
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SGHORMERVQ: BRIDGING GRAPH TRANSFORMERS
AND SPIKING NEURAL NETWORKS VIA SPIKING VEC-
TOR QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Transformers (GTs), which simultaneously integrate message passing and
self-attention mechanisms, have achieved promising empirical results in some
graph prediction tasks. Although these approaches show the potential of Trans-
formers in capturing long-range graph topology information, issues concerning
the quadratic complexity and high computing energy consumption severely im-
pair the scalability of GTs on large-scale graphs. Recently, as brain-inspired
neural networks, Spiking Neural Networks (SNNs) provide an energy-saving
deep learning option with lower computational and storage overhead via their
unique spike-based event-driven biological neurons. Inspired by these charac-
teristics, we propose SGHormerVQ, which bridges efficient Graph Transform-
ers and spiking neural networks via spiking vector quantization. Spiking vec-
tor quantization generates implied codebooks with smaller sizes and higher code-
book usage to assist self-attention blocks in performing efficient global informa-
tion aggregation. SGHormerVQ effectively alleviates the reliance on complex
machinery (distance measure, auxiliary loss, etc.) and the codebook collapse
present in previous vector quantization-based GNNs. In experiments, we compare
SGHormerVQ with other state-of-the-art baselines on node classification datasets
ranging from small to large. Experimental results show that SGHormerVQ has
achieved competitive performances on most datasets while maintaining up to
518× faster inference speed compared to other GTs. Our code is available at
https://anonymous.4open.science/r/SGHormerVQ-0BB0.

1 INTRODUCTION

Graph Transformers (GTs), as emerging graph representation learning paradigms, are proposed for
alleviating inherent drawbacks present in message passing neural networks like over-smoothing,
over-squashing and local structure biases Oono & Suzuki (2019)Topping et al. (2021). Benefiting
from the multi-head attention (MHA) modules, vanilla Transformers adaptively learn the global de-
pendencies in input sequences without considering their distance Vaswani (2017). It also provides
a solution for learning new topology among nodes while performing message aggregation on the
graph data. Experiments demonstrate the immense potential of Transformers in handling global
dependencies for graph data Rampášek et al. (2022)Bo et al. (2023). However, there is one criti-
cal drawback that Transformer with O(N2) computation complexity is prohibitive for large-scale
graphs. Furthermore, the all-pair similarity matrix leads to an increase in degrees of freedom, which
often manifests as the full-size Transformers being highly prone to overfitting. Unlike observations
in the field of computer vision or natural language process, previous studies show that eliminat-
ing redundant components and embracing a lightweight architecture like linear-time attention can
significantly enhance the predictive performances of GTs Wu et al. (2022)Wu et al. (2024).

Recently, with the development of neuromorphic computing, Spiking Neural Networks (SNNs) are
poised to bridge the efficiency gap between elaborate network architectures and computation con-
sumption. The defining feature of a SNN is its brain-like spiking mechanism which converts real-
value signals into single-bit, sparse spiking signals based on its event-driven biological neurons.
The single-bit nature enables us to adopt more addition operations rather than expensive multiply-
and-accumulate operations on the spiking outputs, while the sparsity means spikes are cheap to

1

https://anonymous.4open.science/r/SGHormerVQ-0BB0

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) The mechanism of rate-coded spiking neurons.

Raw features

Spiking embeddings
 encoded by our model

(b) t-SNE visualization of rate-coded vectors.

Figure 1: (a) On the KarateClub dataset, high-precision neighborhood messages aggregated in each
propagation step are converted into sparse, binary spikes. Nodes represented by low-precision rate-
coded vectors are implicitly grouped by their neighborhood structure. (b) On the Cora dataset, nodes
are colored according to their classes. The t-SNE visualization of learned spiking representations
shows that low-precision vectors still maintain promising representational capacity.

store Eshraghian et al. (2023). These delightful characteristics have prompted some studies aiming
at constructing lightweight graph representation learning frameworks to explore binary spike-based
representations on the graph data Zhu et al. (2022)Li et al. (2023a)Li et al. (2023b). Previous experi-
ments show that the potentiality of SNNs is still underestimated and underappreciated in the domain
of graph representation learning. The role of SNNs in modeling the graph structure and dynamics
warrants further investigation.

We conduct preliminary experiments to uncover the role of spiking neurons in message propaga-
tion. Here, we have three observations: (i) For message propagation-based models, the trained
embeddings of nodes within the same class tend to exhibit similar distributions. (ii) As depicted in
Figure1, different messages received from the multiple propagation steps can be converted into the
same spike trains via spike neurons. By converting the outputs into firing rates/spike counts, differ-
ent nodes can be represented by the same low-precision vectors. (iii) The precision of generating
node representations can be adjusted by configuring spiking neurons. More visualization results are
shown in Appendix A. It efficiently encodes continuous high-precision representations into discrete
low-precision representations, which sparks our curiosity about an interesting research question.

For the large-scale graph data, is it possible to eat Graph Transformer cake with a spiking fork?

Deviating from previous works on efficient GTs, we consider spikes neurons as learnable quantizers,
which links the spiking outputs with the concept of vector quantization (VQ) Van Den Oord et al.
(2017)Lingle (2023)Mentzer et al. (2023). We propose SGHormerVQ, which bridges spiking neural
networks with Graph Transformers via spiking vector quantization. Specifically, we employ spike
neurons to capture the message propagation patterns of node neighborhoods, which enables us to
represent graph global structure information using a handful of rate-coded vectors. It effectively
reduces the reliance of GTs on the full set of node embeddings. Meanwhile, the conversion from
real values to spikes implicitly involves the process of learning and generating the codebook in VQ.
Different from prior works, the codewords used in practice are governed by learnable parameters in
spike neurons. It not only compresses the codebook size, but also addresses the codebook collapse
which is defined as the under-usage of the codebook. The contributions of this paper are summarized
as follows:

• We investigate the role of spiking neurons in the message propagation process. The obser-
vations show that nodes can be effectively represented by rate-coded vectors from a discrete
subspace of lower dimension, which are transformed from neighborhood messages in the
propagation process.

• Based on the observations, we propose Spiking Vector Quantization (SVQ) to replace the
pre-defined, fixed codebook with the codebook with variable size. Compared with existing

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

VQ-based graph representations learning methods, SVQ provides a spike-driven learnable
codebook paradigm to alleviate inherent issues in VQ.

• We take the lead in exploring the effectiveness of compressing node representations by
spiking neurons in Graph Transformers. We propose the spiked-driven linear-time Graph
Transformer, SGHormerVQ. It actively injects the global message propagation patterns in
the form of rate-coded vectors to efficiently capture the long-range information.

• We conduct a comprehensive comparison with various state-of-the-art baselines, across
graphs of various scales. Extensive experiments show that SGHormerVQ achieves com-
petitive or even superior predictive performances on most datasets. Besides, SGHormerVQ
enjoys up to 518x faster inference speed compared to other GT baselines.

2 RELATED WORK

Spiking Neural Network. Inspired by brain-like spiking computational frameworks, Spiking
Neural Networks are proposed to address the computing energy consumption challenge. Differ-
ent from Artificial Neural Networks (ANNs), neurons in SNNs communicate via binary and sparse
spikes. It enables SNNs to reduce the storage overhead of intermediate outputs among layers and
utilize more accumulation operations instead of multiply-accumulation operations Roy et al. (2019).
Some studies motivated by these advantages in energy efficiency have attempted to construct spike-
driven neural networks. These networks can be broadly divided into two categories, ANN-to-SNN
conversion and direct training framework. For the former, they tend to build a SNN upon a pre-
trained ANN. These methods try to minimize information loss during the conversion process by
performing scaling/normalizing operations on weights or replacing the activation layers with spike
neurons Diehl et al. (2015)Cao et al. (2015)Hao et al. (2023). For the latter, studies try to directly
train spike-driven neural networks by introducing surrogate gradient. This approach effectively re-
duces the strong dependence of SNNs on the number of time steps Fang et al. (2021a)Zheng et al.
(2021).

Graph Transformers. Although graph neural networks (GNNs) have become dominant paradigm
cross various graph tasks Kipf & Welling (2016)Veličković et al. (2017), the message passing mech-
anism as the foundations of GNNs has some well-known drawbacks such as over-smoothing, over-
squashing and the neglect of long-range information Li et al. (2018)Alon & Yahav (2020). Graph
Transformers (GTs), which can differentially aggregate messages over all nodes to alleviate local
structure bias, have been developed to overcome above issues. Specifically, methods tend to inject
the graph topology information into Transformer variants by introducing auxiliary GNNs or gen-
erating positional/structural embeddings from a graph. For some early studies, GTs are proposed
to solve small-scale graph-level tasks like molecular property prediction and molecule classifica-
tion Rampášek et al. (2022)Liao & Smidt (2022). Recently, some methods aimed to enhance GTs’
performance on node-level tasks by constructing mini-batch sampling strategies and lightweight
attention modules Shirzad et al. (2023)Li et al. (2024).

VQ-VAE and Follow-up. To overcome the issue of posterior collapse, Van Den Oord et al. (2017)
develop a discrete latent variational autoencoder (VAE) model called VQ-VAE. Input images are
mapped to the embedding space through an encoder. The embeddings are replaced with the nearest
pre-defined codebook entries through measuring distances between embeddings and entries. The
replaced outputs are then fed into the decoder. It’s worth noting that VQ-VAE utilizes a commitment
loss and the straight-through estimator to update the codebook and encoder-decoder modules. In
addition, Kolesnikov et al. (2022) adopted a codebook splitting algorithm to improve codebook
usage. Mentzer et al. (2023) implicitly constructs a finite scalar codebook by quantizing elements
of intermediate embeddings to integers. In a nutshell, experiments have shown that VQ-VAE and
its variants provide a simpler representation generation schema and an energy-efficient inference
framework compared with their quantization-free counterparts.

3 PRELIMINARIES

Spiking Neural Network. Although electrophysiological measurements can be accurately calcu-
lated by complex conductance-based neurons, the complexity limits their widespread deployment in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

deep neural networks. A simplified computational unit that retains biological characteristics, known
as the Integrate-and-Fire neuron, has been proposed Salinas & Sejnowski (2002). IF neurons have
three basic characteristics: Integrate, Fire and Reset. Firstly, the neuron integrates synaptic inputs
from other neurons or external current I to charge its cell membrane. Secondly, when the mem-
brane potential reaches a pre-defined threshold value Vth, the neuron fires a spike S. Thirdly, the
membrane potential of neuron will be reset to Vreset after firing. The neuronal dynamics can be
formulated as follows:

Integrate: V t = Ψ(V t−1, It) = V t−1 + It, (1)

Fire: St = Θ(V t − Vth) =

{
1, V t − Vth ≥ 0
0, otherwise

, (2)

Reset: V t = V t(1− St) + VresetS
t, (3)

where V t and It denote the membrane potential and input current at time step t, respectively. Θ(·)
denotes the fire function, and the Heaviside step function is selected as the fire function in this
paper. Ψ(·) is the membrane potential update function. Besides, there are two common variants
of IF model, LIF and PLIF Gerstner et al. (2014)Fang et al. (2021b). The update function of these
neurons can be formalized as follows:

LIF: V t = V t−1 +
1

τ
(It − (V t−1 − Vreset)), (4)

PLIF: V t = V t−1 +
1

1 + exp(−a)
(It − (V t−1 − Vreset)), (5)

where τ is the membrane time constant and a is a trainable parameter, both of which are used to
regulate how fast the membrane potential decays. In this paper, we adopt surrogate gradients during
error backpropagation to address the issue of zeros gradients caused by non-differentiable functions
Neftci et al. (2019). The surrogate gradient method can be defined as Θ′(x) ≜ θ′(αx), where α
represents a smooth factor and θ(·) represents a surrogate function Neftci et al. (2019).

Graph Neural Network. We represent a graph as G = (V, E), where V is a set of nodes and E is
a set of edges among these nodes, A ∈ RN×N is the adjacency matrix of the graph. Let N denotes
the number of nodes. We define the d-dimension nodes’ attribute as X ∈ RN×d, which is known
as the node feature matrix. For a given node u ∈ V , GNN aggregates messages from its immediate
neighborhood N(u) and updates the node embedding hu. This message-passing process can be
formulated as follows:

hl
u = UPDATE(hl−1

u ,AGGREGATE(hl
v,∀v ∈ N (u))), (6)

where hl
u denotes the updated embedding of node u in the l-th layer, hl−1

u is the embedding from
the previous layer. UPDATE and AGGREGATE can be arbitrary differentiable functions.

Self-Attention. As the most prominent component in the Transformer, the self-attention mech-
anism can be seen as mapping a query vector to a set of key-value vector pairs and calculating a
weighted sum of value vectors as outputs. let nodes’ attribute X ∈ RN×d be the input to a self-
attention layer. The attention function is defined as follows:

Attn(X) = softmax(
QKT

√
d′

)V, (7)

Q = XWq,K = XWk,V = XWv, (8)

where Query, Key and Value are calculated by learnable projection matrices Wq,Wk,Wv ∈ Rd×d′
.

For the node u, the attention function can be written in a message-passing form as:

Attn(xu) =

N∑
i

exp(qTu ki)∑N
j exp(qTu kj)

vi =

N∑
i

exp((Wqxu)
T (Wkxi))∑N

j exp((Wqxu)T (Wkxj))
(Wvxi), (9)

where we omit the scalar factor for brevity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: The overview of SGHormerVQ. Intuitively, in the spiking vector quantization block, nodes
represented in the form of rate-coded vectors are implicitly grouped by their neighborhood struc-
tures. The rate-coded vector can be considered as the codeword corresponding to the node. In the
self-attention block, based on the above codewords, the vanilla attention between nodes has been
transformed into a linear-time attention from nodes to grouped node sets.

4 PRESENT WORK: SGHORMERVQ

In this section, we comprehensively detail our approach referred to as SGHormerVQ. As depicted
in Figure 2, SGHormerVQ feeds the graph topology information into Spiking Vector Quantization
(SVQ) module to map node embeddings into the rate-coded vectors. The outputs will guide the
aggregation process in self-attention. Besides, auxiliary message passing neural networks as position
encoders provide node embeddings containing local positional information to the attention module.
In what follows, we first highlight the implementation of SVQ (Section 4.1). Then, we detail how
the learnable codebook is introduced into self-attention to capture long-range information in the
graph (Section 4.2). Finally, we review the entire architecture of SGHormerVQ one by one (Section
4.3).

4.1 SPIKING VECTOR QUANTIZATION

As aforementioned above, neighborhood messages of different nodes can be encoded into same
rate-coded vectors, which provides compact node representations reflecting the neighborhood struc-
tural information. To this end, (i) we sample a D-dimension random feature matrix R ∈ RN×D

from a uniform distribution. And we define a propagation operator P. (ii) Our goal is to collect
messages M ∈ RN×D during iterative propagation process and quantize a sequence of changes
M = {M0,M1, ...,MT } into a finite set of codewords. (iii) For spiking neurons based on rate cod-
ing mechanism, they convert inputs into spike counts S = {si}Ni ∈ RN×D. The rate-coded vector
s ∈ RD can be seen as a codeword s ∈ C̃, where C̃ denotes an implicit codebook. The implied
codebook size is determined by both the number of propagation steps T and the random feature
dimension D. Considering the case where the total number of spikes is zero, the implied codebook
size is given by the product of all channels, |C̃| = (T + 1)D. The above process is defined as:

M̂0 = R, M̂t = PtR, M̂t ∈ RN×D (10)

Mt = Norm(M̂t), Mt ∈ RN×D (11)

S =

T∑
t

Θ(Ψ(V t−1,Mt)− Vth), St ∈ RN×D (12)

where Θ(·) and Φ(·) is membrane potential update and fire function. Norm(·) aims at normalizing
output messages to the range of threshold membrane potential Vth. In the implementation, we adopt

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

simple l2 normalization, which can be replaced with some advanced normalization variants from
previous works Xu et al. (2021). Besides, we follow a similar approach as in previous work Eliasof
et al. (2023), using the graph Laplacian P = I−D−1/2AD−1/2 or adjacency matrix with self-loops
P = A+ I as the propagation operator.

4.2 CODEBOOK GUIDED SELF-ATTENTION

On the basis of the spike vectors, we propose a codebook guided self-attention (CGSA) with linear
complexity to capture long-range signals based on the neighborhood structure similarity. Techni-
cally, we follow Kong et al. (2023)Lingle (2023) to utilize a matrix K̂ reconstructed from codebook
replace the original matrix K. Specifically, we can dynamically generate a codebook C ⊆ Ĉ by
removing duplicate vectors in S. The attention function is defined via:

S = UC, U ∈ RN×B ,C ∈ RB×D (13)

G = Norm(Linear(C)), G ∈ RB×d′
(14)

K̂ = UG, K ∈ RN×d′
(15)

Ẑ = softmax(QK̂T)V, Ẑ ∈ RN×d′
(16)

where d′ denotes the dimension of intermediate embeddings, U is a one-hot matrix, and |C| = B.
Different from existing methods, which materialize K̂ using the entire explicit codebook, the dy-
namically generated codebook in our attention module is much smaller than the implied codebook,
B ≪ |C̃|. The codebook calculation is conducted on the integer matrix S, which doesn’t bring
much computational overhead. Derived from Lingle (2023), the attention weights in eq 16 can be
further factored:

Ẑ = softmax(QK̂T)V (17)

= softmax(Q(UG)T)V (18)

= Diag−1(exp(QCT)UT1) exp(QCT)UTV (19)
where 1 ∈ RN . UT1 = {nb}Bb ∈ Z+ denotes the number of node embeddings in C mapped to
the same codewords, which can be regarded as a normalization term. The complexity of CGSA
is O(NBdv), where B ≪ N . It can be considered that computational overhead of CGSA grows
linearly with the number of nodes. To avoid generating an excessively large codebook in the initial
phase of learning, we perform a truncation strategy. We rank nb from high to low and select the top
Bmax to generate a truncated codebook, which ensures the efficiency of training our model.

4.3 OVERALL FRAMEWORK

As shown in Figure 2, the overview of SGHormerVQ includes four modules: SVQ, auxiliary
MPNN, CGSA and a classification head (CH). In SGVQ, we construct random features and spike
neurons for each layer. By defining a shared propagation operator, messages among nodes are col-
lected and transformed into node spiking embeddings S. Then an auxiliary MPNN as encoders
generates node embeddings with local positional encodings. In the CGSA, the spiking outputs S
and the node embeddings H are fed into a linear-time self-attention. Different from the vanilla
Transformer, we explicitly inject graph inductive bias by coding global structural information into
spikes. These four parts can be written as follows:

Sl = SVQl(A), Sl ∈ RN×D (20)

Hl = MPNNl(Zl−1,A), Hl ∈ RN×d′
(21)

Ẑl = CGSAl(Sl,Hl), Ẑl ∈ RN×d′
(22)

Zl = Linear(Ẑl) +Hl, Zl ∈ RN×d′
(23)

Y = CH(ZL), (24)
where L is the number of layers. We choose a simple fully connected layer as the classification head.
It has been observed that in vanilla Transformers, projection blocks consisting of Multilayer Percep-
trons (MLPs) and normalization layers exacerbate the overfitting problem on large-scale graphs.
Therefore, we discard redundant projection layers and retain only the self-attention module and the
skip-connection structure He et al. (2016).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Classification accuracy(%) on seven datasets. Highlighted are the top first, second results.

Models Cora CiteSeer PubMed Co-CS Co-Physics Arxiv Products
#nodes 2,708 3,327 19,717 18,333 34,493 169,343 2,449,029
#edges 10,556 9,104 88,648 163,788 495,924 1,166,243 61,859,140

GCN 81.6±0.4 71.6±0.4 78.8±0.6 92.5±0.4 95.7±0.5 70.4±0.3 75.7±0.1

GAT 83.0±0.7 72.1±1.1 79.0±0.4 92.3±0.2 95.4±0.3 70.6±0.3 OOM
SGC 80.1±0.2 71.9±0.1 78.7±0.1 90.3±0.9 93.2±0.5 68.7±0.1 74.2±0.1

VQGraph 81.1±1.2 74.5±1.9 77.1±3.0 93.3±0.1 95.0±0.1 72.4±0.2 78.3±0.1

SpikingGCN 79.1±0.5 62.9±0.1 78.6±0.4 92.6±0.3 94.3±0.1 55.8±0.7 OOM
SpikeNet 78.4±0.7 64.3±0.8 79.1±0.5 93.0±0.1 95.8±0.7 66.8±0.1 74.3±0.4

SpikeGCL 79.8±0.7 64.9±0.2 79.4±0.8 92.8±0.1 95.2±0.6 70.9±0.1 OOM
SpikeGraphormer 82.0±0.7 70.5±0.6 71.1±0.4 92.1±0.8 95.7±0.3 70.2±0.9 OOM

NAGphormer 79.9±0.1 68.8±0.2 80.3±0.9 93.1±0.5 95.7±0.7 70.4±0.3 73.3±0.7

GOAT 73.3±0.3 68.4±0.7 78.1±0.5 93.5±0.6 95.4±0.2 72.4±0.4 82.0±0.4

NodeFormer 82.2±0.9 72.5±1.1 79.9±1.0 92.9±0.1 95.4±0.1 59.9±0.4 OOM
SGFormer 84.5±0.8 72.6±0.2 80.3±0.6 91.8±0.2 95.9±0.8 72.6±0.1 72.6±1.2

SGHormerVQ 84.7±0.8 74.0±0.5 80.6±0.4 93.4±0.4 96.2±0.0 72.0±0.1 74.8±0.4

5 EXPERIMENTS

5.1 COMPARISON WITH EXISTING MODELS

In this section, we conduct the experimental evaluation to show the effectiveness of SGHormerVQ
on node classification datasets. All experiments are conducted using the same dataset splits pre-
sented in prior studies. The Hyperparameters search strategy is adopted on both SGHormerVQ
and other baselines to get the optimal combinations of parameters. We perform all models on each
dataset 5 times with different random seeds to report the mean and standard deviation. All above ex-
periments are conducted on a single NVIDIA RTX 4090 GPU. The subsequent experiments follow
the same settings if not explicitly stated otherwise.

Datasets. We evaluate SGHormerVQ on seven datasets including three citation networks Sen et al.
(2008) (Cora, CiteSeer, PubMed), two co-author networks Shchur et al. (2018) (Coauthor-CS and
Coauthor-Physics) and two large-scale graphs (ogbn-arxiv and ogbn-products) from the Open Graph
Benchmark (OGB) Hu et al. (2020). For citation networks, the data splits adhere to the semi-
supervised settings. For co-author networks, we randomly split nodes with train/valid/test ratio as
10%/10%/80%. For datasets from the OGB, we adopt their own standard splits.

Table 2: Comparison of Graph Transformers and Graph
Neural Networks w.r.t. required components (SP: spike-
based, GT: Graph Transformer framework, VQ: vector
quantization-based).

Model Components
SP GT VQ

SpikingGCNZhu et al. (2022) ✓ - -
SpikeNetLi et al. (2023a) ✓ - -

SpikeGCLLi et al. (2023b) ✓ - -
SpikeGraphormerSun et al. (2024) ✓ ✓ -

NAGphormerChen et al. (2022) - ✓ -
NodeFormerWu et al. (2022) - ✓ -
SGFormerWu et al. (2024) - ✓ -
GOATKong et al. (2023) - ✓ ✓

VQGraphYang et al. (2024) - - ✓
SGHormerVQ ✓ ✓ ✓

Baselines. To comprehensively
evaluate the performance of
SGHormerVQ, a head-to-head
comparison is conducted with state-
of-the-art GNNs and GTs, based
on their architectures. As shown
in Table 2, components in base-
lines are fall into three categories:
spike-based methods (SpikingGCN
Zhu et al. (2022), SpikeNet Li
et al. (2023a), SpikeGCL Li et al.
(2023b), SpikeGraphormer Sun
et al. (2024)), Graph Transformer
framework (NAGphormer Chen
et al. (2022), NodeFormer Wu et al.
(2022), SGFormer Wu et al. (2024),
GOAT Kong et al. (2023)), vector
quantization-based methods (VQ-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Graph Yang et al. (2024)). Besides, three classic graph neural networks (GCN Kipf & Welling
(2016), GAT Veličković et al. (2017), SGC Wu et al. (2019)) are also included in the comparison.

Overall performance. The experimental results are demonstrated in Table 1. As shown in the
table, our methods achieve competitive performance on all datasets, which is a significant advance-
ment considering the information loss caused by low-precision spiking embeddings. SGHormerVQ
outperforms other spike-based baselines across all datasets, which achieves an average im-
provement of 1.4%. Furthermore, SGHormerVQ achieves predictive performance on par or even
better than high-precision GT methods. SGHormerVQ achieves the best mean Accuracy on Cora,
PubMed and Physics. Meanwhile, we also notice that SGHormerVQ falls short of the current sota
baseline on the ogbn-products datasets. Here, we present our analysis that the average degree of
nodes in ogbn-products is around 50, while it ranges from 3 to 14 in other datasets. For those graphs
with abundant neighborhood messages, the spiking encoding and corresponding vector quantization
schema exacerbate the information loss together. We leave reducing the information loss in graphs
with abundant connectivity for future work. Overall, the results indicate that integrating spiking vec-
tor quantization with codebook guided self-attention enables SGHormerVQ to capture long-range
node information. It effectively alleviates the impact of information loss caused by the conversion
from real values to spikes.

5.2 INFERENCE TIME ELAPSE AND ACCURACY

To examine the efficiency of SGHormerVQ, we explore the trade-off between the inference
time elapse and prediction performance among GTs. As depicted in Figure 3, SGHormerVQ
has achieved the highest accuracy (96.2%) and the fastest inference speed (21ms) among GT
baselines on the Physics dataset. Furthermore, in Appendix B, we provide comprehensive en-
ergy efficiency analyses between SGHormerVQ and the other GT baselines based on three
metrics: the inference latency, maximum memory usage and theoretical energy consumption.

101 102 103 104

Log Scale Inference Time (ms)

95.4

95.6

95.8

96.0

Ac
cu

ra
cy

 (%
)

GAT

SpikeGraphormer NAGphormer

GOATNodeFormer

SGFormer

SGHormerVQ-1L

SGHormerVQ-2L

Figure 3: Accuracy versus Inference Time. The size of
the circle indicates the maximum memory usage during
model training.

The results show that SGHormerVQ
achieves the lowest inference latency
across datasets with various scales.
Compared to another VQ-based GT,
SGHormerVQ with better perfor-
mance infers faster than GOAT by
518x on the Physics dataset. The pre-
generated codebook in SVQ and linear-
time attention modules bring a signif-
icant improvement in inference speed.
Many previous VQ-based methods tend
to replace node representations one by
one with learned codewords during the
inference phase. In SVQ, trained spik-
ing neurons directly convert input fea-
tures into codewords, which means the
codewords corresponding to nodes can
be pre-calculated before the inference
phase. As mentioned in the previous
section, the complexity of CGSA is
O(NBdv). SGHormerVQ reconstructs a more compact codebook from the outputs of spiking neu-
rons, rather than setting a fixed codebook. The inference time elapse of SGHormerVQ is similar to
that of the representative linear-time, SGFormer. Benefiting from the fusion of SVQ and CGSA,
SGHormerVQ outperforms another spike-based GT across all datasets with acceptable theo-
retical energy consumption. In Figure 3, a 1-layer SGHormerVQ still rapidly captures local and
global graph information while bringing inference speed closer to that of standard GNNs like GAT.

5.3 CHARACTERISTICS OF SPIKING VECTOR QUANTIZATION

For elaborately analyzing the spiking vector quantization, we conduct a series of experiments on
the SGHormerVQ. In detail, we explore the codebook collapse problem in VQ-based graph models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Codebook analysis on Cora and CS datasets. For each, we compare SGHormerVQ with the
other two VQ-based graph models, VQGraph and GOAT. Three metrics are tracked, the number of
used codewords (CW), codebook usage (Usage) and accuracy (ACC).

Models Codebook Size Cora CS
CW Usage(%) ACC(%) CW Usage(%) ACC(%)

VQGraph

29 159 31.0 80.5±0.2 84 16.4 92.7±0.1

210 172 16.7 80.9±1.0 90 8.7 68.3±0.6

211 186 9.0 80.4±1.3 94 4.5 71.7±0.3

212 206 5.0 81.4±1.1 95 2.3 72.2±0.3

213 284 3.4 80.9±0.2 98 1.2 68.6±0.2

GOAT

29 89 17.3 66.8±0.2 49 9.6 90.6±0.8

210 98 9.6 68.3±0.9 100 9.8 92.2±0.3

211 102 5.0 71.7±0.1 122 5.9 92.7±0.7

212 100 2.4 72.2±0.4 154 3.7 92.4±1.0

213 103 1.2 68.6±0.1 162 1.9 93.4±0.3

SGHormerVQ

T=4,D=4 46 100.0 80.5±0.4 106 100.0 92.6±0.8

T=6,D=4 87 100.0 80.6±0.9 274 100.0 92.8±0.8

T=4,D=6 122 100.0 81.8±1.5 238 100.0 93.0±0.1

T=4,D=8 104 100.0 81.4±0.5 328 100.0 93.1±0.3

0 100 200 300 400 500
Epoch

100

300

500

700

900

Co
de

bo
ok

 S
ize

Cora
T=4,D=4
T=4,D=6
T=4,D=8
T=6,D=4

0 100 200 300 400
Epoch

100

300

500

700

900

Co
de

bo
ok

 S
ize

CS
T=4,D=4
T=4,D=6
T=4,D=8
T=6,D=4

Figure 4: The number of used codewords in the training step.

We record the number of used codewords from the implied codebook during the training process
of our model, and investigate the codebook usage among VQ-based graph methods to explore the
following questions: (ii) How does the implicit codebook influence our model? (i) Is the spiking
vector quantization a more efficient VQ alternative?

Factors affecting the codebook size. As aforementioned above, the number of propagation steps
T and the random feature dimension D determine the implied codebook size. In Figure 4, we
construct 4 combinations of these two hyperparameters (T = 4/D = 4, T = 6/D = 4, T =
4/D = 6, T = 4/D = 8), which aims at matching pre-defined codebook size (28, 211, 212, 213).
We observe that injecting the graph inductive bias as a kind of prior knowledges to quantizers does
constrain the size of the codebook, ensuring convergence during the learning process. However,
increasing the size of the implicit codebook does not effectively improve the codebook usage in
training process. Table 3 shows that an excessively large implied codebook impairs performances
of SGHormerVQ on the small-scale dataset. T significantly influences the complexity of spike
patterns, thereby affecting the number of used codewords.

Codebook Usage. In Table 3, we exhibit the codebook usage of multiple VQ-based graph meth-
ods, which is defined as the fraction of used codewords. It suggests that those methods using
pre-defined codebooks suffer from the serious issue of codebook collapse. As the codebook size

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

increases, this issue becomes more pronounced. For GOAT, the average codebook usages are 7.1%
and 6.1% on Cora and CS datasets. The codebook usages in VQGraph are slightly higher, which
achieve 13% and 6.6%. Although the number of used codewords does increase, it is an ineffi-
cient way that creating an excessively large codebook to improve the performance on large-scale
graphs. As a more efficient solution, SHormerVQ constructs an implicit codebook governed by
spike neurons, which brings 100% codebook usage. In some cases, the number of used codewords
in SGHormerVQ will be slightly larger than vanilla VQ counterparts at the beginning of the training
process, we believe this issue can be effectively mitigated by designing appropriate spike neurons.

5.4 ABLATION STUDY

In this section, we conduct ablation studies to analyze the differences between different linear-time
attention mechanisms and explore the impact of different spike neurons on predictive performances.
To this end, we implement two classic linear-time attention modules (Performer Choromanski et al.
(2020) and Linformer Wang et al. (2020)), two common spike neurons (IF and LIF), two normal-
ization algorithms (LayerNorm Ba et al. (2016) and STFNorm Xu et al. (2021)) and remove SVQ
modules to construct 6 SGHormerVQ variants.

The experimental results are demonstrated in Table 4. Although incorporating extra positional en-
codings from MPNNs enables Performer and Linformer to handle graph prediction tasks, they strug-
gle to achieve good predictive performance on large-scale graphs like ogbn-arxiv. In SGHormerVQ,
the CGSA actively introduces the global structure information during attention score calculation.
It suggests that developing graph structure-aware Transformers is a promising direction for scaling
GTs on large-scale graphs. The choice of spike neurons will affect the predictive performances of
SGHormerVQ. PLIF models, which have learnable membrane time constants and synaptic weights,
achieve slightly better performance in most cases. These neurons effectively endow SVQ with better
flexibility. In addition, the well-designed normalization algorithm for spiking neurons, STFNorm,
outperforms the LayerNorm algorithm across all datasets. For spiking graph neural networks, the
distribution of spiking node representations and corresponding normalization algorithms lack fur-
ther exploration. We leave the designs of specific spike neurons and normalization layers on the
graph data for future work.

Table 4: Ablation studies on Pubmed, CS, Physics and ogbn-arxiv datasets. −x means remov-
ing the component x from SGHormerVQ. And +x means replacing the original component in
SGHormerVQ with x.

Models Pubmed CS Physics ogbn-arxiv
+Performer 80.2±0.2 93.1±0.4 95.8±0.1 71.2±0.1

+Linformer 79.6±1.0 92.6±0.5 95.5±0.1 65.2±1.3

+IF 81.6±1.2 92.8±0.1 96.0±0.4 71.0±0.5

+LIF 79.6±0.7 92.8±0.0 96.1±0.2 72.1±0.2

+LayerNorm 78.9±1.3 90.3±0.6 95.4±0.4 71.2±0.2

+STFNorm 82.6±0.2 92.3±0.4 96.5±0.5 72.4±0.7

-SVQ 79.8±0.4 93.2±0.3 95.0±0.4 70.7±0.7

SGHormerVQ 80.6±0.5 93.4±0.1 96.2±0.0 72.0±0.1

6 CONCLUSION

In this study, we propose SGHormerVQ, a linear-time Graph Transformer via spiking vector quan-
tization. Based on the observation that the message propagation patterns of different nodes can
be encoded into same rate-coded vectors, SGHormerVQ bridges Graph Transformer with spiking
neural networks. It enables SGHormerVQ to achieve less information loss, faster inference speed
and better predictive performance. Besides, spike vector quantization, which treats spike neurons
as quantizers, provides a spiking perspective to address issues present in current VQ methods. We
believe that our work holds great promise from a neuroscientific perspective, and we hope it will
inspire further research into more efficient Graph Transformers.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
meet transformers. arXiv preprint arXiv:2303.01028, 2023.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal of Computer Vision, 113:54–66, 2015.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. arXiv preprint arXiv:2206.04910, 2022.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International joint conference on neural networks (IJCNN), pp. 1–8. ieee, 2015.

Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, and Haggai
Maron. Graph positional encoding via random feature propagation. In International Conference
on Machine Learning, pp. 9202–9223. PMLR, 2023.

Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi, Mo-
hammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks using
lessons from deep learning. Proceedings of the IEEE, 2023.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021b.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion
error through residual membrane potential. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 11–21, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Alexander Kolesnikov, André Susano Pinto, Lucas Beyer, Xiaohua Zhai, Jeremiah Harmsen, and
Neil Houlsby. Uvim: A unified modeling approach for vision with learned guiding codes. Ad-
vances in Neural Information Processing Systems, 35:26295–26308, 2022.

11

https://arxiv.org/abs/1607.06450

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
A global transformer on large-scale graphs. In International Conference on Machine Learning,
pp. 17375–17390. PMLR, 2023.

Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
Changhua Meng. Scaling up dynamic graph representation learning via spiking neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8588–8596,
2023a.

Jintang Li, Huizhe Zhang, Ruofan Wu, Zulun Zhu, Baokun Wang, Changhua Meng, Zibin Zheng,
and Liang Chen. A graph is worth 1-bit spikes: When graph contrastive learning meets spiking
neural networks. arXiv preprint arXiv:2305.19306, 2023b.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Wenda Li, Kaixuan Chen, Shunyu Liu, Tongya Zheng, Wenjie Huang, and Mingli Song. Learn-
ing a mini-batch graph transformer via two-stage interaction augmentation. arXiv preprint
arXiv:2407.09904, 2024.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. arXiv preprint arXiv:2206.11990, 2022.

Lucas D Lingle. Transformer-vq: Linear-time transformers via vector quantization. arXiv preprint
arXiv:2309.16354, 2023.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134, 2021.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
tion: Vq-vae made simple. arXiv preprint arXiv:2309.15505, 2023.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Emilio Salinas and Terrence J Sejnowski. Integrate-and-fire neurons driven by correlated stochastic
input. Neural computation, 14(9):2111–2155, 2002.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, pp. 31613–31632. PMLR, 2023.

Yundong Sun, Dongjie Zhu, Yansong Wang, Zhaoshuo Tian, Ning Cao, and Gregory O’Hared.
Spikegraphormer: A high-performance graph transformer with spiking graph attention. arXiv
preprint arXiv:2403.15480, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022.

Qitian Wu, Kai Yang, Hengrui Zhang, David Wipf, and Junchi Yan. Sgformer: Single-layer graph
transformers with approximation-free linear complexity. arXiv preprint arXiv:2409.09007, 2024.

Mingqing Xiao, Yixin Zhu, Di He, and Zhouchen Lin. Temporal spiking neural networks with
synaptic delay for graph reasoning. arXiv preprint arXiv:2405.16851, 2024.

Mingkun Xu, Yujie Wu, Lei Deng, Faqiang Liu, Guoqi Li, and Jing Pei. Exploiting spiking dynamics
with spatial-temporal feature normalization in graph learning. arXiv preprint arXiv:2107.06865,
2021.

Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, CUI Bin,
Muhan Zhang, and Jure Leskovec. Vqgraph: Rethinking graph representation space for bridging
gnns and mlps. In The Twelfth International Conference on Learning Representations, 2024.

Man Yao, Jiakui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo Xu, and Guoqi
Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design
of next-generation neuromorphic chips. arXiv preprint arXiv:2404.03663, 2024.

Nan Yin, Mengzhu Wang, Zhenghan Chen, Giulia De Masi, Huan Xiong, and Bin Gu. Dynamic
spiking graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 16495–16503, 2024.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 11062–11070, 2021.

Zulun Zhu, Jiaying Peng, Jintang Li, Liang Chen, Qi Yu, and Siqiang Luo. Spiking graph convolu-
tional networks. arXiv preprint arXiv:2205.02767, 2022.

A VISUALIZATION RESULTS OF SVQ

To better demonstrate our observations, we remove spiking neurons in SVQ and construct a simpli-
fied message propagation model on the KarateClub dataset. The initial node features are sampled
from a uniform distribution over the interval (0, 1). Setting the number of propagation steps to 2,
we visualize the message embeddings from each propagation step in the left plots of Figure 5. It
shows that as the number of propagation steps increases, the neighborhood message embed-
dings of nodes in the same class become increasingly similar. It implies that we can generate
the same representation for different nodes by capturing the dynamics in the propagation
process. Benefiting from the powerful coding mechanism of SNNs for sequential data, we fed

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

High-precision node embeddings Rate-code vectors

Figure 5: The visualization results between high-precision node embeddings output from each prop-
agation step and the low-precision rate-coded vectors. The feature dimension is set to 16, and nodes
are sorted by their categories. The red line is used to differentiate nodes in different categories, and
the nodes within the blue box have the same rate-coded vectors. Brighter spots denote higher values.

the above intermediate embeddings into spiking neurons to generate node representations based on
spike counts. As shown in the right plot in Figure 5, different nodes are represented by the same
rate-coded vector, which means high-precision node embeddings can be encoded into a finite
set of rate-coded vectors from narrower and discrete representation space.

Furthermore, we perform the SVQ defined in Section 4.1 and the non-spiking counterpart on Cora,
Citeseer and Pubmed datasets. In the implementation, the random features will serve as the initial
membrane potential of spiking neurons. SVQ updates node representation by alternating propaga-
tion and normalization operations, and the symmetrized graph Laplacian and l2 normalization are
selected as the propagation operator and normalization function. Visualization results are shown
in Figure 6. The high-precision node representations (the leftmost plot in each line) can be pro-
jected into the finite set of low-precision rate-coded vectors (the two rightmost plots in each line).
Considering iteratively propagated messages as input currents of spiking neurons will generate ex-
pressive low-precision node vectors. It explains why some emerging spiking graph neural networks
(SGNN) Li et al. (2023a)Yin et al. (2024) achieve better predictive performance compared to earlier
approaches Zhu et al. (2022) that rely on repeatedly passing the same training graph data. Addi-
tionally, visualization results reveal the precision of rate-coded vectors is governed by spiking
neurons with different configurations. Higher threshold potentials always correspond to lower
fire rates or spike counts, which indirectly drives SGNNs to generate node representation with lower
precision.

B ENERGY EFFICIENCY ANALYSIS

To verify the efficiency of SGHormerVQ, we conduct energy efficiency analysis on CS, Physics,
ogbn-arxiv and ogbn-products datasets based on following metrics: the maximum memory usage,
inference latency and theoretical energy consumption. We record the absolute elapsed running time
per test epoch for SGHormerVQ and other GT baselines. Notably, following the same settings as
previous studies Wu et al. (2024), we use the mini-batch partition for training on the ogbn-products
dataset.

The theoretical energy consumption estimation is derived from Yao et al. (2024). For the sake of
fairness in comparison, we fix some hyperparameters like the number of layers, the number of heads
and the dimension of hidden embeddings for each model. The theoretical energy consumption of
GTs during the inference phase is estimated in a straightforward way by counting floating point
operations (FLOPs) and synaptic operations (SOPs). As depicted in Figure 3, we can deploy the
spiking vector quantization module driven by spiking neurons on the specific neuromorphic hard-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

500

1000

1500

2000

2500

High-precision
 node embedding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

500

1000

1500

2000

2500

Rate-coded vectors
(Vth = 0.4, T = 4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

500

1000

1500

2000

2500

Rate-coded vectors
(Vth = 0.6, T = 4)

3

2

1

0

1

2

3

4

0

1

2

3

4

No
de

 In
de

x
(s

or
te

d
by

 c
la

ss
es

)

(a) The spike count visualization on Cora.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

500

1000

1500

2000

2500

3000

High-precision
 node embedding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

500

1000

1500

2000

2500

3000

Rate-coded vectors
(Vth = 0.4, T = 4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

500

1000

1500

2000

2500

3000

Rate-coded vectors
(Vth = 0.6, T = 4)

3

2

1

0

1

2

3

4

0

1

2

3

4

No
de

 In
de

x
(s

or
te

d
by

 c
la

ss
es

)

(b) The spike count visualization on Citeseer.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

2500

5000

7500

10000

12500

15000

17500

High-precision
 node embedding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

2500

5000

7500

10000

12500

15000

17500

Rate-coded vectors
(Vth = 0.4, T = 4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

2500

5000

7500

10000

12500

15000

17500

Rate-coded vectors
(Vth = 0.6, T = 4)

3

2

1

0

1

2

3

4

0

1

2

3

4

No
de

 In
de

x
(s

or
te

d
by

 c
la

ss
es

)

(c) The spike count visualization on Pubmed.

Figure 6: The visualization results of node representations which are decoded in the form of the
spike count. The feature dimension is set to 16 and nodes are sorted by their categories. Brighter
spots denote higher spike counts.

ware. Therefore, the energy cost of SGHormerVQ can be formulated as follows:

E =

L∑
l=1

(ESV Q + ECGSA + EMPNN + ELinear) + ECH (25)

= αs(

L∑
l=1

T∑
t=1

SP l,t
SV Q) + αf (

L∑
l=1

(FP l
CGSA + FP l

MPNN + FP l
Linear) + FPCH) (26)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: The maximum memory usage (MB), theoretical energy consumption (J) and inference
latency (s) of various GT methods.

Datasets Metrics NAGphormer GOAT NodeFormer SGFormer SpikeGraphormer SGHormerVQ

CS
Latency↓ 0.70 5.02 0.05 0.01 0.03 0.01
Memory↓ 3400 12490 2822 1662 8542 1638
Energy↓ 0.82 1.21 0.21 0.35 0.12 0.16

Physics
Latency↓ 1.79 10.98 0.14 0.02 0.08 0.02
Memory↓ 13628 22776 7624 2944 16414 3036
Energy↓ 1.86 2.35 0.46 0.78 0.27 0.36

arXiv
Latency↓ 0.78 28.27 1.17 0.10 0.30 0.08
Memory↓ 10450 21146 11988 6386 22654 7132
Energy↓ 1.12 9.92 0.63 0.57 0.08 0.18

Products
Latency↓ 25.74 2416.84 - 24.34 - 20.83
Memory↓ 7470 21974 - 934 - 13494
Energy↓ 16.06 143.80 - 8.07 - 3.67

where αf and αs, as scale factors for floating point and synaptic operations, are set to 4.5 and
0.9. FP and SP are denoted as floating point operations and synaptic operations of each layer.
SP l,t = rl,t × FLOP l,t, where rt,l is the fire rate of spiking neurons in the l-th layer at the t-th
time step. The results in table 5 show that SGHormerVQ achieves the fastest inference speed
across all datasets compared to other baselines. Notably, we can generate and store codewords
corresponding to each node on the neuromorphic hardware. It enables SGHormerVQ to maintain the
codebook with relatively low energy consumption. Additionally, as shown in Figure 4, the size of
the reconstructed codebook, B, will be gradually decreased during the training process. It makes the
linear-time Transformer guided by this compressed codebook infer slightly faster than SGFormer,
while bringing a slight extra energy cost compared to SpikeGraphormer.

C RATE VERSUS TEMPORAL CODING

The rate coding is the foundation of most spiking graph neural networks because this coding mech-
anism is quite convenient to integrate with an artificial neural network architecture. As mentioned
in the above section, it can convert input intensity into a spike count or firing rate Eshraghian et al.
(2023). However, the information loss caused by the rate coding can’t be overlooked for directly
training SNNs. Some emerging studies focus more on another coding strategy based on the precise
timing of a spike. For example, GRSNN Xiao et al. (2024) introduces spiking time as supplementary
information to encode relations in knowledge graphs. The empirical experiments verify the efficacy
of adding synaptic delays to different edges in message propagation. It drives us to explore the
spiking vector quantization based on temporal coding. Since GRSNN is designed for link prediction
tasks and the properties of edges are plain on existing node classification datasets, we assign random
features to nodes except for the embedding of relations. For node classification tasks, the outputs
combined edge embeddings containing the temporal delay information with node embeddings will
be fed into a mean aggregator to generate the predictive results. The visualization results of interme-
diate node embeddings from RGSNN and SVQ are demonstrated in Figure 7. GRSNN considering
temporal delays in output spikes does provide more expressive rate-coded vectors. However, the
process of reconstructing high-precision node embeddings conflicts with SVQ, which aims at map-
ping different nodes into similar low-precision rate-coded vectors. Other simpler temporal coding
algorithms like the time-to-first-spike mechanism may impede learning convergence due to the lack
of sufficient spikes.

D REVISTING SGHORMERVQ IN THE PERSPECTIVE OF HOMOPHILY

There is a popular notion that message propagation-based methods are more suitable for graphs
with high-level homophily Ma et al. (2021). Therefore, in this section, we conduct a quantita-
tive analysis to investigate whether the homophily of graphs is a determining factor on the per-
formance of SGHormerVQ. Specifically, we perform the same graph generation strategy on Cora
and Citeseer datasets following the previous study Ma et al. (2021). Figure 8 shows the influ-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 101112131415
Feature Dimension

0

500

1000

1500

2000

2500

Node Embeddings
from our model

0 1 2 3 4 5 6 7 8 9 101112131415
Feature Dimension

0

500

1000

1500

2000

2500

Node Embeddings
from GRSNN

0

1

2

3

4

1.5

1.0

0.5

0.0

0.5

1.0
No

de
 In

de
x

(s
or

te
d

by
 c

la
ss

es
)

(a) Rate and temporal coding embeddings on Cora.

0 1 2 3 4 5 6 7 8 9 101112131415
Feature Dimension

0

500

1000

1500

2000

2500

3000

Node Embeddings
from our model

0 1 2 3 4 5 6 7 8 9 101112131415
Feature Dimension

0

500

1000

1500

2000

2500

3000

Node Embeddings
from GRSNN

0

1

2

3

4

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

No
de

 In
de

x
(s

or
te

d
by

 c
la

ss
es

)

(b) Rate and temporal coding embeddings on Citeseer.

Figure 7: The visualization results of rate and temporal coding embeddings

ences of different homophily ratios on predictive results, where the homophily ratio is defined as
|{(v,w):(v,w)∈E∩yv=yw}|

|E| . We find that as the homophily ratio decreases, the classification perfor-
mance initially declines but eventually starts to improve. It is consistent with previous observations
Ma et al. (2021) that the homophily assumption of message passing-based methods is not accurate.
And it implies SGHormerVQ may achieve strong performances on certain heterophilic graphs. Fur-
thermore, we evaluate SGHormerVQ on two heterophilic datasets, Actor and Deezer. The results in
Table 6 show that SGHormerVQ has the best classification accuracy on the Actor dataset compared
with other baselines. Empirical results highlight the efficacy of SGHormerVQ on both heterophilic
and homophilic graphs.

0.81 0.74 0.68 0.63 0.59 0.52 0.46 0.42 0.38 0.32 0.28 0.25
Homophily Ratio

60

65

70

75

80

85

Te
st

 A
cc

ur
ac

y(
%

)

Cora

0.74 0.65 0.58 0.53 0.48 0.41 0.36 0.32 0.28 0.24 0.2 0.18
Homophily Ratio

50

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y(
%

)

Citeseer

Figure 8: The accuracy of SGHormerVQ on synthetic graphs (Cora and Citeseer) with various
homophily ratios.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Classification accuracy(%) on two heterophilic datasets (Actor and Deezer).

Models Actor Deezer
#nodes 7,600 28,281
#edges 30,019 185,504

GCN 30.1±0.2 62.7±0.7

GAT 29.8±0.6 61.7±0.8

SGC 27.0±0.9 62.3±0.4

VQGraph 38.7±1.6 65.1±0.2

SpikingGCN 26.8±0.1 58.2±0.3

SpikeNet 36.2±0.9 65.0±0.2

SpikeGCL 30.3±0.5 65.0±1.1

SpikeGraphormer 36.0±0.5 65.6±0.2

NAGphormer 33.0±0.9 64.4±0.6

GOAT 37.5±0.7 65.1±0.3

NodeFormer 36.9±1.0 66.4±0.7

SGFormer 37.9±1.1 67.1±1.1

SGHormerVQ 39.1±0.2 65.7±0.1

18

	Introduction
	Related Work
	Preliminaries
	Present work: SGHormerVQ
	Spiking Vector Quantization
	Codebook Guided Self-Attention
	Overall Framework

	Experiments
	Comparison with Existing Models
	Inference Time Elapse and Accuracy
	Characteristics of Spiking Vector Quantization
	Ablation Study

	Conclusion
	Visualization Results of SVQ
	Energy Efficiency Analysis
	Rate versus Temporal Coding
	Revisting SGHormerVQ in the perspective of homophily

