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Abstract

Agent Based Modelling (ABM) algorithms for
Economic Allocation (EA) systems model in-
teractions between economic agents and indi-
cators. These EA-ABMs provide important
insight for policy makers and decision anal-
ysis as they can be used to model complex
systems such as Government Spending or Fi-
nancial Market Contagion. However, the util-
ity of EA-ABM’s depends on the quality and
interpretability of the underlying graph’s esti-
mated edge weights. Statistical network esti-
mation methods perform poorly due to these
datasets often having limited timesteps of data
but a large number of nodes (economic actors
or indicators) and edges (causal relationships).
We propose a structured method to use Large
Language Models (LLM) to produce predic-
tive hurdle distributions for the edge weights;
enhancing interpretation through uncertainty
quantification and textual reasoning. Our ap-
proach, Categorical Uncertainty based Uncer-
tainty Quantification (CPUQ) decouples the
modelling of causal relationships into sepa-
rately modelling existence and causal relation-
ship strength. Through evaluation on a real
Economic Allocation dataset, we show that
CPUQ produces probabilistic predictions well
aligned with experts opinions, and achieves bet-
ter EA-ABMs forecasting ability than existing
statistical and LLM based methods. We also
motivate a solution for the issues of conflating
a language model’s uncertainty with syntactical
uncertainty as opposed to semantic uncertainty.

1 Introduction

Economic Allocation (EA) Agent Based Modelling
(ABM), crucial for simulating economic allocation
processes, can be hampered by the complex chal-
lenge of determining the edge weights for each
node pairing within vast graphs representing eco-
nomic actors and economic/financial indicators. In
many situations, these graphs can encompass edges
numbering in the order of 10%, each demanding

precise indications of relative strength or uncer-
tainty. This becomes even more complex since
the number of nodes (agents) and potential edges
(interactions) often dwarfs the span of data avail-
able in graphs underpinning Economic Allocation
Systems. There exist several statistical methods
for estimating directed networks, each with dif-
ferent assumptions and limitations. For example,
Bayesian networks methods (Pearl, 1988; Mas-
sara et al., 2015; Aragam and Zhou, 2015) assume
acyclic graphs and do not describe causal relation-
ships, while Granger-causality networks based on
(Granger, 1969; Kang et al., 2017) assume under-
lying linear relationships between variables as indi-
cated in (Castagneto-Gissey et al., 2014) and are in-
appropriate for test of predictability involving more
than two variables. Further, the these methods often
require sufficient observations-to-variables ratio, a
common limitation in many Economic Allocation
Systems even with matrix factorization methods.
(Aragam and Zhou, 2015) propose a non-convex
optimization approach that extends Bayesian net-
work methods to graphs where p » n, overcom-
ing the necessity for sufficient observations-to-
variables ratio.

Previous works (Yamasaki et al., 2023; Bansal
et al., 2019; Saxena et al., 2022) have highlighted
the effectiveness of network estimation using Lan-
guage Models (LM) on Textual Attribute Graphs,
where each node is represented by some descrip-
tive text. Furthermore, these Language Models
can also be extended to producing well calibrated
probabilistic predictive distributions for the rela-
tionships between two entities as recent works in
Language Model Question Answering (Kuhn et al.,
2023; Kadavath et al., 2022) have shown.

However, many of these LM based approaches to
calibrated distributions focus on the simpler tasks
of distributions over categorical outputs (Kuhn
et al., 2023; Jiang et al., 2021), as opposed to ex-
pressive probabilistic predictions over ordinal and
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Figure 1: CPUQ: This diagram shows the CPUQ methodology for determining predictive distributions for edges in
a Textual Attribute Graph, modelling interactions between economic agents a;,. CPUQ g ¢ is an LLM agnostic
method that can produce a Bernoulli or Categorical Distribution determining edge existence and conditional edge
weight respectively. The weight of the directed edge between a; and ay is then a hurdle mixture distribution. The
conditional uncertainty for an existing edge is then based on entropy where the log base is equal to 5, the number of

scale categories.

numerical outputs. With the latter requiring more
complex properties of for an output distribution to
be consistent such multi-modality or convexity.

To tackle these challenges our approach, Cate-
gorical Perplexity based Uncertainty Quantification
(CPUQ), is designed to estimate edge weights in
Text Attribute Graphs (TAG), graphs where each
node can be represented by textual information.
Our approach outputs a zero-inflated mixture dis-
tribution, which includes a Bernouilli distribution
to model the chance of no edge existing between
two nodes and a Categorical distribution to model
the weight of the edge if it does exist. Relative to
statistical network estimation methods the use of
text attributes better reflects causation modelling.
Furthermore, our method also provides an inter-
pretable textual explanation for the output provided
and the use of predictive hurdle mixture distribu-
tions promotes sparse networks while limiting in-
ference time.

In this work we validate and evaluate our method
on a Economic Allocation system where a regional
government (United Kingdom) must allocate its
budget between many budget items with a goal of
achieving specific levels for a set of indicators over
a 9 year horizon.

In developing CPUQ, we also analyse concep-
tual and practical issues with uncertainty quantifi-
cation with language models. We further investi-

gate any biases induced by our uncertainty quan-
tification approach by inspecting the distribution of
edges predicted relative to existing approaches. key
benefits of our method encompass its strong align-
ment to human labelled datasets, interpretability,
cost-effectiveness, automation potential and ability
to perform uncertainty quantification. For instance,
explanations for specific edges are integral to our
inference process.
The essence of our contributions lies in:

* Develop CPUQ, which outputs a interpetable
hurdle categorical distribution through cate-
gorical style questions.

* Provide a formal motivation for CPUQ, high-
lighting the complexity of semantics and syn-
tax when performing perplexity based Ques-
tion Answering.

* Show CPUQ methods produce strong align-
ment to expert annotations for the causal
edges in a graph underlying an real world Eco-
nomic Allocation System.

¢ Demonstrate that CPUQ based network esti-
mation performs outperforms existing statisti-
cal and Language Model network estimation
methods when evaluated by the performance
of an Economic Allocation Agent Based Mod-
elling algorithm.



2 Uncertainty Quantification Challenges

Previous works have experimented with using vari-
ous forms of sampling based approaches to Uncer-
tainty Quantification which we discuss below.

Prompt Variation Methods: Prompt variation
is the method of prompting a language model with
phrases/synonyms which have the same meaning
and observing the variation in output. A large body
of recent works (Arora et al., 2022; Wei et al., 2022)
have demonstrated strong performance increases
on QA tasks through designing methods to find an
optimal prompt. This line of research would sug-
gest an optimal prompt exists, and prompt variation
does not test a model’s predictive uncertainty but
mostly the quality of the prompt. Further, (Jiang
et al., 2021) showed the prompt specification be-
comes less important as the foundational models
become better calibrated.

Sequence perplexity based measures:  The
probability of the a text sequence, s, is the prod-
uct of the conditional probabilities of new tokens
given past tokens, whose resulting log-probability
islogp(s | ©) = > ;logp(s; | s<;), where s; is
the 7’th output token and s.; denotes the set of
previous tokens. From this distribution, previous
works (Jiang et al., 2021; Kuhn et al., 2023) have
used the corresponding predictive entropy H (s |
z) = — [p(s | z)Inp(s | x)dy as a point statistic
of uncertainty. Alternatively, (Malinin and Gales,
2018; Murray and Chiang, 2018) used the arith-
metic mean log-probability 3 va logp (s; | s<i)-

Previous works (Kuhn et al., 2023) have briefly
stated the lack of "theoretical justification" for this
method. We expand upon this argument and pro-
pose a formal condition that holds true when the
output space includes tokenized sequences s with
length over 1.

When considering sequences over length 1, the
conditional probability p (s; | concat(x,s;)) has
theoretically (Mann and Thompson, 1987) and
practically (Adewoyin et al., 2022; Banarescu et al.,
2013) been decomposed into composite distribu-
tions over syntax and semantics, where syntax is
the arrangement of words and phrases to create
well formed text and semantics is the underlying
meaning of the text.

We believe previous works have highlighted spe-
cific incidences of this condition. For example,
(Murray and Chiang, 2018) highlights ’label bias’;
a models’ stylistic bias towards a specific length of

response which reduces the relative likelihood of
longer answers. While other works, (Jiang et al.,
2021; Kuhn et al., 2023) show a language models
bias towards different styles of expressions with
the same ’semantic equivalence’ must be taken into
consideration.

Overcoming Stylistic Bias When the response
space for a language model is constrained to a
set of token sequences of maximum length 1, the
scope for syntactic style to influence the output
distribution is limited. Intuitively, this is reflected
by the singular ’style’ of response when answer-
ing a Yes/No question e.g a respondent replies
’Yes.” or 'No.” independent of any syntactic
style they may have. We can express this by de-
composing the conditional probability of an out-
put sequence s, given prompt x, p(s | z) =
> ;logp(s; | concat(z,s.;)) into a joint condi-
tional probability involving a latent semantic mean-
ingm &€ M.

*logn(s [ 2) = > logp(s,m | x) (1)

meM

= Z Zlogp (si | concat(z,s<;), m)
+logp(m | x)

=Y logp(so | w,m) +logp(m | )  (3)

m

~logp(so = s" | z,m)+logp(m |z) (4

Where equation 2 decomposes the surface re-
alization, s, distribution into a 2 step process of
initially modelling the semantic meaning m, then
conditionally modelling s over a bi-variate distribu-
tion over prompt z and the output’s latent seman-
tic meaning m . The simplification in Equation 3
is due to the constraint to 1 token responses. Fi-
nally, in equation 4, we constrain our prompt x to
a prompt set € X’ for which the output distri-
bution will be heavily weighted on a unique token
s*, p(sp = s™ | x,m) for each possible semantic
meaning m.

As the p(sp = s* | x, m) approaches 1 for m €
M the primary source of variability in the p(s | x)
can be attributed from the term log p(m | ). This
emphasizes that, in the restricted case of single-
token responses to a specific set of prompts ' € X,
the model’s uncertainty predominantly originates
from the latent semantic meanings rather than the
stylistic variations of the response.

We propose to satisfy these conditions with Cat-
egorical Question Style prompts.



3 Categorical Perplexity based
Uncertainty Quantification

In Section 2 we motivated the use of Categorical
Prompts for Uncertainty Quantification (CPUQ)
as more efficient than sequence sampling methods
while correctly providing uncertainty over distinct
semantic outputs instead of syntactic outputs.

We remind the reader that our downstream task
is network estimation in Textual Attribute Graphs
underpinning EA-ABMs, for which we determine
a probabilistic distribution over edge existence and
edge weight. Table 1 provides prompt templates
and Figure 1 provides an illustration for the follow-
ing three steps:

1. Determining Edge Existence
2. Determining Edge Weight
3. Determining Predictive Uncertainty

1. Determining Edge Existence CPUQpz For
edge existence we create a categorical question
style prompt that requires the model’s response
to be the number token for the correct category
number. We then use perplexity over the one token
output space to create a Bernoulli distribution over
the corresponding *Yes’ edge exists or 'No’ edge
doesn’t exists answers.

2. Determining Edge Weight CPUQ, Given
the edge existence probability reaches a specific
threshold hurdle h, we create a categorical question
style prompt that requires the model’s response to
be the single token for the number representing the
relationship strength between two economic agents
/ indicators on a scale. This interval must only
include single digits and in this work we choose
integers between one and five. After attaining the
categorical distributed c, illustrated in Figure 1, we
determine the categorical mean for the weight by
multiplying each value by a normalized likelihood
as shown in Equation 6.

N (G ED)
pnorm(s ‘ .%') = Zj f(Sj ’.’L‘) 5)
10 ' ‘
N(S) = Z s'- pnorm(SZ ’ -T) (6)
=1

A benefit of the hurdle A, is that it reduces the com-
putational expense required by having to perform
this secondary weight determination step on all
samples.

3. Determining Predictive Uncertainty Point
statistics for uncertainty over edge existence or un-
certainty over edge weight can be determined using
an entropy based measures. Focusing on maximiz-
ing interpretability of this method for policy makers
/ decision makers, we move away from previous
works (Kuhn et al., 2023; Jiang et al., 2021) which
simply used entropy, and instead use a normalized
entropy measure for categorical distributions which
uses a base equal to the number of categories and
inverts the value such that 1 implies maximal cer-
tainty and zero implies maximal uncertainty. In
Appendix G we provide a brief motivation for the
use of our proposed normalized entropy measure.
For the Bernoulli distribution of edge existence, the
normalised entropy measure H (B(p)) is given by:

H(B(p)) = 1/2-(—plogy p— (1—p) logy(1—p))

(N
For the Categorical distribution pertaining to edge
weight, assuming the edge exists, the normalised
entropy H (M) is defined as:

5

1
H(M) == =pilogs pi ®)
=1

Here, p; is the probability of the edge weight being
the ¢-th value.

Unbiasing Categorical Label Order In initial
experiments we observed indications of stylistic
bias existed towards either the first or second cat-
egorical response, e.g. consistently inflating the
probability assigned to category answer 1) Yes. To
prevent this we introduce a method which asks the
same question twice with the order of the categori-
cal responses switched, following this we average
the two distributions.

Question w/ Reasoning Previous works (Wei
et al.,, 2022; Zhang et al., 2022; Wang et al.,
2023) have demonstrated improvements to lan-
guage model predictive ability when the language
model is prompted to break its deductive process
into intermediary steps. We experiment with a ver-
sion of CPUQ that prompts the language model
to produce an intermediary explanations, prior to
producing its categorical answer. This is the final
method presented in Figure 1.

Fine-tuning We follow previous works (Jiang
et al., 2021) exhibiting the benefit of fine-tuning
on domain specific knowledge. In our experiments



Prompt Stage Prompt Template

Question PROMPT 1:
w/ Reasoning

question.

Write a thorough, detailed, and conclusive four-sentence answer to the following

To what extent, if any, is the level of {indicator 1} influential to the state of {indicator

217
LLM: [Model’s response]

PROMPT 2:

Write only the number of the category that fits the following statement.

"Statement: [Model’s response]"”

CPUQ, Output Categories:

1) The level of {indicator 1} is {effect type} influential to the state of {indicator2}.

2) The level of {indicator 1} is not {effect type} influential to the state of {indica-

PROMPT 3:
CPUQ Output
changes in {indicator 2}?

On a scale of 1 to 5, how strong is the influence of changes in {indicator 1} on

Table 1: Example Prompt Templates: Examples of prompts for predicting indicator to indicator causal relationships
in our Economic Allocation experiments. The {indicator} placeholders represent textual representations of indicators.
{effect_type} can be “direct’, "indirect’, or blank. CPUQp ¢ denote the CPUQ methods yielding Bernoulli and
Hurdle Categorical Distributions based on model perplexity. The sequential prompts (Prompt 1-3) illustrate the
conversational context approach, used by the CPUQ methods.

we fine-tuned models under 17bn parameters in
size. Due to hardware limitations, larger models
were not considered. To fine-tune these models,
we used both an instruction dataset and a curated
knowledge-focused free-flowing text dataset on So-
cial Policy. The model was trained on both datasets
in equal proportions. This approach aims to en-
rich the model’s expertise in Social Policy while
retaining its inherent instruction-following capabil-
ities which ensure that the conditional distribution
p(s | x) has the majority of its mass on tokens
correlating to a response categorical answer as op-
posed to tokens which would be continuing the text.
We provide more information on these datasets in
Appendices D.1D.2.

4 Validation: Alignment To Expert
Annotation

In this set of experiments, we validate the degree
of calibration of our approach by investigating its
ability to align to a dataset produced by the UK
government which links government spending on
broad budget items to the specific socio-economic
indicators they affect.

Data We fully detail the dataset in Appendix F.
The part of the dataset used in this validation exper-

iment provides pairs of (broad budget item, indica-
tor) for which the broad budget item does affect the
indicator. In total, after pre-processing, there are
258 unique health indicators allocated to one of 15
broad budget items. We use negative sampling to
produce negative samples for this dataset e.g. pairs
of (budget item, indicator) for which the budget
item does not affect the indicator.

Model. We use language models from the llama
family (Roumeliotis et al., 2023b,a). We exper-
iment model with sizes of 7bn, 13bn and 30bn
parameters.

Baselines For baseline methods we include two
approaches (verb_open) and (verb_closed) which
utilise a similar method to (Tian et al., 2023; Zhou
et al., 2023; Lin et al., 2022), which simply prompt
the model to verbalize its answer with an open-
ended or close-ended response. For a baseline
model we compare our method against gpt3.5-
turbo, a strong performant model. This provides an
interesting insight into the effect of foundational
model strength.

Results As this is a binary classification task we
present F1, Precision and Recall scores in Table 3.
We notice that our method performs competitively



with the verbalization approaches which do not pro-
duce probabilistic outputs. The CPUQ Question w/
Reasoning outperforms the CPUQ Closed Ended
Question, highlighting the benefit of encouraging
the model to utilize its own reasoning. GPT3.5
provides the strongest performance highlight the
significance of foundational model strength.

Ablation Experiments In these experiments we
also include the Expected Calibration Error (ECE)
metric, introduced by (Guo et al., 2017), quantifies
the calibration quality of probabilistic predictions.
It computes a weighted average of the differences
between observed accuracy and the predicted con-
fidences across distinct buckets or intervals.

To address stylistic bias in categorical label order
for the CPUQ g method we found that recall expe-
riences a significant degradation for foundational
models of size 13bn and below, whereas the 30bn
parameter model experiences modest performance
increases across recall and Expected Calibration
Error. This implies that the smaller foundational
model’s slightly struggle when asked categorical
Yes/No questions where the arrangement of an-
swers is in an unconventional order such as 1) Neg-
ative Response 2) Affirmative Response.

For both the 7bn and 13bn model sizes we ob-
serve a decrease in precision when ’indirectly’ is
introduced to the prompt, reflecting the notion that
the language model may be factoring in loose rela-
tionships when compared to the expert annotators
judgement. On the other hand, the Recall increases
across both sizes when ’indirectly’ is introduced to
the prompt, reflecting the complementary notion
the language model’s more loose interpretation of
what constitutes a relationship allows less chance
of missing possible relationships.

5 Evaluation: EA-ABM Forecasting

We compare the forecasting performance of an EA-
ABM algorithm called Policy Priority Inference
(PPI) when the underlying graphs is estimated us-
ing our CPUQ methods and other baseline methods.
For each method/graph, we train the PPI system on
the first 5 years of data, then evaluate predictions
for the level of the socio-economic/health indica-
tors for over the next two years.

For a detailed explanation of the PPI algorithm
please refer to Appendix B. The PPI algorithm mod-
els two levels of interactions. The first is the budget
item to indicator (b2i) interaction set, representing
the 1st order effects of government spending and
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Figure 2: Ablation Experiments: These figures repre-
sent predictive performance when classifying the edge
existence in Textual Attribute Graph underlying an Eco-
nomic Allocation dataset involving U.K. government
spending and socio-economic indicators. Figure a)
presents the changes in predictive scores when we im-
plement our method to unbias categorical Label order,
explained in Section 3. Figure b) presents the perfor-
mance change from specifying the prompt templates’
"effect type" as ’directly’ or ’indirectly’ when compared
to having no specification of relationship type between
spending on a government budget item and a socio-
economic indicator. The prompt template is exemplified
in Table 1.

the indicator to indicator (i2i) interactions captur-
ing the second order spillover effects. In the PPI
algorithm the b2i edges are binary, while the i2i
edges are floats, appropriate for our CPUQg and
CPUQ( methodologies respectively.

Data. We have 7 years of annual data for gov-
ernment spending on the fine grained health re-
lated budget items and the levels of socioeconomic-
health indicators. The first 5 years form the train-
ing set. The final ttwo years form the test set.
There are 32 fine-grained budget items and 258



socioeconomic-health indicators. This means there
are 8256 possible b2i edges and 66564 possible i2i
edges for estimation. Appendix F provides more
detail explanation of the dataset used.

Baseline Methods.  Each experimental result
consists of methods for predicting both b2i and
12i edges independently. For determining the b2i
edges, baseline methods include verbalization with
close-ended questions as detailed in Table 1 and
naive expert annotation (ea). The latter extends the
expert annotation—which provides related pairs of
broad budget items b, and indicators i—Dby assum-
ing every fine-grained budget item by that’s part of
the broad budget item (by € by) relates to all the
indicators the broad budget item is noted to connect
with: if byeby, and(by, 7)—(by, 7).

For determining i2i edges, baseline methods en-
compass zero (representing no spillover effects be-
tween indicators), verbalization as shown in Ta-
ble 1, entropy of the CPUQ g output bernoulli dis-
tribution for all edges with a probability over 0.5
of existing, and the Concave penalized Coordinate
Descent with reparameterization (CCDr) algorithm.
CCDr estimates Bayesian network structures us-
ing penalized maximum likelihood estimation com-
bined with coordinate descent optimization on repa-
rameterized Gaussian likelihoods. By inducing
convexity in the likelihood and applying sparsity-
inducing MCP (Li et al., 2022) regularization, it
efficiently learns graphs, especially in p >> n sce-
narios. Details on the CCDr methodology can be
found in Section C.

For the CPUQ and verbalize methods, we em-
ploy a model from a 30bn parameter set of the
llama family, finetuned on our curated datasets as
described in Appendices D.1 and D.2.

5.1 Results

For the set of experiments where the i2i methodol-
ogy is fixed to naive expert annotation (n.a.e.) and
b2i method varies, in Table 2 we observe that the
CPUQ(, performs competitively with verbalization
and that the CPUQ/verbalize method achieves the
highest mse/mae score.

For the set of experiments where we addition-
ally predict the b2i edges, we immediately notice a
degradation in performance of the verbalize method
and CPUQ method, indicating relative difficulty in
predicting b2i relative to i2i edges. We posit this is
due to binary output space of the b2i edges mean-
ing that mis-specification of an edge weight has a

larger negative effect on performance. However,
within this category we notice the CPUQ approach
outperform the verbalize approach.

b2i i2i mse mae

n.e.a Zero 0.01208 0.04835
n.e.a CCDr 0.01209 0.04832
n.e.a entropy  0.01196 0.04822
n.e.a verbalize 0.01200 0.04814
n.e.a CPUQ, 0.01195 0.04820

“verbalize verbalize 0.01211 0.04830

CPUQp CPUQ, 0.01202 0.04825

Table 2: PPI Forecasting Performance: Prompting
methodologies are varied for prediction of binary budget
item to indicator (b2i) and non-binary indicator to indi-
cator (i2i) causal relationships. For b2i edges, methods
include naive expert annotation (n.e.a) and verbalization.
Float i2i methods include zero (no spillover), verbaliza-
tion, entropy from CPUQ 5 with > 0.5 probability, and
the CCDr algorithm. Results highlight the competitive
performance of CPUQ, but also the increased rela-
tive difficulty LLM models have labelling binary valued
edges.

The second set of experiments focus on also pre-
dicting the binary b2i edges in the graph as well
as the non-binary i2i edges in the graph. We no-
tice that our CPUQ outperforms the verbalization
method.

5.2 Inspecting Edges Distribution

In Figure 3a we show the distribution of values for
the predicted values for the i2i edges in our Eco-
nomic Allocation graph. The verbalization method
suffers from the output being limited to producing
on two values of 2.0 and 3.0. Conversely, we notice
that the CPUQ, method produces a unimodal dis-
tribution centered around 3.0 with tails extending
to 2.6 and 4.0.

6 Related Work

Recent work have explored various approaches for
quantifying uncertainty in predictions from large
language models (LMs). Some methods have fo-
cused on eliciting and evaluating verbalized confi-
dence scores produced by the LM itself (Tian et al.,
2023; Zhou et al., 2023). Others have proposed us-
ing consistency among multiple candidate answers
as a proxy for the model’s uncertainty (Xiong et al.,
2023; Ngu et al., 2023). While promising, these
approaches do not directly rely on the standard
probabilistic measure of perplexity.
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Figure 3: Distribution of Predicted Edge Weights:
We compare the distribution of non-zero predicted edge
weights from our CPUQ. prompting strategy to the
distribution of edges from verbalization strategy when
using the same underlying language model. We notice
the verbalization exhibits a limited distribution with
values falling on the values of 2 and 3. Our CPUQ,
approach values in the range of 2.6 and 4.0.

For example, (Ngu et al., 2023) present domain-
independent uncertainty measures based on the di-
versity of responses to a prompt, including entropy,
Gini impurity, and centroid distance. They demon-
strate these sample-based diversity measures cor-
relate with failure probability without using per-
plexity. Similarly, (Xiong et al., 2023) introduce
consistency-based confidence scores by generating
multiple candidate answers and assessing their con-
sistency. They also propose hybrid methods com-
bining consistency with verbalized scores. How-
ever, these methods require drawing multiple sam-
ples from already large Language Models leading
to a large computational expense.

Other studies have focused on eliciting cali-
brated confidence estimates directly from language
models fine-tuned with human feedback (Tian et al.,
2023; Zhou et al., 2023; Lin et al., 2022). These
methods produce probability scores or phrases rep-
resenting the model’s certainty, showing strong per-
formance in calibration metrics. While promising,
they rely less directly on perplexity itself. Both
(Lin et al., 2022) and (Kadavath et al., 2022) also
propose ways to finetune predictors on the embed-
dings of generating models to predict models un-
certainty. While promising, these approaches need
task-specific labels, additional training, and seem
to be unreliable out-of-distribution (Kadavath et al.,
2022).

Some prior work has addressed the important
concern of grouping semantic similar terms when

distributed probabilities over candidate answers.
(Jiang et al., 2021) address the case of one word
answers by summing the probability over groups
of synonyms, while (Kuhn et al., 2023) extend
this idea to phrases by grouping phrases which are
deemed to have semantic equivalence. Although
both methods incur a large additional computa-
tional cost at they require a secondary model which
is used to evaluate similarity of different candidate
answers and also utilise a sampling methodology.
In contrast, CPU(Q evaluates likelihood of cate-
gorical predictions from language models avoiding
time-ineffeciency of sample-based techniques and
inconsistencies of open-ended verbalized scoring.

Model Prompt Style F1 Prec. Rec.
GPT3.5 verb_closed 0.795 0.722 0.883

GPT3.5 verb_open 0.830 0.779 0.888

30bn  verb_closed 0.767 0.715 0.826
30bn verb_open 0.778 0.681 0.908
30bn  CPUQpg closed 0.698 0.757 0.647
30bn  CPUQg Q.R. 0.760 0.644 0.928

Table 3: Expert Annotation Alignment: Evaluation
of predicting the influence of local government bud-
get items on socio-economic indicators using different
prompting methodologies. Compared are the CPUQ
methods against GPT3.5 and verbalization strategies.
Verb_closed and verb_open elicit deterministic Yes/No
answers, while CPUQ methods produce probabilistic
outputs. Examples of Prompt Styles are in Table 1. The
30bn model is a derivative of the llama language model
family. Q.R. denotes Question w/ Reasoning. C PUQ)~
performs competively with verbalization, while achiev-
ing significantly stronger recall.

7 Conclusion

We introduced CPUQ, a novel method for uncer-
tainty quantification using Language Models. This
method utilizes categorical-style questions to gen-
erate insightful hurdle categorical distributions for
edges in a textual attribute graph associated with
Agent-Based Modelling for Economic Allocation.
Validated against a U.K. dataset on government
spending and socio-economic indicators, CPUQ
not only aligns effectively with expert annotations
but also outperforms prominent alternative LLM
and statistical methods. Critically, it can deliver
accurate and interpretable distributions over edge
weight estimations vital for network estimation in
Economic Allocation systems used by policy mak-
ers and decision makers.



8 Ethics Statement

We acknowledge that our proposed model may be
susceptible to having learnt harmful biases present
in the pre-training and finetuning datasets. In and
of itself this has the potential to produce harmful
suggestion for policy makers and decision mak-
ers. Therefore, we advocate for morally correct
and responsible practices in the case of real-world
application.
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A Economic Allocation Agent Based
Modelling Systems

Agent-based Modelling (ABM) serves as an in-
strumental framework for depicting intricate eco-
nomic allocation games that involve interdepen-
dent agents. The delineation of the political econ-
omy game from the accompanying research can be
broadened into three primary aspects: environment,
agents, and dynamics.

Environment: The configuration presents a
graph which elucidates the interdependencies
among N agents, potentially characterized by
general graph structures such as Erd6s-Rényi or
Barabdsi-Albert models. Every agent, denoted by
1, encompasses a state variable .S; to manifest its
prevailing state, which could span across either con-
tinuous or discrete realms. Furthermore, a global
state S amalgamates the states of all agents.

Agents: In the context of agents, each 7 is driven
to amplify a reward function R;(S), contingent on
the global state, epitomizing the economic incen-
tives intrinsic to every agent. An inherent limitation
faced by the agents is the absence of comprehensive
knowledge about the states or actions of their coun-
terparts. Their observations remain confined to the
local data discernible within their graph neighbor-
hood.

Dynamics:  With the progression of each time
step t, every agent ¢ institutes an action A;(t)
rooted in their localized observations, culminat-
ing in the evolution of their individual state S;.
Owing to the intricate web of interdependencies
embedded in the graph, modifications in the local
state permeate, influencing the overarching global
state S. Subsequently, the environment recipro-
cates by dispensing a reward R;(t) to each agent,
in line with the recalibrated global state. The
overarching goal for agents is to unravel policies
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that potentiate the maximization of long-term re-
wards through their actions. Potential learning algo-
rithms might encompass model-free reinforcement
learning, model-based planning, or heuristic adjust-
ments analogous to the research.

This expansive framework offers the latitude
to emulate diverse economic allocation scenarios
within the ambit of multi-agent games. The in-
tricate graph structure translates the dependencies,
while the local observations of agents stand as prox-
ies for the imperfect information. Meanwhile, the
learned policies illuminate the underlying incen-
tives and adaptations. In tandem, the platform fa-
cilitates a comparative study of different learning
algorithms, focusing on global efficiency and eq-
uity outcomes, rendering it an ideal bedrock for
delving deep into decentralized economic systems.

B Policy Priority Inference

In this section we provide a brief formulaic interpre-
tation of the Policy Priority Inference algorithm de-
veloped in (Guerrero and Castafieda, 2020, 2021).
B.1 Formulaic Interpretation

Agent and State Definitions: Consider N
agents, where each agent corresponds to a policy
issue 7.

The state S; of agent ¢ is given by:

S; = 1;

where I; denotes the development level for policy
issue 7. The global state is then defined as:

S:(Ilv"'le)

Reward and Action Function:  The reward
function R;(S) for agent i is expressed as:

Ri(S) = F,
with
Fi= (I + P, — C;)(1 - 6ifr)
where:

* P is the resource allocation to agent ¢.
 (; denotes the contribution of agent i.

* 0; indicates the event of agent ¢ diverting
funds.

¢ fgris a function mapping the state of the rule
of law agent to a probability.

The action A; of agent ¢ is defined as:

A; =C;
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Environment Dynamics: The environment ad-
justs the indicator levels based on agent contribu-
tions as:

I L+ (T, = L)(Ci + Y AjiCy)
J

Where:
* T is the target level for indicator .
 Aj; signifies the interdependency graph.

Objective:  Agents aim to devise contribution
policies C;(¢) in order to maximize their long-term
rewards F;. Concurrently, the central authority’s
responsibility is to allocate resources P; to guide
indicators towards their respective targets.

This encapsulates the primary components of
the model in the cited paper using standardized
terminology.

B.2 Policy Formulation and Developmental
Strategies

Policy Priority Inference (PPI) is a powerful tool
rooted in the interplay of complexity economics
and computational social science. As we grap-
ple with interconnected socio-economic landscapes
and strive for strategic advancements, PPI offers
precision, depth, and adaptability. Let’s delve into
its multifaceted utility:

Strategic Allocation & Planning: At the core
of PPI is its prowess in guiding resource alloca-
tion. It allows policymakers to effectively navigate
intricate policy networks, ensuring transformative
resources are channeled towards areas that promise
the highest impact. Furthermore, with its capabil-
ity to model and reproduce observable fiscal pat-
terns, PPI strengthens the foundation of "what-if"
analyses, fostering a deeper understanding of fiscal
planning and its repercussions.

Evaluative Metrics & Feasibility:  PPI is not
just prescriptive but also evaluative. It aids in gaug-
ing the coherence of a government’s priorities rela-
tive to its overarching goals. Moreover, it provides
a clear lens to assess the feasibility of set targets,
projecting timeframes and requirements, thereby
allowing for informed adjustments.

Optimization & Efficiency:  The framework
stands out in its ability to identify both acceler-
ators and bottlenecks in development pathways.



This dual capability facilitates the search for do-
mains that amplify improvements across various
indicators while simultaneously highlighting areas
where resource constraints might impede progress.
Complementing this is PPI’s inherent knack for un-
covering inefficiencies, ensuring that resources are
utilized optimally and wastages are minimized.

Adaptability & Goal Setting:  PPI’s versatility
is exemplified in its adaptability to diverse national
contexts. Whether it’s exploring a broad spectrum
of developmental goals or assessing the fluidity of
resource reallocation, PPI is instrumental in tailor-
ing strategies that resonate with a nation’s unique
developmental narrative.

C CCDr

The CCDr algorithm introduced in this paper esti-
mates Bayesian network structures using penalized
maximum likelihood estimation and coordinate de-
scent optimization. Here is a detailed mathematical
explanation of how it works:

Let X = (Xy,...,X,) be a p-dimensional ran-
dom vector that follows a multivariate Gaussian
distribution with mean O and covariance matrix
3. The goal is to estimate the structure of the
underlying directed acyclic graph (DAG) B that en-
codes the conditional independence relationships
between the variables.

We start with the structural equation model
(SEM) representation of X:

Xj :Zﬁini—l-Ej for j=1,...,p
i#]

where the ¢; are independent Gaussian noise
terms with variances wjz. The weighted adjacency
matrix B = (3;;) along with the diagonal matrix
Q = diag(w?, ...,wf,) define the DAG structure
and noise variances.

The negative log-likelihood function based on n
1.i.d. observations is:

L(B,Q[X) =

n 2 1 2
5 |5 108e) + oalles - X551
j J
This function is nonconvex, so a reparameteriza-

tion 1s done:
1

and p; = o
J

_ By

Qbij

J
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leading to the convex loss function:

L(®,RIX) =

1
> [-nlog(p;) + Sllpszi = b CHI ()
J
where ® = (¢;;) and R = diag(p1, ..., pp). The
penalized loss function is then:

Q(®,R) = L(®,R|X) + > _pall$i;])
i#]

where p)(+) is a penalty function like MCP or
lasso.

The CCDr algorithm minimizes () by perform-
ing cyclic coordinate descent. Each ¢;; is updated
by minimizing Q1(¢;;) = argmin Q(®,R) and
each p; by minimizing Q2(p;). After convergence,
the estimates ggij and p; are transformed back to
Bz’j and (2)]2 The estimated DAG B is the one cor-
responding to b. By using a sparsity-inducing
penalty, the algorithm produces sparse DAG esti-
mates. Theoretical results show this procedure can
consistently estimate the true graph structure under
certain conditions.

In summary, the CCDr algorithm is able to learn
sparse Bayesian network structures by exploiting
a convex reparameterization of the Gaussian likeli-
hood and using cyclic coordinate descent with con-
cave regularization to produce penalized maximum
likelihood estimates. The sparsity helps estimate
high-dimensional graphs efficiently.

D Finetuning

D.1 Social Policy Dataset

We curated a dataset derived from high-quality re-
search papers that provide a comprehensive view
of government policy across its 14 broad budgetary
categories. Utilizing the SemanticScholar API, we
downloaded up to 250 research papers for each
category, applying filters for language and cita-
tion count. Our final dataset, after removing du-
plicates, comprises 1450 research papers. Dur-
ing preprocessing, the text was segmented into
spans ranging from 128 to 256 characters, with
a 35% overlap. Only English-language papers
were retained. Any textual inconsistencies arising
from PDF to text conversion were rectified using
“stabilityai/StableBeluga-7B’. The dataset is open-
sourced and available at this repository.



D.2 Instruction Tuning Dataset

The inherent methodology of our CPUQ approach
necessitates a response style typical of instruction-
tuned language models. This specific response
mechanism aids in understanding and generating
appropriate answers for Prompt + Answer scenar-
ios. The Social Policy Dataset contains continuous
prose, from which a language model towards learns
continuation, as opposed to responding. To ensure
our model retains strong ’response style’, we inte-
grated the WizardLM dataset (Luo et al., 2023b;
Xu et al., 2023; Luo et al., 2023a). This dataset
bridges the instructional response gap, fortifying
our model’s ability to handle the nuances of our
PUQ prompting approach.

D.3 Fine-tuning Setup

Our finetuning setup employed QLORA with dou-
ble quantization, an Adam optimizer (lr=1e-3,
b1=0.9, b2=0.95). We applied a constant sched-
ule with a 200-step warm-up and distributed over 6
RTX3090s. For the 7bn models, we used a batch
size of 30, while for the 13bn models, the batch
size was 18, with gradients accumulated over 3
steps, resulting in an effective batch size of 54. An
innovative paired early stopping rule was designed,
halting the process if no improvements are detected
on validation sets for either instruction or next to-
ken prediction tasks.

E CPUQ: Further considerations

Constraints: Important constraints of this
methodology are that when using the categorisation
methodology the user must specify that the cate-
gorical numbers chosen be numbers and not letters.
An intuitive explanation for this is based on the idea
of ensuring that the probability of the next token is
only focused on the probability of selecting a cor-
rect categorical number and not also predicting a
general continuation. For example, suppose we ask
a LLM to answer the Question: "Choose the cate-
gory letter that best answers the question: Which
is the most environmentally friendly form of trans-
port for people in a large city: A) SUV, B) Bus or
C) Bike. The ideal set of responses would be ["A.",
"B.", "C."]. However, due to the unconstrained
nature of Language Models the set of responses
also includes sentences such as ["A likely answer
to this question would C", "Based on Bikes having
no emissions "C" would be the correct category.].
Initial experiments indicated experiments that the
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extent to which this is a problem is more tied to the
language model strength than the phrasing used in
the prompt.

Excluding an NA from Categorical Answer
Space In our work, we use a binary categoriza-
tion for our ’Yes’ *No’ prediction and opt out of a
third option which could reflect a non-committal
or uncertain prediction. Specifically, the two alter-
natives for this category are "I don’t know’ and ’I
am not sure’. The difference between these phrases
can have implications both in interpretation and in
practical implementation. If we were to extend the
categorical answer space to include a third category,
our set of answers would look like [’ Yes’, ’No’, 'l
don’t know / I am not sure’].

We begin by discussing the category "I am not
sure.” The category "I am not sure" implies a more
comprehensive form of uncertainty compared to
"I don’t know." Not only does it suggest a lack of
knowledge, but it can also technically include a dis-
tribution over "Yes’ and *No’. For instance, stating
"I am not sure" might imply that one is 20% certain
of *Yes’ and 80% certain of "No’. This makes the
categories not strictly mutually exclusive. How-
ever, this comprehensive interpretation presents its
own problems. When a probability is assigned to
a category like ’I am not sure’, we are essentially
quantifying uncertainty about uncertainty.

Now, considering the simpler "I don’t know"
option, from a theoretical standpoint, it represents
an acknowledgment of one’s epistemic boundaries
on a topic, without necessarily implying any spe-
cific probability distribution over ’Yes’ and ’No’.
This does not pose a logical problem. However, in
practice, we encountered an issue: for cases where
the correct answer to a categorical question was
’No’, language models were inclined to allocate a
high probability to I Don’t Know’. This tendency
meant that 'No’ and ’I don’t know’ cannibalized
each other’s assigned probability, complicating the
mapping of probabilities to categories.

The nuanced difference between the two cate-
gories and the inherent difficulties they bring to
the table resonate with the Knightian distinction
between risk and uncertainty, where some events
inherently defy easy probabilistic characterization
(Knight, 1921). Arrow’s critique on the limits of
decision-making under uncertainty complements
this, indicating potential shortcomings of standard
decision models in scenarios with intertwined un-
certainty levels (Arrow, 1971).



To conclude, while "I don’t know" is a straight-
forward acknowledgment of lack of knowledge,
adding a probabilistic layer to it leads to contradic-
tions, especially when the boundaries between the
categories blur.

F Economic Allocation Dataset
The dataset can be composed into three parts

1. Dataset indicating related broad government
budget items and indicators, annotated by ex-
perts

Timeseries of United Kingdom’s Spending
across 32 finegrained Government Budget
Items

Timeseries of 258 socio-economic indicator
levels in the U.K

1. Government spending timeseries We cre-
ate a dataset showing Local Authority expenditure
over 32 finegrained UK budget items. After post-
processing we keep data between 2013 and 2019.
To retrieve this data, we draw upon the Spend and
Outcomes Tool (SPOT) (Office for Health Improve-
ment & Disparities, 2023), created by the Office
for Health Improvement and Disparities (OHID,
Department of Health and Social Care, England).
In terms of expenditure, SPOT includes net current
Local authority revenue expenditure and financing,
often referred as Revenue Outturn 3. We focus
on this fraction of the total Public Health Fund-
ing as local authorities have a relative leeway to
allocate resources to fund Public Health Services,
as opposed to the expenditure earmarked to cover
National Health Service (NHS), primary care, pre-
scribing, and other staff costs. It is also smaller than
other types of expenditure available to local author-
ities, such as Education, which is much larger but
more rigid in the services to allocate.

2.  Socioeconomic indicator timeseries In
terms of health service provision and population
level health outcomes, we obtain data from Fin-
gertips(for Health Improvement & Disparities ,
OHID), which is a large dashboard of health-related
information reported by different public entities
and organised into themed health profiles. The
Consumer Price Inflation time series(for National
Statistics , ONS) and the mid-year estimates of resi-
dent population(?) are obtained from the UK Office
for National Statistics. Rule of law and governance
were obtained from the World Development Indi-
cators.
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3. Related Broad Budget Item and indicators
Dataset In total there are 258 unique indica-
tors and 15 broad budget items. SPOT provides
a dataset which indicates which broad government
budget items are intended to effect which indica-
tors.

G Normalised Entropy For Categorical
Distribution

In this section, we discuss the Normalized Entropy
for Categorical Distributions, emphasizing its simi-
larities with the traditional normalization method.

The key properties of the normalised entropy for
Categorical Distributions are:

1. The entropy is scaled to the range [0, 1], mak-
ing it comparable across distributions with
different numbers of categories.

2. The surprisal is consistent across different dis-

tributions.

For a uniform distribution over n categories,

the normalized entropy is always 1, providing

an intuitive measure of maximum uncertainty.

4. The method is specifically tailored to categori-
cal distributions, offering a direct and intuitive
comparison between distributions.

3.

To draw parallels between the two normalization
methods, consider the entropy formula with base

n:
n

- Z % logn

=1

1

n

H(X) =
Given that log,, n = 1, the entropy for a uniform
distribution simplifies to:

H(X) =1

This is analogous to the traditional method of di-
viding by logs(n), where the entropy of a uniform
distribution is also normalized to 1. The primary
similarity is that both methods aim to scale the
entropy value to a range of [0, 1], ensuring compa-
rability across different distributions.

Benefits of using the number of categories n as
the base for normalization include:

* Direct and intuitive comparison between dis-
tributions with different numbers of cate-
gories.

* The entropy value provides a clear indication
of the distribution’s nature, with 1 indicating
a uniform distribution and values close to 0
indicating deterministic distributions.



Another advantage of this normalization method
is its simplicity and ease of interpretation, espe-
cially for audiences not deeply familiar with tradi-
tional information theory concepts. This is crucial
since our focus is on Economic Allocation systems,
which could include policy makers. In this con-
text, this measure of uncertainty offers an easily
interpretable value between 0 and 1.

H Reproducibility Statement.

Code The code and data used in this study can
be found at this repository [Redacted for Review].
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