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Abstract001

We present SMARTMiner, a framework for ex-002
tracting and evaluating SMART (Specific, Mea-003
surable, Attainable, Relevant, Time-bound)004
goals from unstructured health coaching (HC)005
notes. Developed in response to challenges ob-006
served during a clinical trial, the SMARTMiner007
achieves two tasks: (i) extracting behavior-008
change goal spans, and (ii) categorizing their009
SMARTness. We introduce SMARTSpan,010
the first publicly available dataset of 173 HC011
notes annotated with 266 goals and SMART012
attributes. SMARTMiner incorporates an ex-013
tractive goal retriever with a component-wise014
SMART classifier. Experiment results show015
that extractive models significantly outper-016
formed their generative counterparts in low-017
resource settings, and that two-stage fine-018
tuning substantially boosted performance. The019
classifier achieved up to 0.91 SMART F1020
score, while the full SMARTMiner maintained021
high end-to-end accuracy. This work bridges022
healthcare, behavioral science, and natural lan-023
guage processing to support health coaches and024
clients with structured goal tracking—paving025
way for automated weekly goal reviews be-026
tween human-led HC sessions. Code and the027
dataset will be released upon acceptance.028

1 Introduction029

Health coaching (HC) is a person-centered inter-030

vention designed to facilitate sustainable change031

in healthy behavior and support self-management032

of chronic diseases. Recent systematic reviews033

demonstrated that HC can significantly enhance034

physical activity, reduce pain, and improve psycho-035

logical outcomes such as self-efficacy and qual-036

ity of life among individuals with chronic con-037

ditions (Kastner et al., 2018; Yang et al., 2020a;038

Weiss et al.). A cornerstone of HC is the co-039

creation of actionable short-term goals that drive040

long-term behavior change, which in turn forms041

the foundation of its effectiveness as a behavioral042

intervention (Wallace et al., 2018).043

Overall, the research suggests that specific and 044

actionable goals tend to improve health behav- 045

ior outcomes more than unclear or generic behav- 046

ioral goals (Wallace et al., 2018; Bahrami et al., 047

2022), by providing focus and measurable targets. 048

SMART (Specific, Measurable, Attainable, Rele- 049

vant, and Time-bound) goals (Figure 1) often yield 050

better short-term results and can help sustain be- 051

havior change (Doran, 1981; White et al., 2020), 052

as seen in improved exercise levels, weight loss, 053

and self-management behaviors in various stud- 054

ies (Olsen and Nesbitt, 2010; Wolever et al., 2010). 055

However, setting and evaluating SMART goals 056

are laborious and complex (Bowman et al., 2015). 057

Some goals may not be fully SMART, lacking one 058

or more components. This may stem from patient’s 059

varying levels of readiness to engage in health- 060

related behaviors (Prochaska and Velicer, 1997). 061

Additionally, patients’ recall of health behavior 062

advice has been reported to be poor (Flocke and 063

Stange, 2004), highlighting the need for improved 064

goal documentation and patients support through 065

the reinforcement of their goals between HC ses- 066

sions, which usually span biweekly or monthly. 067

In response, this paper presents the development 068

of a SMARTMiner framework that automatically 069

extracts multiple (SMART) goals set during HC 070

sessions from unstructured session notes. Since 071

these goals are embedded within free-text narra- 072

tives and cannot be audited at scale, we address 073

two key challenges: (i) Goal extraction: identi- 074

fying multiple behavior-change goal spans within 075

unstructured HC notes; and (ii) SMARTness diag- 076

nosis: determining which SMART attributes each 077

extracted goal satisfies and where it falls short. 078

Our contributions are three-fold: 079

1. SMARTSpan corpus – the first publicly 080

available dataset of 173 HC notes with 266 081

unique goal spans, exhaustively annotated for 082

both goal boundaries and SMART attributes. 083

2. SMARTMiner framework – a span extrac- 084
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“I want to exercise 
more regularly.”

Reformulated as 
SMART goal

“I will brisk walk around my 
building for 30 minutes in the 

evening, three days a week, for 
the next four weeks.”

(Client: Confidence of  8/10)

Specific: type of activity, time, or location

Measurable: frequency, duration, or distance

Attainable: confidence in completing the goal

Relevant: alignment with client’s wellness vision

Time-bound: clear time frameClient’s Statement Weekly SMART Goal

Subjective

Figure 1: Reformulation of generic behavior goal into a SMART goal.

tor that locates every potential goal and an085

attribute-level classifier that flags missing086

SMART components, yielding actionable, in-087

terpretable feedback.088

3. Comprehensive evaluation and analysis –089

five-fold in-domain and cross-domain experi-090

ments with diverse extractive and generative091

baselines reveal how low-resource, domain-092

specific data degrade state-of-the-art large093

language models (LLMs); a qualitative er-094

ror taxonomy (hallucination, null extraction,095

attribute misclassification) pinpoints safety-096

critical failure modes for clinical deployment.097

By combining healthcare, behavioral science,098

and natural language processing (NLP), the pro-099

posed SMARTMiner framework enables low-touch100

(SMART) goal tracking: it helps health coaches101

refine goals as needed and allows clients to review102

their (SMART) goals between HC sessions.103

2 Related work104

2.1 Clinical Notes105

Information extraction (IE) from unstructured clin-106

ical notes has evolved from rule-based heuristics to107

transformer-based models capable of capturing a108

wide range of clinically relevant signals (Pai et al.,109

2024). In particular, ClinicalBERT detects med-110

ication gaps (Sarraju et al., 2022; Gobbel et al.,111

2022), while other models extract lifestyle and so-112

cial factors (Zhou et al., 2019; Romanowski et al.,113

2023) or patient goals (Gupta et al., 2021). Be-114

yond tagging, span-based models handle action115

items (Mullenbach et al., 2021), and temporal116

models align events chronologically (Miller et al.,117

2023). Prompt-driven LLMs such as GPT-4 now118

match or surpass supervised baselines with min-119

imal data (Ramachandran et al., 2023; Agrawal120

et al., 2022), signaling a shift toward adaptable,121

low-resource IE solutions.122

2.2 HC Conversations 123

Extracting SMART goals from HC conversations 124

presents challenges at the intersection of clinical 125

NLP and behavioral health (Chen and Hirschberg, 126

2024). Early approaches utilized rule-based sys- 127

tems and sequence labeling to identify SMART 128

components within HC dialogues (Gupta et al., 129

2019, 2020b). Subsequent methods incorporated 130

dialogue act modeling and transformer-based archi- 131

tectures to enhance goal extraction accuracy (Mul- 132

lenbach et al., 2021; Gupta et al., 2020a,b). Recent 133

studies proposed modularized and neuro-symbolic 134

approaches to enhance goal summarization in low- 135

resource settings, where labeled data is sparse and 136

HC dialogues vary in format and structure (Zhou 137

et al., 2022, 2024). However, the vagueness of con- 138

versational language calls for models that identify 139

discontiguous spans and align to goal criteria, mo- 140

tivating span-based frameworks that are grounded 141

in real-world HC interventions. 142

2.3 Multi-Span Reading Comprehension 143

Extracting multiple behavior-change goal spans 144

from HC notes can be formulated as a Multi-span 145

Reading Comprehension (MSRS) task. The exist- 146

ing MSRC methods fall into three categories: 147

• Extractive methods select answer spans from 148

the input without generating new tokens, and 149

are further divided into token-based and span- 150

based. Token-based models predict answers 151

through token-level outputs, where each to- 152

ken individually influences span selection (Hu 153

et al., 2019; Yang et al., 2020b; Segal et al., 154

2020; Li et al., 2022; Luo et al., 2024). In 155

contrast, span-based models explicitly score 156

or classify candidate spans as wholes, consid- 157

ering span-level representations (Huang et al., 158

2023a; Zhang et al., 2024, 2023b). 159

• Generative methods, on the other hand, pro- 160

duce answers by generating tokens, often ex- 161
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tending pre-trained generative models with162

fine-tuning strategies (Ai et al., 2024) or163

prompt engineering to adapt to the multi-span164

scenario (Mallick et al., 2023; Huang et al.,165

2023b; Zhang et al., 2023a).166

• Hybrid methods leverage the strengths of167

both paradigms, either through unified frame-168

works (Lin et al., 2024) or via data augmenta-169

tion techniques (Lee et al., 2023).170

Most datasets used to evaluate models for MSRC171

focus on questions requiring the extraction of mul-172

tiple discontiguous answer spans from text. Promi-173

nent benchmarks include MultiSpanQA (Li et al.,174

2022), which contains over 6,500 multi-span ques-175

tions initially and around 19,000 in the expanded176

set; QUOREF, which comprises more than 24,000177

questions requiring coreference resolution (Dasigi178

et al., 2019); and DROP, which includes around179

96,000 questions involving arithmetic or reason-180

ing over multiple spans (Dua et al., 2019). More181

specialized benchmark on the healthcare domain,182

MASH-QA, consists of approximately 35,000 ques-183

tion–answer pairs with long, multi-sentence an-184

swers (Zhu et al., 2020).185

While existing MSRC models perform well on186

large, clean, and publicly available datasets (e.g.,187

Wikipedia-based or curated medical content), such188

datasets are expensive and time-consuming to cu-189

rate in clinical practice, including HC. As a result,190

span-centric models remain underexplored in low-191

resource, domain-specific settings. To address this192

gap, we introduce SMARTSpan, a curated dataset193

of HC notes with annotated behavioral goals, de-194

signed to support span-based goal extraction in195

practical, small-scale scenarios.196

3 SMARTSpan Dataset197

SMARTSpan dataset comprises 173 annotated HC198

notes from a randomized controlled trial (RCT)199

and is designed to evaluate multi-span extraction200

in low-resources, domain-specific scenarios.201

3.1 Data Collection202

The SMARTSpan dataset originates from an RCT203

aimed at prevention of cardiovascular disease204

through a multicomponent digital behavioral inter-205

vention, focusing on improving patient’s adherence206

to statin therapy and promoting healthy behavioral207

change to reduce low-density lipoprotein (LDL)208

cholesterol levels.209

One key component is human-led HC, where in- 210

tervention participants receive six monthly coach- 211

ing sessions via a mobile app. Clients are encour- 212

aged to set weekly SMART goals during each HC 213

session, which are reviewed in the next session. 214

After each session, health coaches document key 215

observations and any SMART goals set with clients 216

as unstructured free-text notes, without any given 217

standardized template or guidance, on a web-based 218

platform (details in Appendix A). 219

At the time of dataset creation, a mutltiracial 220

cohort of approximately 130 patients with hyper- 221

lipidaemia had been enrolled in the ongoing RCT, 222

with over 60 in the intervention arm receiving sup- 223

port from three certified health coaches. More than 224

180 HC sessions were conducted. Using a custom 225

SQL query on the platform’s backend, we retrieved 226

173 HC notes as the SMARTSpan dataset. 227

Anonymization. Protecting client privacy is es- 228

sential when handling real-world HC notes with 229

sensitive information. We adhered to an iterative 230

anonymization process that combined human over- 231

sight with automated support by ChatGPT-4o. Per- 232

sonal identifiers were removed or replaced with 233

“client”, gendered language was neutralized, ref- 234

erences to family members, locations, and dates 235

were anonymized or deleted. Medical metrics (e.g., 236

cholesterol, body weight) and personal attributes 237

(e.g., age, occupation) were modified. Multiple re- 238

view cycles ensured thorough anonymization while 239

preserving data integrity and utility. 240

3.2 Data Annotation and Exploration 241

After anonymization, the dataset creation process 242

was conducted in two phases. 243

Goal Annotation. In the first phase, two anno- 244

tators manually reviewed 173 HC notes and iden- 245

tified goal statements within each note, marking 246

any text that reflected specific behavioral objectives 247

discussed or set during sessions. As shown in Ta- 248

ble 1, the distribution of goals per note ranges from 249

0 to 5, depending on the depth and focus of the HC 250

session. 27% of the HC notes contain no goals, and 251

another 27% include only one. This distribution 252

contrasts sharply with the MultiSpanQA dataset, 253

where most questions have 2-3 answer spans (58% 254

with 2, 22% with 3). SMARTSpan exhibits consid- 255

erable sparsity in goal annotations, highlighting a 256

major challenge in adapting existing MSRC tech- 257

niques to real-world HC datasets, where relevant 258

information is often infrequent and diverse. 259
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# of answer spans or goals annotated 0 1 2 3 4–5 6–8 9–12 13–21

#Spans from MultiSpanQA – – 3,791 1,414 915 337 71 8
#Goals from SMARTSpan 46 46 37 32 12 – – –

Table 1: Comparison of the number of answer spans
per question in MultiSpanQA (Li et al., 2022) and the
number of goals per HC note in SMARTSpan dataset.

SMARTness Annotation. In the second phase,260

each extracted goal was annotated for three core261

SMART components: Specific (S), Measurable262

(M), and Attainable (A). We excluded Relevant (R)263

due to its subjectivity and assumed Time-bound (T)264

was implicitly satisfied, as goals were intended to265

be achieved before the next HC session. Each of266

the three assessed components was annotated as a267

binary label (0 or 1). The final multiclass label was268

derived deterministically: SMART if all three were269

true, Partially SMART if two were true, and Not270

SMART if one or none were true.271

To create a labeled dataset for supervised clas-272

sification, two annotators with prior HC training273

independently rated the extracted goals. Disagree-274

ments were resolved through discussion. Inter-275

annotator agreement (IAA) was assessed using276

Cohen’s kappa coefficient (Cohen, 1960) for each277

SMART components across 266 behavior goals.278

IAA was moderate for S (κ = 0.574, z = 9.36,279

p < 0.001), substantial for M (κ = 0.812, z =280

13.3, p < 0.001), and near perfect for A (κ = 1.00,281

z = 16.3, p < 0.001). These results indicate statis-282

tically significant IAA beyond chance across all283

three components, with the highest consistency284

observed in component A. Additional details on285

annotation process are provided in Appendix B.286

Cross-Validation Setup. Given the limited size287

of SMARTSpan (173 annotated HC notes with a288

total of 266 goals), we adopted a five-fold cross-289

validation for robust model evaluation, each fol-290

lows a 70%/15%/15% (train/val/test) split. Each291

test and validation sets in splits contain 25 HC292

notes, with the remaining 123 HC notes used for293

training. As shown in Table 2, the number of goals294

per test split varies from 24 to 47 across splits, re-295

flecting differences in goal density and highlighting296

the importance of evaluating model robustness.297

4 Methods298

We propose a SMARTMiner framework for multi-299

span behavioral SMART goal extraction from un-300

structured HC notes, as demonstrated in Figure 2.301

The goal extraction module formulates goal iden-302

goals per HC note 0 1 2 3 4 5
∑

Goals

Split_1 5 9 3 7 0 1 41
Split_2 4 7 4 8 2 0 47
Split_3 4 7 8 2 4 0 45
Split_4 7 6 5 4 2 1 41
Split_5 12 5 5 3 0 0 24

Table 2: Distribution of the number of goals per HC
note and the total number of goals in the SMARTSpan
test sets across five data splits.

tification as a span-based question answering task, 303

enabling the extraction of multiple goal mentions 304

from free-text HC notes. The SMARTness classi- 305

fication module subsequently evaluates these ex- 306

tracted goals along three key dimensions to deter- 307

mine their alignment with the SMART criteria. 308

4.1 Goal Extraction Module 309

Several extractive models were implemented 310

within the goal extraction module by formulating 311

the extraction task as an MSQA problem. Each HC 312

note is treated as the context C = {c1, c2, . . . , cn}, 313

and paired with a fixed-style question Q: “What 314

are the goals mentioned in the text?” Although 315

the original dataset includes annotated goal spans, 316

it does not contain varying questions. To enable 317

span-based supervision, we recast the dataset into 318

a QA format using this fixed question. The model 319

is then trained to extract all non-overlapping spans 320

P = {p1, p2, . . . , pt} that correspond to goals 321

P = M(C,Q). (1) 322

Here, M denotes the fine-tuned extractive model. 323

For generative models, we fine-tuned them using a 324

prompt template with instruction, input and output 325

(see Appendix C for the exact format). 326

4.2 SMARTness Classification Module 327

Classification Objective. Given an extracted 328

goal span pi, the classifier independently predicts 329

binary values for each component 330

v
(S)
i , v

(M)
i , v

(A)
i = Classifier(pi), (2) 331

where v
(d)
i ∈ {0, 1} for each dimension d ∈ 332

{S,M,A}. These binary predictions are obtained 333

via sigmoid-activated heads and trained using bi- 334

nary cross-entropy loss for each dimension. The 335

final multiclass label is assigned post-hoc via rule- 336

based aggregation over the binary predictions for 337

each component. Specifically, we define 338

yi = f
(
v
(S)
i + v

(M)
i + v

(A)
i

)
, (3) 339
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“...Generative moment: Participated in 
stretching activities at a local centre, 

signed up for weekly sessions and began 
socialising through games. Goals setting: 

1. Continue swimming and aquatic 
exercises once a week (confidence 

100%). 2. Consume  homemade salad as 
breakfast once a week, with flexibility to 

buy if necessary (confidence 50%). 3. 
Take statin medications every day of the 

week (confidence 90%). App usage: 
Frequently used medication reminders, 

watched a few videos but…”.

HC Note

Question (Extractive Model) 
or 

Instruction (Generative Model)

Fine-Tuned 
Extractive 

or 
Generative 

Model

Goal 
Extraction 

Module

Continue swimming and aquatic exercises 
once a week (confidence 100%)

Consume homemade salad as 
breakfast once a week

Start exercising

Take statin medications every day of 
the week (confidence 90%)

Candidate Goals

Fine-Tuned 
Encoder-Only 
Transformer 

Model

SMARTness 
Classification 

Module

MeasurableSpecific Attainable

Hallucination

Final Results

Specific Classifier

Measurable Classifier

Attainable Classifier

Encoder-Only 
Transformer 

Model
Candidate Goal Total 

Loss

Training SMARTness Classifier

Incomplete 

Extraction

Figure 2: The overall architecture of our proposed SMARTMiner framework.

where v
(d)
i ∈ {0, 1} denotes the binary prediction340

for SMART dimension d ∈ {S,M,A} and f(·) is341

a deterministic mapping from component count to342

structured label. A sum of 3 indicates a SMART343

goal; 2, Partially SMART; and 0 or 1, Not SMART.344

Model Architecture. The classifier is imple-345

mented as a transformer-based model. We em-346

ployed a pre-trained encoder to obtain contextual-347

ized representations of the input goal. Specifically,348

the embedding of the [CLS] token is extracted and349

passed through a shared processing stack consist-350

ing of dropout, a linear projection layer, and ReLU351

activation to generate a latent representation. This352

representation is then fed into three independent353

binary classification heads—implemented as lin-354

ear layers with sigmoid activation—to estimate the355

probabilities P (S), P (M), and P (A) that the goal is356

Specific, Measurable, and Attainable, respectively.357

Training and Loss. We trained the classifier us-358

ing binary cross-entropy (BCE) loss independently359

for each SMART component. The overall training360

objective is defined as361

L =
1

3

∑
d

BCE(v(d), y(d)), (4)362

where v(d) is the predicted probability and y(d)363

the ground truth label for SMART dimension d ∈364

{S,M,A}. This setup enables the model to learn365

each structural dimension independently while sup-366

porting interpretable component-level diagnostics.367

5 Experiment Setting368

Datasets. To evaluate the effectiveness of our pro-369

posed SMARTMiner framework for multi-span be-370

havioral SMART goal extraction in a low-resource 371

setting, we used the SMARTSpan dataset described 372

in Section 3. As no other existing corpus annotates 373

SMART-goal spans, we also evaluate on Multi- 374

SpanQA (Li et al., 2022), a widely used MSRC 375

benchmark whose “find-all-spans” setup mirrors 376

our extraction task. This positions our model 377

against established baselines while making clear 378

the domain shift from open-domain question an- 379

swering to the HC notes. 380

Evaluation Metrics. For goal extraction, we 381

adopt both Exact Match (EM) and Partial Match 382

(PM) Precision, Recall, and F1 as the primary eval- 383

uation metrics, following Li et al. (2022). For 384

SMARTness classification, we report accuracy, 385

macro-averaged F1, and the class-wise F1 score 386

for the SMART label. These are computed over the 387

three predicted classes: SMART, Partially SMART, 388

and Not SMART. 389

Goal Extraction Module. We implemented 390

and evaluated both extractive and generative ap- 391

proaches as the goal extraction modules. Since 392

prior research suggests that span-centric methods 393

outperform token-centric ones in multi-span set- 394

tings Huang et al. (2023a); Zhang et al. (2024, 395

2023b), we selected two representative extractive 396

strategies: SpanQualifier (Huang et al., 2023a), 397

which scores candidate spans, and the Contrastive 398

Span Selector (CSS) (Zhang et al., 2023b), which 399

ranks spans using contrastive learning with posi- 400

tive and negative contextual cues. All models were 401

fine-tuned using a single NVIDIA A40 GPU, with 402

the exception of CSS on MultiSpanQA, which was 403

fine-tuned using 8 NVIDIA A40 GPUs. 404

For SpanQualifier, we adopted the same configu- 405
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ration as reported in (Huang et al., 2023a), with the406

exception of setting the same random seed to en-407

sure consistency across all experiments. Given ini-408

tially low performance when fine-tuning directly on409

the in-domain SMARTSpan dataset, we also exper-410

imented with a two-stage fine-tuning strategy: first411

pretraining on the MultiSpanQA dataset, followed412

by continued fine-tuning on SMARTSpan. We eval-413

uated this approach using two pretrained language414

models: bert-base-uncased (Devlin et al., 2019)415

and deberta-v3-base (He et al., 2020).416

For CSS, we adopted the same configuration as417

reported in (Zhang et al., 2023b), except for setting418

the random seed to 30 for consistency with other419

experiments and increasing the number of training420

epochs to 20. We evaluated this approach using two421

pretrained language models: bert-base-uncased422

and roberta-base (Liu et al., 2019).423

To evaluate the performance of generative lan-424

guage models in low-resource, domain-specific425

goal extraction tasks, we fine-tuned decoder-426

only and encoder-decoder architectures (see Ap-427

pendix D for the full list) using LoRA-based428

parameter-efficient adaptation (Hu et al., 2021).429

Fine-tuning was performed using the Unsloth li-430

brary (Unsloth, 2024), which is optimized for re-431

duced memory usage and faster training. We ap-432

plied LoRA with a rank of 8 and an alpha scal-433

ing factor of 32, enabling efficient adaptation of434

LLMs while maintaining performance. Each pre-435

trained model was fine-tuned on a single GPU for436

20 epochs, using a batch size of 4, a learning rate437

of 10−4, and a weight decay of 0.01. We employed438

AdamW with 8-bit optimization, linear learning439

rate scheduling, mixed-precision training, and gra-440

dient checkpointing. Early stopping was used with441

a patience of 5 valid steps to prevent overfitting.442

We also adapted the QASE framework (Ai et al.,443

2024) to enable span-level supervision in genera-444

tive models. While we followed the original hy-445

perparameter settings proposed by the authors, we446

introduced two key modifications. First, we set the447

batch size to 4 across all experiments to fit within448

our GPU memory constraints. Second, given the449

smaller size of our target dataset, we increased the450

number of training epochs to 20. For the larger451

MultiSpanQA dataset, however, we retained the452

original configuration of training for 3 epochs.453

Finally, we evaluated a zero-shot, schema-454

based prompting approach using GPT-4.1 (Ope-455

nAI, 2023) as a non-fine-tuned baseline. The model456

was guided by structured extraction instructions,457

using the same instruction template as that for the 458

fine-tuned generative models, with a single modifi- 459

cation: the final sentence was changed from “For- 460

mat your response as a numbered list.” to “Al- 461

ways respond in JSON format.”, which ensures 462

compatibility with schema-based function calling. 463

The model was deployed via OpenAI’s function- 464

calling API to extract weekly SMART goals from 465

unstructured HC notes. SMART goal extraction 466

was treated as a semantic parsing task, with out- 467

puts constrained to a predefined JSON schema to 468

enforce structural compliance (see Appendix E). 469

SMARTness Classification Module. We 470

fine-tuned three transformer-based models: 471

deberta-v3-base, deberta-v3-large, and 472

roberta-large. Each model was trained using a 473

batch size of 4, a maximum sequence length of 64, 474

and a learning rate of 2× 10−5. Optimization was 475

performed using AdamW with a weight decay of 476

0.01. Training proceeded for up to 20 epochs with 477

early stopping based on validation loss, using a 478

patience threshold of 5. Random seed was fixed to 479

ensure stability and reproducibility. 480

6 Results and Discussion 481

Table 3 compares the performance of different mod- 482

els on the SMARTSpan and MultiSpanQA datasets 483

for goal extraction, while Table 4 summarizes the 484

results of three encoder-based models fine-tuned 485

on SMARTSpan for SMARTness classification. In 486

both tables, results on SMARTSpan are reported 487

as mean and standard deviation, as all models were 488

evaluated across five test splits as described in Sec- 489

tion 3.2. Full split-wise results for all models are 490

provided in Appendix F and Appendix G. 491

6.1 Performance of Extractive Models on 492

Goal Extraction Task 493

Extractive models generally achieve the highest per- 494

formance on the goal extraction task across both 495

datasets (Table 3). The best-performing model on 496

SMARTSpan is the DeBERTa-v3-base fine-tuned 497

sequentially on MultiSpanQA and SMARTSpan 498

using the SpanQualifier framework, which estab- 499

lishes a strong baseline for span-based goal extrac- 500

tion. However, extractive models fail to general- 501

ize when trained solely on SMARTSpan. Specif- 502

ically, when DeBERTa-v3-base is fine-tuned only 503

on SMARTSpan, its performance drops signifi- 504

cantly, resulting in the worst performance among 505

all evaluated models. 506
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Model #Params
SMARTSpan MultiSpanQA

EM (mean ± sd) PM (mean ± sd) EM PM
P↑ R↑ F↑ P↑ R↑ F↑ P↑ R↑ F↑ P↑ R↑ F↑

Extractive models (SpanQualifier)
DeBERTa-v3-baseSMARTSpan

180M
0.28 (0.17) 20.94 (10.36) 0.56 (0.35) 22.20 (3.12) 75.79 (4.49) 34.26 (3.39) – – – – – –

DeBERTa-v3-baseMultiSpanQA_SMARTSpan 85.24 (4.89) 84.46 (5.00) 84.83 (4.83) 93.69 (4.48) 90.72 (3.70) 92.14 (3.57) – – – – – –
DeBERTa-v3-baseMultiSpanQA 12.54 (5.00) 13.16 (6.27) 12.81 (5.60) 39.55 (5.85) 27.44 (7.86) 32.11 (7.09) 76.56 73.31 74.90 88.49 83.37 85.86
bert-base-uncasedSMARTSpan

110M
0.34 (0.13) 24.43 (6.86) 0.68 (0.24) 23.35 (1.96) 79.42 (5.75) 36.07 (2.86) – – – – – –

bert-base-uncasedMultiSpanQA_SMARTSpan 78.96 (1.41) 74.78 (2.04) 76.80 (1.56) 89.37 (3.31) 84.24 (2.02) 86.72 (2.47) – – – – – –
bert-base-uncasedMultiSpanQA 9.47 (4.98) 10.58 (6.02) 9.92 (5.32) 35.73 (5.92) 22.07 (5.42) 26.79 (4.48) 66.99 68.81 67.89 80.07 78.17 79.11

Extractive models (CSS)
roberta-base 125M 65.80 (10.22) 88.12 (3.28) 74.84 (6.72) 79.24 (8.56) 92.80 (2.97) 85.14 (4.58) 74.93 69.91 72.33 85.95 77.51 81.51
bert-base-uncased 110M 68.00 (7.65) 84.85 (3.99) 75.23 (5.45) 82.46 (6.86) 89.18 (4.50) 85.56 (5.04) 69.93 61.22 65.29 81.82 70.26 75.60

Generative models (LORA fine-tuning)
phi-4 14B 32.58 (15.79) 24.75 (18.18) 27.69 (17.40) 42.21 (21.90) 32.16 (23.81) 35.96 (23.17) 74.28 73.00 73.63 88.96 84.71 86.78
Mistral-Nemo-Instruct-2407 13B 35.59 (10.95) 26.84 (15.10) 30.14 (13.75) 52.49 (19.94) 40.35 (23.82) 45.01 (22.68) 29.60 75.56 42.53 47.39 91.17 62.36
gemma-2-9b-it 9B 36.65 (14.08) 37.71 (12.21) 36.40 (12.99) 62.98 (13.83) 65.99 (17.72) 62.89 (12.78) 68.90 75.46 72.03 83.68 87.57 85.58
Meta-Llama-3.1-8B 8B 28.67 (11.19) 18.09 (9.22) 22.08 (10.26) 33.98 (14.30) 21.74 (11.87) 26.39 (13.14) 55.86 57.14 56.49 73.26 80.09 76.52
mistral-7b-instruct-v0.3 7B 46.30 (8.10) 49.61 (14.97) 47.52 (11.13) 74.85 (8.24) 77.49 (16.99) 75.63 (12.03) 72.84 71.59 72.21 87.74 84.09 85.87
Llama-3.2-3B 3B 24.52 (5.88) 33.61 (10.71) 27.64 (6.35) 43.33 (10.11) 51.87 (9.36) 46.16 (8.20) 65.82 71.95 68.75 81.52 85.50 83.46
flan-t5-large 750M 44.38 (10.44) 37.80 (6.09) 40.57 (7.45) 66.54 (10.88) 78.18 (4.20) 71.54 (7.67) 74.03 71.90 72.95 88.01 85.40 86.68
bart-large 406M 34.80 (10.91) 23.65 (8.32) 28.14 (9.46) 69.79 (12.15) 55.71 (6.34) 61.70 (8.36) 48.92 47.56 48.23 65.30 59.93 62.50

Generative models (QASE)
flan-t5-large 750M 35.84 (4.92) 28.89 (3.02) 31.89 (3.44) 70.35 (8.00) 50.01 (1.57) 58.34 (3.88) 75.59 70.17 72.78 91.48 83.12 87.10

Generative models (LLM Schema)
GPT-4.1 – 39.89 (8.52) 34.92 (9.28) 37.14 (8.84) 84.57 (6.31) 67.42 (6.02) 74.88 (5.40) – – – – – –

Table 3: Performance evaluation on SMARTSpan and MultiSpanQA datasets for all Goal Extraction models, sorted
by parameter size (descending). All metrics are higher-the-better (↑) and numbers in parentheses correspond to
standard deviation. The best result per column is in bold, second-best is underlined.

Model #Params Accuracy (↑) Macro F1 (↑) SMART F1 (↑)

deberta-v3-large 435M 0.86 ± 0.02 0.85 ± 0.03 0.91 ± 0.03
roberta-large 355M 0.70 ± 0.26 0.67 ± 0.30 0.70 ± 0.40
deberta-v3-base 180M 0.83 ± 0.05 0.81 ± 0.06 0.90 ± 0.03

Table 4: Evaluation on SMARTSpan dataset for all
SMARTness Classification models, sorted by parameter
size (descending). All metrics are higher-the-better (↑).
Best results per column are in bold.

This significant performance reduction high-507

lights the sensitivity of extractive models to limited508

training data. The SMARTSpan training split com-509

prises only 123 examples, which appears to be in-510

sufficient for the model to learn effective span repre-511

sentations without prior exposure to larger datasets512

like MultiSpanQA (see Appendix H). Despite this,513

the two-stage fine-tuning process mitigates the per-514

formance gap. As shown in Appendix J, mod-515

els first exposed to MultiSpanQA can successfully516

identify goal-relevant regions even in loosely struc-517

tured HC notes, demonstrating the importance of518

pretraining on richly supervised multi-span data519

before adapting to low-resource, domain-specific520

datasets such as SMARTSpan.521

6.2 Performance of Generative Models on522

Goal Extraction Task523

Generative LLMs consistently underperform span-524

extractive baselines on SMARTSpan. For instance,525

mistral-7b-instruct-v0.3 achieves only 47.52 526

EM and 75.63 PM F1 score, whereas a 20× smaller 527

CSS extractor achieves 75.23 EM and 85.56 PM F1 528

score. Their larger split-to-split standard deviations 529

provide further evidence of their instability under 530

limited training data. In contrast, the same genera- 531

tive models match or surpass extractive systems on 532

MultiSpanQA (up to 87.10 PM F1 score), highlight- 533

ing a strong sensitivity to domain shift from open- 534

domain MSRC to low-resource, health-coaching 535

notes. Until tighter span-faithfulness constraints 536

emerge, extractive or hybrid pipelines remain the 537

safer choice for clinical goal extraction. 538

Manual inspection further pinpoints two recur- 539

rent failure modes in generative outputs: (i) hal- 540

lucination – insertion of content absent from the 541

note (e.g., random HTML tags, stray characters, 542

and fabricated text; see Appendices J and K); (ii) 543

null extraction – Span-grounding methods such as 544

QASE (Ai et al., 2024) reduce these errors on Mul- 545

tiSpanQA, yet prove ineffective on SMARTSpan, 546

leaving safety-critical, responsibility-sensitive fail- 547

ures largely unaddressed. 548

6.3 Analysis of the SMARTness Classifiers 549

As shown in Table 4, we evaluated three 550

transformer-based models trained on 551

SMARTSpan for SMARTness classification: 552

DeBERTa-v3-large, RoBERTa-large, and 553
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DeBERTa-v3-base. DeBERTa-v3-large achieved554

the highest scores on all evaluation metrics. Its555

accuracy reached 0.86, with a macro-average556

F1 of 0.85 and a SMART F1 score of 0.91.557

DeBERTa-v3-base is a smaller model but per-558

formed nearly as well in all categories. Its SMART559

F1 was only modestly lower, which suggests560

that it may serve as a practical alternative when561

computational resources are limited.562

To gain a better understanding of the remaining563

mistakes, we reviewed the predictions and grouped564

the errors into three common types. The first is565

boundary confusion, where the model struggles to566

distinguish between categories such as SMART567

and Partially SMART. This often occurs when a568

goal is nearly completed but lacks a minor element,569

such as a specific time frame. The second type570

is overclassification, where incomplete goals are571

incorrectly labeled as SMART. This usually occurs572

when vague wording or loosely defined measures573

are interpreted as sufficient. The third type is un-574

derclassification, which refers to clearly defined575

SMART goals being labeled as less specific be-576

cause key attributes are implied rather than being577

stated directly. These observations suggest that578

classification performance could be improved by579

including more training examples that reflect sub-580

tle variations in goal phrasing. It may also help to581

better define how each SMART attribute should be582

recognized during training.583

6.4 Performance Evaluation of the584

SMARTMiner Framework585

Finally, we evaluated our SMARTMiner frame-586

work by combining the best-performing goal587

extraction model (DeBERTa-v3-base) with a588

SMARTness classification model based on589

DeBERTa-v3-large. Inference was conducted590

across all five SMARTSpan test splits, yielding a to-591

tal of 198 golden goals, of which 76% were unique.592

Table 5 presents the SMARTness confusion ma-593

trix, reflecting the classification applied to goals594

extracted by the goal extraction module, rather than595

gold-standard annotations. The framework demon-596

strates strong overall performance, particularly in597

correctly identifying SMART goals.598

Most misclassifications occurred between adja-599

cent categories—for example, Partially SMART600

goals labeled as SMART. To further examine sys-601

tem behavior, we conducted a focused analysis of602

the most extreme misclassifications—cases where603

SMART goals were incorrectly predicted as Not604

label \ pred Not SMART Partially SMART SMART

Not SMART 47 (73.44%) 13 (20.31%) 4 (6.25%)
Partially SMART 6 (10.71%) 39 (69.64%) 11 (19.64%)
SMART 1 (1.09%) 9 (9.78%) 82 (89.13%)

Table 5: Performance evaluation of the SMARTMiner
framework across all five SMARTSpan test splits. Cor-
rect predictions are shown in bold.

SMART (underprediction), and vice versa (over- 605

prediction). The underprediction stemmed from in- 606

complete span extraction, omitting key information. 607

Three overpredictions were caused by hallucinated 608

goals, and one involved a correctly extracted goal 609

with overestimated SMARTness. These findings 610

underscore how extraction errors can cascade into 611

misclassification, highlighting the need for preci- 612

sion across both modules. 613

7 Conclusions and Future Work 614

This paper presents a SMARTMiner framework 615

to support health coaches in identifying goals that 616

may require reformulation, while also surfacing all 617

goals to clients via their mobile app. Our evalu- 618

ation revealed that the performance gap between 619

extractive span-based methods such as SpanQuali- 620

fier and fine-tuned generative models is more pro- 621

nounced in real-world, low-resource settings such 622

as SMARTSpan than on larger datasets such as 623

MultiSpanQA. Nevertheless, we demonstrated that, 624

by carefully selecting base models and adopting 625

a two-stage fine-tuning approach, the proposed 626

framework can achieve good performance in iden- 627

tifying and categorizing various types of goals. 628

Building on this foundation, we envision extend- 629

ing SMARTMiner to a fully automated system that 630

conducts weekly goal reviews between human-led 631

HC sessions. This system would operate inde- 632

pendently, triggering structured check-ins to as- 633

sess progress, reinforce accountability, and provide 634

timely feedback to health coaches regarding their 635

clients’ progress. By integrating this functionality, 636

the system aims to sustain engagement and support 637

behavior change more consistently over time, even 638

in the absence of direct human interaction. Ex- 639

panding this framework further, it could potentially 640

be applied to other health and social care contexts 641

such as documenting and tracking individual care 642

plans, health and social prescribing programmes. 643
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Limitations644

As stated in Section 3, for anonymization of our645

data, we employed ChatGPT only for minimal,646

word-level rewrite; every rewrite suggestion was re-647

viewed and, where necessary, corrected by human648

annotators to ensure that no personally identifiable649

information remained and that the note structure,650

wording, and formatting were preserved exactly,651

avoiding hallucinated edits or template drift. This652

intensive human-in-the-loop pipeline is feasible653

for the present corpus of 173 HC notes, but does654

not scale linearly. For larger releases we will in-655

troduce an additional annotation layer that grades656

each LLM-generated rewrite for fidelity and for-657

matting compliance before acceptance, allowing us658

to maintain real-world note realism while keeping659

human effort tractable.660

Given the nature of the collected data (i.e., HC661

notes), we focused only on labeling the three core662

SMART components: Specific (S), Measurable663

(M), and Attainable (A). The Time-bound (T) el-664

ement was implicitly defined by the structure of665

the intervention, where clients set weekly goals or666

targets to be completed before the next HC session.667

However, since this temporal aspect was rarely668

stated explicitly in the HC notes, it could not be an-669

notated as a gold label or reliably captured by our670

classifier. Similarly, the Relevant (R) dimension671

was excluded from annotation, as health coaches672

served as the first filter—only documenting goals673

that were deemed relevant within the scope of the674

study. As a result, R was not labeled in the dataset675

and thus could not be assessed.676

All HC notes in the SMARTSpan dataset are677

written in English and were collected over a one-678

year period from a specific population with ele-679

vated LDL levels, participating in an intervention680

to improve adherence to statin therapy. The dataset681

reflects the language, behaviors, and health system682

context of this particular group. Anyone using the683

dataset should be mindful of these contextual limi-684

tations when applying the models or generalizing685

findings to other populations or settings.686

Ethical Considerations687

The RCT from which the HC session notes were688

obtained received ethical approval from the Insti-689

tutional Review Board (IRB). Written informed690

consent was obtained from all participants enrolled691

in the RCT. We will release the full details of IRB692

approval after the peer-review process.693

The use of automated framework for SMART 694

goal extraction and evaluation carries several po- 695

tential risks. The models may overlook contextual 696

nuances such as sarcasm, conditional statements, 697

or culturally sensitive expressions, leading to dis- 698

torted representations of the user’s intent and po- 699

tentially triggering inappropriate follow-ups. Over- 700

reliance on model outputs without human verifi- 701

cation could compromise care quality, particularly 702

if health coaches treat the model’s evaluations as 703

authoritative. Additionally, the framework may 704

inherit and amplify biases from the training data, 705

favoring certain goal formats or under-representing 706

the linguistic patterns of specific population groups. 707

This underscores the essentiality of impartiality in 708

clinical documentation to enhance the precision of 709

the current framework and similar frameworks in 710

the future. 711
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A Example of HC Note1036

Figure 3 shows an example of a real-world HC1037

note inputted into the HC web-based platform. The1038

note includes SMART goals, lifestyle observations1039

(e.g., travel), and structured follow-up on weekly1040

SMART goal performance with patient-reported1041

adherence and perceived success rates.1042

HC note1043
1. Swimming and aquarobics for 30 minutes once a week.1044
2. Homemade salad for breakfast once a week, buy salad as1045
alternative if busy.1046
3. Take medications every day of the week.1047

1048
Client recently returned from a trip with a friend that1049
included food outings and leisure travel.1050

1051
Goals review:1052
1. Aquatic exercises were done once a week due to work1053
commitments, perceived success 40-50%.1054
2. Had breakfast three times a week, usually bread and1055
coffee, perceived success 100%.1056
3. Took medications 6 out of 7 days, found pillbox and1057
app reminders helpful especially after late shifts,1058
perceived success 100%.1059

1060
Generative moment: Participated in stretching activities1061
at a local centre, signed up for weekly sessions and began1062
socialising through games.1063

1064
Goals setting:1065
1. Continue swimming and aquatic exercises once a week1066
(confidence 100%).1067
2. Consume homemade salad as breakfast once a week,1068
with flexibility to buy if necessary (confidence 50%).1069
3. Take statin medications every day of the week1070
(confidence 90%).1071

1072
App usage: Frequently used medication reminders, watched1073
a few videos but cited lack of time.1074

1075
Other concerns: Currently adjusting antihypertensive1076
medication under physician’s guidance due to low heart rate1077
and elevated BP readings. Client was instructed to monitor1078
and record BP and heart rate daily using the app diary and1079
dictation tool.1080

1081

Extracted goals1082

The following goals were manually extracted from1083

the above-mentioned HC note as golden labels1084

1. Continue swimming and aquatic exercises once a week1085
(confidence 100%)1086
2. Consume homemade salad as breakfast once a week, with1087
flexibility to buy if necessary (confidence 50%)1088
3. Take statin medications every day of the week1089
(confidence 90%)1090

SMARTness of extractive goals1091

Following our core SMARTness framework, the1092

extracted goals are manually evaluated for Speci-1093

ficity, Measurability, and Attainability. A label of1094

[1,1,1] indicates that the goal meets all three core1095

criteria and it is labeled as SMART.1096

1. [1,0,1]1097
2. [1,1,1]1098
3. [1,1,1]1099

In the example above, the first goal is Specific (it1100

mentions swimming and aquatic exercises) and At-1101

tainable (confidence of 100%), but not Measurable,1102

as it does not specify the duration of swimming 1103

or aquatic activities. The second goal is Specific 1104

(consume homemade salad), Measurable (once a 1105

week), and Attainable (confidence assessed). Fi- 1106

nally, the third goal is Specific (statin medications), 1107

Measurable (every day of the week), and Attain- 1108

able (confidence of 90%). Some other examples 1109

of Partially SMART and Not SMART goals in the 1110

dataset are 1111
1. Complete 5km walk two times a week from midweek onwards. 1112
[1,1,0] 1113
2. Exercise daily for at least 1 hour. [0,1,0] 1114
3. Exercise daily for 30 minutes (confidence level 8/10). 1115
[0,1,1] 1116
4. Reduce portion sizes and adjust ingredients to 1117
healthier options. [0,0,0] 1118

Goal 1 is Partially SMART as it is Specific (5km 1119

walk) and Measurable (twice a week), but lacks 1120

an Attainability marker such as confidence or fea- 1121

sibility. Goal 2 is not SMART as it is Measurable 1122

(daily, 1 hour), but lacks Specificity (type of exer- 1123

cise) and does not include Attainability. Goal 3 1124

is Partially SMART as it is Measurable (daily, 30 1125

minutes) and Attainable (confidence of 8/10), but 1126

not Specific about the type of activity. Goal 4 is 1127

Not SMART as it is vaguely set and lacks all three 1128

SMART components—there is no clear target be- 1129

havior, no quantifiable element, and no indication 1130

of feasibility. 1131

B Annotation of SMARTSpan Dataset 1132

The annotation was performed by two academic 1133

researchers who hold a doctoral degree (PhD and 1134

MBBS) and have received prior training in HC. 1135

One annotator also has clinical experience in de- 1136

livering HC interventions. Prior to the annotation 1137

task, both annotators jointly reviewed relevant liter- 1138

ature and established a shared understanding of the 1139

definitions and criteria for the S, M, and A compo- 1140

nents. 1141

To minimize biases resulting from practice ef- 1142

fects, they were presented with examples of well- 1143

and poorly formulated SMART goals. Additionally, 1144

a calibration exercise involving 10 sample goals, 1145

sourced independently of the main dataset, was 1146

conducted to ensure alignment and consistency in 1147

their interpretation and rating of goals. No reim- 1148

bursement was given to the annotators as they were 1149

part of the research team. 1150

C Extraction Prompt for LoRA 1151

Fine-Tuning of Generative Models 1152

The prompt below defines the task used for fine- 1153

tuning generative models to extract goals from un- 1154
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Figure 3: Example of a HC note recorded in the HC web-based platform.

structured HC notes. It clearly frames the task as1155

extractive rather than generative, instructing the1156

model to copy exact span text without paraphras-1157

ing. The instruction emphasizes exclusion of vague1158

categories and long-term intentions, and focuses1159

only on short-term, concrete weekly goals. The1160

model is further guided to format the output as a1161

numbered list.1162

Below is an instruction that describes a task, paired with an input1163
that provides further context. Write a response that appropriately1164
completes the request.1165

1166
### Instruction:1167
You are an expert assistant that extracts only SMART weekly goals1168
from health coaching session notes. Extract the exact parts of1169
text, don't rephrase the text! This is an NLU task, and not an1170
NLG task! Only include goals that are: Specific, Measurable,1171
Attainable, Relevant, and Time-bound (SMART). Do not include1172
vague or broad categories like 'Exercise', 'Medication', or1173
'Diet' unless they are written as specific SMART goals. Ignore1174
6-month, long-term, or vague intentions. Focus only on short-term,1175
concrete weekly SMART goals that the patient committed to.1176
Format your response as a numbered list.1177

1178
### Input: {input}1179

1180
### Output: {output}1181

D Overview of Generative Models used1182

for Fine-Tuning1183

Table 6 summarizes key details for the generative1184

models used in our evaluation, including their re-1185

lease dates, pre-training cutoff dates, and the num-1186

ber of fine-tuned parameters relative to total model1187

size. These models vary widely in scale and re-1188

cency, which may influence their ability to extract1189

structured SMART goals under zero-shot or fine-1190

tuned conditions.1191

Model Train params Release Cutoff
phi-4 (Abdin et al., 2024) 33M out of 14B 2024-12-13 Jun 2024
Mistral-Nemo-Instruct-2407 29M out of 12B 2024-07-18 Apr 2024
gemma-2-9b-it (Team et al., 2024) 27M out of 9B 2024-06-27 –
Meta-Llama-3.1-8B (Dubey et al., 2024) 21M out of 8B 2024-07-23 Dec 2023
mistral-7b-instruct-v0.3 21M out of 7B 2024/05/22 –
Llama-3.2-3B (Meta, 2024) 12M out of 3B 2024-09-25 Dec 2023

Table 6: Release and pre-training cutoff dates for used
generative models.

E Zero-Shot SMART GPT-4.1 Goal 1192

Extraction Prompt and Schema 1193

To support zero-shot structured extraction of 1194

weekly SMART goals, we used OpenAI’s GPT- 1195

4.1 with the function-calling API. The model was 1196

instructed via a detailed system prompt (i.e., in- 1197

struction) and constrained to return outputs in a 1198

predefined JSON schema. Below we provide both 1199

the prompt and the schema used. 1200

Instruction 1201
You are an expert assistant that extracts only SMART weekly goals 1202
from health coaching session notes. Extract the exact parts of text, 1203
don't rephrase the text! This is an NLU task, and not an NLG task! 1204
Only include goals that are: Specific, Measurable, Attainable, 1205
Relevant, and Time-bound (SMART). Do not include vague or broad 1206
categories like "Exercise", "Medication", or "Diet" unless they 1207
are written as specific SMART goals. Ignore 6-month, long-term, 1208
or vague intentions. Focus only on short-term, concrete weekly 1209
SMART goals that the patient committed to. Always respond in JSON 1210
format. 1211

Function Schema 1212
[ 1213
{ 1214
"type": "function", 1215
"function": { 1216
"name": "extract_weekly_smart_goals", 1217
"description": "Extract only weekly SMART goals. 1218

Ignore long-term or monthly goals.", 1219
"parameters": { 1220
"type": "object", 1221
"properties": { 1222
"goals": { 1223
"type": "array", 1224
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"items": { "type": "string" },1225
"description": "List of weekly SMART goals"1226

}1227
},1228
"required": ["goals"]1229

}1230
}1231

}1232
]1233

F Performance of the Goal Extraction1234

Models Across SMARTSpan Splits1235

Table 7 reports the performance of1236

DeBERTa-v3-base and bert-base-uncased1237

on five test splits of the SMARTSpan dataset under1238

three fine-tuning settings using the SpanQualifier1239

framework: (i) trained only on SMARTSpan,1240

(ii) first on MultiSpanQA then further fine-1241

tuned on SMARTSpan, and (iii) trained only1242

on MultiSpanQA. Results clearly show that1243

models fine-tuned sequentially on MultiSpanQA1244

and SMARTSpan achieve the highest scores1245

across all splits, with DeBERTa-v3-base reaching1246

up to 90.11 EM F1 and 97.41 PM F1, and1247

bert-base-uncased up to 78.65 EM F1 and1248

89.62 PM F1. In contrast, models trained solely1249

on SMARTSpan perform poorly, with EM F11250

scores close to zero despite relatively higher PM1251

recall. Models fine-tuned only on MultiSpanQA1252

exhibit modest performance improvements over1253

SMARTSpan-only training, but still fall short of1254

the multi-stage fine-tuning setup. These findings1255

underscore the importance of domain adaptation:1256

while MultiSpanQA pretraining supports general-1257

ization, adaptation to SMARTSpan is essential for1258

strong performance.1259

Table 8 reports the performance of1260

bert-base-uncased and roberta-base across1261

five test splits of the SMARTSpan dataset, using1262

the CSS fine-tuning framework. Both models1263

achieve strong and stable PM F1 performance,1264

averaging above 85. EM F1 scores for both models1265

also vary within a similar range—approximately1266

65 to 81—suggesting comparable sensitivity to1267

training data splits. While roberta-base achieves1268

a slightly higher peak PM F1 score (89.75) and EM1269

F1 score (81.25), bert-base-uncased performs1270

competitively and exhibits a more balanced1271

performance across metrics. These results suggest1272

that both models are well-suited for multi-span ex-1273

traction under CSS, with roberta-base offering1274

marginally higher peaks and bert-base-uncased1275

offering stable returns.1276

Table 9 shows that generative models fine-tuned1277

with LoRA vary widely in their SMARTSpan per-1278

Model EM PM
P↑ R↑ F↑ P↑ R↑ F↑

DeBERTa-v3-baseSMARTSpan_1 0.26 19.57 0.52 21.74 81.29 34.31
DeBERTa-v3-baseSMARTSpan_2 0.35 21.57 0.70 27.84 78.34 41.08
DeBERTa-v3-baseSMARTSpan_3 0.12 12.24 0.23 21.05 73.05 32.69
DeBERTa-v3-baseSMARTSpan_4 0.11 10.42 0.22 20.83 68.63 31.96
DeBERTa-v3-baseSMARTSpan_5 0.58 38.89 1.14 19.56 77.64 31.24
DeBERTa-v3-baseMultiSpanQA_SMARTSpan_1 91.11 89.13 90.11 100.00 94.96 97.41
DeBERTa-v3-baseMultiSpanQA_SMARTSpan_2 81.13 84.31 82.69 88.03 90.55 89.27
DeBERTa-v3-baseMultiSpanQA_SMARTSpan_3 89.58 87.76 88.66 97.81 91.69 94.65
DeBERTa-v3-baseMultiSpanQA_SMARTSpan_4 78.26 75.00 76.60 91.44 83.91 87.51
DeBERTa-v3-baseMultiSpanQA_SMARTSpan_5 86.11 86.11 86.11 91.18 92.50 91.84
DeBERTa-v3-baseMultiSpanQA_1 11.11 10.87 10.99 40.08 23.36 29.52
DeBERTa-v3-baseMultiSpanQA_2 9.09 7.84 8.42 36.68 21.36 27.00
DeBERTa-v3-baseMultiSpanQA_3 6.00 6.12 6.06 32.94 18.91 24.03
DeBERTa-v3-baseMultiSpanQA_4 16.98 18.75 17.82 50.30 38.77 43.79
DeBERTa-v3-baseMultiSpanQA_5 19.51 22.22 20.78 37.75 34.82 36.22

bert-base-uncasedSMARTSpan_1 0.19 15.22 0.38 20.33 75.72 32.05
bert-base-uncasedSMARTSpan_2 0.42 25.49 0.83 26.13 87.35 40.23
bert-base-uncasedSMARTSpan_3 0.33 24.49 0.65 23.59 82.91 36.73
bert-base-uncasedSMARTSpan_4 0.24 20.83 0.48 24.43 80.42 37.48
bert-base-uncasedSMARTSpan_5 0.54 36.11 1.06 22.26 70.72 33.86
bert-base-uncasedMultiSpanQA_SMARTSpan_1 81.40 76.09 78.65 93.92 85.70 89.62
bert-base-uncasedMultiSpanQA_SMARTSpan_2 78.00 76.47 77.23 86.92 84.24 85.56
bert-base-uncasedMultiSpanQA_SMARTSpan_3 78.72 75.51 77.08 91.61 87.11 89.30
bert-base-uncasedMultiSpanQA_SMARTSpan_4 77.27 70.83 73.91 89.82 82.63 86.08
bert-base-uncasedMultiSpanQA_SMARTSpan_5 79.41 75.00 77.14 84.58 81.53 83.03
bert-base-uncasedMultiSpanQA_1 11.36 10.87 11.11 43.19 20.36 27.68
bert-base-uncasedMultiSpanQA_2 3.92 3.92 3.92 29.19 18.33 22.52
bert-base-uncasedMultiSpanQA_3 3.17 4.08 3.57 33.20 15.18 20.83
bert-base-uncasedMultiSpanQA_4 14.89 14.58 14.74 42.41 26.43 32.57
bert-base-uncasedMultiSpanQA_5 14.00 19.44 16.28 30.65 30.04 30.34

Table 7: Extractive models (DeBERTa-v3-base
and bert-base-uncased) performance across five
SMARTSpan test splits using SpanQualifier.

Model EM PM
P↑ R↑ F↑ P↑ R↑ F↑

roberta-basesplit_1 78.00 84.78 81.25 89.81 87.77 88.78
roberta-basesplit_2 52.38 86.27 65.19 66.71 93.20 77.76
roberta-basesplit_3 69.70 93.88 80.00 84.10 96.20 89.75
roberta-basesplit_4 55.13 89.58 68.25 71.88 95.18 81.90
roberta-basesplit_5 73.81 86.11 79.49 83.69 91.67 87.50
bert-base-uncasedsplit_1 76.92 86.96 81.63 86.79 89.94 88.34
bert-base-uncasedsplit_2 53.75 84.31 65.65 71.53 90.63 79.95
bert-base-uncasedsplit_3 69.84 89.80 78.57 88.22 94.82 91.40
bert-base-uncasedsplit_4 69.49 85.42 76.64 88.52 89.49 89.00
bert-base-uncasedsplit_5 70.00 77.78 73.68 77.26 81.01 79.09

Table 8: Extractive models (bert-base-uncased and
roberta-base) performance across five SMARTSpan
test splits using CSS.

formance. mistral-7b-instruct-v0.3 emerges 1279

as the strongest overall, reaching up to 60.00 EM F1 1280

and 90.34 PM F1 across splits. In contrast, larger 1281

models like Mistral-Nemo-Instruct-2407 per- 1282

form less consistently, peaking at only 53.52 EM 1283

F1 and 73.61 PM F1. Models such as phi-4 and 1284

Meta-Llama-3.1-8B exhibit high variance, with 1285

EM F1 fluctuating from as low as 10.81 to 55.56, 1286

indicating instability. Similarly, gemma-2-9b-it 1287

achieves strong PM scores (up to 77.62) but lags 1288

in EM, highlighting challenges in exact span repro- 1289

duction. Overall, smaller models with more stable 1290

tuning outperform larger counterparts on this task. 1291

Table 10 presents the performance of the 1292

flan-t5-large model across five SMARTSpan 1293

test splits using the QASE framework. While PM 1294

F1 scores remain relatively stable, ranging from 1295

51.21 to 62.93, EM F1 scores are considerably 1296
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Model EM PM
P↑ R↑ F↑ P↑ R↑ F↑

phi-4split_1 20.00 10.87 14.08 20.00 10.87 14.08
phi-4split_2 24.14 13.73 17.50 36.19 21.04 26.61
phi-4split_3 16.00 8.16 10.81 19.06 9.71 12.86
phi-4split_4 47.22 35.42 40.48 65.52 48.49 55.73
phi-4split_5 55.56 55.56 55.56 70.30 70.71 70.50
Mistral-Nemo-Instruct-2407split_1 28.00 15.22 19.72 32.00 17.17 22.35
Mistral-Nemo-Instruct-2407split_2 41.86 35.29 38.30 74.35 63.79 68.67
Mistral-Nemo-Instruct-2407split_3 25.81 16.33 20.00 53.46 33.59 41.26
Mistral-Nemo-Instruct-2407split_4 28.00 14.58 19.18 28.00 14.58 19.18
Mistral-Nemo-Instruct-2407split_5 54.29 52.78 53.52 74.63 72.61 73.61
gemma-2-9b-itsplit_1 37.50 39.13 38.30 74.74 75.95 75.34
gemma-2-9b-itsplit_2 18.81 37.25 25.00 45.49 87.16 59.78
gemma-2-9b-itsplit_3 23.53 16.33 19.28 50.13 36.64 42.33
gemma-2-9b-itsplit_4 56.52 54.17 55.32 81.60 74.02 77.62
gemma-2-9b-itsplit_5 46.88 41.67 44.12 62.95 56.20 59.38
Meta-Llama-3.1-8Bsplit_1 20.00 10.87 14.08 20.00 10.87 14.08
Meta-Llama-3.1-8Bsplit_2 32.43 23.53 27.27 51.51 37.80 43.60
Meta-Llama-3.1-8Bsplit_3 16.00 8.16 10.81 16.00 8.16 10.81
Meta-Llama-3.1-8Bsplit_4 26.92 14.58 18.92 34.38 18.56 24.11
Meta-Llama-3.1-8Bsplit_5 48.00 33.33 39.34 48.00 33.33 39.34
mistral-7b-instruct-v0.3split_1 34.15 30.43 32.18 74.09 65.85 69.73
mistral-7b-instruct-v0.3split_2 42.50 33.33 37.36 63.42 49.55 55.63
mistral-7b-instruct-v0.3split_3 45.00 55.10 49.54 77.26 90.71 83.45
mistral-7b-instruct-v0.3split_4 57.69 62.50 60.00 88.54 92.21 90.34
mistral-7b-instruct-v0.3split_5 52.17 66.67 58.54 70.94 89.15 79.01
Llama-3.2-3Bsplit_1 19.57 19.57 19.57 47.20 42.68 44.83
Llama-3.2-3Bsplit_2 26.32 39.22 31.50 41.96 53.81 47.15
Llama-3.2-3Bsplit_3 22.00 22.45 22.22 43.41 39.80 41.53
Llama-3.2-3Bsplit_4 35.19 39.58 37.25 57.70 64.44 60.88
Llama-3.2-3Bsplit_5 19.54 47.22 27.64 26.38 58.63 36.39
flan-t5-largesplit_1 51.35 41.30 45.78 72.03 76.99 74.43
flan-t5-largesplit_2 55.56 39.22 45.98 75.92 78.65 77.26
flan-t5-largesplit_3 25.49 26.53 26.00 50.33 70.86 58.86
flan-t5-largesplit_4 47.37 37.50 41.86 77.45 82.81 80.04
flan-t5-largesplit_5 42.11 44.44 43.24 56.97 81.59 67.09
bart-largesplit_1 40.62 28.26 33.33 83.10 64.63 72.71
bart-largesplit_2 15.62 9.80 12.05 49.75 52.96 51.30
bart-largesplit_3 30.00 18.37 22.78 67.84 48.88 56.82
bart-largesplit_4 45.45 31.25 37.04 81.82 61.84 70.44
bart-largesplit_5 42.31 30.56 35.48 66.44 50.24 57.22

Table 9: Generative models performance across five
SMARTSpan test splits using LORA fine-tuning.

lower, with values between 26.67 and 37.04. This1297

pattern highlights the model’s ability to identify1298

semantically relevant spans but also underscores1299

the challenge of achieving exact span boundary1300

matches. The discrepancy between PM and EM1301

metrics reflects the difficulty in generating strictly1302

accurate extractions under the QASE setup.1303

Model EM PM
P↑ R↑ F↑ P↑ R↑ F↑

flan-t5-largesplit_1 42.86 32.61 37.04 78.53 52.50 62.93
flan-t5-largesplit_2 30.77 23.53 26.67 70.88 50.00 58.63
flan-t5-largesplit_3 35.00 28.57 31.46 73.68 50.64 60.03
flan-t5-largesplit_4 40.00 29.17 33.73 73.52 49.12 58.89
flan-t5-largesplit_5 30.56 30.56 30.56 55.14 47.80 51.21

Table 10: flan-t5-large model performance across
five SMARTSpan test splits using QASE.

Table 11 reports the performance of GPT-4.11304

across five SMARTSpan test splits. The model1305

achieves strong PM F1 scores, ranging from 69.74 1306

to 84.94, indicating high semantic alignment with 1307

relevant spans. However, EM F1 scores are substan- 1308

tially lower, varying between 23.26 and 44.78, high- 1309

lighting challenges in predicting exact span bound- 1310

aries. These results suggest that while GPT-4.1 is 1311

highly effective at identifying relevant content in 1312

zero-shot settings, it falls short in producing pre- 1313

cise extractions. The consistent PM performance 1314

nonetheless underscores its utility for approximate 1315

span retrieval tasks. 1316

Model EM PM
P↑ R↑ F↑ P↑ R↑ F↑

GPT-4.1split_1 48.72 41.30 44.71 96.55 75.83 84.94
GPT-4.1split_2 33.33 27.45 30.11 84.46 61.26 71.01
GPT-4.1split_3 27.03 20.41 23.26 83.01 60.13 69.74
GPT-4.1split_4 42.00 43.75 42.86 79.60 71.79 75.49
GPT-4.1split_5 48.39 41.67 44.78 79.22 68.07 73.22

Table 11: GPT-4.1 models performance across five
SMARTSpan test splits using LLM Schema.

G Performance of the SMARTness 1317

Classification Models Across 1318

SMARTSpan Splits 1319

Across the five SMARTSpan test splits, both 1320

deberta-v3-base and deberta-v3-large ex- 1321

hibit consistently strong performance in SMART- 1322

ness classification, with macro F1 scores exceed- 1323

ing 0.740 and SMART F1 scores ranging from 1324

0.864 to 0.955. deberta-v3-large achieves the 1325

highest overall scores, reaching up to 0.875 accu- 1326

racy, 0.881 macro F1, and a peak SMART F1 of 1327

0.955, demonstrating that increased model capac- 1328

ity leads to greater robustness and precision. In 1329

contrast, while roberta-large performs competi- 1330

tively on most splits, it shows instability on Split_ 3, 1331

where classification performance collapses entirely 1332

(SMART F1 = 0.000). This divergence highlights 1333

the importance of evaluating models across mul- 1334

tiple test partitions and supports the reliability 1335

of DeBERTa-based architectures—particularly the 1336

large variant—for structured SMARTness predic- 1337

tion in goal-oriented health coaching contexts. 1338

H Output for DeBERTa-v3-base 1339

fine-tuned only on SMARTSpan using 1340

SpanQualifier 1341

The list below shows the final inference output of 1342

DeBERTa-v3-base trained with the SpanQualifier 1343
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Model Accuracy↑ Macro F1↑ SMART F1↑
deberta-v3-basesplit_1 0.780 0.744 0.900
deberta-v3-basesplit_2 0.809 0.786 0.864
deberta-v3-basesplit_3 0.822 0.782 0.913
deberta-v3-basesplit_4 0.902 0.897 0.927
deberta-v3-basesplit_5 0.833 0.836 0.870
deberta-v3-largesplit_1 0.854 0.842 0.900
deberta-v3-largesplit_2 0.830 0.809 0.864
deberta-v3-largesplit_3 0.867 0.834 0.955
deberta-v3-largesplit_4 0.878 0.881 0.895
deberta-v3-largesplit_5 0.875 0.874 0.909
roberta-largesplit_1 0.780 0.743 0.923
roberta-largesplit_2 0.787 0.745 0.851
roberta-largesplit_3 0.244 0.131 0.000
roberta-largesplit_4 0.878 0.860 0.913
roberta-largesplit_5 0.833 0.849 0.833

Table 12: Encoder-only transformer models
(deberta-v3-base, deberta-v3-large and
roberta-base) performance across five SMARTSpan
test splits.

framework on the SMARTSpan dataset using only1344

123 training examples. This model achieved an1345

average EM F1 of 0.56 and average PM F1 of 34.26.1346

As shown below, the model returns a large set of1347

overlapping span candidates with minimal filtering1348

or boundary control.1349

This output illustrates SpanQualifier’s reliance1350

on large-scale supervision. In low-resource condi-1351

tions, it fails to discriminate meaningful spans from1352

irrelevant ones and defaults to producing dense n-1353

gram windows. Without upstream training (e.g., on1354

MultiSpanQA) or parameter-efficient adaptation1355

(e.g., LoRA), the model lacks a coherent span rep-1356

resentation and performs poorly on SMARTSpan.1357

"24": [1358
") exercise : switch from casual walking to brisk walking",1359
"exercise : switch from casual walking to brisk walking ,",1360
": switch from casual walking to brisk walking , maintaining",1361
"switch from casual walking to brisk walking , maintaining a",1362
"from casual walking to brisk walking , maintaining a daily",1363
"casual walking to brisk walking , maintaining a daily goal",1364
"walking to brisk walking , maintaining a daily goal of",1365
"to brisk walking , maintaining a daily goal of 10",1366
"brisk walking , maintaining a daily goal of 10 ,",1367
"walking , maintaining a daily goal of 10 , 000",1368
", maintaining a daily goal of 10 , 000 steps",1369
"maintaining a daily goal of 10 , 000 steps (",1370
"a daily goal of 10 , 000 steps ( confidence",1371
"daily goal of 10 , 000 steps ( confidence 7",1372
"goal of 10 , 000 steps ( confidence 7 /",1373
"of 10 , 000 steps ( confidence 7 / 10",1374
"10 , 000 steps ( confidence 7 / 10 )",1375
", 000 steps ( confidence 7 / 10 ) .",1376
"000 steps ( confidence 7 / 10 ) . (",1377
"steps ( confidence 7 / 10 ) . ( 2",1378
"( confidence 7 / 10 ) . ( 2 )",1379
"confidence 7 / 10 ) . ( 2 ) diet",1380
"7 / 10 ) . ( 2 ) diet :",1381
"/ 10 ) . ( 2 ) diet : reduce",1382
"10 ) . ( 2 ) diet : reduce the",1383
...1384
"activity . future sessions may explore strategies to1385
support consistent medication intake and improving sleep"1386
]1387

I Output for DeBERTa-v3-base after 1388

Sequential Fine-Tuning on 1389

MULTISPANQA and SMARTSPAN 1390

using SpanQualifier 1391

The list below presents the final output of 1392

DeBERTa-v3-base fine-tuned using the SpanQual- 1393

ifier framework, first on MultiSpanQA and subse- 1394

quently on SMARTSpan. Unlike the low-resource 1395

setting where the model was trained only on 1396

SMARTSpan, this model produces a concise and 1397

accurate set of spans, closely aligned with the gold 1398

annotations. The final predictions are well-formed 1399

and exhibit clear span boundaries, indicating that 1400

prior training on a large-scale multi-span dataset 1401

(i.e., MultiSpanQA) successfully bootstraps the 1402

model’s ability to extract meaningful multi-span 1403

goals from SMARTSpan. 1404

This result underscores the importance of task- 1405

aligned pretraining and sufficient supervision. 1406

By first training on a diverse, high-resource 1407

dataset and then adapting to the smaller in-domain 1408

SMARTSpan, the model effectively generalizes 1409

and avoids overgeneration. 1410

"24": [ 1411
"switch from casual walking to brisk walking, maintaining 1412
a daily goal of 10, 000 steps (confidence 7/10)", 1413
"reduce the overall quantity of food consumed by 25 %, 1414
confidence 7/10", 1415
"reduce blood sugar" 1416
] 1417

J Output for 1418

Mistral-Nemo-Instruct-2407 1419

Fine-Tuned on MultiSpanQA 1420

Examples of HTML tags: 1421

"m20r1ol7e07go0pqexqq": [ 1422
"</div >", 1423
"France", 1424
"Galician", 1425
"Germany", 1426
"Italy", 1427
"Portugal", 1428
"Spain", 1429
"UK", 1430
"the Americas" 1431

], 1432

"1ove66khudx8x16s6i81": [ 1433
"</div>", 1434
"<br />", 1435
"<div class=\"column col-3 col-last\">", 1436
"south of Vancouver , British Columbia", 1437
"the Hell on Wheels set", 1438
"the University Women 's Club of Vancouver" 1439

] 1440

Example of stray characters: 1441

"v9ohyt3b06g4y03cqysk": [ 1442
")", 1443
"CANOE", 1444
"OCEAN", 1445
"activity", 1446
"agreeableness", 1447
"assertiveness", 1448
"conscientiousness", 1449

17



"excitement seeking",1450
"extraversion",1451
"gregariousness",1452
"neuroticism",1453
"openness to experience",1454
"positive emotions",1455
"warmth"1456

],1457

"hblv00fzqtwavy96o582": [1458
":",1459
"Don Felder",1460
"Don Henley",1461
"Glenn Frey",1462
"Joe Walsh",1463
"the Eagles",1464
"the band"1465

]1466

Other examples:1467

"503kdfmuelcn8in1eggi": [1468
"### Input:",1469
"Ansel Elgort ( born March 13, 1994 ) is an American actor and1470
musician. He is best known for his leading role in the 20141471

film The Fault in Our Stars, and for playing the title character1472
in the 2017 film Baby Driver. He has also appeared in the1473
films Divergent ( 2014 ), The Divergent Series: Insurgent1474
( 2015 ), and The Divergent Series: Allegiant ( 2016 ), and1475
in the 2017 film The Black Balloon. Elgort was born in New1476
York City, the son of Arthur Elgort, a fashion photographer,1477
and Grethe Barrett Holby, an artist. His father is Jewish,1478
while his mother is of Norwegian and English descent. He1479
was named after his great - grandfather, the Swedish - born1480
artist Andrew Olsson. He grew up in Manhattan and attended the1481
Professional Children 's School. He began acting at age 9, and1482
began taking acting classes at the Stagedoor Manor summer camp.1483
He made his stage debut in the 2002 production of the musical1484
Guys and Dolls at the Kennedy Center in Washington, D.C. He1485
appeared in a short film, The Scapegoat, in 2002, and in the1486
film Daddy 's Home in",1487
"Edgar Wright",1488
"Eiza González",1489
"Jamie Foxx",1490
"Jon Bernthal",1491
"Jon Hamm",1492
"Kevin Spacey",1493
"Lily James"1494

]1495

K Output for Llama-3.2-3B Fine-Tuned1496

on SMARTSpan1497

Example of made up content:1498
Input: "final session. at the request of the client, the session was1499
short and focused on summarizing past experience and suggestions for1500
improvement. client reflects a desire to reduce cholesterol levels1501
and medication intake and had hoped for an intervention with immediate1502
results. suggests that health coaching sessions could be more1503
directive and structured. finds the educational materials useful1504
but did not access them, stating they felt like \"common sense\"1505
and expressing a general preference for not using the phone1506
frequently. describes managing diet and exercise in a strict way1507
and felt demoralized when cholesterol levels did not improve.1508
hc reflected that small changes were still observed, such as1509
greater variety in diet. client shared that \"resistance is1510
futile\" and accepts the need for long-term medication. hc affirmed1511
that lifestyle may be helping prevent further worsening despite1512
lack of measurable improvement. client reported bugs in the app:1513
receiving multiple medication reminders one hour after the original,1514
and not receiving notifications while overseas even though login1515
was possible. hc closed the session with well wishes and encouragement1516
to continue prioritizing health."1517

1518
Output: [1519
"explore ways to improve diet and exercise",1520
"explore ways to improve health literacy",1521
"explore ways to improve medication adherence",1522
"explore ways to improve overall health",1523
"explore ways to improve sleep",1524
"explore ways to increase medication adherence",1525
"explore ways to reduce cholesterol levels",1526
"explore ways to reduce medication intake",1527
"explore ways to reduce stress"1528

]1529
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