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ABSTRACT

Parallel to the recent success of self-attention-based language models across a
range of coding assistance tasks, several studies have underscored that pre-trained
code models (PCMs) utilize self-attention and hidden representations to encode
relations among input tokens. Our research extends upon these insights by under-
standing the properties of code that PCMs may not fully encode and by broadening
the scope to encompass data flow relations. Our study reveals that while PCMs
do encode syntactic and data flow relations in self-attention, they only encode re-
lations within specific subsets of input tokens. Specifically, by categorizing input
tokens into syntactic tokens and identifiers, we find that models encode relations
among syntactic tokens and among identifiers but fail to encode relations between
syntactic tokens and identifiers. We show that this limitation results in hidden rep-
resentations not encoding enough information about input tokens to discriminate
between different identifier types and syntax structures. Importantly, we observe
that this learning gap persists across different model architectures, datasets, and
pre-training objectives. Our findings shed light on why PCMs fail to generalize
beyond dataset they are trained on and in real world applications.

1 INTRODUCTION

Pre-trained code models (PCMs) are Transformer models (Vaswani et al., 2017) pre-trained on a
large corpus of source code and natural language - programming language (NL-PL) pairs. They
have become a popular method for coding assistance tasks, including next-token prediction, code
completion, code generation from natural language prompts, and program repair (Xu & Zhu, 2022).

However, due to the black-box nature of neural networks, it can be challenging to understand what
information PCMs use for prediction and generation. To this end, prior studies have attempted to
understand and explain the functioning of PCMs. Some of these studies argue that models can learn
syntactic and semantic structure of code (Wan et al., 2022; Troshin & Chirkova, 2022; López et al.,
2022) and do understand code logic (Baltaji & Thakkar, 2023). Other studies suggest that models do
not generalize well (Hajipour et al., 2022; Hellendoorn et al., 2019), learn shortcuts (Sontakke et al.,
2022; Rabin et al., 2021), and memorize training inputs (Rabin et al., 2023a; Yang et al., 2023b).
These diverging views play out in practice. Despite being successful on various downstream tasks,
the output generated by PCMs has compilation errors, due to syntactical mistakes (Le et al., 2022),
as well as semantic errors like random identifiers (Guo et al., 2021), and can invoke undefined or
out-of-scope functions, variables and attributes (Chen et al., 2021).

This paper contributes new insights about the question what PCMs learn and do not learn. We
conduct a fine-grained analysis of self-attention and hidden representation of PCMs at code token
level, which shows that while PCMs encode some code relations well, they also miss out on some
important ones, which limits their ability to understand syntax and code logic.

There are different types of relations between code tokens, including relations in an abstract syntax
tree (AST), as well as, data flow or control flow relations between code blocks. Similar to Wan et al.
(2022), we focus on syntactic relations in the AST and create a syntax graph with edges between
code tokens within a motif structure (Figure 1b). Since, such a syntax graph does not encompass all
the relations among identifiers, in particular how values flow from one variable to another, we also
create a data-flow graph with edges among related variables following Guo et al. (2021).
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Previous studies examining the code comprehension ability of PCMs have analyzed all input to-
kens together, without distinguishing between different categories of code tokens such as identifiers
(e.g. function names, function arguments, variables) and syntactic tokens (e.g. keywords, operators,
parentheses). However, aggregate studies over all tokens can potentially hide information about
what PCMs do not encode. To investigate whether there are specific relations that PCMs fail to en-
code, we analyze the syntactic-syntactic, identifier-identifier, and syntactic-identifier relations that
are encoded in the self-attention values and hidden representations separately.

We analyze the ability of PCMs to understand relations between code tokens in two ways. First, we
study how well relations are encoded in self-attention values. Second, we use three prediction tasks
to study whether hidden representations encode information about code relations. The first two tasks
are for data-flow edges and siblings in the AST, respectively. They enable to investigate whether the
hidden representations encode the data flow relations among identifiers, respectively the syntactic
relations among tokens. The third task is a tree distance prediction and enables studying whether
the encoded information is sufficient to understand subtle differences in code syntax.

Attention analysis (Wan et al., 2022) and probing on hidden representation (Belinkov, 2022) have
been used in the past to study what PCMs encode. But prior works relied on non-systematically
validated assumptions. We examine these assumptions and assess their impact on the conclusions
drawn. For attention analysis, we examine the influence of the attention threshold and the evaluation
metric, an analysis which has not been conducted previously (Wan et al., 2022; Vig et al., 2021). For
probing, we explore whether the code relations among tokens are encoded linearly or non-linearly.
Such an exploration has not been performed so far and prior works assume a linear encoding of
syntactic and semantic relations. However, previous work in NLP White et al. (2021) has shown
that hidden representations of language models encode some linguistic properties non-linearly.

Our study considers different transformer architectures (encoder-only and encoder-decoder), pre-
training objectives, and training datasets. In summary, the results are as follows:

• We provide evidence that prior work often made incorrect assumptions in their experimen-
tal settings, e.g., we find that hidden representations encode syntactic relations non-linearly.

• The attention maps of PCMs fall short in encoding syntactic-identifier relations, while they
do encode syntactic-syntactic and identifier-identifier relations. For instance, in Figure 1,
the keyword if attends to itself, is, and : but not to the related identifier ignore.

• Hidden representations do not encode sufficient information to discriminate between differ-
ent identifier types and to understand subtle syntactical differences. For instance, while the
information is sufficient to understand which identifiers are siblings of the keyword def,
it is insufficient to understand which siblings are function names or (default) parameters.

Our comprehensive analysis provides valuable insights that should inspire further research to devise
methods to address current models’ limitations.

2 BACKGROUND

Attention Analysis. In NLP, attention analysis investigates whether self-attention corresponds to
linguistic relations among input tokens. For PCMs, attention analysis quantifies how well self-
attention encodes relations among code tokens, such as relations in an AST.

Probing on Hidden Representation is a technique to study the properties encoded in the hidden
representations (Belinkov, 2022). Due to the many limitations of classifier or structural probe based
probing techniques (Hewitt & Liang, 2019; White et al., 2021; Maudslay et al., 2020), we use Direct-
Probe (Zhou & Srikumar, 2021), a non-classifier-based probing technique. DirectProbe clusters the
hidden representations of a specific layer based on labels for the property we want to study. Then,
the convex hull of these clusters (Figure 1f) can be used to study how well hidden representations
encode information about that property. The basic idea is that a good-quality representation will
have well-separated clusters, while linear encoding of a property will result in each label having one
cluster. The quality of clustering can be evaluated by predicting clusters for a hold-out test set.

We provide details on Abstract Syntax Tree (AST), data flow graphs (DFG), motif structure and
transformer model in Appendix B and transformer architecture in Appendix C.
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Figure 1: A python code snippet (a) and it’s (partial) AST (b); Illustration of hidden representation
in a transformer model (c); Attention map for head with best precision (head 1) (d) and head with
best f-score (head 2) (e) of layer 9 of CodeBERT for first 30 tokens of the code; An illustration of
structural probe (SP), probing classifier (PC) and convex hull created by DirectProbe (f).

3 EXPERIMENTS

In this section, we elaborate on the experiments that we performed to analyze self-attention and
hidden representation of PCMs. In attention analysis, we compare the self-attention of models with
the relations in program’s syntax tree and data flow graphs. For hidden representations, we perform
probing without classifiers using DirectProbe (Zhou & Srikumar, 2021).

3.1 MODELS AND DATASET

We conducted experiments over five models: CodeBERT (Feng et al., 2020), GraphCodeBERT
(Guo et al., 2021), UniXcoder (Guo et al., 2022), CodeT5 (Wang et al., 2021) and PLBART (Ahmad
et al., 2021). PLBART consists of six encoder layers and was trained on Java and Python source
codes obtained from Google BigQuery1. All other models comprise twelve encoder layers and
were trained on the CodeSearchNet (CSN) dataset (Husain et al., 2019). UniXcoder’s training uses
flattened ASTs, while GraphCodeBERT incorporates Data Flow Graphs (DFGs) as part of its input.
For our experiments, we randomly sampled 3000 Python codes from the test set of CSN dataset after
removing docstrings and comments. More details about the models are presented in the Appendix
D and about the dataset in the Appendix E.

3.2 ATTENTION ANALYSIS

3.2.1 SETUP

Model graph. The attention map of a head is a n ∗ n matrix (n is the number of input tokens). The
elements of the matrix represent the significance each token attributes to other tokens. We consider

1https://console.cloud.google.com/marketplace/details/github/github-repos
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the matrix as the adjacency matrix of a graph with input tokens corresponding to nodes and attention
values inducing an edge. Similar to previous works on attention analysis (Wan et al., 2022; Zhang
et al., 2022a), we merge the sub-tokens of input code tokens by averaging their attention values.

Prior studies have typically set an arbitrary threshold of 0.3 for attention analysis and exclude heads
with very few attention values, usually less than 100, from the analysis (Wan et al., 2022; Vig et al.,
2021). This approach excludes more than 99.5% of self-attention values (see Appendix F), thereby
skewing the conclusions drawn. For instance, Wan et al. (2022) reported high precision values,
indicating that the majority of attention values correspond to relations in the AST. However, we
observe a significantly reduced recall, as shown in Figure 2. Furthermore, the head with the highest
precision often has next-token attention (Figure 1d), while the head with highest F-score encode
complex relations (Figure 1e). So, to balance between precision and recall, we rely on F-score. We
evaluate F-scores for all heads across various models and layers at different threshold values. Our
analysis reveals that the highest F-score is achieved when using a threshold of 0.05 (as shown in
Figure 3). We use this threshold for all experiments. Similar to previous works (Wan et al., 2022),
all values below the threshold are set to 0 and above it to 1, i.e., edges are not weighted. Weighing
the calculations with actual self-attention values will lower the precision and recall and increase the
graph edit distance per node (Section 3.2.2). Setting values to 1 refers to the best-case scenario.
Thus, the limitations documented in this work exists even in best-case scenario. Weighing with
original values will only make these limitations more stark but the conclusion remains the same.

Code graphs. We create a syntax graph representing relations in an AST. Following Wan et al.
(2022), we assume two tokens to have a syntactic relation if they exist in the same motif structure
(Figure 1b). In DFG, we do not differentiate between the ComesFrom and ComputedFrom edges
in attention analysis. We use the term code graphs to mean ”both syntax and dataflow graphs”. The
syntax graph comprises syntactic relations among all tokens, while the DFG comprises relations
among identifiers. Since we want to study encoding of syntactic-syntactic, identifier-identifier and
syntactic-identifier relations separately, we create a non-identifier graph with the same nodes as
syntax graph but only encompassing AST relations between syntactic tokens.
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Figure 2: On comparing model graph with syntax graph with an attention threshold of 0.3, the
precision (left) is high but the recall is very low (right).
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Figure 3: F-score between model graph and syntax graph at different thresholds for all heads. Each
curve in a plot represents one head. For most heads, F-score is highest at a threshold of 0.05.

3.2.2 ANALYSIS

For each model, we compare the model graph of a head with each code graph in two ways. First, we
compute the precision and recall between the set of edges in the model graph and code graphs. We
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consider the edges of the code graphs as ground truth and those of the model graphs as predictions.
For comparison across layers of a model, we select the heads with the highest F-score value for each
layer. Second, we calculate graph edit distance (GED) (Sanfeliu & Fu, 1983) per node to quantify the
similarity between the code graphs and model graphs. GED computes the cost of inserting, deleting,
or substituting nodes and edges to transform one graph into an isomorphic graph of another. Code
graphs and model graphs share the same set of nodes and have only one edge type. So, we assign
a cost of 1 for both edge deletion and insertion operations and 0 otherwise. In all calculations, we
apply the operations to model graphs. We also calculate the GED between the model graph and the
non-identifier graph. For GED calculations, we use the NetworkX Python package (Hagberg et al.,
2008).

3.3 ANALYSIS OF HIDDEN REPRESENTATIONS

3.3.1 QUALITATIVE ANALYSIS WITH T-SNE

The hidden representation, hl
i of ith word at the output of layer l, is a d-dimensional vector. We use

t-distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton, 2008) – a widely
used technique to project high-dimensional data into a two-dimensional space while preserving the
distance distribution between points - to qualitatively analyze the hidden representations of PCMs in
two settings. First, we study the distribution of hidden representation of different token types; to this
end, we collect the hidden representations of code tokens of specific token types from 100 programs,
each having a minimum of 100 tokens. Second, we compare the distance distribution between tokens
in an AST and between their hidden representations. To this end, we construct distance matrices of
both for randomly selected code samples. We show their visualizations in Appendix G.

In the first setting, we find that the hidden representations form clusters based on token types rather
than on syntactic relations. Moreover, as shown in Figure 5, the clusters of syntactically related
tokens such as, def, (, ) and :, do not exist close to each other. In the second setting, we first
study the distance distribution between tokens in an AST. In the AST, siblings have similar distance
distribution. So, in t-SNE visualization, siblings cluster together. If the distance between hidden
representations corresponds to the distance in the AST, hidden representations should also have
similar distance distribution. However, we observe that similar to the distribution of the hidden
representations, the distance distributions also cluster by token types.

But in the case of distance matrix certain syntactically related tokens exist together. For the code in
Figure 1a, we find that def is close to (, ) and : and if is close to is and none in the visualization
of fifth layer of CodeBERT (Figure 6). Similarly, not and in occur together. Identifiers, though,
are far from syntactical tokens including the token =, which usually establishes relations among
variables. We found similar patterns for other codes for deeper layers of all models, while in the
first few layers, all tokens cluster together. We use DirectProbe (Zhou & Srikumar, 2021) to further
investigate whether the hidden representations encode syntax and dataflow relations.

3.3.2 PROBING ON HIDDEN REPRESENTATIONS

To experiment with DirectProbe, we create datasets for each layer of the models we examined. Each
data point is represented as (hl

i∗hl
j) : labelt. ∗ ∈ {concatenation, difference} is an operation be-

tween hidden representations of tokens i and j of layer l. t ∈ {siblings, treedistance, dataflow}
is a task to evaluate whether hidden representations encode the specific property. Each dataset is
split in a 80 : 20 ratio into training and test set. The training set is used to create clusters for each
label and the test set is used to evaluate the quality of clustering. Moreover, we look at the number
of clusters to study if the hidden representations encode relations linearly or non-linearly.

Using data flow, we study hidden representations with respect to data flow relations. Here, both i and
j are identifiers, label ∈ {NoEdge, ComesFrom,ComputedFrom} and ∗ = concatenation.
Using siblings and tree distance, we study encoding of relations in an AST. For both tasks, to-
ken i is one of a subset of Python keywords (detailed in Appendix H). In one set of experiments
(Keyword-All), token j can be any other token. In another set (Keyword-Identifier), to-
ken j is an identifier. For siblings task, label ∈ {sibling, notsibling}, where two tokens in the
same motif structure are considered to be siblings, and ∗ = concatenation.
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The tree distance between a keyword and an identifier denote different identifier types and syntax
structure. For example, for the code in Figure 1b, the identifier types function name, parameters and
default parameters are at a distance of 2, 3 and 4 from def respectively. Similarly, for is at a dis-
tance of 2 from the variable h when the iterator is also a variable (hexes) but at a distance of 3 from
variables i and c when iterator has a function call, enumerate. Thus, distance between tokens
varies with different syntax. Hence, if the hidden representations encode information about differ-
ent identifier types and syntax, it follows that hidden representations of Keyword-Identifier
pairs at a certain distance in AST must form separable clusters. The minimum distance between two
code tokens in an AST is 2 while, tokens far apart in an AST don’t have any discriminative syntactic
relations. So, for tree distance, we only consider label ∈ {2, 3, 4, 5, 6}. Moreover, Reif et al. (2019)
showed that square of distance between two vectors, (hl

i − hl
j)

T (hl
i − hl

j), corresponds to distance
in a tree. Hence, we set ∗ = difference for distance prediction task.

4 RESULTS AND DISCUSSION

4.1 WHAT DO MODELS ENCODE?

We present the results of the attention analysis in Figure 4 and those of DirectProbe in Tables 1,
2 and 3 for last layer. Plots in Figures 4a and 4b show that PCMs encode both syntactic and data
flow relations within self-attention values. We also find that the middle layers encode these relations
better than the deeper layers. This contradicts prior studies Wan et al. (2022), which concluded
that the last two layers encode the relations in an AST better. The different conclusion results
from using a lower threshold and from comparing the heads with the highest F-score, instead of
comparing precision across layers of a model. Furthermore, in Figure 4c, we observe that model
graphs at each layer exhibit a high degree of similarity with DFG, requiring less than one insertion or
deletion per node in the model graphs. When considering the later layers of CodeBERT, UniXcoder,
and PLBART, we observe an even higher level of similarity with the DFG. This contrasts with the
low recall values in Figure 4a. A low recall value indicates the need for more insertions, hence
higher insertion cost. Since the total cost is low, the deletion cost for later layers must be very low.
Therefore, later layers of these models have fewer self-attention edges and correspond mostly to
data-flow relations. That is, later layers retain fewer but more specialized code relations.

Table 9 shows that DirectProbe can form separable clusters for siblings with high label accuracy,
except for UniXcoder. Also, for data-flow edge prediction, we observe separable clusters (Table
10). In this case, however, very poor accuracy for NoEdge shows that hidden representations can
understand when an edge exists, including the edge type, but not when an edge doesn’t exist. This
could be because PCMs encode relations other than data-flow too.

4.2 HIDDEN REPRESENTATION ENCODE INFORMATION NON-LINEARLY

The number of clusters created by DirectProbe indicates whether the hidden representations encode
a property linearly or non-linearly. Specifically, linear encoding results in the same number of
clusters as the number of labels. For all three tasks, we observe a significantly higher number of
clusters than labels, usually twice as many, as shown in Tables 1, 2, and 3 (also in Appendix I for
layers 5 and 9). Thus, hidden representations encode syntactic and data flow relations non-linearly.
Moreover, the distance between the convex hulls of the clusters is very low for siblings and data flow
tasks and zero for the tree distance prediction task. Thus, finding a decision boundary is not trivial.
This implies that probing requires a complex probe - a complex classifier (Zhou & Srikumar, 2021)
or a non-linear structural probe (White et al., 2021) - to study hidden representations of PCMs.

However, previous studies that utilize probes (Karmakar & Robbes, 2021; Troshin & Chirkova,
2022; Wan et al., 2022; López et al., 2022) to study hidden representations, use a simple probe.
Yet, they show that their probe is sufficient to investigate hidden representations. The conclusion of
previous works could be incorrect due to the probe itself learning the task, similar to probes learning
linguistic tasks in NLP (Hewitt & Liang, 2019), rendering the result of probing meaningless. Hewitt
& Liang (2019) suggested the use of control tasks to ensure that the probe is selective with high
accuracy on linguistic tasks and low accuracy on control tasks. Hence, control tasks must accompany
the use of probes, when investigating hidden representations.
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4.3 LIMITATIONS OF PCMS

The limitations of current PCMs become apparent when we study the syntactic-syntactic, identifier-
identifier, and syntactic-identifier relations separately. We use the similarity analysis to study each
kind of relation separately (see Figure 4c). We observe that for different layers, the non-identifier
graph has a similarity score per node of approximately 1.5 for CodeBERT, GraphCodeBERT, and
UniXcoder, between 2.0 to 2.5 for PLBART, and between 2.0 to 3.0 for CodeT5. The set of edges in
a non-identifier graph is a subset of edges in the syntax graph. If the additional edges in the syntax
graph that are not in the non-identifier graph were present in the model graphs, the deletion cost and
hence the overall cost for the syntax graph would have decreased. However, we observe a significant
increase in cost per node, by a factor of 1.5 - 2 times. The additional edges under consideration relate
syntactic and identifier tokens. The fact that they seem not to be present in the model graph indicates
that they are not encoded in the self-attention values.

For Keyword-Identifier token pairs, we observe very poor clustering accuracy for
distance > 2 (see Table 8). Thus the hidden representations do not encode sufficient information
for the distance prediction task. As described in Section 3.3.2, this implies that hidden represen-
tations of PCMs do not encode information about different identifier types and syntax structures.
Thus, self-attention values do not encode relations between syntactic and identifier tokens, resulting
in hidden representations being unable to discriminate between different identifier types and syntax
structures, e.g., between a function name and a parameter in relation to def, or between a variable
and a function call in relation to for or if. The first example limits PCMs in understanding subtle
syntactic differences; the second limits both, syntactic and logical understanding of code.

Despite these limitations, PCMs perform well on benchmarks. However, on real-world tasks or with
slight distribution shift from training data the models fail to generalize (Rabin et al., 2023a; Yang
et al., 2023b). Allal et al. (2023) showed that simple filtering of training data by using repositories
with 5+ GitHub stars, commonly used as a proxy for code quality, is sufficient to deteriorate perfor-
mance on code generation and fill-in-the-middle tasks due to distribution shift between real-world
usage and high-quality code. Other works have documented that PCMs depend on shortcuts such as
function names, comments and variables for predictions, such as generating code summaries, instead
of exploiting program logic (Sontakke et al., 2022). Shortcut learning (Du et al., 2021; Geirhos et al.,
2020) to achieve good performance on benchmarks has been well documented in deep learning.

As discussed above, PCMs fail to encode sufficient information to understand subtle syntactic dif-
ferences and code logic. Without proper comprehension of code, PCMs have to rely on shortcut
cues for prediction. Thus, shortcuts in PCMs arise due to their inability to encode relevant code
information. Since these shortcuts may not be available outside of training data, PCMs fail to gener-
alize. For instance, models can fail when developers do not use proper function names, they do not
comment their code properly, or comments and function names of real code differ from the patterns
seen by the model during training.

4.4 THE EFFECT OF INPUT AND PRE-TRAINING OBJECTIVES

While all PCMs encode syntactic and dataflow relations, they do it to varying degrees. Among the
considered models, GraphCodeBERT, UniXcoder and CodeT5 include AST or DFG information
either in their input, in the pre-training objectives, or in both. GraphCodeBERT is trained with
DFG as part of its inputs along with pre-training objectives to learn the representation from the data
flow, CodeT5 is trained with identifier-aware pre-training objectives (Wang et al., 2021) to learn
information about identifiers, while UniXcoder is trained with flattened AST as part of its input.

Both GraphCodeBERT and CodeT5 exhibit high recall with DFG, even for the last two layers. Thus
they encode a high proportion of DFG edges in the self-attention of final layers. However, CodeT5
has very low similarity with DFG (high cost per node), while GraphCodeBERT has high similarity
(Figure 4c). The higher cost can only be explained by significantly higher deletion cost for CodeT5.
Thus, the two training conditions make the PCMs encode information about DFG in the later layers,
but identifier-aware pre-training leads to encoding non-DFG specific relations, too.

Surprisingly, among all models, the later layers of UniXcoder encode the least information about
syntactic relations in both the self-attention values and in hidden representations. Moreover as shown
in Table 9, it is the only model whose hidden representation of the final layer does not perform well
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(a) Recall between model graph and code graphs for head with best f-score of each layer.
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1 2 3 4 5 6 7 8 9 10 11 12
Layers

0.5
1.0
1.5
2.0
2.5
3.0
3.5

GE
D 

pe
r N

od
e

AST
DFG
non-id

1 2 3 4 5 6 7 8 9 10 11 12
Layers

0.5
1.0
1.5
2.0
2.5
3.0
3.5

GE
D 

pe
r N

od
e

AST
DFG
non-id

1 2 3 4 5 6 7 8 9 10 11 12
Layers

0.5
1.0
1.5
2.0
2.5
3.0
3.5

GE
D 

pe
r N

od
e

AST
DFG
non-id

1 2 3 4 5 6 7 8 9 10 11 12
Layers

1.0
1.5
2.0
2.5
3.0
3.5

GE
D 

pe
r N

od
e

AST
DFG
non-id

1 2 3 4 5 6
Layers

1.0
1.5
2.0
2.5
3.0
3.5

GE
D 

pe
r N

od
e

AST
DFG
non-id

(c) Graph edit distance (GED) per node of model graph from different code graphs for each layer.

Figure 4: Results of attention analysis for all encoder layers of (from left to right) CodeBERT,
GraphCodeBERT, UniXcoder, CodeT5 and PLBART.

on the siblings prediction task. Thus, the use of flattened ASTs negatively impacts the ability of a
model to learn code syntax.

Based on these observations and the comparison between the training of GraphCodeBERT and
CodeT5 with the training of UniXcoder, we suggest the use of syntax-aware pre-training objec-
tives to help models encode more syntactic information. In Section 4.3, we also observed that PCMs
fail to discriminate between different identifier types which hinders their ability to understand differ-
ences in code syntax and code logic. Training models to predict different identifier types will force
them to encode this information. Encoding subtleties of code and making predictions based on these
will limit the dependence of PCMs on shortcuts and help them generalize better to real-world tasks.

Table 1: Analysis of hidden representation of last layer on AST distance prediction with 5 labels. We
report the number of clusters formed by DirectProbe, distance between clusters, and label accuracy.

Tokens Model No. of clus-
ters

Distance Label Accuracy

Min Avg 2 3 4 5 6
CodeBERT 10 0.0 1.27 0.85 0.75 0.73 0.68 0.55
GraphCodeBERT 9 0.0 1.30 0.84 0.78 0.67 0.67 0.57

{Keyword-All} UniXcoder 13 0.0 2.60 0.41 0.55 0.42 0.48 0.51
CodeT5 10 0.0 1.38 0.83 0.79 0.70 0.64 0.60
PLBART 9 0.0 1.88 0.83 0.83 0.77 0.70 0.60
CodeBERT 7 0.0 0.53 0.82 0.66 0.56 0.53 0.51
GraphCodeBERT 7 0.0 2.32 0.79 0.68 0.52 0.57 0.49

{Keyword-Identifier} UniXcoder 9 0.0 5.38 0.37 0.49 0.36 0.32 0.34
CodeT5 6 0.0 3.09 0.78 0.66 0.59 0.55 0.48
PLBART 5 0.0 0.10 0.84 0.73 0.52 0.66 055

5 RELATED WORK

Explainability. Several studies have tried to explain the working of PCMs. Cito et al. (2022) and
Rabin et al. (2023b) used input perturbation, while, Liu et al. (2023) used backpropagation to find the
most relevant input tokens. Zhang et al. (2022a) created an aggregated attention graph and studied
its application to the VarMiuse task. Wan et al. (2022) performed attention analysis and probing
with structural probes (Hewitt & Manning, 2019). López et al. (2022) used structural probe to
create binarized AST from hidden representations. Probing classifiers have been used to test syntax
and semantic understanding (Karmakar & Robbes, 2021; Troshin & Chirkova, 2022; Ahmed et al.,
2023), the effect of positional embeddings (Yang et al., 2023a), the relation between self-attention
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Table 2: Analysis of hidden representation of last layer on siblings prediction with 2 labels.

Tokens Model No. of clusters Distance Label Accuracy
Min Avg Not Siblings Siblings

CodeBERT 3 0.14 0.45 0.87 0.88
GraphCodeBERT 4 0.06 6.95 0.76 0.87

{Keyword-All} UniXcoder 4 0.05 28.73 0.61 0.64
CodeT5 7 0.0 1.80 0.82 0.91
PLBART 5 0.58 4.89 0.88 0.88
CodeBERT 4 0.18 4.62 0.79 0.87
GraphCodeBERT 3 0.14 0.54 0.75 0.86

{Keyword-Identifier} UniXcoder 3 0.0 3.13 0.47 0.56
CodeT5 4 0.0 0.42 0.80 0.86
PLBART 4 0.28 5.17 0.80 0.87

Table 3: Analysis of hidden representation of last layer on data flow edge prediction with 3 labels.

Tokens Model No. of clus-
ters

Distance Label Accuracy

Min Avg No Edge ComesFrom ComputedFrom
CodeBERT 4 0.24 3.68 0.69 0.91 0.90
GraphCodeBERT 7 0.0 8.61 0.71 0.94 0.93

{Identifier-Identifier} UniXcoder 4 0.92 12.71 0.57 0.72 0.79
CodeT5 4 0.29 3.09 0.57 0.86 0.90
PLBART 4 0.72 8.99 0.62 0.91 0.94

and distance in AST (Chen et al., 2022) and logic understanding (Baltaji & Thakkar, 2023). Other
studies have established correlations between input tokens, model output, and self-attention. Bui
et al. (2019) created an attention-based discriminative score to rank input tokens and studied the
impact of high-ranked tokens on output. Attention-based token selection was utilized Zhang et al.
(2022b) to simplify the input program of CodeBERT (Feng et al., 2020). Rabin et al. (2021) and
Rabin et al. (2022) simplified the input program while preserving the output and showed that the
percentage of common tokens between attention and reduced input programs is typically high.

Limitations of PCMs. Hellendoorn et al. (2019) and Aye et al. (2021) reported a substantial perfor-
mance gap when PCMs are applied to real-world tasks. Hajipour et al. (2022) showed that out-of-
distribution scenarios are challenging for most PCMs. Sontakke et al. (2022) observed that PCMs
rely heavily on comments, function names, and variable names for code summarization; masking
subtle code logic does not change the generated summaries. Rabin et al. (2023a) showed that models
can memorize training data, and Yang et al. (2023b) demonstrated that the memorization increases
with model size. Moreover, Barone et al. (2023) observed that all models they analyzed struggled
with ”statistically uncommon correct continuations”.

Our Work also studies limitations of PCMs. However, unlike previous work on this topic, which
only document the limitations, we provide explanations as to why these limitations might exist.
Regarding explainability, we critically examine arbitrary assumptions made in previous works and
show that they can result in misleading or wrong conclusions.

6 CONCLUSION

We presented a comprehensive analysis of the self-attention mechanism and the hidden represen-
tations within PCMs with respect to their role in enabling PCMs to capture structural and data
flow relations in code. Additionally, we critically studied arbitrary assumptions made in previous
work. Our findings shed light on a significant limitation of PCMs – the attention maps do not en-
code syntactic-identifier relations between code tokens. Furthermore, we show that this limitation
results in the inability of hidden representations to distinguish between different identifier types
and syntax structures. We believe that this limitation is what leads to syntactic errors in outputs
of PCMs. Moreover, this limitation also causes PCMs to not generalize to scenarios where infor-
mation about syntactic-identifier relations are necessary. Insights form our work will lead to more
robust experimental designs for model interpretability and improvement in training methods, such
as syntax-aware pre-training objective, to mitigate the limitations that we revealed. In future work,
we intend to expand upon the presented study to consider larger models and to explore the NL-PL
alignment. This extension will enable us to investigate more recent instruction-tuned models.
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REPRODUCIBILITY STATEMENT

The models and dataset used in our work are open-sourced and available with permissible licenses.
We provide the details of models in Appendix D and dataset pre-processing details in Appendix E.
We present the steps to create the dataset for experiments with DirectProbe in Appendix H. The
experimental setting for t-SNE is presented in Appendix G. Finally, we share the code, as well as,
the results as supplementary material.
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Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Nuo Chen, Qiushi Sun, Renyu Zhu, Xiang Li, Xuesong Lu, and Ming Gao. Cat-probing: A
metric-based approach to interpret how pre-trained models for programming language attend
code structure. In Findings of the Association for Computational Linguistics: EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 4000–4008. Association for
Computational Linguistics, 2022. doi: 10.18653/v1/2022.findings-emnlp.295. URL https:
//doi.org/10.18653/v1/2022.findings-emnlp.295.

Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. Counterfactual explanations for
models of code. In 44th IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2022, Pittsburgh, PA, USA, May 22-24, 2022, pp. 125–134.
IEEE, 2022. doi: 10.1109/ICSE-SEIP55303.2022.9794112. URL https://doi.org/10.
1109/ICSE-SEIP55303.2022.9794112.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande, Franck Dernoncourt, Jiuxiang Gu,
Tong Sun, and Xia Hu. Towards interpreting and mitigating shortcut learning behavior of NLU
models. In Proceedings of the 2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pp. 915–929. Association for Computational Linguistics, 2021. doi:
10.18653/V1/2021.NAACL-MAIN.71. URL https://doi.org/10.18653/v1/2021.
naacl-main.71.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and
natural languages. In Findings of the Association for Computational Linguistics: EMNLP 2020,
Online Event, 16-20 November 2020, volume EMNLP 2020 of Findings of ACL, pp. 1536–1547.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.findings-emnlp.139.
URL https://doi.org/10.18653/v1/2020.findings-emnlp.139.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard S. Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. CoRR,
abs/2004.07780, 2020. URL https://arxiv.org/abs/2004.07780.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin B. Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training code
representations with data flow. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://
openreview.net/forum?id=jLoC4ez43PZ.

11

https://doi.org/10.1109/ASE.2019.00014
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2022.findings-emnlp.295
https://doi.org/10.18653/v1/2022.findings-emnlp.295
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794112
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794112
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/2021.naacl-main.71
https://doi.org/10.18653/v1/2021.naacl-main.71
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2004.07780
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ


Under review as a conference paper at ICLR 2024

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pp. 7212–7225. Association for Computational Linguis-
tics, 2022. doi: 10.18653/v1/2022.acl-long.499. URL https://doi.org/10.18653/v1/
2022.acl-long.499.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the 7th Python in Science Conference, 2008.

Hossein Hajipour, Ning Yu, Cristian-Alexandru Staicu, and Mario Fritz. Simscood: Systematic
analysis of out-of-distribution behavior of source code models. CoRR, abs/2210.04802, 2022. doi:
10.48550/arXiv.2210.04802. URL https://doi.org/10.48550/arXiv.2210.04802.

Vincent J. Hellendoorn, Sebastian Proksch, Harald C. Gall, and Alberto Bacchelli. When code
completion fails: a case study on real-world completions. In Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pp.
960–970. IEEE / ACM, 2019. doi: 10.1109/ICSE.2019.00101. URL https://doi.org/10.
1109/ICSE.2019.00101.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong,
China, November 3-7, 2019, pp. 2733–2743. Association for Computational Linguistics, 2019.
doi: 10.18653/v1/D19-1275. URL https://doi.org/10.18653/v1/D19-1275.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4129–4138.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1419. URL https:
//doi.org/10.18653/v1/n19-1419.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search. CoRR, abs/1909.09436, 2019.
URL http://arxiv.org/abs/1909.09436.

Anjan Karmakar and Romain Robbes. What do pre-trained code models know about code? In 36th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2021, Melbourne,
Australia, November 15-19, 2021, pp. 1332–1336. IEEE, 2021. doi: 10.1109/ASE51524.2021.
9678927. URL https://doi.org/10.1109/ASE51524.2021.9678927.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu-Hong Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learning. In
NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferran-
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A HARDWARE DETAILS

We first perform a forward pass through the models on an Nvidia A6000 48GB GPU and store
the attention and hidden representation for experiments. All experiments are then run on an AMD
Ryzen Threadripper 5975WX with 32 cores.

B ADDITIONAL BACKGROUND DETAILS

Abstract Syntax Trees (ASTs) are data structures that represent the syntactic structure of a code.
The leaf nodes of the tree represent code tokens, and internal nodes represent different constructs of
the code such as if-else block, identifiers, or parameters. A partial AST2 for a Python
code snippet is shown in Figure 1b.

Data Flow Graphs (DFGs) have nodes representing variables and edges depicting how the values
flow from one variable to another. We adopt the approach by Guo et al. (2021) to obtain the data
flow relations, with two types of data flow relations, viz. ComesFrom and ComputedFrom.

Motif Structure Wan et al. (2022) defines motif structure as a non-leaf node in the AST with all it’s
children. We show motif structure in Figure 1b.

Transformer and Self-attention. A Transformer model consists of L stacked transformer blocks.
The core mechanism of a transformer block is self-attention. Given a code c = {c1, c2, ..., cn}
of length n, the self-attention mechanism assigns an input token ci attention values over all input
tokens. The code c is first transformed into a list of d-dimensional vectors H0 = [h0

1,h
0
2, ...,h

0
n].

The transformer model transforms H0 into a new list of vectors HL. A layer l takes the output of the
previous layer H l−1 as input and computes H l = [hl

1,h
l
2, ...,h

l
n]. h

l
i is the hidden representation

of ith word at layer l, as shown in Figure 1c. Attention values for layer l are computed as

Attention(Q,K,V ) = softmax(
QKT

√
d

)V (1)

where Q = H l−1W l
Q, K = H l−1W l

K and V = H l−1W l
V . In practice, a layer l contains

multiple heads, each with its own W l
Q, W l

K , W l
V matrices. Each head thus has a set of attention

values among each pair of input tokens, which constitute the attention map for that head (Figure 1e).

2We use tree-sitter (https://tree-sitter.github.io/tree-sitter/)to obtain AST of a code.
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C TRANSFORMER ARCHITECTURE

A Transformer model has encoder and decoder blocks and can be an encoder-only, a decoder-only,
or an encoder-decoder model (Xu & Zhu, 2022). The encoder builds a continuous representation
of inputs while the decoder generates a target sequence. So, the encoder is optimized for under-
standing input while the decoder is optimized for generation. Building a good low-dimensional
representation of input data is important for efficient learning. This is missing from a decoder-only
model. While the decoder-only model works well despite this limitation, the gains in performance
are only observed at a very high scale. Well-performing decoder-only models have more than a
billion parameters.

However, the performance can be easily matched by encoder-only or encoder-decoder models with
significantly fewer parameters. For example, CodeT5+ (Wang et al., 2023) with 220M parameters
matches the much larger CodeGen-mono (Nijkamp et al., 2023) with 2B parameters on the GSM8K
dataset (Cobbe et al., 2021). Further, the application of decoder-only models remains limited to
generation tasks. For instance, consider Li et al. (2023), which contributed a decoder-only model
for code generation. The authors remove personally identifiable information (PIIs) from the dataset
before training. To remove PIIs, the authors train a 125M encoder-only model, named StarEncoder,
and not a decoder-only model.

Decoder-only models are limited to code generation due to uni-directional / non-causal training.
Training with fill-in-the-middle (Bavarian et al., 2022) alleviates this issue somewhat and improves
performance but the training still remains auto-regressive which prevents the inclusion of code prop-
erties such as AST and data flow relations in training inputs and objectives. In contrast, encoder-only
and encoder-decoder models have significant variations in training strategies with different inputs
and pre-training objectives. Models such as GraphCodeBERT (Guo et al., 2021) and UniXcoder
(Guo et al., 2022) are also trained on data flow graphs and AST respectively.

We wanted to understand what a PCM does and does not understand and how the understanding
is affected by different pre-training strategies. Also, we believe that smaller encoder-only and
encoder-decoder models can be better trained to improve their performance and generalizations
since more information can be incorporated into their training objectives. So, we selected five rel-
atively small encoder-only and encoder-decoder models. Since the encoder is optimized to build a
low-dimensional representation of input data, we perform analysis over encoder attentions.

These models were carefully selected to encompass different pre-training objectives. The details of
these models are in Appendix D.

Finally, our analysis of GraphCodeBERT and CodeT5 shows that including code property-based
objectives helps the model learn code properties better. However, including such objectives with
decoder-only model is yet to be explored. So, we did not extend the analysis to decoder-only models.

One practical limitation of smaller models is their inability to learn in-context. However, Xie et al.
(2022) created a synthetic dataset and showed that LSTM and Transformer models with less than
200M parameters can learn in-context after training on the synthetic dataset. Thus, it is possible to
make smaller models learn in-context too. Combining improved training strategies suggested by our
work with training on such synthetic dataset has the potential to train smaller models with in-context
learning ability and better generalizability.

D MODEL DETAILS

We ran our experiments with 5 models - CodeBERT (Feng et al., 2020), GraphCodeBERT (Guo
et al., 2021), UniXcoder (Guo et al., 2022), CodeT5 (Wang et al., 2021) and PLBART (Ahmad
et al., 2021).

CodeBERT is an encoder-only bi-directional transformer with 12 layers, each layer having 12
heads. It has been trained on CodeSearchNet (CSN) (Husain et al., 2019) dataset with two pre-
trained objectives. Masked Language Modeling (MLM) objective is used with bimodal (NL-PL
pair) data, the model is trained with and Replaced Token Detection (RTD) with unimodal (only PL)
data.
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GraphCodeBERT uses the same architecture as CodeBERT but also takes nodes of the data flow
graph (DFG) of the code as inputs with special position embeddings to indicate which tokens are
nodes of DFG. It is also trained on CSN dataset. The model is first trained with MLM objective,
followed by edge prediction in data flow graph and node alignment between code tokens and DFG
nodes.

UniXcoder is an encoder-decoder model. However, the model can be used in encoder-only, decoder-
only or encoder-decoder mode using a special input token, [MODE]. It is also trained on CSN dataset
and taked flattened ASTs of code as part of it’s input during training. The model is trained with
masked spans prediction, masked language modeling, multi-modal contrastive learning, whereby
positive pairs are created using dropout, and cross-modal generation.

CodeT5 is an encoder-decoder model trained on CSN dataset with identifier-aware and bimodal-
dual generation objective. Identifier-aware pretraining uses masked span prediction, identifier tag-
ging and masked identifier prediction alternatively to make the model attend to identifiers while
bimodal-dual generation consists of NL to PL generation and PL to NL generation.

PLBART PLBART is an encoder-decoder model with 6 encoder layers, each with 12 heads. The
model is trained with 3 denoising objectives - token masking, token deletion and token infilling - on
NL and PL data from Google BigQuery3.

For details on various pre-training objectives, refer to Xu & Zhu (2022).

E DATSET DETAILS

Since four of the five models we experimented with were trained on CSN dataset, we chose the
python codes from test split of CSN for our experiments. CSN dataset consists of 2 million
comment-code pairs from 6 programming languages. The programming languages are Go, Java,
JavaScript, PHP, Python and Ruby. The models trained on CSN are pre-trained with unimodal and
bimodal objectives on multiple programming languages.

Before performing analysis we pre-process the dataset by removing any doctring and code comments
from the dataset. CodeBERT, GraphCodeBERT and UniXcoder has a maximum input token length
of 512 tokens. So, we create a subset consisting of codes with less than 500 tokens post tokenization.
CSN consists a list of code tokens for each token. For merging attention and hidden representation
of sub-tokens, we use this list to keep track of where a token has been split by tokenizer. However,
the list splits *args into * and args and **kwargs into *, * and kwargs. in python, * is used
for iterator unpacking and ** for dictionary unpacking. So, to differentiate the two, we merger the
*s of kwargs. Then, we randomly sample 3000 python code and run our experiments on these
codes.

F ATTENTION DISTRIBUTION

In Table 4, we present the percentage of attention values which are 0, between 0 - 0.05, between
0.05 - 0.3 and more than 0.3. Note that we assume any value below 0.001 to be 0.

Table 4: Percentage of attention values in differenr range.

Range CodeBERT GraphCodeBERT UniXcoder CodeT5 PLBART
0.0 59.13 70.3 67.28 51.92 74.63
0.0 - 0.05 39.25 28.58 31.88 46.23 74.27
0.05 - 0.3 1.48 1.00 0.76 1.64 0.97
above 0.3 0.14 0.12 0.08 0.22 0.13

3https://console.cloud.google.com/marketplace/details/github/github-repos
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G T-SNE

We select 100 codes with at least 100 code tokens and get the hidden representation for each token.
We then select hidden representation of the token types shown in Figure 5. We ran t-SNE on the
selected hidden representation with different perplexity value (van der Maaten & Hinton, 2008) from
5 to 50 for all layers of all models. Increasing the perplexity value only made the clusters tighter but
the overall distribution of points remained similar. So, the conclusion is not affected by perplexity
value. We set the number of iterations to 50K, ensuring t-SNE always converges (no change in error
for at least 300 iterations). We found that for all layers, tokens of same type were closer, though the
clustering of same token types became tighter for deeper layers. We show the visualization for fifth
layer of CodeBERT with perplexity of 50 in Figure 5.

We create a distance matrix for both the tree distance in AST and distance between hidden represen-
tation of tokens for a few code. We run t-SNE till convergence with perplexity values 5 and 10 and
found the distribution to be similar. We again observed clusters of tokens of same types for hidden
representation, unlike clusters of AST distance matrix. The clusters are closer for earlier layers and
farther for deeper layers. We show the visualization for fifth layer of CodeBERT for code in Figure
1a in Figure 6.

We use the t-SNE implementation provided by the sci-kit learn library4.

def
identifier
(
,
)
:
.
for
if
"
-
!=
else
==
or
and
>
elif
+
while
<

Figure 5: t-SNE visualization of hidden representation of layer 5 of CodeBERT for selected token
types.

H DIRECTPROBE EXPERIMENT DETAILS

For siblings and tree distance prediction tasks, the first token is of one of the following to-
ken types: def for if none else false true or and return not elif with
try raise except break while assert print continue class.

4https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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def
identifier
(
,
=
none
float
integer
)
:
if
is
[
]
.
for
in
not
{
"
}
return

Figure 6: t-SNE visualization of distance matrix for AST(left) and hidden representation (right) of
layer 5 of CodeBERT for code in Figure 1a.

For distance prediction task, we randomly sample 160 codes. We select the code pairs at a maximum
distance of 6, ensuring first token is of one of the selected tokens types. The second token can be
of any type. We then select 1300 code pairs for each layer resulting in a dataset of 6500 data
points. We split it into train and test set in the ration of 80:20. We follow the same steps for
Keyword-Identifier too, with the difference that we use 450 codes and the second token is of
type identifier.

For distance prediction task, we randomly sample 100 codes. We first select all tokens which are
one of the selected token types. We then select equal number of siblings and non-siblings for each of
these selected tokens. From this, we randomly sample 1500 siblings and 1500 non-siblings resulting
in 3000 data points. We split it into train and test set in the ration of 80:20. We follow the same steps
for Keyword-Identifier too, with the difference that we use 300 codes and the second token
is of type identifier.

For data flow edge prediction task, we randomly sample 130 codes. We first select an
identifier and then the tokens which has a data flow edge with the first token. We then
select n tokens which do not have data flow edge with the first token, where, n =
max(num(ComesFrom), num(ComputedFrom))/2. From the selected pairs, we randomly
sample 1500 pairs for each label resulting in 4500 data points. We split it into train and test set
in the ration of 80:20.

In all tasks, we ensure that the same data points are used for all models and layers.

I DIRECTPROBE RESULTS AND CLUSTER STATISTICS

In this section, we provide the statistics of size and label of cluster created by DirectProbe for last
layer of each model for each and the results of experiments with DirectProbe for layer 3 of PLBART
and layer 5 and layer 9 of other models. Analysis with DirectProbe is presented in Tables 5, 6 and
7. The cluster statistics are presented in Tables 8, 9 and 10.
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Table 5: Results of analysis by DirectProbe for tree distance prediction with 5 labels.

Tokens Model (Layer) No. of clus-
ters

Distance Label Accuracy

Min Avg 2 3 4 5 6
CodeBERT (5) 9 0.0 1.09 0.87 0.85 0.74 0.72 0.62
CodeBERT (9) 9 0.0 1.36 0.89 0.81 0.72 0.72 0.61
GraphCodeBERT (5) 11 0.0 3.99 0.88 0.84 0.75 0.70 0.63
GraphCodeBERT (9) 9 0.0 1.74 0.83 0.81 0.69 0.68 0.62

{Keyword-All} UniXcoder (5) 10 0.0 1.87 0.86 0.82 0.72 0.71 0.66
UniXcoder (9) 9 0.0 0.70 0.77 0.77 0.69 0.63 0.63
CodeT5 (5) 9 0.0 1.65 0.79 0.80 0.70 0.67 0.65
CodeT5 (9) 13 0.0 8.50 0.85 0.83 0.64 0.70 0.67
PLBART (3) 13 0.0 2.60 0.79 0.77 0.62 0.70 0.57
CodeBERT (5) 5 0.0 0.06 0.86 0.74 0.64 0.68 0.59
CodeBERT (9) 7 0.0 3.41 0.89 0.77 0.63 0.65 0.57
GraphCodeBERT (5) 5 0.0 0.05 0.83 0.70 0.63 0.64 0.56
GraphCodeBERT (9) 7 0.0 2.79 0.83 0.69 0.60 0.62 0.56

{Keyword-Identifier} UniXcoder (5) 7 0.0 2.33 0.82 0.66 0.61 0.61 0.49
UniXcoder (9) 7 0.0 5.07 0.69 0.61 0.53 0.55 0.44
CodeT5 (5) 7 0.0 2.42 0.68 0.59 0.53 0.54 0.45
CodeT5 (9) 5 0.0 0.23 0.78 0.66 0.60 0.61 0.51
PLBART (3) 9 0.0 7.48 0.66 0.59 0.49 0.49 0.46

Table 6: Results of analysis by DirectProbe for siblings prediction with 2 labels.

Tokens Model (Layer) No. of clusters Distance Label Accuracy
Min Avg Not Siblings Siblings

CodeBERT (5) 4 0.19 8.75 0.87 0.94
CodeBERT (9) 4 0.23 8.55 0.87 0.93
GraphCodeBERT (5) 5 0.24 8.38 0.87 0.91
GraphCodeBERT (9) 4 0.24 3.30 0.84 0.92

{Keyword-All} UniXcoder (5) 4 0.20 9.62 0.86 0.91
UniXcoder (9) 4 0.14 6.73 0.80 0.88
CodeT5 (5) 5 0.17 17.09 0.84 0.85
CodeT5 (9) 5 0.70 16.84 0.86 0.89
PLBART (3) 4 0.19 14.17 0.83 0.86
CodeBERT (5) 7 0.0 6.68 0.87 0.91
CodeBERT (9) 4 0.31 3.67 0.88 0.91
GraphCodeBERT (5) 4 0.18 0.81 0.87 0.92
GraphCodeBERT (9) 4 0.20 4.33 0.79 0.91

{Keyword-Identifier} UniXcoder (5) 4 0.13 6.43 0.82 0.86
UniXcoder (9) 3 0.11 0.72 0.76 0.83
CodeT5 (5) 4 0.16 7.38 0.76 0.81
CodeT5 (9) 4 0.52 19.72 0.81 0.85
PLBART (3) 4 0.13 11.77 0.78 0.78

Table 7: Results of analysis by DirectProbe for data flow edge prediction with 3 labels.

Tokens Model (Layer) No. of clus-
ters

Distance Label Accuracy

Min Avg No Edge ComesFrom ComputedFrom
CodeBERT (5) 5 0.36 7.59 0.70 0.95 0.94
CodeBERT (9) 5 0.42 7.54 0.70 0.95 0.94
GraphCodeBERT (5) 4 0.41 2.32 0.68 0.94 0.94
GraphCodeBERT (9) 4 0.51 2.90 0.73 0.95 0.95

{Identifier-Identifier} UniXcoder (5) 4 0.41 4.89 0.66 0.93 0.91
UniXcoder (9) 4 0.34 4.20 0.64 0.90 0.88
CodeT5 (5) 6 0.0 3.40 0.69 0.92 0.81
CodeT5 (9) 4 1.57 15.00 0.63 0.90 0.91
PLBART (3) 6 0.0 4.76 0.68 0.90 0.83

Table 8: Cluster size and label for last layer of models for tree distance prediction task

Cluster 0 1 2 3 4 5 6 7 8 9
CodeBERT Label 3 2 3 5 2 3 6 6 4 5

Size 178 806 453 225 241 400 683 357 1042 815
Cluster 0 1 2 3 4 5 6 7 8

GraphCodeBERT Label 2 3 5 3 2 6 5 6 4
Size 48 386 94 645 999 921 946 119 1042
Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12

UniXCoder Label 3 4 6 4 6 3 2 2 5 4 3 5 6
Size 334 377 225 337 83 168 662 385 646 328 529 394 732
Cluster 0 1 2 3 4 5 6 7 8 9

CodeT5 Label 5 2 3 2 3 6 5 4 5 6
Size 26 653 354 394 677 156 61 1042 953 884
Cluster 0 1 2 3 4 5 6 7 8

PLBART Label 2 2 3 3 6 5 6 4 5
Size 105 942 614 417 227 183 813 1042 857
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Table 9: Cluster size and label for last layer of models for siblings prediction task

Cluster 0 1 2
CodeBERT Label Sibling Sibling Non-sibling

Size 411 779 1210
Cluster 0 1 2 3

GraphCodeBERT Label Sibling Non-sibling Non-sibling Sibling
Size 1 53 1157 1189
Cluster 0 1 2 3

UniXcoder Label Non-sibling Sibling Non-sibling Sibling
Size 2 1153 1208 37
Cluster 0 1 2 3 4 5 6

CodeT5 Label Sibling Non-sibling Non-sibling Sibling Sibling Sibling Non-sibling
Size 664 458 135 157 365 4 617
Cluster 0 1 2 3 4

PLBART Label Sibling Sibling Non-sibling Sibling Non-sibling
Size 610 126 33 454 1177

Table 10: Cluster size and label for last layer of models for data flow edge prediction task

Cluster 0 1 2 3
CodeBERT Label NoEdge NoEdge Comes Computed

Size 1 1208 1206 1185
Cluster 0 1 2 3 4 5 6

GraphCodeBERT Label Computed NoEdge Computed NoEdge Computed NoEdge Comes
Size 1 1 1008 549 176 659 1206
Cluster 0 1 2 3

UniXcoder Label NoEdge Computed NoEdge Comes
Size 1 1185 1208 1206
Cluster 0 1 2 3

CodeT5 Label NoEdge Computed NoEdge Comes
Size 1 1185 1208 1206
Cluster 0 1 2 3

PLBART Label NoEdge Computed NoEdge Comes
Size 1 1185 1208 1206
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