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Abstract
Agent Based Modelling (ABM) algorithms for001
Economic Allocation (EA) systems model in-002
teractions between economic agents and indi-003
cators. These EA-ABMs provide important004
insight for policy makers and decision anal-005
ysis as they can be used to model complex006
systems such as Government Spending or Fi-007
nancial Market Contagion. However, the util-008
ity of EA-ABM’s depends on the quality and009
interpretability of the underlying graph’s esti-010
mated edge weights. Statistical network esti-011
mation methods perform poorly due to these012
datasets often having limited timesteps of data013
but a large number of nodes (economic actors014
or indicators) and edges (causal relationships).015
We propose a structured method to use Large016
Language Models (LLM) to produce predic-017
tive hurdle distributions for the edge weights;018
enhancing interpretation through uncertainty019
quantification and textual reasoning. Our ap-020
proach, Categorical Uncertainty based Uncer-021
tainty Quantification (CPUQ) decouples the022
modelling of causal relationships into sepa-023
rately modelling existence and causal relation-024
ship strength. Through evaluation on a real025
Economic Allocation dataset, we show that026
CPUQ produces probabilistic predictions well027
aligned with experts opinions, and achieves bet-028
ter EA-ABMs forecasting ability than existing029
statistical and LLM based methods. We also030
motivate a solution for the issues of conflating031
a language model’s uncertainty with syntactical032
uncertainty as opposed to semantic uncertainty.033

1 Introduction034

Economic Allocation (EA) Agent Based Modelling035

(ABM), crucial for simulating economic allocation036

processes, can be hampered by the complex chal-037

lenge of determining the edge weights for each038

node pairing within vast graphs representing eco-039

nomic actors and economic/financial indicators. In040

many situations, these graphs can encompass edges041

numbering in the order of 106, each demanding042

precise indications of relative strength or uncer- 043

tainty. This becomes even more complex since 044

the number of nodes (agents) and potential edges 045

(interactions) often dwarfs the span of data avail- 046

able in graphs underpinning Economic Allocation 047

Systems. There exist several statistical methods 048

for estimating directed networks, each with dif- 049

ferent assumptions and limitations. For example, 050

Bayesian networks methods (Pearl, 1988; Mas- 051

sara et al., 2015; Aragam and Zhou, 2015) assume 052

acyclic graphs and do not describe causal relation- 053

ships, while Granger-causality networks based on 054

(Granger, 1969; Kang et al., 2017) assume under- 055

lying linear relationships between variables as indi- 056

cated in (Castagneto-Gissey et al., 2014) and are in- 057

appropriate for test of predictability involving more 058

than two variables. Further, the these methods often 059

require sufficient observations-to-variables ratio, a 060

common limitation in many Economic Allocation 061

Systems even with matrix factorization methods. 062

(Aragam and Zhou, 2015) propose a non-convex 063

optimization approach that extends Bayesian net- 064

work methods to graphs where p » n, overcom- 065

ing the necessity for sufficient observations-to- 066

variables ratio. 067

Previous works (Yamasaki et al., 2023; Bansal 068

et al., 2019; Saxena et al., 2022) have highlighted 069

the effectiveness of network estimation using Lan- 070

guage Models (LM) on Textual Attribute Graphs, 071

where each node is represented by some descrip- 072

tive text. Furthermore, these Language Models 073

can also be extended to producing well calibrated 074

probabilistic predictive distributions for the rela- 075

tionships between two entities as recent works in 076

Language Model Question Answering (Kuhn et al., 077

2023; Kadavath et al., 2022) have shown. 078

However, many of these LM based approaches to 079

calibrated distributions focus on the simpler tasks 080

of distributions over categorical outputs (Kuhn 081

et al., 2023; Jiang et al., 2021), as opposed to ex- 082

pressive probabilistic predictions over ordinal and 083
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Figure 1: CPUQ: This diagram shows the CPUQ methodology for determining predictive distributions for edges in
a Textual Attribute Graph, modelling interactions between economic agents ai. CPUQB,C is an LLM agnostic
method that can produce a Bernoulli or Categorical Distribution determining edge existence and conditional edge
weight respectively. The weight of the directed edge between a1 and a2 is then a hurdle mixture distribution. The
conditional uncertainty for an existing edge is then based on entropy where the log base is equal to 5, the number of
scale categories.

numerical outputs. With the latter requiring more084

complex properties of for an output distribution to085

be consistent such multi-modality or convexity.086

To tackle these challenges our approach, Cate-087

gorical Perplexity based Uncertainty Quantification088

(CPUQ), is designed to estimate edge weights in089

Text Attribute Graphs (TAG), graphs where each090

node can be represented by textual information.091

Our approach outputs a zero-inflated mixture dis-092

tribution, which includes a Bernouilli distribution093

to model the chance of no edge existing between094

two nodes and a Categorical distribution to model095

the weight of the edge if it does exist. Relative to096

statistical network estimation methods the use of097

text attributes better reflects causation modelling.098

Furthermore, our method also provides an inter-099

pretable textual explanation for the output provided100

and the use of predictive hurdle mixture distribu-101

tions promotes sparse networks while limiting in-102

ference time.103

In this work we validate and evaluate our method104

on a Economic Allocation system where a regional105

government (United Kingdom) must allocate its106

budget between many budget items with a goal of107

achieving specific levels for a set of indicators over108

a 9 year horizon.109

In developing CPUQ, we also analyse concep-110

tual and practical issues with uncertainty quantifi-111

cation with language models. We further investi-112

gate any biases induced by our uncertainty quan- 113

tification approach by inspecting the distribution of 114

edges predicted relative to existing approaches. key 115

benefits of our method encompass its strong align- 116

ment to human labelled datasets, interpretability, 117

cost-effectiveness, automation potential and ability 118

to perform uncertainty quantification. For instance, 119

explanations for specific edges are integral to our 120

inference process. 121

The essence of our contributions lies in: 122

• Develop CPUQ, which outputs a interpetable 123

hurdle categorical distribution through cate- 124

gorical style questions. 125

• Provide a formal motivation for CPUQ, high- 126

lighting the complexity of semantics and syn- 127

tax when performing perplexity based Ques- 128

tion Answering. 129

• Show CPUQ methods produce strong align- 130

ment to expert annotations for the causal 131

edges in a graph underlying an real world Eco- 132

nomic Allocation System. 133

• Demonstrate that CPUQ based network esti- 134

mation performs outperforms existing statisti- 135

cal and Language Model network estimation 136

methods when evaluated by the performance 137

of an Economic Allocation Agent Based Mod- 138

elling algorithm. 139
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2 Uncertainty Quantification Challenges140

Previous works have experimented with using vari-141

ous forms of sampling based approaches to Uncer-142

tainty Quantification which we discuss below.143

Prompt Variation Methods: Prompt variation144

is the method of prompting a language model with145

phrases/synonyms which have the same meaning146

and observing the variation in output. A large body147

of recent works (Arora et al., 2022; Wei et al., 2022)148

have demonstrated strong performance increases149

on QA tasks through designing methods to find an150

optimal prompt. This line of research would sug-151

gest an optimal prompt exists, and prompt variation152

does not test a model’s predictive uncertainty but153

mostly the quality of the prompt. Further, (Jiang154

et al., 2021) showed the prompt specification be-155

comes less important as the foundational models156

become better calibrated.157

Sequence perplexity based measures: The158

probability of the a text sequence, s, is the prod-159

uct of the conditional probabilities of new tokens160

given past tokens, whose resulting log-probability161

is log p(s | x) =
∑

i log p (si | s<i), where si is162

the i’th output token and s<i denotes the set of163

previous tokens. From this distribution, previous164

works (Jiang et al., 2021; Kuhn et al., 2023) have165

used the corresponding predictive entropy H(s |166

x) = −
∫
p(s | x) ln p(s | x)dy as a point statistic167

of uncertainty. Alternatively, (Malinin and Gales,168

2018; Murray and Chiang, 2018) used the arith-169

metic mean log-probability 1
N

∑N
i log p (si | s<i).170

Previous works (Kuhn et al., 2023) have briefly171

stated the lack of "theoretical justification" for this172

method. We expand upon this argument and pro-173

pose a formal condition that holds true when the174

output space includes tokenized sequences s with175

length over 1.176

When considering sequences over length 1, the177

conditional probability p (si | concat(x, s<i)) has178

theoretically (Mann and Thompson, 1987) and179

practically (Adewoyin et al., 2022; Banarescu et al.,180

2013) been decomposed into composite distribu-181

tions over syntax and semantics, where syntax is182

the arrangement of words and phrases to create183

well formed text and semantics is the underlying184

meaning of the text.185

We believe previous works have highlighted spe-186

cific incidences of this condition. For example,187

(Murray and Chiang, 2018) highlights ’label bias’;188

a models’ stylistic bias towards a specific length of189

response which reduces the relative likelihood of 190

longer answers. While other works, (Jiang et al., 191

2021; Kuhn et al., 2023) show a language models 192

bias towards different styles of expressions with 193

the same ’semantic equivalence’ must be taken into 194

consideration. 195

Overcoming Stylistic Bias When the response 196

space for a language model is constrained to a 197

set of token sequences of maximum length 1, the 198

scope for syntactic style to influence the output 199

distribution is limited. Intuitively, this is reflected 200

by the singular ’style’ of response when answer- 201

ing a Yes/No question e.g a respondent replies 202

’Yes.’ or ’No.’ independent of any syntactic 203

style they may have. We can express this by de- 204

composing the conditional probability of an out- 205

put sequence s, given prompt x, p(s | x) = 206∑
i log p (si | concat(x, s<i)) into a joint condi- 207

tional probability involving a latent semantic mean- 208

ing m ∈M . 209
log p(s | x) =

∑
m∈M

log p(s,m | x) (1) 210

=
∑
m

∑
i

log p (si | concat(x, s<i),m)

+ log p(m | x)
(2) 211

=
∑
m

log p (s0 | x,m) + log p(m | x) (3) 212

≈ log p (s0 = s∗ | x,m) + log p(m | x) (4) 213

Where equation 2 decomposes the surface re- 214

alization, s, distribution into a 2 step process of 215

initially modelling the semantic meaning m, then 216

conditionally modelling s over a bi-variate distribu- 217

tion over prompt x and the output’s latent seman- 218

tic meaning m . The simplification in Equation 3 219

is due to the constraint to 1 token responses. Fi- 220

nally, in equation 4, we constrain our prompt x to 221

a prompt set x ∈ X ′ for which the output distri- 222

bution will be heavily weighted on a unique token 223

s∗, p(s0 = sm | x,m) for each possible semantic 224

meaning m. 225

As the p(s0 = s∗ | x,m) approaches 1 for m ∈ 226

M the primary source of variability in the p(s | x) 227

can be attributed from the term log p(m | x). This 228

emphasizes that, in the restricted case of single- 229

token responses to a specific set of prompts x′ ∈ X , 230

the model’s uncertainty predominantly originates 231

from the latent semantic meanings rather than the 232

stylistic variations of the response. 233

We propose to satisfy these conditions with Cat- 234

egorical Question Style prompts. 235
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3 Categorical Perplexity based236

Uncertainty Quantification237

In Section 2 we motivated the use of Categorical238

Prompts for Uncertainty Quantification (CPUQ)239

as more efficient than sequence sampling methods240

while correctly providing uncertainty over distinct241

semantic outputs instead of syntactic outputs.242

We remind the reader that our downstream task243

is network estimation in Textual Attribute Graphs244

underpinning EA-ABMs, for which we determine245

a probabilistic distribution over edge existence and246

edge weight. Table 1 provides prompt templates247

and Figure 1 provides an illustration for the follow-248

ing three steps:249

1. Determining Edge Existence250

2. Determining Edge Weight251

3. Determining Predictive Uncertainty252

1. Determining Edge Existence CPUQB For253

edge existence we create a categorical question254

style prompt that requires the model’s response255

to be the number token for the correct category256

number. We then use perplexity over the one token257

output space to create a Bernoulli distribution over258

the corresponding ’Yes’ edge exists or ’No’ edge259

doesn’t exists answers.260

2. Determining Edge Weight CPUQC Given261

the edge existence probability reaches a specific262

threshold hurdle h, we create a categorical question263

style prompt that requires the model’s response to264

be the single token for the number representing the265

relationship strength between two economic agents266

/ indicators on a scale. This interval must only267

include single digits and in this work we choose268

integers between one and five. After attaining the269

categorical distributed c, illustrated in Figure 1, we270

determine the categorical mean for the weight by271

multiplying each value by a normalized likelihood272

as shown in Equation 6.273

pnorm(si | x) = f(si | x)∑
j f(s

j | x)
(5)274

µ(s) =

10∑
i=1

si · pnorm(si | x) (6)275

A benefit of the hurdle h, is that it reduces the com-276

putational expense required by having to perform277

this secondary weight determination step on all278

samples.279

3. Determining Predictive Uncertainty Point 280

statistics for uncertainty over edge existence or un- 281

certainty over edge weight can be determined using 282

an entropy based measures. Focusing on maximiz- 283

ing interpretability of this method for policy makers 284

/ decision makers, we move away from previous 285

works (Kuhn et al., 2023; Jiang et al., 2021) which 286

simply used entropy, and instead use a normalized 287

entropy measure for categorical distributions which 288

uses a base equal to the number of categories and 289

inverts the value such that 1 implies maximal cer- 290

tainty and zero implies maximal uncertainty. In 291

Appendix G we provide a brief motivation for the 292

use of our proposed normalized entropy measure. 293

For the Bernoulli distribution of edge existence, the 294

normalised entropy measure H(B(p)) is given by: 295

H(B(p)) = 1/2 ·(−p log2 p−(1−p) log2(1−p))
(7) 296

For the Categorical distribution pertaining to edge 297

weight, assuming the edge exists, the normalised 298

entropy H(M) is defined as: 299

H(M) = −
5∑

i=1

1

5
pi log5 pi (8) 300

Here, pi is the probability of the edge weight being 301

the i-th value. 302

Unbiasing Categorical Label Order In initial 303

experiments we observed indications of stylistic 304

bias existed towards either the first or second cat- 305

egorical response, e.g. consistently inflating the 306

probability assigned to category answer 1) Yes. To 307

prevent this we introduce a method which asks the 308

same question twice with the order of the categori- 309

cal responses switched, following this we average 310

the two distributions. 311

Question w/ Reasoning Previous works (Wei 312

et al., 2022; Zhang et al., 2022; Wang et al., 313

2023) have demonstrated improvements to lan- 314

guage model predictive ability when the language 315

model is prompted to break its deductive process 316

into intermediary steps. We experiment with a ver- 317

sion of CPUQ that prompts the language model 318

to produce an intermediary explanations, prior to 319

producing its categorical answer. This is the final 320

method presented in Figure 1. 321

Fine-tuning We follow previous works (Jiang 322

et al., 2021) exhibiting the benefit of fine-tuning 323

on domain specific knowledge. In our experiments 324
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Prompt Stage Prompt Template

Question
w/ Reasoning

PROMPT 1:
Write a thorough, detailed, and conclusive four-sentence answer to the following
question.
To what extent, if any, is the level of {indicator 1} influential to the state of {indicator
2}?
LLM: [Model’s response]

CPUQB Output

PROMPT 2:
Write only the number of the category that fits the following statement.
"Statement: [Model’s response]"
Categories:
1) The level of {indicator 1} is {effect type} influential to the state of {indicator2}.
2) The level of {indicator 1} is not {effect type} influential to the state of {indica-
tor2}.

CPUQC Output
PROMPT 3:
On a scale of 1 to 5, how strong is the influence of changes in {indicator 1} on
changes in {indicator 2}?

Table 1: Example Prompt Templates: Examples of prompts for predicting indicator to indicator causal relationships
in our Economic Allocation experiments. The {indicator} placeholders represent textual representations of indicators.
{effect_type} can be ’direct’, ’indirect’, or blank. CPUQB/C denote the CPUQ methods yielding Bernoulli and
Hurdle Categorical Distributions based on model perplexity. The sequential prompts (Prompt 1-3) illustrate the
conversational context approach, used by the CPUQ methods.

we fine-tuned models under 17bn parameters in325

size. Due to hardware limitations, larger models326

were not considered. To fine-tune these models,327

we used both an instruction dataset and a curated328

knowledge-focused free-flowing text dataset on So-329

cial Policy. The model was trained on both datasets330

in equal proportions. This approach aims to en-331

rich the model’s expertise in Social Policy while332

retaining its inherent instruction-following capabil-333

ities which ensure that the conditional distribution334

p(s | x) has the majority of its mass on tokens335

correlating to a response categorical answer as op-336

posed to tokens which would be continuing the text.337

We provide more information on these datasets in338

Appendices D.1D.2.339

4 Validation: Alignment To Expert340

Annotation341

In this set of experiments, we validate the degree342

of calibration of our approach by investigating its343

ability to align to a dataset produced by the UK344

government which links government spending on345

broad budget items to the specific socio-economic346

indicators they affect.347

Data We fully detail the dataset in Appendix F.348

The part of the dataset used in this validation exper-349

iment provides pairs of (broad budget item, indica- 350

tor) for which the broad budget item does affect the 351

indicator. In total, after pre-processing, there are 352

258 unique health indicators allocated to one of 15 353

broad budget items. We use negative sampling to 354

produce negative samples for this dataset e.g. pairs 355

of (budget item, indicator) for which the budget 356

item does not affect the indicator. 357

Model. We use language models from the llama 358

family (Roumeliotis et al., 2023b,a). We exper- 359

iment model with sizes of 7bn, 13bn and 30bn 360

parameters. 361

Baselines For baseline methods we include two 362

approaches (verb_open) and (verb_closed) which 363

utilise a similar method to (Tian et al., 2023; Zhou 364

et al., 2023; Lin et al., 2022), which simply prompt 365

the model to verbalize its answer with an open- 366

ended or close-ended response. For a baseline 367

model we compare our method against gpt3.5- 368

turbo, a strong performant model. This provides an 369

interesting insight into the effect of foundational 370

model strength. 371

Results As this is a binary classification task we 372

present F1, Precision and Recall scores in Table 3. 373

We notice that our method performs competitively 374
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with the verbalization approaches which do not pro-375

duce probabilistic outputs. The CPUQ Question w/376

Reasoning outperforms the CPUQ Closed Ended377

Question, highlighting the benefit of encouraging378

the model to utilize its own reasoning. GPT3.5379

provides the strongest performance highlight the380

significance of foundational model strength.381

Ablation Experiments In these experiments we382

also include the Expected Calibration Error (ECE)383

metric, introduced by (Guo et al., 2017), quantifies384

the calibration quality of probabilistic predictions.385

It computes a weighted average of the differences386

between observed accuracy and the predicted con-387

fidences across distinct buckets or intervals.388

To address stylistic bias in categorical label order389

for the CPUQB method we found that recall expe-390

riences a significant degradation for foundational391

models of size 13bn and below, whereas the 30bn392

parameter model experiences modest performance393

increases across recall and Expected Calibration394

Error. This implies that the smaller foundational395

model’s slightly struggle when asked categorical396

Yes/No questions where the arrangement of an-397

swers is in an unconventional order such as 1) Neg-398

ative Response 2) Affirmative Response.399

For both the 7bn and 13bn model sizes we ob-400

serve a decrease in precision when ’indirectly’ is401

introduced to the prompt, reflecting the notion that402

the language model may be factoring in loose rela-403

tionships when compared to the expert annotators404

judgement. On the other hand, the Recall increases405

across both sizes when ’indirectly’ is introduced to406

the prompt, reflecting the complementary notion407

the language model’s more loose interpretation of408

what constitutes a relationship allows less chance409

of missing possible relationships.410

5 Evaluation: EA-ABM Forecasting411

We compare the forecasting performance of an EA-412

ABM algorithm called Policy Priority Inference413

(PPI) when the underlying graphs is estimated us-414

ing our CPUQ methods and other baseline methods.415

For each method/graph, we train the PPI system on416

the first 5 years of data, then evaluate predictions417

for the level of the socio-economic/health indica-418

tors for over the next two years.419

For a detailed explanation of the PPI algorithm420

please refer to Appendix B. The PPI algorithm mod-421

els two levels of interactions. The first is the budget422

item to indicator (b2i) interaction set, representing423

the 1st order effects of government spending and424

(a) Unbiasing Categorical Label Order

(b) Varied Effect Type

Figure 2: Ablation Experiments: These figures repre-
sent predictive performance when classifying the edge
existence in Textual Attribute Graph underlying an Eco-
nomic Allocation dataset involving U.K. government
spending and socio-economic indicators. Figure a)
presents the changes in predictive scores when we im-
plement our method to unbias categorical Label order,
explained in Section 3. Figure b) presents the perfor-
mance change from specifying the prompt templates’
"effect type" as ’directly’ or ’indirectly’ when compared
to having no specification of relationship type between
spending on a government budget item and a socio-
economic indicator. The prompt template is exemplified
in Table 1.

the indicator to indicator (i2i) interactions captur- 425

ing the second order spillover effects. In the PPI 426

algorithm the b2i edges are binary, while the i2i 427

edges are floats, appropriate for our CPUQB and 428

CPUQC methodologies respectively. 429

Data. We have 7 years of annual data for gov- 430

ernment spending on the fine grained health re- 431

lated budget items and the levels of socioeconomic- 432

health indicators. The first 5 years form the train- 433

ing set. The final ttwo years form the test set. 434

There are 32 fine-grained budget items and 258 435
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socioeconomic-health indicators. This means there436

are 8256 possible b2i edges and 66564 possible i2i437

edges for estimation. Appendix F provides more438

detail explanation of the dataset used.439

Baseline Methods. Each experimental result440

consists of methods for predicting both b2i and441

i2i edges independently. For determining the b2i442

edges, baseline methods include verbalization with443

close-ended questions as detailed in Table 1 and444

naive expert annotation (ea). The latter extends the445

expert annotation—which provides related pairs of446

broad budget items bb and indicators i—by assum-447

ing every fine-grained budget item bf that’s part of448

the broad budget item (bf ∈ bb) relates to all the449

indicators the broad budget item is noted to connect450

with: if bf∈bb, and(bb, i)→(bf , i).451

For determining i2i edges, baseline methods en-452

compass zero (representing no spillover effects be-453

tween indicators), verbalization as shown in Ta-454

ble 1, entropy of the CPUQB output bernoulli dis-455

tribution for all edges with a probability over 0.5456

of existing, and the Concave penalized Coordinate457

Descent with reparameterization (CCDr) algorithm.458

CCDr estimates Bayesian network structures us-459

ing penalized maximum likelihood estimation com-460

bined with coordinate descent optimization on repa-461

rameterized Gaussian likelihoods. By inducing462

convexity in the likelihood and applying sparsity-463

inducing MCP (Li et al., 2022) regularization, it464

efficiently learns graphs, especially in p >> n sce-465

narios. Details on the CCDr methodology can be466

found in Section C.467

For the CPUQ and verbalize methods, we em-468

ploy a model from a 30bn parameter set of the469

llama family, finetuned on our curated datasets as470

described in Appendices D.1 and D.2.471

5.1 Results472

For the set of experiments where the i2i methodol-473

ogy is fixed to naive expert annotation (n.a.e.) and474

b2i method varies, in Table 2 we observe that the475

CPUQC performs competitively with verbalization476

and that the CPUQC /verbalize method achieves the477

highest mse/mae score.478

For the set of experiments where we addition-479

ally predict the b2i edges, we immediately notice a480

degradation in performance of the verbalize method481

and CPUQ method, indicating relative difficulty in482

predicting b2i relative to i2i edges. We posit this is483

due to binary output space of the b2i edges mean-484

ing that mis-specification of an edge weight has a485

larger negative effect on performance. However, 486

within this category we notice the CPUQ approach 487

outperform the verbalize approach. 488

b2i i2i mse mae
n.e.a zero 0.01208 0.04835
n.e.a CCDr 0.01209 0.04832
n.e.a entropy 0.01196 0.04822
n.e.a verbalize 0.01200 0.04814
n.e.a CPUQC 0.01195 0.04820
verbalize verbalize 0.01211 0.04830
CPUQB CPUQC 0.01202 0.04825

Table 2: PPI Forecasting Performance: Prompting
methodologies are varied for prediction of binary budget
item to indicator (b2i) and non-binary indicator to indi-
cator (i2i) causal relationships. For b2i edges, methods
include naive expert annotation (n.e.a) and verbalization.
Float i2i methods include zero (no spillover), verbaliza-
tion, entropy from CPUQB with > 0.5 probability, and
the CCDr algorithm. Results highlight the competitive
performance of CPUQC , but also the increased rela-
tive difficulty LLM models have labelling binary valued
edges.

The second set of experiments focus on also pre- 489

dicting the binary b2i edges in the graph as well 490

as the non-binary i2i edges in the graph. We no- 491

tice that our CPUQ outperforms the verbalization 492

method. 493

5.2 Inspecting Edges Distribution 494

In Figure 3a we show the distribution of values for 495

the predicted values for the i2i edges in our Eco- 496

nomic Allocation graph. The verbalization method 497

suffers from the output being limited to producing 498

on two values of 2.0 and 3.0. Conversely, we notice 499

that the CPUQC method produces a unimodal dis- 500

tribution centered around 3.0 with tails extending 501

to 2.6 and 4.0. 502

6 Related Work 503

Recent work have explored various approaches for 504

quantifying uncertainty in predictions from large 505

language models (LMs). Some methods have fo- 506

cused on eliciting and evaluating verbalized confi- 507

dence scores produced by the LM itself (Tian et al., 508

2023; Zhou et al., 2023). Others have proposed us- 509

ing consistency among multiple candidate answers 510

as a proxy for the model’s uncertainty (Xiong et al., 511

2023; Ngu et al., 2023). While promising, these 512

approaches do not directly rely on the standard 513

probabilistic measure of perplexity. 514
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(a) CPUQC (b) Verbalization

Figure 3: Distribution of Predicted Edge Weights:
We compare the distribution of non-zero predicted edge
weights from our CPUQC prompting strategy to the
distribution of edges from verbalization strategy when
using the same underlying language model. We notice
the verbalization exhibits a limited distribution with
values falling on the values of 2 and 3. Our CPUQC

approach values in the range of 2.6 and 4.0.

For example, (Ngu et al., 2023) present domain-515

independent uncertainty measures based on the di-516

versity of responses to a prompt, including entropy,517

Gini impurity, and centroid distance. They demon-518

strate these sample-based diversity measures cor-519

relate with failure probability without using per-520

plexity. Similarly, (Xiong et al., 2023) introduce521

consistency-based confidence scores by generating522

multiple candidate answers and assessing their con-523

sistency. They also propose hybrid methods com-524

bining consistency with verbalized scores. How-525

ever, these methods require drawing multiple sam-526

ples from already large Language Models leading527

to a large computational expense.528

Other studies have focused on eliciting cali-529

brated confidence estimates directly from language530

models fine-tuned with human feedback (Tian et al.,531

2023; Zhou et al., 2023; Lin et al., 2022). These532

methods produce probability scores or phrases rep-533

resenting the model’s certainty, showing strong per-534

formance in calibration metrics. While promising,535

they rely less directly on perplexity itself. Both536

(Lin et al., 2022) and (Kadavath et al., 2022) also537

propose ways to finetune predictors on the embed-538

dings of generating models to predict models un-539

certainty. While promising, these approaches need540

task-specific labels, additional training, and seem541

to be unreliable out-of-distribution (Kadavath et al.,542

2022).543

Some prior work has addressed the important544

concern of grouping semantic similar terms when545

distributed probabilities over candidate answers. 546

(Jiang et al., 2021) address the case of one word 547

answers by summing the probability over groups 548

of synonyms, while (Kuhn et al., 2023) extend 549

this idea to phrases by grouping phrases which are 550

deemed to have semantic equivalence. Although 551

both methods incur a large additional computa- 552

tional cost at they require a secondary model which 553

is used to evaluate similarity of different candidate 554

answers and also utilise a sampling methodology. 555

In contrast, CPUQ evaluates likelihood of cate- 556

gorical predictions from language models avoiding 557

time-ineffeciency of sample-based techniques and 558

inconsistencies of open-ended verbalized scoring. 559

Model Prompt Style F1 Prec. Rec.
GPT3.5 verb_closed 0.795 0.722 0.883
GPT3.5 verb_open 0.830 0.779 0.888
30bn verb_closed 0.767 0.715 0.826
30bn verb_open 0.778 0.681 0.908
30bn CPUQB closed 0.698 0.757 0.647
30bn CPUQB Q.R. 0.760 0.644 0.928

Table 3: Expert Annotation Alignment: Evaluation
of predicting the influence of local government bud-
get items on socio-economic indicators using different
prompting methodologies. Compared are the CPUQ
methods against GPT3.5 and verbalization strategies.
Verb_closed and verb_open elicit deterministic Yes/No
answers, while CPUQ methods produce probabilistic
outputs. Examples of Prompt Styles are in Table 1. The
30bn model is a derivative of the llama language model
family. Q.R. denotes Question w/ Reasoning. CPUQC

performs competively with verbalization, while achiev-
ing significantly stronger recall.

7 Conclusion 560

We introduced CPUQ, a novel method for uncer- 561

tainty quantification using Language Models. This 562

method utilizes categorical-style questions to gen- 563

erate insightful hurdle categorical distributions for 564

edges in a textual attribute graph associated with 565

Agent-Based Modelling for Economic Allocation. 566

Validated against a U.K. dataset on government 567

spending and socio-economic indicators, CPUQ 568

not only aligns effectively with expert annotations 569

but also outperforms prominent alternative LLM 570

and statistical methods. Critically, it can deliver 571

accurate and interpretable distributions over edge 572

weight estimations vital for network estimation in 573

Economic Allocation systems used by policy mak- 574

ers and decision makers. 575

8



8 Ethics Statement576

We acknowledge that our proposed model may be577

susceptible to having learnt harmful biases present578

in the pre-training and finetuning datasets. In and579

of itself this has the potential to produce harmful580

suggestion for policy makers and decision mak-581

ers. Therefore, we advocate for morally correct582

and responsible practices in the case of real-world583

application.584
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A Economic Allocation Agent Based 748

Modelling Systems 749

Agent-based Modelling (ABM) serves as an in- 750

strumental framework for depicting intricate eco- 751

nomic allocation games that involve interdepen- 752

dent agents. The delineation of the political econ- 753

omy game from the accompanying research can be 754

broadened into three primary aspects: environment, 755

agents, and dynamics. 756

Environment: The configuration presents a 757

graph which elucidates the interdependencies 758

among N agents, potentially characterized by 759

general graph structures such as Erdős-Rényi or 760

Barabási-Albert models. Every agent, denoted by 761

i, encompasses a state variable Si to manifest its 762

prevailing state, which could span across either con- 763

tinuous or discrete realms. Furthermore, a global 764

state S amalgamates the states of all agents. 765

Agents: In the context of agents, each i is driven 766

to amplify a reward function Ri(S), contingent on 767

the global state, epitomizing the economic incen- 768

tives intrinsic to every agent. An inherent limitation 769

faced by the agents is the absence of comprehensive 770

knowledge about the states or actions of their coun- 771

terparts. Their observations remain confined to the 772

local data discernible within their graph neighbor- 773

hood. 774

Dynamics: With the progression of each time 775

step t, every agent i institutes an action Ai(t) 776

rooted in their localized observations, culminat- 777

ing in the evolution of their individual state Si. 778

Owing to the intricate web of interdependencies 779

embedded in the graph, modifications in the local 780

state permeate, influencing the overarching global 781

state S. Subsequently, the environment recipro- 782

cates by dispensing a reward Ri(t) to each agent, 783

in line with the recalibrated global state. The 784

overarching goal for agents is to unravel policies 785
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that potentiate the maximization of long-term re-786

wards through their actions. Potential learning algo-787

rithms might encompass model-free reinforcement788

learning, model-based planning, or heuristic adjust-789

ments analogous to the research.790

This expansive framework offers the latitude791

to emulate diverse economic allocation scenarios792

within the ambit of multi-agent games. The in-793

tricate graph structure translates the dependencies,794

while the local observations of agents stand as prox-795

ies for the imperfect information. Meanwhile, the796

learned policies illuminate the underlying incen-797

tives and adaptations. In tandem, the platform fa-798

cilitates a comparative study of different learning799

algorithms, focusing on global efficiency and eq-800

uity outcomes, rendering it an ideal bedrock for801

delving deep into decentralized economic systems.802

B Policy Priority Inference803

In this section we provide a brief formulaic interpre-804

tation of the Policy Priority Inference algorithm de-805

veloped in (Guerrero and Castañeda, 2020, 2021).806

B.1 Formulaic Interpretation807

Agent and State Definitions: Consider N808

agents, where each agent corresponds to a policy809

issue i.810

The state Si of agent i is given by:811

Si = Ii812

where Ii denotes the development level for policy813

issue i. The global state is then defined as:814

S = (I1, . . . , IN )815

Reward and Action Function: The reward816

function Ri(S) for agent i is expressed as:817

Ri(S) = Fi818

with819

Fi = (Ii + Pi − Ci)(1− θifR)820

where:821

• Pi is the resource allocation to agent i.822

• Ci denotes the contribution of agent i.823

• θi indicates the event of agent i diverting824

funds.825

• fR is a function mapping the state of the rule826

of law agent to a probability.827

The action Ai of agent i is defined as:828

Ai = Ci829

Environment Dynamics: The environment ad- 830

justs the indicator levels based on agent contribu- 831

tions as: 832

Ii ← Ii + γ(Ti − Ii)(Ci +
∑
j

AjiCj) 833

Where: 834

• Ti is the target level for indicator i. 835

• Aji signifies the interdependency graph. 836

Objective: Agents aim to devise contribution 837

policies Ci(t) in order to maximize their long-term 838

rewards Fi. Concurrently, the central authority’s 839

responsibility is to allocate resources Pi to guide 840

indicators towards their respective targets. 841

This encapsulates the primary components of 842

the model in the cited paper using standardized 843

terminology. 844

B.2 Policy Formulation and Developmental 845

Strategies 846

Policy Priority Inference (PPI) is a powerful tool 847

rooted in the interplay of complexity economics 848

and computational social science. As we grap- 849

ple with interconnected socio-economic landscapes 850

and strive for strategic advancements, PPI offers 851

precision, depth, and adaptability. Let’s delve into 852

its multifaceted utility: 853

Strategic Allocation & Planning: At the core 854

of PPI is its prowess in guiding resource alloca- 855

tion. It allows policymakers to effectively navigate 856

intricate policy networks, ensuring transformative 857

resources are channeled towards areas that promise 858

the highest impact. Furthermore, with its capabil- 859

ity to model and reproduce observable fiscal pat- 860

terns, PPI strengthens the foundation of "what-if" 861

analyses, fostering a deeper understanding of fiscal 862

planning and its repercussions. 863

Evaluative Metrics & Feasibility: PPI is not 864

just prescriptive but also evaluative. It aids in gaug- 865

ing the coherence of a government’s priorities rela- 866

tive to its overarching goals. Moreover, it provides 867

a clear lens to assess the feasibility of set targets, 868

projecting timeframes and requirements, thereby 869

allowing for informed adjustments. 870

Optimization & Efficiency: The framework 871

stands out in its ability to identify both acceler- 872

ators and bottlenecks in development pathways. 873
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This dual capability facilitates the search for do-874

mains that amplify improvements across various875

indicators while simultaneously highlighting areas876

where resource constraints might impede progress.877

Complementing this is PPI’s inherent knack for un-878

covering inefficiencies, ensuring that resources are879

utilized optimally and wastages are minimized.880

Adaptability & Goal Setting: PPI’s versatility881

is exemplified in its adaptability to diverse national882

contexts. Whether it’s exploring a broad spectrum883

of developmental goals or assessing the fluidity of884

resource reallocation, PPI is instrumental in tailor-885

ing strategies that resonate with a nation’s unique886

developmental narrative.887

C CCDr888

The CCDr algorithm introduced in this paper esti-889

mates Bayesian network structures using penalized890

maximum likelihood estimation and coordinate de-891

scent optimization. Here is a detailed mathematical892

explanation of how it works:893

Let X = (X1, ..., Xp) be a p-dimensional ran-894

dom vector that follows a multivariate Gaussian895

distribution with mean 0 and covariance matrix896

Σ. The goal is to estimate the structure of the897

underlying directed acyclic graph (DAG) B that en-898

codes the conditional independence relationships899

between the variables.900

We start with the structural equation model901

(SEM) representation of X:902

Xj =
∑
i ̸=j

βijXi + εj for j = 1, ..., p903

where the εj are independent Gaussian noise904

terms with variances ω2
j . The weighted adjacency905

matrix B = (βij) along with the diagonal matrix906

Ω = diag(ω2
1, ..., ω

2
p) define the DAG structure907

and noise variances.908

The negative log-likelihood function based on n909

i.i.d. observations is:910

L(B,Ω|X) =911 ∑
j

[
n

2
log(ω2

j ) +
1

2ω2
j

||xj −Xβj ||2
]

912

This function is nonconvex, so a reparameteriza-913

tion is done:914

ϕij =
βij
ωj

and ρj =
1

ωj
915

leading to the convex loss function: 916

L(Φ,R|X) = 917∑
j

[−n log(ρj) +
1

2
||ρjxj −Xϕj ||2 (9) 918

where Φ = (ϕij) and R = diag(ρ1, ..., ρp). The 919

penalized loss function is then: 920

Q(Φ,R) = L(Φ,R|X) +
∑
i ̸=j

pλ(|ϕij |) 921

where pλ(·) is a penalty function like MCP or 922

lasso. 923

The CCDr algorithm minimizes Q by perform- 924

ing cyclic coordinate descent. Each ϕij is updated 925

by minimizing Q1(ϕij) = argminQ(Φ,R) and 926

each ρj by minimizing Q2(ρj). After convergence, 927

the estimates ϕ̂ij and ρ̂j are transformed back to 928

β̂ij and ω̂2
j . The estimated DAG B̂ is the one cor- 929

responding to Φ̂. By using a sparsity-inducing 930

penalty, the algorithm produces sparse DAG esti- 931

mates. Theoretical results show this procedure can 932

consistently estimate the true graph structure under 933

certain conditions. 934

In summary, the CCDr algorithm is able to learn 935

sparse Bayesian network structures by exploiting 936

a convex reparameterization of the Gaussian likeli- 937

hood and using cyclic coordinate descent with con- 938

cave regularization to produce penalized maximum 939

likelihood estimates. The sparsity helps estimate 940

high-dimensional graphs efficiently. 941

D Finetuning 942

D.1 Social Policy Dataset 943

We curated a dataset derived from high-quality re- 944

search papers that provide a comprehensive view 945

of government policy across its 14 broad budgetary 946

categories. Utilizing the SemanticScholar API, we 947

downloaded up to 250 research papers for each 948

category, applying filters for language and cita- 949

tion count. Our final dataset, after removing du- 950

plicates, comprises 1450 research papers. Dur- 951

ing preprocessing, the text was segmented into 952

spans ranging from 128 to 256 characters, with 953

a 35% overlap. Only English-language papers 954

were retained. Any textual inconsistencies arising 955

from PDF to text conversion were rectified using 956

’stabilityai/StableBeluga-7B’. The dataset is open- 957

sourced and available at this repository. 958
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D.2 Instruction Tuning Dataset959

The inherent methodology of our CPUQ approach960

necessitates a response style typical of instruction-961

tuned language models. This specific response962

mechanism aids in understanding and generating963

appropriate answers for Prompt + Answer scenar-964

ios. The Social Policy Dataset contains continuous965

prose, from which a language model towards learns966

continuation, as opposed to responding. To ensure967

our model retains strong ’response style’, we inte-968

grated the WizardLM dataset (Luo et al., 2023b;969

Xu et al., 2023; Luo et al., 2023a). This dataset970

bridges the instructional response gap, fortifying971

our model’s ability to handle the nuances of our972

PUQ prompting approach.973

D.3 Fine-tuning Setup974

Our finetuning setup employed QLORA with dou-975

ble quantization, an Adam optimizer (lr=1e-3,976

b1=0.9, b2=0.95). We applied a constant sched-977

ule with a 200-step warm-up and distributed over 6978

RTX3090s. For the 7bn models, we used a batch979

size of 30, while for the 13bn models, the batch980

size was 18, with gradients accumulated over 3981

steps, resulting in an effective batch size of 54. An982

innovative paired early stopping rule was designed,983

halting the process if no improvements are detected984

on validation sets for either instruction or next to-985

ken prediction tasks.986

E CPUQ: Further considerations987

Constraints: Important constraints of this988

methodology are that when using the categorisation989

methodology the user must specify that the cate-990

gorical numbers chosen be numbers and not letters.991

An intuitive explanation for this is based on the idea992

of ensuring that the probability of the next token is993

only focused on the probability of selecting a cor-994

rect categorical number and not also predicting a995

general continuation. For example, suppose we ask996

a LLM to answer the Question: "Choose the cate-997

gory letter that best answers the question: Which998

is the most environmentally friendly form of trans-999

port for people in a large city: A) SUV, B) Bus or1000

C) Bike. The ideal set of responses would be ["A.",1001

"B.", "C."]. However, due to the unconstrained1002

nature of Language Models the set of responses1003

also includes sentences such as ["A likely answer1004

to this question would C", "Based on Bikes having1005

no emissions "C" would be the correct category.].1006

Initial experiments indicated experiments that the1007

extent to which this is a problem is more tied to the 1008

language model strength than the phrasing used in 1009

the prompt. 1010

Excluding an NA from Categorical Answer 1011

Space In our work, we use a binary categoriza- 1012

tion for our ’Yes’ ’No’ prediction and opt out of a 1013

third option which could reflect a non-committal 1014

or uncertain prediction. Specifically, the two alter- 1015

natives for this category are ’I don’t know’ and ’I 1016

am not sure’. The difference between these phrases 1017

can have implications both in interpretation and in 1018

practical implementation. If we were to extend the 1019

categorical answer space to include a third category, 1020

our set of answers would look like [’Yes’, ’No’, ’I 1021

don’t know / I am not sure’]. 1022

We begin by discussing the category "I am not 1023

sure." The category "I am not sure" implies a more 1024

comprehensive form of uncertainty compared to 1025

"I don’t know." Not only does it suggest a lack of 1026

knowledge, but it can also technically include a dis- 1027

tribution over ’Yes’ and ’No’. For instance, stating 1028

"I am not sure" might imply that one is 20% certain 1029

of ’Yes’ and 80% certain of ’No’. This makes the 1030

categories not strictly mutually exclusive. How- 1031

ever, this comprehensive interpretation presents its 1032

own problems. When a probability is assigned to 1033

a category like ’I am not sure’, we are essentially 1034

quantifying uncertainty about uncertainty. 1035

Now, considering the simpler "I don’t know" 1036

option, from a theoretical standpoint, it represents 1037

an acknowledgment of one’s epistemic boundaries 1038

on a topic, without necessarily implying any spe- 1039

cific probability distribution over ’Yes’ and ’No’. 1040

This does not pose a logical problem. However, in 1041

practice, we encountered an issue: for cases where 1042

the correct answer to a categorical question was 1043

’No’, language models were inclined to allocate a 1044

high probability to ’I Don’t Know’. This tendency 1045

meant that ’No’ and ’I don’t know’ cannibalized 1046

each other’s assigned probability, complicating the 1047

mapping of probabilities to categories. 1048

The nuanced difference between the two cate- 1049

gories and the inherent difficulties they bring to 1050

the table resonate with the Knightian distinction 1051

between risk and uncertainty, where some events 1052

inherently defy easy probabilistic characterization 1053

(Knight, 1921). Arrow’s critique on the limits of 1054

decision-making under uncertainty complements 1055

this, indicating potential shortcomings of standard 1056

decision models in scenarios with intertwined un- 1057

certainty levels (Arrow, 1971). 1058
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To conclude, while "I don’t know" is a straight-1059

forward acknowledgment of lack of knowledge,1060

adding a probabilistic layer to it leads to contradic-1061

tions, especially when the boundaries between the1062

categories blur.1063

F Economic Allocation Dataset1064

The dataset can be composed into three parts1065

1. Dataset indicating related broad government1066

budget items and indicators, annotated by ex-1067

perts1068

2. Timeseries of United Kingdom’s Spending1069

across 32 finegrained Government Budget1070

Items1071

3. Timeseries of 258 socio-economic indicator1072

levels in the U.K1073

1. Government spending timeseries We cre-1074

ate a dataset showing Local Authority expenditure1075

over 32 finegrained UK budget items. After post-1076

processing we keep data between 2013 and 2019.1077

To retrieve this data, we draw upon the Spend and1078

Outcomes Tool (SPOT) (Office for Health Improve-1079

ment & Disparities, 2023), created by the Office1080

for Health Improvement and Disparities (OHID,1081

Department of Health and Social Care, England).1082

In terms of expenditure, SPOT includes net current1083

Local authority revenue expenditure and financing,1084

often referred as Revenue Outturn 3. We focus1085

on this fraction of the total Public Health Fund-1086

ing as local authorities have a relative leeway to1087

allocate resources to fund Public Health Services,1088

as opposed to the expenditure earmarked to cover1089

National Health Service (NHS), primary care, pre-1090

scribing, and other staff costs. It is also smaller than1091

other types of expenditure available to local author-1092

ities, such as Education, which is much larger but1093

more rigid in the services to allocate.1094

2. Socioeconomic indicator timeseries In1095

terms of health service provision and population1096

level health outcomes, we obtain data from Fin-1097

gertips(for Health Improvement & Disparities ,1098

OHID), which is a large dashboard of health-related1099

information reported by different public entities1100

and organised into themed health profiles. The1101

Consumer Price Inflation time series(for National1102

Statistics , ONS) and the mid-year estimates of resi-1103

dent population(?) are obtained from the UK Office1104

for National Statistics. Rule of law and governance1105

were obtained from the World Development Indi-1106

cators.1107

3. Related Broad Budget Item and indicators 1108

Dataset In total there are 258 unique indica- 1109

tors and 15 broad budget items. SPOT provides 1110

a dataset which indicates which broad government 1111

budget items are intended to effect which indica- 1112

tors. 1113

G Normalised Entropy For Categorical 1114

Distribution 1115

In this section, we discuss the Normalized Entropy 1116

for Categorical Distributions, emphasizing its simi- 1117

larities with the traditional normalization method. 1118

The key properties of the normalised entropy for 1119

Categorical Distributions are: 1120

1. The entropy is scaled to the range [0, 1], mak- 1121

ing it comparable across distributions with 1122

different numbers of categories. 1123

2. The surprisal is consistent across different dis- 1124

tributions. 1125

3. For a uniform distribution over n categories, 1126

the normalized entropy is always 1, providing 1127

an intuitive measure of maximum uncertainty. 1128

4. The method is specifically tailored to categori- 1129

cal distributions, offering a direct and intuitive 1130

comparison between distributions. 1131

To draw parallels between the two normalization 1132

methods, consider the entropy formula with base 1133

n: 1134

H(X) = −
n∑

i=1

1

n
logn

1

n
1135

Given that logn n = 1, the entropy for a uniform 1136

distribution simplifies to: 1137

H(X) = 1 1138

This is analogous to the traditional method of di- 1139

viding by log2(n), where the entropy of a uniform 1140

distribution is also normalized to 1. The primary 1141

similarity is that both methods aim to scale the 1142

entropy value to a range of [0, 1], ensuring compa- 1143

rability across different distributions. 1144

Benefits of using the number of categories n as 1145

the base for normalization include: 1146

• Direct and intuitive comparison between dis- 1147

tributions with different numbers of cate- 1148

gories. 1149

• The entropy value provides a clear indication 1150

of the distribution’s nature, with 1 indicating 1151

a uniform distribution and values close to 0 1152

indicating deterministic distributions. 1153
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Another advantage of this normalization method1154

is its simplicity and ease of interpretation, espe-1155

cially for audiences not deeply familiar with tradi-1156

tional information theory concepts. This is crucial1157

since our focus is on Economic Allocation systems,1158

which could include policy makers. In this con-1159

text, this measure of uncertainty offers an easily1160

interpretable value between 0 and 1.1161

H Reproducibility Statement.1162

Code The code and data used in this study can1163

be found at this repository [Redacted for Review].1164
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