Sindy Lowe, Peter O’Connor, and Bastiaan S. Veeling. Putting an end to end-to-end: Gradient-isolated
learning of representations, 2020.

Mostafa Mahmoud, Isak Edo, Ali Hadi Zadeh, Omar Mohamed Awad, Gennady Pekhimenko, Jorge Albericio,
and Andreas Moshovos. Tensordash: Exploiting sparsity to accelerate deep neural network training. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 781-795.
IEEE, 2020.

Adam H Marblestone, Greg Wayne, and Konrad P Kording. Toward an integration of deep learning and
neuroscience. Frontiers in computational neuroscience, 10:94, 2016.

Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srinivasan, Dipankar Das, Bharat
Kaul, and Tushar Krishna. Sigma: A sparse and irregular gemm accelerator with flexible interconnects
for dnn training. In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 58-70. IEEE, 2020.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and Douwe Kiela. Masked
language modeling and the distributional hypothesis: Order word matters pre-training for little. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 2888-2913,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.emnlp-main.230. URL https://aclanthology.org/2021.emnlp-main.230.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision, 2015.

Haochen Wang, Kaiyou Song, Junsong Fan, Yuxi Wang, Jin Xie, and Zhaoxiang Zhang. Hard patches mining
for masked image modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10375-10385, June 2023.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim:
A simple framework for masked image modeling. In International Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

Yuwen Xiong, Mengye Ren, and Raquel Urtasun. Loco: Local contrastive representation learning. In
Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Dingqging Yang, Amin Ghasemazar, Xiaowei Ren, Maximilian Golub, Guy Lemieux, and Mieszko Lis.
Procrustes: a dataflow and accelerator for sparse deep neural network training. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 711-724. IEEE, 2020.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks, 2017.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization, 2018.

13

https://aclanthology.org/2021.emnlp-main.230

Under review as submission to TMLR

Jiaqi Zhang, Xiangru Chen, Mingcong Song, and Tao Li. Eager pruning: algorithm and architecture support
for fast training of deep neural networks. In 2019 ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA), pp. 292-303. IEEE, 2019.

Sai Qian Zhang, Bradley McDanel, and HT Kung. Fast: Dnn training under variable precision block floating
point with stochastic rounding. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pp. 846-860. IEEE, 2022.

Sai Qian Zhang, Thierry Tambe, Nestor Cuevas, Gu-Yeon Wei, and David Brooks. Camel: Co-designing ai
models and embedded drams for efficient on-device learning. arXiv preprint arXiv:2305.03148, 2023.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic
understanding of scenes through the ade20k dataset, 2018. URL https://arxiv.org/abs/1608.05442.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot: Image bert
pre-training with online tokenizer. arXiv preprint arXiv:2111.07832, 2021.

Appendix

A Implementation Details

In this section, we will provide an in-depth overview of the specific configurations utilized for both the
pretraining and finetuning phases of BIM.

A.1 BIM pseudo code for one iteration

The pesudo code of BIM for one iteration is provided below.

Algorithm 1 BIM pseudo code for one iteration

N: Number of encoder-decoder blocks fn: n-th encoder block
hyn: n-th decoder block L,: Loss of block n M: Loss function
for im, mask in Dataloader do
o = patchify(im) # patchify image into patches
for n in range(N) do
ZTnt+1 = fn(xn, mask) # send the masked input x to f, and obtain xn41.
1Mint1 = hn(Tnt1, mask) # reconstruct im
Ly, = M(im, imn41, mask)
L, .backward() # backprop across f, and h,
update(fn, hn) # update weights in f,,, h,
Keep z,4+1 and free the memory of gradient and activations in f, and hy.
end for
Release all the memory.
end for

A.2 BIM architecture

Following the original MAE, we implemented the standard ViT architecture as the backbone architecture. In
MAE, it sets the encoder and decoder to have different widths and adopts a linear projection layer to match
them. Besides, its encoder also ends with a LayerNorm. Hence, to match this setting, for all blocks in BIM,
we assigned the same LayerNorm and linear layer to match them with their identical decoder. Except for this
difference, all other architecture settings are the same with raw MAE.

14

https://arxiv.org/abs/1608.05442

Under review as submission to TMLR

A.3 Pretraining Settings

Before pretraining, following official ViT implementation, we used xavier_uniform in Pytorch to initialize all
Transformer blocks. Besides, we used a conventional linear learning rate (Ir) scaling rule: Ir = base_Ir x
batch__size/256. Notably, the batch size is selected from 2048, 4096, and 8192, according to the experiment
requirement. Each ViT backbone is pretrained with either 400 epochs or 800 epochs. Other general pretraining
configurations are listed in Table

General Configuration | Detail

Optimizer AdamW [Loshchilov & Hutter|(2019)
Base Learning Rate 1.5e-4

Weight Decay 0.05

Optimizer Momentum B1, B2 = 0.9,0.95

Learning Rate Schedule cosine decay |Loshchilov & Hutter|(2017)
Warmup Epochs Goyal et al.|(2018) | 40

Data Augmentation RandomResizedCrop

Table 10: General configuration for the pretraining process.

A.4 End-to-end Fine-tuning Settings

The pretrained ViT encoder backbone with BIM are fully-finetuned over ImageNet dataset. The end-to-end
fine-tuning training epochs is set to 100 for ViT-base, and 50 for ViT-large and ViT-huge. Besides, the value
of the drop path is set to be 0.1, 0.2 and 0.3 for ViT-base, ViT-large and ViT-huge, respectively. Base learning
rate is set to He-4 for ViT-base and le-3 for ViT-large and ViT-huge. The other general configurations we
used are listed in Table [T}

General Configuration Detail

Optimizer AdamW

Weight Decay 0.05

Optimizer Momentum b1, B2 = 0.9,0.999
Layer-wise Ir Decay Clark et al. (2020) | 0.75

Batch Size 1024

Learning Rate Schedule cosine decay
Augmentation RandAug (9, 0.5)
Label Smoothing Szegedy et al.|(2015) | 0.1

Mixup [Zhang et al.| (2018) 0.8

Cutmix [Yun et al.|(2019) 1.0

Table 11: General configuration for the end-to-end fine-tuning process.

15

Under review as submission to TMLR

A.5 Linear Probing Settings

Following the linear probing implementation in the original MAE, we disabled many common regularization
strategies and set the weight decay to 0. The other general configurations are listed in the Table

General Configuration | Detail

Optimizer LARS [You et al. (2017)
Base learning rate 0.1

Optimizer momentum | 0.9

Batch size 16384

Learning rate schedule | Cosine decay

Warmup epochs 10

Training epochs 90

Augmentation RandomResizedCrop

Table 12: General configuration for the linear probing process.

A.6 Settings for Once-for-all BIM Training

For Independent training (IT), we employ a procedure where we selectively truncate the ViT encoder backbone
to different depths. Subsequently, we conduct MAFE pretraining for each of these truncated subnetworks.
Following the pretraining phase, we proceed with end-to-end finetuning for each of these pretrained ViT
backbones. All ViT backbones are pretrained for 400 epochs, then fine-tuned with 100 epochs for ViT-base
and 50 epochs for ViT-large and ViT-huge. The rest settings align with those elaborated in setting sections.
Following this, we proceed to perform end-to-end fine-tuning for each truncated ViT backbone. Specifically,
we employ 100 epochs for ViT-base and 50 epochs for both ViT-large and ViT-huge during the fine-tuning
process.

A.7 Object Detection and Segmentation in COCO

As we introduced in following ViTDet framework |Li et al.| (2022b)), we adapt the vanilla ViT for the
use of an FPN |Lin et al.| (2017)) backbone in MaskR-CNN [He et al.| (2017). The size of the input image is
1024 x 1024, augmented with large-scale jittering |Ghiasi et al.| (2021) during training. We fine-tune both the
ViT-base and ViT-large backbone 100 epochs with the AdamW optimizer. Notably, the feature map scale for
both backbone architectures is set to 1/16, , stride=16, since the patch size is 16. We report box AP for
object detection and mask AP for instance segmentation. The value of the drop path is 0.1 for ViT-base and
0.4 for ViT-large. Other general configurations are listed in Table

A.8 Peak Memory Measurement

We used a Python library torch-summary to obtain the peak GPU memory consumption of MAE and BIM
with batch sizes of 2048, 4096, and 8192, separately. Torch-summary is a Python library that provides a

16

Under review as submission to TMLR

General Configuration | Detail

Optimizer AdamW
Optimizer Momentum | 51, 82 = 0.9, 0.999
Warmup Iterations 250

Batch size 64

Base learning rate 0.1
Augmentation Large-scale Jitter
Scale Range 0.1,2.0]

Input Size 1024 x 1024
Learning Rate le-4

Weight Decay 0.1

Epochs 100

Table 13: General configuration for the transfer learning in COCO.

17

Under review as submission to TMLR

Ground-Truth Masked Ground-Truth Masked

Figure 4: Results on image reconstruction. For each set of four images, we display them in the following
order from left to right: ground-truth, masked image, MAE reconstruction, and our BIM reconstruction. The
backbone DNN is extracted from ViT-large model pretrained with either BIM or MAE with 800 epochs. The
weights for the MAE backbone is downloaded from the official website .

convenient way to quickly collect the information about a PyTorch neural network model. It allows you to
quickly see the peak memory usage during the training process of the model.

B Masked Image Reconstruction

As Figure [4] shows, for each quadruple, from left to right, we present the ground-truth images, the images
with 75% masking, the MAE reconstruction results, and BIM reconstruction results, respectively. The
reconstruction visualization demonstrates that the ViT backbones trained with BIM can achieve a strong
image reconstruction capability.

18

	Introduction
	Background and Related Work
	Memory Pattern during DNN Training
	Self-supervised Learning

	Method
	DNN Pre-training with BIM
	Once-for-all Pre-training with BIM
	Incremental Masking Ratio Growth with BIM
	BIM Computation Pattern

	Experiments
	Implementation
	Main Results
	Ablation Study

	Conclusion
	Implementation Details
	BIM pseudo code for one iteration
	BIM architecture
	Pretraining Settings
	End-to-end Fine-tuning Settings
	Linear Probing Settings
	Settings for Once-for-all BIM Training
	Object Detection and Segmentation in COCO
	Peak Memory Measurement

	Masked Image Reconstruction

