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Abstract

In-context learning (ICL) is a powerful capability of large language models that1

have shown up in past years. Despite its impact, the exact mechanism behind2

ICL is still only understood to a very limited capacity. In this paper, we suggest3

that ICL on a single linearized self-attention layer is equivalent to a single step of4

gradient descent with a specific dataset. This property is shown without additional5

assumptions on the model parameters which is required in other work in the field.6

We then extend our setting to a more realistic multi-layer framework and observe7

that in-context learning resembles using a greedy-layer-wise algorithm to update8

the weights within a large language model with multiple layers. Last but not least,9

we extend our theoretical conclusions to the autoregressive setting. We notice that10

many other works comparing ICL to gradient descent are restricted to very specific11

settings that do not contain a causal mask.12

1 Introduction13

In-context learning presents a whole new world of possibilities compared to traditional gradient-based14

fine-tuning. It allows us to update large language models (LLMs) without the increasingly costly15

training process. The regular fine-tuning process is often prohibitively expensive, with state-of-the-art16

models such as Llama-3 surpassing 70 billion parameters. ICL potentially democratizes the updating17

of large language models, allowing users other than large companies with copious resources to tune18

their own models. ICL is also highly interpretable when including demonstration examples in the19

prompts. Demonstration examples typically take the form of natural language prompts which are20

readily understandable by humans.21

Although In-context learning exhibits many promising qualities, how it works is still poorly un-22

derstood. In the past few years, there have been many attempts, both theoretical and empirical, to23

understand why exactly ICL occurs and how it ties into the larger transformer architecture. However,24

the conclusions are still very limited and many questions have yet to be answered.25

This study proposes that, for a single layer, ICL in linearized transformers is equivalent to conducting26

gradient descent with a specific training set determined by the input prompt. For multiple layers,27

ICL constitutes a greedy layer-wise gradient descent update. We do so by highlighting the dual28

relationship between the linear self-attention mechanism and gradient descent of linear models in l229

regression. This results in the following key contributions:30
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• Demonstrate the equivalence between in-context prompts and a meta-gradient descent31

update upon the query of the linear self-attention mechanism to provide intuition on the ICL32

mechanism.33

• Observe how in-context learning on a multilayer transformer model constitutes a form of34

the greedy layer-wise training algorithm.35

• Analyse how ICL can be viewed through the prism of greedy layer-wise training algo-36

rithms. The properties of greedy layer-wise training algorithms help elucidate many current37

observations regarding ICL.38

• Extend our findings in a theoretical capacity to the autoregressive transformers including a39

causal mask.40

Most established work in the field is limited to the regression setting. Furthermore, there are strong41

assumptions placed upon the Key and Value matrices. In our work, we make no assumptions and42

expand the discussion to include all linearized transformers. We hope that our comparison of ICL to43

a greedy layer-wise learning algorithm can help us better understand the nature of ICL and hopefully44

apply it more effectively in the future.45

2 Preliminaries46

In this paper, we focus on transformers consisting of attention modules and feed-forward networks.47

More specifically, we analyze the attention module of the transformer layer. This is because other48

components of transformers such as Layer-normalisations and feed-forward neural networks are49

typically token-wise operators. The input of each layer consists of a sequence of mathematical tokens50

X = [pn, ..., p1]
T . We assume each token has dimensionality din such that X ∈ RN×din .51

2.1 The attention mechanism52

Regarding attention, we discard the scaling factor
√
dk and approximate the softmax by a kernel.53

This results in a linearized attention function. Studies have shown that models built on linearized54

attention can still provide reasonable results [Katharopoulos et al., 2020, Lu et al., 2021] and have an55

inherent ICL ability.56

Definition: (Linearized attention) The input consists of the query (Q), key (K) and value (V )57

matrices which have dimensions dk, dk and dv respectively. With kernel representation function ϕ(·),58

the linear attention is computed as:59

LinAttn(V, ϕ(K), ϕ(Q)) = V ϕ(K)Tϕ(Q). (1)

We explicitly focus on single-headed attention. This is due to the simplicity of notation. All results60

can be extended to multi-headed attention which is used in most real-world settings.61

Definition: (Single-headed attention layer) Given input data X ∈ Rdin×N a single attention layer62

is characterized by trainable matrices WQ,WK ,WV which are in RdK×din ,RdK×din and RdV ×din63

respectively. The Single-headed attention layer takes the form:64

Attn(WV X,WKX,WQX). (2)

In our case, we will be looking at:65

LinAttn(WV X,ϕ(WKX), ϕ(WQX)). (3)

2.2 In-context learning66

In this paper, we choose to consider the most general case of ICL. The ICL prompt is treated as a67

sequence of tokens without added requirements on the structure. We have an initial prompt X =68

[pN , ..., p1] of length N and a Demonstration ICL prompt X ′ = [p′M , ..., p′1] of length M . The final69

input concatenates X ′ and X to form a sequence [X ′;X] = [p′M , ..., p′1, pN , ..., p1] ∈ Rdin×(M+N).70
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2.3 Dual form between linear attention and gradient descent on a linear function71

This study seeks to take advantage of the duality between the linear attention operator and gradient72

descent on a linear function. Based on the work of Irie et al. [2022]:73

Proposition 2.1 ( Dual form of a linear function trained by gradient descent). Let f(x) = Wx74

be a linear function f : Rdin → Rdout with parameters W ∈ Rdout×din . Given gradient descent75

with l2 loss, T training samples {xi, yi}Ti=1 and learning rate η, we have the identity:76

W1x = (W0 − η∇ 1

T

T∑
i=1

l2(fW (xi), yi))|W=W0
x = W0x+ LinAttn(

η

T
E,X, x). (4)

X is the matrix of inputs X = [x1; ...;xT ] and E = Y − W0X is the error matrix where Y =77

[y1, ..., yT ].78

3 Viewing in-context learning with linear attention as a gradient descent step79

First, we examine a single-layer self-attention mechanism. We consider how the ICL prompt affects80

each singular query token q = WQx where x ∈ Rin. Given ICL prompt X ′ = [p′M , ..., p′1] and initial81

prompt X = [pN , ..., p1], the attention result of the linear attention head can be expressed as:82

F([X ′;X],q) = LinAttn(WV [X
′;X], ϕ(WK [X ′;X]),q)

= LinAttn(WV [X], ϕ(WK [X]),q) + LinAttn(WV [X
′], ϕ(WK [X ′]),q)

= F([X],q) + LinAttn(WV [X
′], ϕ(WK [X ′]),q)

(5)

where F([X],q) = LinAttn(WV [X], ϕ(WK [X]),q). N.B. F can take inputs [X] of differing83

dimensions. There is a clear similarity between the form of equation (4) and equation (5). This leads84

to the main theorem:85

Theorem 3.1 (Dual form between in-context learning and gradient descent). 1 For an initial self-86

attention mechanism with matrices WV , WK , and prompt X = [pN , ..., p1], we have the operator87

F0([X], q). The following systems are equivalent (i.e. S1 = S2 for all q):88

S1 = F0([X
′;X], q) (6)

and89

S2 = F1([X], q), (7)
where F1([X], .) is the linear function F0([X], .) = W[X](.) := WV [X](ϕ(WK [X]))T (.) after one90

step of gradient descent with learning rate η and training set {xi, yi}Mi=1. For every i ∈ {1, ...,M},91

xi = ϕ(WKp′i) and yi =
M
η WV p

′
i + F0([X], ϕ(WKp′i)).92

This allows us to arrive at a few interesting observations:93

1. Theorem 3.1 demonstrates that in-context learning forms a type of meta-optimizer on the94

query resembling gradient descent with very specific training data for linearized transformers.95

Unlike past conclusions, our statement isn’t constrained to specific regression settings and96

values for WQ,WK and WV .97

2. If one takes yi = F0([X],Wkp
′
i) and ignores the other half, the loss is 0 which means that98

the gradient descent has no effect at all. We can consider this as a baseline. The significant99

part is: M
η Wvp

′
i.100

3. WV p
′
i is intuitively the "value" which we place upon a token WQp

′
i. Here we are placing101

emphasis of WKp′i instead when applied to the function based on [pN , ..., p1]102

4 Extension to multiple layers103

This section extends Theorem 3.1 to a more general setting beyond the single linearized attention104

layer. Consider a more realistic model architecture with L layers stacked upon each other: f(x) =105

1During writing, we found concurrent work with a similar result by Ren and Liu [2023]
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(TL + I) ◦ (TL−1 + I) ◦ ... ◦ (T1 + I)(x) where for each i ∈ {1, ..., L}, Ti is either an FFN layer106

with a residual connection or a linear self-attention layer Ti = LSAi(x) with corresponding weight107

matrices WKi ,WQi ,WVi , and I is the identity function to capture the residual connection. Given a108

prompt X = [pn, ..., p1], we define109

LSAi([pn, ..., p1]) = Wbase,i([pn, ..., p1])WQi
[pn, ..., p1] (8)

110

Wbase,i(X) = WVi
Xϕ(WKi

X)T (9)

Algorithm 1: ICL imitation algorithm
1: input: f1 and [p′m, ..., p′1, pn, ..., p1]
2: for i ∈ {1, ..., L}

IF Ti is a FFN with residual connection, return
[p′m, ..., p′1, pn, ..., p1] = (Ti + I)([p′m, ..., p′1, pn, ..., p1])

ELSE Ti = LSAi

(a) construct matrix W0 = Wbase,i([pn, ..., p1])
(b) Update the linear functional f(x) = W0x with a single step of gradient descent with

learning rate m and training set {ϕ(),WVi
p′j +W0ϕ(WKi

p′j))}mj=1 such that the updated
weights are W1

(c) [p′m, ..., p′1, pn, ..., p1] = W1ϕ(WQi [p
′
m, ..., p′1, pn, ..., p1]) + [p′m, ..., p′1, pn, ..., p1]

Theorem 4.1 (Dual form of the transformer algorithm). For a model f1 described above and a111

prompt [p′m, ..., p′1, pn, ..., p1], the ICL imitation algorithm on f1 and [p′m, ..., p′1, pn, ..., p1] (Algo-112

rithm 1) produces the same output as f1([p′m, ..., p′1, pn, ..., p1])113

Proof. The proof of equivalence is trivial through repeated applications of Theorem 3.1.114

There are a few key features of algorithm 1. First of all, algorithm 1 is a recursive algorithm that115

updates the layers one after another. When applying the model, the i-th layer is updated and the116

newly updated weights are used to generate the input which will be used to update the i + 1-st117

layer. A second key feature of algorithm 1 is that it is a form of unsupervised learning. This may118

seem contradictory since we are conducting gradient descent descent on each layer. However, a key119

observation is that the labels are actually generated from the inputs themselves.120

5 Connection to the greedy-layer-wise algorithms121

Upon closer inspection, these features of Algorithm 1 take the form of a greedy layer-wise un-122

supervised pretraining algorithm proposed by Bengio et al. [2006]. In that paper, they propose a123

greedy layer-wise unsupervised training algorithm to train both deep belief networks (DBN) and124

auto-encoders in an unsupervised regime. Their experiments show that the general principles of the125

greedy layer-wise training algorithms can be extended past DBNs and applied to other unsupervised126

GLT algorithms. We can consider the inclusion of the ICL prompts in 1 as a single pass of a greedy127

layer-wise training algorithm trained on unsupervised data (The transformed in-context prompts). We128

argue that there is evidence to show that those general principles may apply to ICL and transformers129

as well.130

First of all, greedy layer-wise training (GLT) is observed to achieve very quick convergence to a local131

solution [Hinton et al., 2006]. This may explain why only a single step is required within the ICL132

case. There has been research regarding ICL which has indicated that one step of gradient descent is133

provably the optimal ICL learner for a single layer of linearized self attention[Mahankali et al., 2023].134

This would seem to demonstrate how ICL has displayed such effectiveness despite only resembling a135

single step of a greedy layer-wise training algorithm.136

Secondly, the work by [Bengio et al., 2006] shows that greedy layer-wise training algorithms help137

learn internal representations that represent higher-level abstractions. Several empirical works138

studying ICL have shown that, regarding ICL demonstrations, the model learns the format that we139

are studying rather than the exact detailed labels. They suggest that the model is learning higher-level140

abstractions rather than specific values. This would align with what we expect from GLT algorithms.141
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This observation perfectly ties into another property of GLT algorithms. Work by [Bengio et al.,142

2006] states that by learning high-level internal representations, GLT algorithms are best served for143

quickly initializing the parameters of a model before other fine-tuning steps. This could possibly144

motivate future fine-tuning attempts that have a fixed ICL prompt included to provide initialization.145

We find that such attempts do already exist, in the form of instruction tuning[Zhang et al., 2024, Wei146

et al., 2022]. Instruction tuning involves fine-tuning LLMs with datasets with form (INSTRUCTION,147

OUTPUT). The model learns to adapt to new tasks which can also be given instructions. In this case,148

we consider the (INSTRUCTION) as a form of context itself. This suggests the need for a unified149

framework for ICL, regular fine-tuning, and instruction tuning altogether. Perhaps they truly are not150

substitutes for one another but rather complements.151

5.1 Instruction learning with a single instruction152

From the comparison between regular ICL and instruction-tuning, we propose a specific variant153

of instruction-tuning that combines ICL and fine-tuning. In this regime, given a specific purpose,154

we first determine the appropriate ICL prompt X ′ for future prompts X . However, in this case we155

consider that ICL may not be sufficient, so we treat it purely as a form of projection or initialization156

for fine-tuning.157

Given fixed ICL prompt X ′, we want the fine-tuning set to have form {[X ′;Xi]}Ni=1. All inputs in the158

training set will carry the form [X ′;Xi]. This incorporates the initialization we obtain from ICL into159

the fine-tuning process and should allow the fine-tuning process to be faster and less costly. Future160

inputs should then take the form [X ′, X] as well so the initialization is included permanently. We161

expect this to be an effective way to combine ICL and fine-tuning for the best of both worlds, both162

increasing the effectiveness of ICL and reducing the training cost of existing fine-tuning methods.163

6 Extension to the autoregressive case164

In previous sections, we limit our analysis to linearized attention without a causal mask. Similar165

limitations are present in other works studying the relationship between gradient descent and ICL. In166

this section, we attempt to extend it to the autoregressive setting. To do so we first write equation 1 as167

follows:168

Oi =

N∑
j=1

sim(Qi,Kj)Vj =

N∑
j=1

ϕ(Qi)
Tϕ(Kj)Vj (10)

This is drawn from the work by [Katharopoulos et al., 2020] and is equivalent to the equation 1. To169

construct the autoregressive form, we convert the equation to:170

Oi =

i∑
j=1

ϕ(Qi)ϕ(Kj)Vj = ϕ(Qi)
T

i∑
j=1

ϕ(Kj)Vj (11)

This means that for each token Qi, there is a separate corresponding reference equation F (i)
0 ([X],q).171

Through the application of Theorem 4.1, we can arrive at the statement.172

Lemma 6.1 (lemma). The inclusion of in-context prompt X ′ = [p′1, ..., p
′
M ] is equivalent to updating173

all reference functions F (i)([X], .) = W
(i)
[ X](.) with a single step of gradient descent with learning174

rate η and training set {xi, yi}Mi=1. For every i ∈ {1, ...,M}, xi = ϕ(WKp′i) and yi =
M
η WV p

′
i +175

F (i)
0 ([X], ϕ(WKp′i))176

Note that in this case, the separate functions F (i)
0 ([X],q) are not independent but all related to one177

another. Hence this result is largely theoretical in nature, but does extend our intuitive results from178

previous sections to the autoregressive setting.179
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7 Conclusion180

In this work, we demonstrate that, for all linearized attention layers, ICL is equivalent to a single step181

of gradient descent with a specific training set. This is shown for transformers both with and without182

causal masking. We further extend this statement to multi-layer transformers, showing that they183

are similar to past greedy layer-wise training algorithms. This explains to an extent some existing184

characteristics of ICL as well as opening a potential avenue for ICL to be studied in greater theoretical185

depth in the future. By taking into account past tendencies of greedy layer-wise training algorithms,186

it could be possible to enhance current ICL methods further opening a whole new dimension of187

possibilities.188
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8 Appendix216

8.1 Proof of Theorem 3.1217

Proof. Assume such a set {xi, yi} and corresponding E and X exist such that the two systems are218

equal. By Proposition 2.1 and equation (6) we have:219

W [X ′, X]q = WXq + LinAttn(
η

m
E,X,q)

This implies:220

W[X]q + LinAttn(WV X
′,WKX ′,q = LinAttn(

η

m
E,X, q)

To enforce such an equality we need WKX ′ = X . This shows that for all i:221

xi = WKp′i

Hence substituting in xi we have:222

WV X
′ =

η

m
E =

η

m
(W[X]WKX ′ − Y )

This implies:223

Y = W[X]WKX ′ − m

η
WV X

′

yi = W[X]WKp′i +
m

η
WV p

′
i

224
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