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ABSTRACT

Graph Transformers (GTs), which simultaneously integrate message passing and
self-attention mechanisms, have achieved promising empirical results in some
graph prediction tasks. Although these approaches show the potential of Trans-
formers in capturing long-range graph topology information, issues concerning
the quadratic complexity and high computing energy consumption severely im-
pair the scalability of GTs on large-scale graphs. Recently, as brain-inspired
neural networks, Spiking Neural Networks (SNNs) provide an energy-saving
deep learning option with lower computational and storage overhead via their
unique spike-based event-driven biological neurons. Inspired by these charac-
teristics, we propose SGHormerVQ, which bridges efficient Graph Transform-
ers and spiking neural networks via spiking vector quantization. Spiking vec-
tor quantization generates implied codebooks with smaller sizes and higher code-
book usage to assist self-attention blocks in performing efficient global informa-
tion aggregation. SGHormerVQ effectively alleviates the reliance on complex
machinery (distance measure, auxiliary loss, etc.) and the codebook collapse
present in previous vector quantization-based GNNs. In experiments, we compare
SGHormerVQ with other state-of-the-art baselines on node classification datasets
ranging from small to large. Experimental results show that SGHormerVQ has
achieved competitive performances on most datasets while maintaining up to
518× faster inference speed compared to other GTs. Our code is available at
https://anonymous.4open.science/r/SGHormerVQ-0BB0.

1 INTRODUCTION

Graph Transformers (GTs), as emerging graph representation learning paradigms, are proposed for
alleviating inherent drawbacks present in message passing neural networks like over-smoothing,
over-squashing and local structure biases Oono & Suzuki (2019)Topping et al. (2021). Benefiting
from the multi-head attention (MHA) modules, vanilla Transformers adaptively learn the global de-
pendencies in input sequences without considering their distance Vaswani (2017). It also provides
a solution for learning new topology among nodes while performing message aggregation on the
graph data. Experiments demonstrate the immense potential of Transformers in handling global
dependencies for graph data Rampášek et al. (2022)Bo et al. (2023). However, there is one criti-
cal drawback that Transformer with O(N2) computation complexity is prohibitive for large-scale
graphs. Furthermore, the all-pair similarity matrix leads to an increase in degrees of freedom, which
often manifests as the full-size Transformers being highly prone to overfitting. Unlike observations
in the field of computer vision or natural language process, previous studies show that eliminat-
ing redundant components and embracing a lightweight architecture like linear-time attention can
significantly enhance the predictive performances of GTs Wu et al. (2022)Wu et al. (2024).

Recently, with the development of neuromorphic computing, Spiking Neural Networks (SNNs) are
poised to bridge the efficiency gap between elaborate network architectures and computation con-
sumption. The defining feature of a SNN is its brain-like spiking mechanism which converts real-
value signals into single-bit, sparse spiking signals based on its event-driven biological neurons.
The single-bit nature enables us to adopt more addition operations rather than expensive multiply-
and-accumulate operations on the spiking outputs, while the sparsity means spikes are cheap to
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(a) The mechanism of rate-coded spiking neurons.

Raw features

Spiking embeddings 
 encoded by our model

(b) t-SNE visualization of rate-coded vectors.

Figure 1: (a) On the KarateClub dataset, high-precision neighborhood messages aggregated in each
propagation step are converted into sparse, binary spikes. Nodes represented by low-precision rate-
coded vectors are implicitly grouped by their neighborhood structure. (b) On the Cora dataset, nodes
are colored according to their classes. The t-SNE visualization of learned spiking representations
shows that low-precision vectors still maintain promising representational capacity.

store Eshraghian et al. (2023). These delightful characteristics have prompted some studies aiming
at constructing lightweight graph representation learning frameworks to explore binary spike-based
representations on the graph data Zhu et al. (2022)Li et al. (2023a)Li et al. (2023b). Previous experi-
ments show that the potentiality of SNNs is still underestimated and underappreciated in the domain
of graph representation learning. The role of SNNs in modeling the graph structure and dynamics
warrants further investigation.

We conduct preliminary experiments to uncover the role of spiking neurons in message propaga-
tion. Here, we have three observations: (i) For message propagation-based models, the trained
embeddings of nodes within the same class tend to exhibit similar distributions. (ii) As depicted in
Figure1, different messages received from the multiple propagation steps can be converted into the
same spike trains via spike neurons. By converting the outputs into firing rates/spike counts, differ-
ent nodes can be represented by the same low-precision vectors. (iii) The precision of generating
node representations can be adjusted by configuring spiking neurons. More visualization results are
shown in Appendix A. It efficiently encodes continuous high-precision representations into discrete
low-precision representations, which sparks our curiosity about an interesting research question.

For the large-scale graph data, is it possible to eat Graph Transformer cake with a spiking fork?

Deviating from previous works on efficient GTs, we consider spikes neurons as learnable quantizers,
which links the spiking outputs with the concept of vector quantization (VQ) Van Den Oord et al.
(2017)Lingle (2023)Mentzer et al. (2023). We propose SGHormerVQ, which bridges spiking neural
networks with Graph Transformers via spiking vector quantization. Specifically, we employ spike
neurons to capture the message propagation patterns of node neighborhoods, which enables us to
represent graph global structure information using a handful of rate-coded vectors. It effectively
reduces the reliance of GTs on the full set of node embeddings. Meanwhile, the conversion from
real values to spikes implicitly involves the process of learning and generating the codebook in VQ.
Different from prior works, the codewords used in practice are governed by learnable parameters in
spike neurons. It not only compresses the codebook size, but also addresses the codebook collapse
which is defined as the under-usage of the codebook. The contributions of this paper are summarized
as follows:

• We investigate the role of spiking neurons in the message propagation process. The obser-
vations show that nodes can be effectively represented by rate-coded vectors from a discrete
subspace of lower dimension, which are transformed from neighborhood messages in the
propagation process.

• Based on the observations, we propose Spiking Vector Quantization (SVQ) to replace the
pre-defined, fixed codebook with the codebook with variable size. Compared with existing
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VQ-based graph representations learning methods, SVQ provides a spike-driven learnable
codebook paradigm to alleviate inherent issues in VQ.

• We take the lead in exploring the effectiveness of compressing node representations by
spiking neurons in Graph Transformers. We propose the spiked-driven linear-time Graph
Transformer, SGHormerVQ. It actively injects the global message propagation patterns in
the form of rate-coded vectors to efficiently capture the long-range information.

• We conduct a comprehensive comparison with various state-of-the-art baselines, across
graphs of various scales. Extensive experiments show that SGHormerVQ achieves com-
petitive or even superior predictive performances on most datasets. Besides, SGHormerVQ
enjoys up to 518x faster inference speed compared to other GT baselines.

2 RELATED WORK

Spiking Neural Network. Inspired by brain-like spiking computational frameworks, Spiking
Neural Networks are proposed to address the computing energy consumption challenge. Differ-
ent from Artificial Neural Networks (ANNs), neurons in SNNs communicate via binary and sparse
spikes. It enables SNNs to reduce the storage overhead of intermediate outputs among layers and
utilize more accumulation operations instead of multiply-accumulation operations Roy et al. (2019).
Some studies motivated by these advantages in energy efficiency have attempted to construct spike-
driven neural networks. These networks can be broadly divided into two categories, ANN-to-SNN
conversion and direct training framework. For the former, they tend to build a SNN upon a pre-
trained ANN. These methods try to minimize information loss during the conversion process by
performing scaling/normalizing operations on weights or replacing the activation layers with spike
neurons Diehl et al. (2015)Cao et al. (2015)Hao et al. (2023). For the latter, studies try to directly
train spike-driven neural networks by introducing surrogate gradient. This approach effectively re-
duces the strong dependence of SNNs on the number of time steps Fang et al. (2021a)Zheng et al.
(2021).

Graph Transformers. Although graph neural networks (GNNs) have become dominant paradigm
cross various graph tasks Kipf & Welling (2016)Veličković et al. (2017), the message passing mech-
anism as the foundations of GNNs has some well-known drawbacks such as over-smoothing, over-
squashing and the neglect of long-range information Li et al. (2018)Alon & Yahav (2020). Graph
Transformers (GTs), which can differentially aggregate messages over all nodes to alleviate local
structure bias, have been developed to overcome above issues. Specifically, methods tend to inject
the graph topology information into Transformer variants by introducing auxiliary GNNs or gen-
erating positional/structural embeddings from a graph. For some early studies, GTs are proposed
to solve small-scale graph-level tasks like molecular property prediction and molecule classifica-
tion Rampášek et al. (2022)Liao & Smidt (2022). Recently, some methods aimed to enhance GTs’
performance on node-level tasks by constructing mini-batch sampling strategies and lightweight
attention modules Shirzad et al. (2023)Li et al. (2024).

VQ-VAE and Follow-up. To overcome the issue of posterior collapse, Van Den Oord et al. (2017)
develop a discrete latent variational autoencoder (VAE) model called VQ-VAE. Input images are
mapped to the embedding space through an encoder. The embeddings are replaced with the nearest
pre-defined codebook entries through measuring distances between embeddings and entries. The
replaced outputs are then fed into the decoder. It’s worth noting that VQ-VAE utilizes a commitment
loss and the straight-through estimator to update the codebook and encoder-decoder modules. In
addition, Kolesnikov et al. (2022) adopted a codebook splitting algorithm to improve codebook
usage. Mentzer et al. (2023) implicitly constructs a finite scalar codebook by quantizing elements
of intermediate embeddings to integers. In a nutshell, experiments have shown that VQ-VAE and
its variants provide a simpler representation generation schema and an energy-efficient inference
framework compared with their quantization-free counterparts.

3 PRELIMINARIES

Spiking Neural Network. Although electrophysiological measurements can be accurately calcu-
lated by complex conductance-based neurons, the complexity limits their widespread deployment in
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deep neural networks. A simplified computational unit that retains biological characteristics, known
as the Integrate-and-Fire neuron, has been proposed Salinas & Sejnowski (2002). IF neurons have
three basic characteristics: Integrate, Fire and Reset. Firstly, the neuron integrates synaptic inputs
from other neurons or external current I to charge its cell membrane. Secondly, when the mem-
brane potential reaches a pre-defined threshold value Vth, the neuron fires a spike S. Thirdly, the
membrane potential of neuron will be reset to Vreset after firing. The neuronal dynamics can be
formulated as follows:

Integrate: V t = Ψ(V t−1, It) = V t−1 + It, (1)

Fire: St = Θ(V t − Vth) =

{
1, V t − Vth ≥ 0
0, otherwise

, (2)

Reset: V t = V t(1− St) + VresetS
t, (3)

where V t and It denote the membrane potential and input current at time step t, respectively. Θ(·)
denotes the fire function, and the Heaviside step function is selected as the fire function in this
paper. Ψ(·) is the membrane potential update function. Besides, there are two common variants
of IF model, LIF and PLIF Gerstner et al. (2014)Fang et al. (2021b). The update function of these
neurons can be formalized as follows:

LIF: V t = V t−1 +
1

τ
(It − (V t−1 − Vreset)), (4)

PLIF: V t = V t−1 +
1

1 + exp(−a)
(It − (V t−1 − Vreset)), (5)

where τ is the membrane time constant and a is a trainable parameter, both of which are used to
regulate how fast the membrane potential decays. In this paper, we adopt surrogate gradients during
error backpropagation to address the issue of zeros gradients caused by non-differentiable functions
Neftci et al. (2019). The surrogate gradient method can be defined as Θ′(x) ≜ θ′(αx), where α
represents a smooth factor and θ(·) represents a surrogate function Neftci et al. (2019).

Graph Neural Network. We represent a graph as G = (V, E), where V is a set of nodes and E is
a set of edges among these nodes, A ∈ RN×N is the adjacency matrix of the graph. Let N denotes
the number of nodes. We define the d-dimension nodes’ attribute as X ∈ RN×d, which is known
as the node feature matrix. For a given node u ∈ V , GNN aggregates messages from its immediate
neighborhood N(u) and updates the node embedding hu. This message-passing process can be
formulated as follows:

hl
u = UPDATE(hl−1

u ,AGGREGATE(hl
v,∀v ∈ N (u))), (6)

where hl
u denotes the updated embedding of node u in the l-th layer, hl−1

u is the embedding from
the previous layer. UPDATE and AGGREGATE can be arbitrary differentiable functions.

Self-Attention. As the most prominent component in the Transformer, the self-attention mech-
anism can be seen as mapping a query vector to a set of key-value vector pairs and calculating a
weighted sum of value vectors as outputs. let nodes’ attribute X ∈ RN×d be the input to a self-
attention layer. The attention function is defined as follows:

Attn(X) = softmax(
QKT

√
d′

)V, (7)

Q = XWq,K = XWk,V = XWv, (8)

where Query, Key and Value are calculated by learnable projection matrices Wq,Wk,Wv ∈ Rd×d′
.

For the node u, the attention function can be written in a message-passing form as:

Attn(xu) =

N∑
i

exp(qTu ki)∑N
j exp(qTu kj)

vi =

N∑
i

exp((Wqxu)
T (Wkxi))∑N

j exp((Wqxu)T (Wkxj))
(Wvxi), (9)

where we omit the scalar factor for brevity.
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Figure 2: The overview of SGHormerVQ. Intuitively, in the spiking vector quantization block, nodes
represented in the form of rate-coded vectors are implicitly grouped by their neighborhood struc-
tures. The rate-coded vector can be considered as the codeword corresponding to the node. In the
self-attention block, based on the above codewords, the vanilla attention between nodes has been
transformed into a linear-time attention from nodes to grouped node sets.

4 PRESENT WORK: SGHORMERVQ

In this section, we comprehensively detail our approach referred to as SGHormerVQ. As depicted
in Figure 2, SGHormerVQ feeds the graph topology information into Spiking Vector Quantization
(SVQ) module to map node embeddings into the rate-coded vectors. The outputs will guide the
aggregation process in self-attention. Besides, auxiliary message passing neural networks as position
encoders provide node embeddings containing local positional information to the attention module.
In what follows, we first highlight the implementation of SVQ (Section 4.1). Then, we detail how
the learnable codebook is introduced into self-attention to capture long-range information in the
graph (Section 4.2). Finally, we review the entire architecture of SGHormerVQ one by one (Section
4.3).

4.1 SPIKING VECTOR QUANTIZATION

As aforementioned above, neighborhood messages of different nodes can be encoded into same
rate-coded vectors, which provides compact node representations reflecting the neighborhood struc-
tural information. To this end, (i) we sample a D-dimension random feature matrix R ∈ RN×D

from a uniform distribution. And we define a propagation operator P. (ii) Our goal is to collect
messages M ∈ RN×D during iterative propagation process and quantize a sequence of changes
M = {M0,M1, ...,MT } into a finite set of codewords. (iii) For spiking neurons based on rate cod-
ing mechanism, they convert inputs into spike counts S = {si}Ni ∈ RN×D. The rate-coded vector
s ∈ RD can be seen as a codeword s ∈ C̃, where C̃ denotes an implicit codebook. The implied
codebook size is determined by both the number of propagation steps T and the random feature
dimension D. Considering the case where the total number of spikes is zero, the implied codebook
size is given by the product of all channels, |C̃| = (T + 1)D. The above process is defined as:

M̂0 = R, M̂t = PtR, M̂t ∈ RN×D (10)

Mt = Norm(M̂t), Mt ∈ RN×D (11)

S =

T∑
t

Θ(Ψ(V t−1,Mt)− Vth), St ∈ RN×D (12)

where Θ(·) and Φ(·) is membrane potential update and fire function. Norm(·) aims at normalizing
output messages to the range of threshold membrane potential Vth. In the implementation, we adopt
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simple l2 normalization, which can be replaced with some advanced normalization variants from
previous works Xu et al. (2021). Besides, we follow a similar approach as in previous work Eliasof
et al. (2023), using the graph Laplacian P = I−D−1/2AD−1/2 or adjacency matrix with self-loops
P = A+ I as the propagation operator.

4.2 CODEBOOK GUIDED SELF-ATTENTION

On the basis of the spike vectors, we propose a codebook guided self-attention (CGSA) with linear
complexity to capture long-range signals based on the neighborhood structure similarity. Techni-
cally, we follow Kong et al. (2023)Lingle (2023) to utilize a matrix K̂ reconstructed from codebook
replace the original matrix K. Specifically, we can dynamically generate a codebook C ⊆ Ĉ by
removing duplicate vectors in S. The attention function is defined via:

S = UC, U ∈ RN×B ,C ∈ RB×D (13)

G = Norm(Linear(C)), G ∈ RB×d′
(14)

K̂ = UG, K ∈ RN×d′
(15)

Ẑ = softmax(QK̂T )V, Ẑ ∈ RN×d′
(16)

where d′ denotes the dimension of intermediate embeddings, U is a one-hot matrix, and |C| = B.
Different from existing methods, which materialize K̂ using the entire explicit codebook, the dy-
namically generated codebook in our attention module is much smaller than the implied codebook,
B ≪ |C̃|. The codebook calculation is conducted on the integer matrix S, which doesn’t bring
much computational overhead. Derived from Lingle (2023), the attention weights in eq 16 can be
further factored:

Ẑ = softmax(QK̂T )V (17)

= softmax(Q(UG)T )V (18)

= Diag−1(exp(QCT )UT1) exp(QCT )UTV (19)
where 1 ∈ RN . UT1 = {nb}Bb ∈ Z+ denotes the number of node embeddings in C mapped to
the same codewords, which can be regarded as a normalization term. The complexity of CGSA
is O(NBdv), where B ≪ N . It can be considered that computational overhead of CGSA grows
linearly with the number of nodes. To avoid generating an excessively large codebook in the initial
phase of learning, we perform a truncation strategy. We rank nb from high to low and select the top
Bmax to generate a truncated codebook, which ensures the efficiency of training our model.

4.3 OVERALL FRAMEWORK

As shown in Figure 2, the overview of SGHormerVQ includes four modules: SVQ, auxiliary
MPNN, CGSA and a classification head (CH). In SGVQ, we construct random features and spike
neurons for each layer. By defining a shared propagation operator, messages among nodes are col-
lected and transformed into node spiking embeddings S. Then an auxiliary MPNN as encoders
generates node embeddings with local positional encodings. In the CGSA, the spiking outputs S
and the node embeddings H are fed into a linear-time self-attention. Different from the vanilla
Transformer, we explicitly inject graph inductive bias by coding global structural information into
spikes. These four parts can be written as follows:

Sl = SVQl(A), Sl ∈ RN×D (20)

Hl = MPNNl(Zl−1,A), Hl ∈ RN×d′
(21)

Ẑl = CGSAl(Sl,Hl), Ẑl ∈ RN×d′
(22)

Zl = Linear(Ẑl) +Hl, Zl ∈ RN×d′
(23)

Y = CH(ZL), (24)
where L is the number of layers. We choose a simple fully connected layer as the classification head.
It has been observed that in vanilla Transformers, projection blocks consisting of Multilayer Percep-
trons (MLPs) and normalization layers exacerbate the overfitting problem on large-scale graphs.
Therefore, we discard redundant projection layers and retain only the self-attention module and the
skip-connection structure He et al. (2016).
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Table 1: Classification accuracy(%) on seven datasets. Highlighted are the top first, second results.

Models Cora CiteSeer PubMed Co-CS Co-Physics Arxiv Products
#nodes 2,708 3,327 19,717 18,333 34,493 169,343 2,449,029
#edges 10,556 9,104 88,648 163,788 495,924 1,166,243 61,859,140

GCN 81.6±0.4 71.6±0.4 78.8±0.6 92.5±0.4 95.7±0.5 70.4±0.3 75.7±0.1

GAT 83.0±0.7 72.1±1.1 79.0±0.4 92.3±0.2 95.4±0.3 70.6±0.3 OOM
SGC 80.1±0.2 71.9±0.1 78.7±0.1 90.3±0.9 93.2±0.5 68.7±0.1 74.2±0.1

VQGraph 81.1±1.2 74.5±1.9 77.1±3.0 93.3±0.1 95.0±0.1 72.4±0.2 78.3±0.1

SpikingGCN 79.1±0.5 62.9±0.1 78.6±0.4 92.6±0.3 94.3±0.1 55.8±0.7 OOM
SpikeNet 78.4±0.7 64.3±0.8 79.1±0.5 93.0±0.1 95.8±0.7 66.8±0.1 74.3±0.4

SpikeGCL 79.8±0.7 64.9±0.2 79.4±0.8 92.8±0.1 95.2±0.6 70.9±0.1 OOM
SpikeGraphormer 82.0±0.7 70.5±0.6 71.1±0.4 92.1±0.8 95.7±0.3 70.2±0.9 OOM

NAGphormer 79.9±0.1 68.8±0.2 80.3±0.9 93.1±0.5 95.7±0.7 70.4±0.3 73.3±0.7

GOAT 73.3±0.3 68.4±0.7 78.1±0.5 93.5±0.6 95.4±0.2 72.4±0.4 82.0±0.4

NodeFormer 82.2±0.9 72.5±1.1 79.9±1.0 92.9±0.1 95.4±0.1 59.9±0.4 OOM
SGFormer 84.5±0.8 72.6±0.2 80.3±0.6 91.8±0.2 95.9±0.8 72.6±0.1 72.6±1.2

SGHormerVQ 84.7±0.8 74.0±0.5 80.6±0.4 93.4±0.4 96.2±0.0 72.0±0.1 74.8±0.4

5 EXPERIMENTS

5.1 COMPARISON WITH EXISTING MODELS

In this section, we conduct the experimental evaluation to show the effectiveness of SGHormerVQ
on node classification datasets. All experiments are conducted using the same dataset splits pre-
sented in prior studies. The Hyperparameters search strategy is adopted on both SGHormerVQ
and other baselines to get the optimal combinations of parameters. We perform all models on each
dataset 5 times with different random seeds to report the mean and standard deviation. All above ex-
periments are conducted on a single NVIDIA RTX 4090 GPU. The subsequent experiments follow
the same settings if not explicitly stated otherwise.

Datasets. We evaluate SGHormerVQ on seven datasets including three citation networks Sen et al.
(2008) (Cora, CiteSeer, PubMed), two co-author networks Shchur et al. (2018) (Coauthor-CS and
Coauthor-Physics ) and two large-scale graphs (ogbn-arxiv and ogbn-products) from the Open Graph
Benchmark (OGB) Hu et al. (2020). For citation networks, the data splits adhere to the semi-
supervised settings. For co-author networks, we randomly split nodes with train/valid/test ratio as
10%/10%/80%. For datasets from the OGB, we adopt their own standard splits.

Table 2: Comparison of Graph Transformers and Graph
Neural Networks w.r.t. required components (SP: spike-
based, GT: Graph Transformer framework, VQ: vector
quantization-based).

Model Components
SP GT VQ

SpikingGCNZhu et al. (2022) ✓ - -
SpikeNetLi et al. (2023a) ✓ - -

SpikeGCLLi et al. (2023b) ✓ - -
SpikeGraphormerSun et al. (2024) ✓ ✓ -

NAGphormerChen et al. (2022) - ✓ -
NodeFormerWu et al. (2022) - ✓ -
SGFormerWu et al. (2024) - ✓ -
GOATKong et al. (2023) - ✓ ✓

VQGraphYang et al. (2024) - - ✓
SGHormerVQ ✓ ✓ ✓

Baselines. To comprehensively
evaluate the performance of
SGHormerVQ, a head-to-head
comparison is conducted with state-
of-the-art GNNs and GTs, based
on their architectures. As shown
in Table 2, components in base-
lines are fall into three categories:
spike-based methods (SpikingGCN
Zhu et al. (2022), SpikeNet Li
et al. (2023a), SpikeGCL Li et al.
(2023b), SpikeGraphormer Sun
et al. (2024)), Graph Transformer
framework (NAGphormer Chen
et al. (2022), NodeFormer Wu et al.
(2022), SGFormer Wu et al. (2024),
GOAT Kong et al. (2023)), vector
quantization-based methods (VQ-
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Graph Yang et al. (2024)). Besides, three classic graph neural networks (GCN Kipf & Welling
(2016), GAT Veličković et al. (2017), SGC Wu et al. (2019)) are also included in the comparison.

Overall performance. The experimental results are demonstrated in Table 1. As shown in the
table, our methods achieve competitive performance on all datasets, which is a significant advance-
ment considering the information loss caused by low-precision spiking embeddings. SGHormerVQ
outperforms other spike-based baselines across all datasets, which achieves an average im-
provement of 1.4%. Furthermore, SGHormerVQ achieves predictive performance on par or even
better than high-precision GT methods. SGHormerVQ achieves the best mean Accuracy on Cora,
PubMed and Physics. Meanwhile, we also notice that SGHormerVQ falls short of the current sota
baseline on the ogbn-products datasets. Here, we present our analysis that the average degree of
nodes in ogbn-products is around 50, while it ranges from 3 to 14 in other datasets. For those graphs
with abundant neighborhood messages, the spiking encoding and corresponding vector quantization
schema exacerbate the information loss together. We leave reducing the information loss in graphs
with abundant connectivity for future work. Overall, the results indicate that integrating spiking vec-
tor quantization with codebook guided self-attention enables SGHormerVQ to capture long-range
node information. It effectively alleviates the impact of information loss caused by the conversion
from real values to spikes.

5.2 INFERENCE TIME ELAPSE AND ACCURACY

To examine the efficiency of SGHormerVQ, we explore the trade-off between the inference
time elapse and prediction performance among GTs. As depicted in Figure 3, SGHormerVQ
has achieved the highest accuracy (96.2%) and the fastest inference speed (21ms) among GT
baselines on the Physics dataset. Furthermore, in Appendix B, we provide comprehensive en-
ergy efficiency analyses between SGHormerVQ and the other GT baselines based on three
metrics: the inference latency, maximum memory usage and theoretical energy consumption.

101 102 103 104
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cy

 (%
)
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SpikeGraphormer NAGphormer

GOATNodeFormer
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SGHormerVQ-1L

SGHormerVQ-2L

Figure 3: Accuracy versus Inference Time. The size of
the circle indicates the maximum memory usage during
model training.

The results show that SGHormerVQ
achieves the lowest inference latency
across datasets with various scales.
Compared to another VQ-based GT,
SGHormerVQ with better perfor-
mance infers faster than GOAT by
518x on the Physics dataset. The pre-
generated codebook in SVQ and linear-
time attention modules bring a signif-
icant improvement in inference speed.
Many previous VQ-based methods tend
to replace node representations one by
one with learned codewords during the
inference phase. In SVQ, trained spik-
ing neurons directly convert input fea-
tures into codewords, which means the
codewords corresponding to nodes can
be pre-calculated before the inference
phase. As mentioned in the previous
section, the complexity of CGSA is
O(NBdv). SGHormerVQ reconstructs a more compact codebook from the outputs of spiking neu-
rons, rather than setting a fixed codebook. The inference time elapse of SGHormerVQ is similar to
that of the representative linear-time, SGFormer. Benefiting from the fusion of SVQ and CGSA,
SGHormerVQ outperforms another spike-based GT across all datasets with acceptable theo-
retical energy consumption. In Figure 3, a 1-layer SGHormerVQ still rapidly captures local and
global graph information while bringing inference speed closer to that of standard GNNs like GAT.

5.3 CHARACTERISTICS OF SPIKING VECTOR QUANTIZATION

For elaborately analyzing the spiking vector quantization, we conduct a series of experiments on
the SGHormerVQ. In detail, we explore the codebook collapse problem in VQ-based graph models.
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Table 3: Codebook analysis on Cora and CS datasets. For each, we compare SGHormerVQ with the
other two VQ-based graph models, VQGraph and GOAT. Three metrics are tracked, the number of
used codewords (CW), codebook usage (Usage) and accuracy (ACC).

Models Codebook Size Cora CS
CW Usage(%) ACC(%) CW Usage(%) ACC(%)

VQGraph

29 159 31.0 80.5±0.2 84 16.4 92.7±0.1

210 172 16.7 80.9±1.0 90 8.7 68.3±0.6

211 186 9.0 80.4±1.3 94 4.5 71.7±0.3

212 206 5.0 81.4±1.1 95 2.3 72.2±0.3

213 284 3.4 80.9±0.2 98 1.2 68.6±0.2

GOAT

29 89 17.3 66.8±0.2 49 9.6 90.6±0.8

210 98 9.6 68.3±0.9 100 9.8 92.2±0.3

211 102 5.0 71.7±0.1 122 5.9 92.7±0.7

212 100 2.4 72.2±0.4 154 3.7 92.4±1.0

213 103 1.2 68.6±0.1 162 1.9 93.4±0.3

SGHormerVQ

T=4,D=4 46 100.0 80.5±0.4 106 100.0 92.6±0.8

T=6,D=4 87 100.0 80.6±0.9 274 100.0 92.8±0.8

T=4,D=6 122 100.0 81.8±1.5 238 100.0 93.0±0.1

T=4,D=8 104 100.0 81.4±0.5 328 100.0 93.1±0.3
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Figure 4: The number of used codewords in the training step.

We record the number of used codewords from the implied codebook during the training process
of our model, and investigate the codebook usage among VQ-based graph methods to explore the
following questions: (ii) How does the implicit codebook influence our model? (i) Is the spiking
vector quantization a more efficient VQ alternative?

Factors affecting the codebook size. As aforementioned above, the number of propagation steps
T and the random feature dimension D determine the implied codebook size. In Figure 4, we
construct 4 combinations of these two hyperparameters (T = 4/D = 4, T = 6/D = 4, T =
4/D = 6, T = 4/D = 8), which aims at matching pre-defined codebook size (28, 211, 212, 213).
We observe that injecting the graph inductive bias as a kind of prior knowledges to quantizers does
constrain the size of the codebook, ensuring convergence during the learning process. However,
increasing the size of the implicit codebook does not effectively improve the codebook usage in
training process. Table 3 shows that an excessively large implied codebook impairs performances
of SGHormerVQ on the small-scale dataset. T significantly influences the complexity of spike
patterns, thereby affecting the number of used codewords.

Codebook Usage. In Table 3, we exhibit the codebook usage of multiple VQ-based graph meth-
ods, which is defined as the fraction of used codewords. It suggests that those methods using
pre-defined codebooks suffer from the serious issue of codebook collapse. As the codebook size

9
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increases, this issue becomes more pronounced. For GOAT, the average codebook usages are 7.1%
and 6.1% on Cora and CS datasets. The codebook usages in VQGraph are slightly higher, which
achieve 13% and 6.6%. Although the number of used codewords does increase, it is an ineffi-
cient way that creating an excessively large codebook to improve the performance on large-scale
graphs. As a more efficient solution, SHormerVQ constructs an implicit codebook governed by
spike neurons, which brings 100% codebook usage. In some cases, the number of used codewords
in SGHormerVQ will be slightly larger than vanilla VQ counterparts at the beginning of the training
process, we believe this issue can be effectively mitigated by designing appropriate spike neurons.

5.4 ABLATION STUDY

In this section, we conduct ablation studies to analyze the differences between different linear-time
attention mechanisms and explore the impact of different spike neurons on predictive performances.
To this end, we implement two classic linear-time attention modules (Performer Choromanski et al.
(2020) and Linformer Wang et al. (2020)), two common spike neurons (IF and LIF), two normal-
ization algorithms (LayerNorm Ba et al. (2016) and STFNorm Xu et al. (2021)) and remove SVQ
modules to construct 6 SGHormerVQ variants.

The experimental results are demonstrated in Table 4. Although incorporating extra positional en-
codings from MPNNs enables Performer and Linformer to handle graph prediction tasks, they strug-
gle to achieve good predictive performance on large-scale graphs like ogbn-arxiv. In SGHormerVQ,
the CGSA actively introduces the global structure information during attention score calculation.
It suggests that developing graph structure-aware Transformers is a promising direction for scaling
GTs on large-scale graphs. The choice of spike neurons will affect the predictive performances of
SGHormerVQ. PLIF models, which have learnable membrane time constants and synaptic weights,
achieve slightly better performance in most cases. These neurons effectively endow SVQ with better
flexibility. In addition, the well-designed normalization algorithm for spiking neurons, STFNorm,
outperforms the LayerNorm algorithm across all datasets. For spiking graph neural networks, the
distribution of spiking node representations and corresponding normalization algorithms lack fur-
ther exploration. We leave the designs of specific spike neurons and normalization layers on the
graph data for future work.

Table 4: Ablation studies on Pubmed, CS, Physics and ogbn-arxiv datasets. −x means remov-
ing the component x from SGHormerVQ. And +x means replacing the original component in
SGHormerVQ with x.

Models Pubmed CS Physics ogbn-arxiv
+Performer 80.2±0.2 93.1±0.4 95.8±0.1 71.2±0.1

+Linformer 79.6±1.0 92.6±0.5 95.5±0.1 65.2±1.3

+IF 81.6±1.2 92.8±0.1 96.0±0.4 71.0±0.5

+LIF 79.6±0.7 92.8±0.0 96.1±0.2 72.1±0.2

+LayerNorm 78.9±1.3 90.3±0.6 95.4±0.4 71.2±0.2

+STFNorm 82.6±0.2 92.3±0.4 96.5±0.5 72.4±0.7

-SVQ 79.8±0.4 93.2±0.3 95.0±0.4 70.7±0.7

SGHormerVQ 80.6±0.5 93.4±0.1 96.2±0.0 72.0±0.1

6 CONCLUSION

In this study, we propose SGHormerVQ, a linear-time Graph Transformer via spiking vector quan-
tization. Based on the observation that the message propagation patterns of different nodes can
be encoded into same rate-coded vectors, SGHormerVQ bridges Graph Transformer with spiking
neural networks. It enables SGHormerVQ to achieve less information loss, faster inference speed
and better predictive performance. Besides, spike vector quantization, which treats spike neurons
as quantizers, provides a spiking perspective to address issues present in current VQ methods. We
believe that our work holds great promise from a neuroscientific perspective, and we hope it will
inspire further research into more efficient Graph Transformers.
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A VISUALIZATION RESULTS OF SVQ

To better demonstrate our observations, we remove spiking neurons in SVQ and construct a simpli-
fied message propagation model on the KarateClub dataset. The initial node features are sampled
from a uniform distribution over the interval (0, 1). Setting the number of propagation steps to 2,
we visualize the message embeddings from each propagation step in the left plots of Figure 5. It
shows that as the number of propagation steps increases, the neighborhood message embed-
dings of nodes in the same class become increasingly similar. It implies that we can generate
the same representation for different nodes by capturing the dynamics in the propagation
process. Benefiting from the powerful coding mechanism of SNNs for sequential data, we fed

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

High-precision node embeddings Rate-code vectors

Figure 5: The visualization results between high-precision node embeddings output from each prop-
agation step and the low-precision rate-coded vectors. The feature dimension is set to 16, and nodes
are sorted by their categories. The red line is used to differentiate nodes in different categories, and
the nodes within the blue box have the same rate-coded vectors. Brighter spots denote higher values.

the above intermediate embeddings into spiking neurons to generate node representations based on
spike counts. As shown in the right plot in Figure 5, different nodes are represented by the same
rate-coded vector, which means high-precision node embeddings can be encoded into a finite
set of rate-coded vectors from narrower and discrete representation space.

Furthermore, we perform the SVQ defined in Section 4.1 and the non-spiking counterpart on Cora,
Citeseer and Pubmed datasets. In the implementation, the random features will serve as the initial
membrane potential of spiking neurons. SVQ updates node representation by alternating propaga-
tion and normalization operations, and the symmetrized graph Laplacian and l2 normalization are
selected as the propagation operator and normalization function. Visualization results are shown
in Figure 6. The high-precision node representations (the leftmost plot in each line) can be pro-
jected into the finite set of low-precision rate-coded vectors (the two rightmost plots in each line).
Considering iteratively propagated messages as input currents of spiking neurons will generate ex-
pressive low-precision node vectors. It explains why some emerging spiking graph neural networks
(SGNN) Li et al. (2023a)Yin et al. (2024) achieve better predictive performance compared to earlier
approaches Zhu et al. (2022) that rely on repeatedly passing the same training graph data. Addi-
tionally, visualization results reveal the precision of rate-coded vectors is governed by spiking
neurons with different configurations. Higher threshold potentials always correspond to lower
fire rates or spike counts, which indirectly drives SGNNs to generate node representation with lower
precision.

B ENERGY EFFICIENCY ANALYSIS

To verify the efficiency of SGHormerVQ, we conduct energy efficiency analysis on CS, Physics,
ogbn-arxiv and ogbn-products datasets based on following metrics: the maximum memory usage,
inference latency and theoretical energy consumption. We record the absolute elapsed running time
per test epoch for SGHormerVQ and other GT baselines. Notably, following the same settings as
previous studies Wu et al. (2024), we use the mini-batch partition for training on the ogbn-products
dataset.

The theoretical energy consumption estimation is derived from Yao et al. (2024). For the sake of
fairness in comparison, we fix some hyperparameters like the number of layers, the number of heads
and the dimension of hidden embeddings for each model. The theoretical energy consumption of
GTs during the inference phase is estimated in a straightforward way by counting floating point
operations (FLOPs) and synaptic operations (SOPs). As depicted in Figure 3, we can deploy the
spiking vector quantization module driven by spiking neurons on the specific neuromorphic hard-
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(a) The spike count visualization on Cora.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

500

1000

1500

2000

2500

3000

High-precision 
 node embedding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

500

1000

1500

2000

2500

3000

Rate-coded vectors
(Vth = 0.4, T = 4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature Dimension

0

500

1000

1500

2000

2500

3000

Rate-coded vectors
(Vth = 0.6, T = 4)

3

2

1

0

1

2

3

4

0

1

2

3

4

No
de

 In
de

x 
(s

or
te

d 
by

 c
la

ss
es

)

(b) The spike count visualization on Citeseer.
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(c) The spike count visualization on Pubmed.

Figure 6: The visualization results of node representations which are decoded in the form of the
spike count. The feature dimension is set to 16 and nodes are sorted by their categories. Brighter
spots denote higher spike counts.

ware. Therefore, the energy cost of SGHormerVQ can be formulated as follows:

E =

L∑
l=1

(ESV Q + ECGSA + EMPNN + ELinear) + ECH (25)

= αs(

L∑
l=1

T∑
t=1

SP l,t
SV Q) + αf (

L∑
l=1

(FP l
CGSA + FP l

MPNN + FP l
Linear) + FPCH) (26)
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Table 5: The maximum memory usage (MB), theoretical energy consumption (J) and inference
latency (s) of various GT methods.

Datasets Metrics NAGphormer GOAT NodeFormer SGFormer SpikeGraphormer SGHormerVQ

CS
Latency↓ 0.70 5.02 0.05 0.01 0.03 0.01
Memory↓ 3400 12490 2822 1662 8542 1638
Energy↓ 0.82 1.21 0.21 0.35 0.12 0.16

Physics
Latency↓ 1.79 10.98 0.14 0.02 0.08 0.02
Memory↓ 13628 22776 7624 2944 16414 3036
Energy↓ 1.86 2.35 0.46 0.78 0.27 0.36

arXiv
Latency↓ 0.78 28.27 1.17 0.10 0.30 0.08
Memory↓ 10450 21146 11988 6386 22654 7132
Energy↓ 1.12 9.92 0.63 0.57 0.08 0.18

Products
Latency↓ 25.74 2416.84 - 24.34 - 20.83
Memory↓ 7470 21974 - 934 - 13494
Energy↓ 16.06 143.80 - 8.07 - 3.67

where αf and αs, as scale factors for floating point and synaptic operations, are set to 4.5 and
0.9. FP and SP are denoted as floating point operations and synaptic operations of each layer.
SP l,t = rl,t × FLOP l,t, where rt,l is the fire rate of spiking neurons in the l-th layer at the t-th
time step. The results in table 5 show that SGHormerVQ achieves the fastest inference speed
across all datasets compared to other baselines. Notably, we can generate and store codewords
corresponding to each node on the neuromorphic hardware. It enables SGHormerVQ to maintain the
codebook with relatively low energy consumption. Additionally, as shown in Figure 4, the size of
the reconstructed codebook, B, will be gradually decreased during the training process. It makes the
linear-time Transformer guided by this compressed codebook infer slightly faster than SGFormer,
while bringing a slight extra energy cost compared to SpikeGraphormer.

C RATE VERSUS TEMPORAL CODING

The rate coding is the foundation of most spiking graph neural networks because this coding mech-
anism is quite convenient to integrate with an artificial neural network architecture. As mentioned
in the above section, it can convert input intensity into a spike count or firing rate Eshraghian et al.
(2023). However, the information loss caused by the rate coding can’t be overlooked for directly
training SNNs. Some emerging studies focus more on another coding strategy based on the precise
timing of a spike. For example, GRSNN Xiao et al. (2024) introduces spiking time as supplementary
information to encode relations in knowledge graphs. The empirical experiments verify the efficacy
of adding synaptic delays to different edges in message propagation. It drives us to explore the
spiking vector quantization based on temporal coding. Since GRSNN is designed for link prediction
tasks and the properties of edges are plain on existing node classification datasets, we assign random
features to nodes except for the embedding of relations. For node classification tasks, the outputs
combined edge embeddings containing the temporal delay information with node embeddings will
be fed into a mean aggregator to generate the predictive results. The visualization results of interme-
diate node embeddings from RGSNN and SVQ are demonstrated in Figure 7. GRSNN considering
temporal delays in output spikes does provide more expressive rate-coded vectors. However, the
process of reconstructing high-precision node embeddings conflicts with SVQ, which aims at map-
ping different nodes into similar low-precision rate-coded vectors. Other simpler temporal coding
algorithms like the time-to-first-spike mechanism may impede learning convergence due to the lack
of sufficient spikes.

D REVISTING SGHORMERVQ IN THE PERSPECTIVE OF HOMOPHILY

There is a popular notion that message propagation-based methods are more suitable for graphs
with high-level homophily Ma et al. (2021). Therefore, in this section, we conduct a quantita-
tive analysis to investigate whether the homophily of graphs is a determining factor on the per-
formance of SGHormerVQ. Specifically, we perform the same graph generation strategy on Cora
and Citeseer datasets following the previous study Ma et al. (2021). Figure 8 shows the influ-

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 101112131415
Feature Dimension

0

500

1000

1500

2000

2500

Node Embeddings
from our model

0 1 2 3 4 5 6 7 8 9 101112131415
Feature Dimension

0

500

1000

1500

2000

2500

Node Embeddings
from GRSNN

0

1

2

3

4

1.5

1.0

0.5

0.0

0.5

1.0
No

de
 In

de
x 

(s
or

te
d 

by
 c

la
ss

es
)

(a) Rate and temporal coding embeddings on Cora.
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(b) Rate and temporal coding embeddings on Citeseer.

Figure 7: The visualization results of rate and temporal coding embeddings

ences of different homophily ratios on predictive results, where the homophily ratio is defined as
|{(v,w):(v,w)∈E∩yv=yw}|

|E| . We find that as the homophily ratio decreases, the classification perfor-
mance initially declines but eventually starts to improve. It is consistent with previous observations
Ma et al. (2021) that the homophily assumption of message passing-based methods is not accurate.
And it implies SGHormerVQ may achieve strong performances on certain heterophilic graphs. Fur-
thermore, we evaluate SGHormerVQ on two heterophilic datasets, Actor and Deezer. The results in
Table 6 show that SGHormerVQ has the best classification accuracy on the Actor dataset compared
with other baselines. Empirical results highlight the efficacy of SGHormerVQ on both heterophilic
and homophilic graphs.
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Figure 8: The accuracy of SGHormerVQ on synthetic graphs (Cora and Citeseer) with various
homophily ratios.
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Table 6: Classification accuracy(%) on two heterophilic datasets (Actor and Deezer).

Models Actor Deezer
#nodes 7,600 28,281
#edges 30,019 185,504

GCN 30.1±0.2 62.7±0.7

GAT 29.8±0.6 61.7±0.8

SGC 27.0±0.9 62.3±0.4

VQGraph 38.7±1.6 65.1±0.2

SpikingGCN 26.8±0.1 58.2±0.3

SpikeNet 36.2±0.9 65.0±0.2

SpikeGCL 30.3±0.5 65.0±1.1

SpikeGraphormer 36.0±0.5 65.6±0.2

NAGphormer 33.0±0.9 64.4±0.6

GOAT 37.5±0.7 65.1±0.3

NodeFormer 36.9±1.0 66.4±0.7

SGFormer 37.9±1.1 67.1±1.1

SGHormerVQ 39.1±0.2 65.7±0.1
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