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Abstract

Since the inception of our planet, the meteorological environment, as reflected
through spatio-temporal data, has always been a fundamental factor influencing
human life, socio-economic progress, and ecological conservation. A compre-
hensive exploration of this data is thus imperative to gain a deeper understanding
and more accurate forecasting of these environmental shifts. Despite the success
of deep learning techniques within the realm of spatio-temporal data and earth
science, existing public datasets are beset with limitations in terms of spatial scale,
temporal coverage, and reliance on limited time series data. These constraints
hinder their optimal utilization in practical applications. To address these issues,
we introduce Terra, a multimodal spatio-temporal dataset spanning the earth. This
dataset encompasses hourly time series data from 6,480,000 grid areas worldwide
over the past 45 years, while also incorporating multimodal spatial supplementary
information including geo-images and explanatory text. Through a detailed data
analysis and evaluation of existing deep learning models within earth sciences,
utilizing our constructed dataset. we aim to provide valuable opportunities for
enhancing future research in spatio-temporal data mining, thereby advancing to-
wards more spatio-temporal general intelligence. Our source code and data can be
accessed at https://github.com/CityMind-Lab/NeurIPS24-Terra.

1 Introduction

With the rapid development of remote sensing satellite systems [32, 27], radar monitoring devices [77,
65], and various advanced geographical observation technologies, spatio-temporal data [16, 79],
particularly those pertaining to the Earth’s environment and climate, are becoming increasingly
available. Analyzing and mining valuable knowledge from such spatio-temporal data is crucial for
many real-world applications, including environmental monitoring [37], disaster management [75],
urban planning [40], and climate change assessment [76]. In the era of sensory artificial intelligence,
an array of methods has been devised, ranging from conventional time series and spatial statistical
analysis tools [80] to cutting-edge spatio-temporal deep learning models [30], for the analysis and
utilization of domain-specific data. Despite remarkable achievements, there remains a huge gap
between mainstream spatio-temporal data mining research [94] and the recent shift towards artificial
general intelligence research [21], where the latter aims to address various challenges in a unified
manner, while the generalizability and scalability challenge still lies in the former.

What causes this gap, or in other words, what measures can be taken to further advance research
in spatio-temporal general intelligence? From historical experience, comprehensive, large-scale,
high-quality datasets are crucial for the progress of any research community in any field. For
instance, the ImageNet dataset [26], which has historically driven the development of the Computer
Vision community, and the Common Crawl dataset [64], which is currently fostering growth in the
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Figure 1: Overview of Terra and its application in spatio-temporal data intelligence.

Natural Language Processing community. The combination of these massive datasets with foundation
model with billions parameters has led to remarkable breakthroughs in the generalization ability
of vision and language models across various tasks [20, 63]. However, most of the work on spatio-
temporal data mining focuses on developing advanced models [79], while neglecting the urgent need
for comprehensive datasets themselves. Thus, there is an immediate necessity for a high-quality
spatio-temporal dataset with sufficient breadth, granularity, capacity, and multimodal integration,
allowing researchers to explore different methods at various scales and to move towards more general
spatio-temporal intelligence.

To address these challenges, we introduce Terra, a public, large-scale, fine-grained, and multimodal
dataset across spatio-temporal domains. The name is derived from the earth goddess in ancient
Roman mythology. As shown in Figure 1, Terra rasterizes the Earth, integrates various data sources,
and includes over 6820 billion hourly Earth meteorological observation time series data collected
globally within raster grids from 1979 to 2024, as well as spatial multimodal geographic information
supplements for all regions within global raster grids, including text descriptions and geographic
images, aiming to advance spatio-temporal data analysis and spatial intelligence research. Specifically,
Terra distinguishes itself significantly from previous spatio-temporal datasets with its comprehensive
spatio-temporal coverage, outstanding quality, and diverse data modalities.

In summary, we condense its outstanding characteristics into three contributions: (1) Large scale,
encompassing over 45 years of sequential observational information in terms of temporal range and
global-level geographic information in terms of spatial range, ensuring the robustness, generalization,
and reliability of models through large-scale data properties. (2) Fine granularity, supporting up to 3
hourly time granularity and up to 0.1° resolution spatial grid records, ensuring the practical feasibility
of real-world application scenarios through fine-grained data properties. (3) Multi Modality, unlike
previous datasets that only consisted solely of spatio-temporal observation records without exogenous
data, we further provide a variety of multimodal supplementary data, including rich text and image
data, enabling the exploration of large language and vision models in this field, thereby enhancing
the interpretability of models.

2 Background

In this section, we review relevant works in spatio-temporal data mining, focusing on its challenges,
various applications, and the limitations of existing datasets that support research in this field. It
is worth noting that we particularly emphasize data types related to earth sciences. Other types of
spatio-temporal data, such as vision-based video data [62], are beyond the scope of this paper.

2.1 Challenges and Applications of Spatio-Temporal Data Mining

Spatio-temporal data mining represents an interdisciplinary fusion of various fields such as spatio-
temporal databases, machine learning, statistics, geography, meteorology, and information theory [31].
Specifically, spatio-temporal data refer to types of geographic entity data that exist at different scales
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with spatio-temporal associations. These include spatial relationships, both metric (e.g., distance) and
non-metric (e.g., topology, flow, and shape), temporal relationships (e.g., before or after), and spatio-
temporal relationships (e.g., correlation and heterogeneity) that are explicitly or implicitly present in
the data. In recent years, deep learning models such as recurrent neural networks [71], convolutional
neural networks [93], and graph neural networks [40] achieve remarkable success in capturing the
temporal and spatial dependencies in spatio-temporal data. These efforts lead to significant advances
in various fields. For example, they have broad applications in environmental and climate areas
(e.g., precipitation forecasting [71] and air quality inference [53]), urban planning (e.g., traffic flow
prediction [40] and anomaly detection [36]), and human mobility (e.g., travel recommendations [55]
and personalized marketing [23]). However, applying deep models to spatio-temporal data is often
more challenging. Firstly, spatio-temporal data are usually embedded in continuous space, different
from the discrete space common in vision and language data. Secondly, spatio-temporal data often
have high auto-correlation, contrasting with the traditional i.i.d. assumption of data samples. Lastly,
spatio-temporal data have different scales of spatial and temporal resolution, and models trained on
limited data often lack generalizability. Recently, with the success of foundational models [52, 18]
(e.g., large language models [11, 42] and diffusion models [67, 87]), researchers are exploring
the construction of spatio-temporal foundational models to revolutionize this field. The aim is
to achieve zero-shot inference and robust generalizability across different spatio-temporal tasks.
For instance, in meteorological forecasting, Pangu [17] and GraphCast [48] provide unprecedented
forecasting capabilities through pre-training on massive climate data. In urban computing [100], some
studies [50, 51] combine the capabilities of large models to pioneer the development of foundational
models for traffic. All these advancements enable researchers to uncover valuable insights into
spatio-temporal patterns, continuously optimize the Earth’s environmental systems, promote human
economic and social development, and contribute to extensive interdisciplinary research.

2.2 Limitations of Existing Spatio-Temporal Datasets

Table 1 presents a comparison between the proposed Terra and other popular or latest spatio-temporal
datasets. We next detail the improvements of Terra over others from five aspects.

• Incomplete Analytical Perspectives: Widely adopted datasets such as GeoLife [97], and more
recent ones like GEO-Bench [47] and CityScape [34], have significantly contributed to spatial
analysis research, including location recommendation and urban region analysis. At the same time,
researchers have also performed various temporal analyses on time-series data like GluonTS [12],
including tasks like prediction, imputation, and anomaly detection. However, these datasets
are often only able to focus on singular spatial or temporal analyses. In contrast, Terra offers
comprehensive possibilities for spatio-temporal analysis from both perspectives.

Table 1: Comparisons between Terra and other spatio-temporal datasets. Here, ✓ represents meeting
a better standard, ✗ represents not meeting it, and ∼ represents partially meeting or being convertible
to meet it. Due to the difficulty of counting sizes from multiple data sources, we mark it with ♢.

Dataset Year Accessibility Volume Large-Scale Fine-Granularity Multi-Modality
Spatial Temporal Spatial Temporal Time Series Text Image

Geolife [97] 2010 ✓ 24M+ ✗ ✗ ✓ ✓ ✓ ✗ ✗

GluonTS [12] 2020 ✓ 16M+ ✗ ∼ ✗ ✓ ✓ ✗ ✗

NYC [88] 2019 ✓ 22M+ ✗ ✗ ✓ ✓ ✓ ∼ ✗

PEMS [72] 2020 ✓ 42M+ ✗ ✗ ✓ ✓ ✓ ✗ ✗

SEVIR [77] 2020 ✓ ♢ ✗ ✗ ✓ ✓ ✗ ✓ ✓
ML4Road [61] 2024 ✓ 9M+ ∼ ∼ ✓ ✓ ✓ ✓ ✗

BioMassters [59] 2024 ✓ 79M+ ✗ ∼ ✓ ✗ ✓ ✗ ✓
ClimateSet [43] 2024 ✓ ♢ ✓ ✓ ∼ ∼ ✓ ∼ ✗

ClimSim [90] 2024 ✓ 5.7B+ ✓ ✓ ∼ ✓ ✓ ✗ ✗

Digital Typhoon [44] 2024 ✓ 49B+ ∼ ✓ ✓ ✓ ∼ ✗ ✓
Mesogeos [46] 2024 ✓ 1344B+ ✗ ✓ ✓ ✓ ✓ ∼ ∼

GEO-Bench [47] 2024 ✓ ♢ ✓ ✗ ✓ ✗ ✗ ∼ ✓
CityScape [34] 2024 ✗ 65K+ ✗ ✗ ✓ ✗ ✗ ✓ ✓

ChatEarthNet [91] 2024 ✓ ♢ ✓ ✗ ✓ ✗ ✗ ✓ ✓
Terra (ours) 2024 ✓ 6820B+ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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• Restricted Access Opportunities: Early spatial-temporal datasets often focused on human mo-
bility (e.g., Geolife [97] and NYC [88]) and intelligent transportation (e.g., PEMS [72] and
ML4Road [61]). However, these datasets typically involve privacy concerns and are held by a few
companies or organizations with proprietary or restrictive access policies, resulting in restricted
access to small datasets. Therefore, recent benchmarks has shifted towards spatio-temporal data
in freely accessible fields such as Earth Sciences, leading to the emergence of numerous datasets
such as BioMassters [59], ChatEarthNet [91], etc. Similarly, Terra also benefits from this shift,
allowing free access to these massive spatio-temporal data.

• Limited Spatio-Temporal Coverage: Due to the labor and financial costs associated with data
collection, existing datasets are often confined to specific cities or regions. Early examples,
including NYC [88] and PEMS [72], generally cover only a few months of data for a single city or
region. Recent earth science datasets, like SEVIR [77], Mesogeos [46] and Digital Typhoon [44],
have significantly increased in scale but still struggle to achieve global coverage over several
decades. This limitation results in insufficient geographic representation, impeding generalizability
to other regions, and inadequate temporal representation, failing to capture seasonal or annual
trends. In contrast, Terra offers global spatial coverage and over 45 years of temporal coverage.

• Limited Spatio-Temporal Resolution: Although some recent spatial-temporal datasets have
reached considerable scales, they still fail to provide sufficiently granular spatial-temporal resolution.
For instance, ClimateSet [43] only offers monthly climate records. These low sampling rates and
resolutions further diminish their practical utility. In contrast, Terra provides resolutions up to
0.1° spatially and 3-hour intervals temporally.

• Limited Multimodal Supplement: Existing datasets often provide only basic spatial-temporal
sequences, such as ClimSim [90], lacking rich multimodal supplementary information like text
or images. This deficiency hinders comprehensive analysis and fails to meet the requirements for
multimodal or advanced model design. In contrast, Terra provides global-scale visual and textual
information, serving as potential components for building foundational spatial-temporal models.

3 Dataset Details

In this section, we formally introduce our proposed Terra dataset. As shown in Figure 2, our
dataset consists of three modalities, each containing different types of data. We describe in detail the
collection and processing methods of different modality data below to deepen the understanding of
Terra. For more data introduction, analysis, statistics, visualization, and statement, see Appendix A.

Time Series Modality Text Modality

Land vegetation: 
cropland_rainfed: 0.836; 
cropland_irrigated: 0.008; 
mosaic_natural_vegetation: 
0.003; 
tree_broadleaved_deciduou
s_closed_to_open: 0.133; 
sparse_vegetation: 0.011; 
urban: 0.004; water: 0.003…

Meta Information

The grid cell located at 20°N-21°N; 76°E-77°E belongs to the Indian 
subcontinent, specifically the state of Maharashtra, India. This region is 
characterized by a dry, steppe, and hot arid climate, with scarce rainfall 
throughout the year. The area is relatively close to the Arabian Sea, which 
has a moderate influence on the local climate. The terrain is generally flat to 
gently sloping, with an average elevation of 429.8 meters, making it a part of 
the Desert. …. However, the western disturbances from the Mediterranean 
Sea and the Arabian Sea can bring occasional rainfall during the winter 
months. The region's vegetation cover is primarily composed of croplands 
(83.6%) with some patches of deciduous forests (13.3%) and sparse 
vegetation. Human activities such as agriculture and urbanization have a 
significant impact on the local climate, as they lead to soil degradation, 
increased evapotranspiration, and altered land use patterns.

LLM-Derived Text Description

Numerical Record

Dynamic Static

Image Modality

Geo-Image

Static

Satellite Image

precipitation 

shortwave radiation

surface pressure 

air temperature

absolute humidity

relative humidity 

wind speed

longwave radiation 

Latitude/longitude Range: 20°N-21°N; 76°E-77°E.

Mean Elevation: 
429.8m

Climate: 
Dry, Steppe, Hot arid: 0.5;
Tropical Dry winter: 0.25;
Tropical Dry summer: 0.25.

Country: 
Maharashtra, India

Figure 2: Different modality components of Terra. We provide the data with three temporal scales
(3 hourly / daily / monthly), and three spatial scale (0.1° / 0.5° / 1°).
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Figure 3: Dataset volume comparison.

Time Series Modality. We obtain the time-series modality
data for Terra from the Global Water (GloH2O) Measure-
ment Project [5]. Specifically, we combine the past obser-
vation records from two products: Multi-Source Weather
(MSWX) and Multi-Source Weighted-Ensemble Precipita-
tion (MSWEP). MSWX is an operational high-resolution
(3 hours, 0.1°), bias-corrected meteorological product, cov-
ering the global range from 1979 to 5 days before real-time.
This product includes 10 meteorological variables: precip-
itation (mm/3h), air temperature (°C), daily minimum and
maximum temperatures (°C), surface pressure (Pa), relative
and specific humidity (% and g/g), wind speed (m/s), and
downward shortwave and longwave radiation (W/m2). As shown on the left side of Figure 2, we
exclude the daily minimum and maximum temperatures due to their limited resolution. MSWEP,
a global precipitation product, spans from 1979 to 3 hours before real-time with a resolution of 3
hours and 0.1°. Unlike MSWX, MSWEP uniquely combines gauge, satellite, and reanalysis data to
provide the highest quality precipitation estimates at each location. Since MSWEP includes satellite
data, its precipitation estimates may be more accurate than those of MSWX in regions with dense
measurements and convection-dominated areas. Therefore, we replace MSWX precipitation records
with MSWEP values. We select a time span covering 45 years from [01/01/1979 to 01/01/2024),
equivalent to 540 months or 16,436 days. As a result, we obtain the largest dataset with a resolution
of 0.1°, 3 hours, and a total of 6.82e+12 numerical records. Based on this, we further resample and
combine the data at spatial resolutions of 0.5° and 1° and temporal resolutions of daily and monthly.
This process yields a total of 9 variant, with the number of records for each dataset shown in Figure 3.

Text Modality. We first obtain the geographic text data within each raster region, mainly including
climate, mean elevation, land vegetation, and the countries included. Specifically, We crawl the
climate metadata from Köppen climate classification project [6], which reveal variations and changes
of climate over the period 1901–2010. Given the slow pace of climate change, we utilize this
data to represent current climate values. Climate types are represented by a two or three-letter
combination, where the first letter denotes the major type (e.g., tropical, dry, snow), and the second
letter or third letter specifies subcategories (e.g., fully humid, desert). Global elevation values are
queried from ETOPO2v2 [3], which combines topography, bathymetry, and shoreline data from both
regional and global sources, enabling detailed, high-resolution renderings of the Earth’s geophysical
characteristics. We take the average of all data points within the indexed region, referred to as the
mean elevation of the current indexed region. We also crawl Land Cover data from the C3S Global
Land Cover Product [2], which classifies land cover into 38 categories (e.g., cropland_rainfed and
tree_broadleaved_deciduous_closed). we use data for 2022 year. For the land cover and climate
type, we calculate the proportion within each region and provide it in percentage form. Regarding
the country’s affiliation, we referred to data from the world-geo-json repository [4]. Although these
meta texts partially reflect the region’s geographical characteristics, they lack comprehensive analysis
and inference of potential spatial features (e.g., how land cover types influence the area’s climate
and rainfall patterns). Recently, large language models (LLMs) have become essential for enhancing
spatio-temporal data due to their integrated geographical knowledge, compressed through pre-training
on extensive corpora [14, 42]. Consequently, we employ the state-of-the-art open-source language

We have a series of environment-related data for a global grid divided into 1x1 degree latitude and longitude cells. Please generate a 

detailed text for given grid cell describing the main factors that may influence climate in that area. Include the following aspects:

➢ [Geographical Location]: Which continent or country does it belong to?

➢ [Climate Type]: What type of climate does this area have (e.g., tropical, temperate, polar)?

➢ [Ocean Influence]: Is this area close to the ocean or large water bodies? How does the ocean influence the rainfall or weather?

➢ [Terrain]: What are the terrain features of this area (e.g., mountains, plains, deserts)?

➢ [Monsoons]: Is this area affected by monsoons? How do monsoons influence the weather?

➢ [Airflows and Wind Belts]: What are the main airflows and wind belts affecting this area?

➢ [Vegetation Cover]: What is the vegetation cover like in this area? How does vegetation influence weather?

➢ [Human Activities]: How do human activities (e.g., agriculture, urbanization) influence weather in this area?

I will provide the latitude and longitude range of the area I want to describe, along with the vegetation type percentage, climate type and average 

altitude of the area. This information can be used as a reference to generate a more accurate description, but do not just focus on these points. If 

there is no climate type, it means this area is primarily ocean. Please write the description in a paragraph, and avoid saying other things.

Please generate a text description for <latitude range> and <longitude range> in <country> according to the above structure.

√ Landvegetation: ***.  √ Climate: ***. √ Mean Elevation: ***.

Figure 4: A example of spatial prompt engineering.
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model LLaMA3 [58] to generate supplementary textual information. Given the open challenge of
hallucinations in LLMs [38], resulting inaccuracies can introduce noise into downstream tasks. To
mitigate this problem, we designed a spatial prompt engineering, as shown in Figure 4. This technique
suggests querying factual meta text-related to country, climate, land vegetation, and mean elevation
characteristics as auxiliary prompts. This approach aims to provide LLMs with comprehensive
information, facilitating more accurate extraction of surface environmental data. Figure 5 presents
statistics and visual insights of the selected LLM text modality data. We also discuss the necessity of
our prompting technique and compare different LLM choices in Appendix A.3.
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Figure 5: Statistical and visual insights of text modality data.

Image Modality. We further adopt the Mercator projection [10] to map the Earth into grids at
different spatial resolutions and crawl relevant geographic image information for each grid cell.
Specifically, we first access geographic datasets provided by remote machines of GMT [9] and utilize
the PyGMT [7] toolkit to draw geo-images according to specified longitude and latitude regions. In
particular, we select common geographic images including Earth Geoid (coinciding with the mean
sea level and extending into the interior of continents), Earth Free-Air Anomaly Errors (normalizing
observed values and height correction, converting gravity values to gravity anomalies referenced
to the same latitude geoid), Earth Magnetic Anomaly (obtained by subtracting the global magnetic
field from the Earth’s core main magnetic field and its induced magnetic field after subtracting the
variable magnetic field, resulting in lithospheric magnetic field), Earth Mask (referring to surface
water-land geographical features), Earth Relief (containing observed topography and terrain inferred
through height gravity), Earth Vertical Gravity Gradient (referring to the vertical derivative of gravity
for detecting geological structures and positions of small geological bodies). All these converted
geo-images are commonly used for exploring Earth sciences and summarizing regional geographic
information. Additionally, satellite remote sensing images are usually another excellent visual
descriptive imagery of geographic information, apart from the aforementioned types, and can also be
obtained for each grid under corresponding image information using ArcGIS [1].

Discussion. Despite our best efforts to obtain rich spatio-temporal data from multiple sources,
several unavoidable issues still persist: Firstly, our image and text modalities still do not support a
spatial resolution of 0.1° due to the enormous time and monetary costs associated with this scale.
Secondly, as we utilize LLM models to generate text data, the inevitable obsolescence of the latest
LLM capabilities exists. Finally, the acquired satellite remote sensing images may have outdated and
unstable redistribution restrictions. For the first issue, we hope to continually invest time and monetary
resources to highlight higher-resolution text and image modal data in future versions. Regarding the
second issue, we first empirically studied the suitability of existing generated text (see Appendix A.3)
and look forward to regularly update and utilize the latest and best open-source LLM to generate new
text data, selectively replacing existing text. For the third issue, we also suggest exploring alternative
satellite image products from other open-source communities, such as Sentinel-2 [8], for updates.

Potential Applications Summary. We summarize a range of potential application scenarios for our
proposed Terra dataset, encompassing but not limited to those enumerated in the Table 2. Spanning
remote sensing, urban indicator prediction, time series forecasting, and beyond, the diverse modalities
and extensive volume of the Terra dataset present limitless application possibilities. We aspire for
the community to leverage Terra to foster significant advancements in spatial-temporal data mining.

Data License. The Terra dataset is made available under the CC BY-NC 4.0 International License:
https://creativecommons.org/licenses/by-nc/4.0. Our code and dataset are released un-
der the MIT License: https://opensource.org/licenses/MIT. The license of any baselines
and subdata sources used in this paper should also be verified on their official repositories.
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Table 2: Potential application scenarios for Terra dataset. All single modalities can be associated
with geo-coordinates.

Modality Application Examples Method Examples

Single Modality

(Spatial-) Time Series Time Series Forecasting, Imputation, Classification1,
Spatio-Temporal Forecasting, Interpolation2, ... Moirai1 [81], TimesNet1 [82], UrbanDiT2 [15]

Image
Remote Sensing Representation Learning1,
Location Embedding2, Geo-Localization3,
Super-Resolution for Remote Sensing, ...

Cross-Scale MAE1 [74], Scale-MAE1 [66], G31 [39],
SatCLIP2 [45], GeoCLIP3 [78], CSP2 [56]

Text Geo-Language Model1, Geo-Text Mining2, ... GeoLLM1 [57], K21 [25], 2 [33, 68, 13]

Multi Modality
(Spatial-) Time Series + Image Image-enhanced Spatial1 / Temporal2 Prediction, ... VisionTS2 [22], 1 [73, 49, 19]

(Spatial-) Time Series + Text LLM-enhanced Spatio-Temporal Forecasting, ... UrbanGPT [50], Time-LLM [41], Promptcast [85]

Image + Text Urban Region Profiling1, Remote Sensing LLM2,
Satellite Image-Text Retrieval3, ...

UrbanCLIP1 [86], UrbanVLP1 [34],
EarthGPT2 [95], UrbanCross3 [98]

(Spatial-) Time Series
+ Image + Text

World Model1, Urban Plan2,
Urban Foundation Model3, ... UGI1 [84], CityGPT2 [29], UFM3 [96]

4 Use Cases

To further demonstrate the practicality and versatility of our dataset, we have selected its use in
two key tasks: spatio-temporal analysis and spatial analysis. These tasks are classical examples in
spatio-temporal data mining, with the former providing insights into joint modeling of spatial and
temporal, and the latter supporting common applications in spatial modeling. Through these simple
application cases, our goal is to illustrate the versatility and usability of Terra.

4.1 Spatio-Temporal Analysis Task

Problem Definition. Each record in a grid is a multivariate time series x ∈ RT×C , capturing dynamic
observations of C measurement features over T time steps. Here, N regions with spatially correlated
locations constitute a spati-otemporal tensor X ∈ RN×T×C . Spatio-temporal forecasting predicts
signals X ∈ RN×T f×C for T f future time steps across N variables, utilizing Th steps historical
time series X ∈ RN×Th×C (and an optional spatial correlation graph G among recorded regions).

Setup. Here, we choose precipitation prediction as a representative example. We extract spatio-
temporal precipitation sequences from time-series modality data with a temporal resolution of 1 day
and spatial resolution of 1°, covering a temporal span of 26 years and global spatial extent, forming the
Global dataset. Subsequently, we construct five smaller country datasets representing five continents
by selecting representative countries: the United Kingdom (UK), the United States (USA), China
(CN), South Africa (SA), and Australia (AUS). For all datasets, we partition the dataset into training,
validation and test sets as 6:2:2. Then, we select four categories of popular methods as baselines,
including time-series models (TimesNet [82], FEDformer [99], PatchTST [60], DLinear [92]), spatio-
temporal prediction models (STAEformer [54], STID [70], GWNet [83], STGCN [89]), precipitation-
specific prediction model ConvLSTM [71], and historical mean method HI [24]. For different methods,
in order to adapt to the task, we make appropriate feature, structure and hyperparameter adjustments
to achieve the best results. We conduct three prediction scenarios: predicting precipitation for the next
7, 15, and 30 days based on the historical 30-day precipitation sequences, using mean absolute error
(MAE) and root mean square error (RMSE) to evaluate prediction performance. All experiments are
conducted three times, and the mean values are reported. For more detailed information about the
experimental setup, please refer to Appendix A.

  RMSE
  @ 7

RMSE @ 15RMSE @ 30

MAE   
@ 7   

MAE @ 15 MAE @ 30

4.7966.0947.107

4.811

6.127

7.15

4.859

6.166

7.51

2.225 3.378 4.501

2.241

3.391

4.525

2.272

3.415

4.726

TimesNet
FEDformer
PatchTST
DLinear
STID
ConvLSTM
HI

Figure 6: Global performance comparison.

Result Analysis. Table 3 presents the MAE and
RMSE test results for specific horizons of 7, 15, and
30 days, along with the average performance across
all prediction horizons. The simple method HI per-
forms the worst as it completely ignores temporal
dependency and spatial correlation, relying solely on
the last lagged value from historical records. Addition-
ally, the state-of-the-art TimesNet model in time-series
prediction and advanced spatio-temporal prediction
model STID achieve the best and second-best perfor-
mance, respectively. This could be attributed to their
incorporation of embedding information of time and
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Table 3: Spatio-Temporal Forecasting Performance. Red: the best, Blue: the second best.
Methods TimesNet FEDformer PatchTST DLinear STAEformer STID GWNet STGCN ConvLSTM HI

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

U
K

7 2.812 4.681 3.350 4.618 3.286 4.616 3.313 4.566 3.224 4.559 3.232 4.579 3.219 4.592 3.229 4.577 3.250 4.600 4.023 5.466
15 2.821 4.697 3.372 4.695 3.327 4.673 3.324 4.611 3.241 4.554 3.233 4.560 3.235 4.668 3.249 4.599 3.285 4.661 4.100 5.547
30 2.817 4.693 3.438 4.706 3.346 4.702 3.328 4.603 3.226 4.638 3.226 4.519 3.235 4.620 3.260 4.655 3.285 4.652 4.067 5.532

Avg 2.816 4.690 3.376 4.659 3.316 4.666 3.320 4.591 3.234 4.581 3.232 4.553 3.229 4.629 3.245 4.627 3.266 4.645 4.026 5.479
U

SA

7 1.356 4.578 3.319 7.171 3.296 7.262 3.263 7.296 3.167 7.138 3.158 7.021 3.179 7.005 3.181 7.041 3.209 7.254 4.146 8.300
15 1.370 4.609 3.342 7.205 3.320 7.326 3.280 7.380 3.178 7.128 3.165 7.071 3.188 7.039 3.198 7.077 3.230 7.290 4.122 8.232
30 1.400 4.675 3.413 7.329 3.383 7.495 3.336 7.498 3.210 7.224 3.189 7.142 3.219 7.134 3.237 7.218 3.267 7.405 4.145 8.263

Avg 1.371 4.613 3.348 7.212 3.321 7.327 3.282 7.364 3.178 7.147 3.165 7.057 3.184 7.077 3.197 7.088 3.225 7.315 4.102 8.175

C
N

7 3.147 6.689 4.721 7.903 4.654 8.021 4.679 8.002 4.547 7.877 4.552 7.822 4.553 7.865 4.558 7.854 4.576 7.883 5.945 8.970
15 3.155 6.679 4.730 7.911 4.664 8.038 4.682 7.991 4.548 7.814 4.538 7.833 4.550 7.880 4.570 7.816 4.577 7.877 5.977 9.005
30 3.163 6.674 4.751 7.880 4.668 8.044 4.679 7.988 4.537 7.847 4.535 7.804 4.552 7.845 4.565 7.862 4.579 7.876 5.975 9.018

Avg 3.152 6.677 4.723 7.890 4.654 8.017 4.672 7.981 4.544 7.827 4.536 7.806 4.544 7.839 4.555 7.825 4.566 7.856 5.888 8.888

SA

7 2.067 3.455 2.350 3.400 2.335 3.424 2.317 3.394 2.297 3.356 2.319 3.340 2.281 3.358 2.278 3.409 2.300 3.408 3.084 4.194
15 2.075 3.459 2.366 3.411 2.343 3.443 2.323 3.404 2.302 3.355 2.289 3.372 2.284 3.354 2.283 3.402 2.308 3.395 3.074 4.175
30 2.093 3.476 2.392 3.444 2.362 3.466 2.333 3.421 2.291 3.384 2.310 3.351 2.299 3.354 2.285 3.417 2.300 3.417 3.095 4.199

Avg 2.076 3.460 2.365 3.412 2.343 3.441 2.322 3.402 2.295 3.362 2.308 3.351 2.294 3.346 2.282 3.408 2.303 3.404 3.077 4.182

A
U

S

7 1.830 3.160 2.171 3.184 2.157 3.206 2.131 3.208 2.109 3.230 2.099 3.161 2.101 3.208 2.107 3.188 2.104 3.221 2.790 3.900
15 1.838 3.164 2.170 3.194 2.164 3.214 2.136 3.212 2.111 3.214 2.102 3.151 2.102 3.207 2.113 3.184 2.112 3.230 2.790 3.898
30 1.844 3.173 2.184 3.227 2.172 3.241 2.145 3.232 2.118 3.227 2.100 3.177 2.102 3.196 2.115 3.190 2.120 3.242 2.806 3.920

Avg 1.835 3.162 2.171 3.191 2.160 3.215 2.135 3.211 2.109 3.225 2.098 3.157 2.098 3.201 2.107 3.188 2.110 3.213 2.768 3.876
1stCount 30 0 0 0 2 6 2 0 0 0

date, which intuitively aids in predicting precipitation fluctuations, which tend to be substantial. An
interesting and surprising observation is that spatio-temporal prediction models do not outperform
time-series prediction models, even the ConvLSTM model specifically designed for precipitation
prediction. Typically, this contradicts intuition as methods considering dynamic spatial topology fea-
tures are expected to outperform time-series prediction methods where variables are independent, as
observed in literature [69]. However, in our precipitation prediction experiment, it is evident that most
spatio-temporal and time-series prediction models yield similar results, failing to adequately capture
spatio-temporal trends. One possible reason could be that precipitation is often a non-stationary
time series with extreme fluctuations, making it challenging to capture clear patterns. Hence, the
community needs to explore how to incorporate more external information to aid prediction and
increase interpretability. As a solution, our multimodal dataset Terra provide a potential avenue
for further investigation. Figure 6 further illustrates the global prediction results, where a similar
phenomenon is observed. The only difference is that spatio-temporal models such as STAEformer,
GWNet, and STGCN fail to perform effectively due to their high spatial memory consumption, further
motivating research into more efficient spatio-temporal models in the future.

4.2 Spatial Analysis Task

4.2.1 Location based Spatial Variable Prediction

Problem Definition. Spatial variables refer to indicators related to geospatial coordinates, such as
precipitation, wind speed, and population. Using current location embedding technology, we can
predict environmental indicators solely based on geospatial coordinates and pre-learned location data,
which is crucial for spatial analysis. Formally, location-based spatial prediction aims to predict L
spatial indicators of N locations, denoted as Y ∈ RN×L, given the global latitude and longitude
coordinates X ∈ RN×2 of N locations.

Setup. Here we use precipitation (mm/day), wind speed (m/s), and air temperature (°C) as represen-
tative indicators to conduct spatial variable prediction experiments. Specifically, we select global
scale and 1° spatial resolution data (Aggregation by 0.1°), and use the daily average value from 2020
to 2022 as the ground-truth indicator value. We use three representative position embedding models:
SatCLIP [45], GeoCLIP [78], and CSP [56]. The position encoder is frozen during training, and only
Multilayer Perceptron is added on top of it for linear probing [35]. In addition, the dataset samples
are randomly shuffled and divided into training, validation, and test sets in a ratio of 7:1:2. The
performance indicators used to compare them are mean square error and mean absolute error.

Table 4: Spatial Prediction Performance. Red:
the best, Blue: the second best.

Methods
Precipitation Wind Speed Temperature
MSE MAE MSE MAE MSE MAE

CSP 0.997 0.775 0.965 0.787 0.909 0.761
GeoCLIP 0.162 0.249 0.212 0.326 0.021 0.095
SatCLIP 0.010 0.052 0.036 0.116 0.002 0.024

Result Analysis. Table 4 presents a comparison of dif-
ferent models across three representative environmental
spatial variables. As we can see, SatCLIP demonstrates
superior performance, attributable to its satellite pre-
training dataset. We also display an intuitive visual
comparison in Figure 7. In contrast to GeoCLIP, which
utilizes geo-tagged street-view images for pretraining,
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SatCLIP could be offered more pertinent semantic information for downstream environment-related
tasks. Conversely, CSP focuses on pretraining location encoders for specific applications, which
diminishes its adaptability to new downstream tasks. Overall, these results corroborate the suitability
and practical utility of our Terra dataset for environment-related spatial variable prediction, thereby
reinforcing its potential for advancing research in spatial-temporal data mining.

Figure 7: SatCLIP predicted global-scale precipitation.
4.2.2 Vision-Language based Spatial Variable Prediction

Problem Definition. To demonstrate the multimodal nature of the Terra, we follow the recent
paradigm of spatial variable prediction based on vision-language pre-training [34, 86], which provides
a comprehensive geographic vision of a region through satellite images, and provides an overview
of the region’s inherent knowledge through text descriptions, thereby enhancing spatial variable
prediction. Formally, vision-language based spatial prediction aims to predict L spatial indicators of
N locations, denoted as Y ∈ RN×L, given visual and textual pairs X ∈ RN×⟨I,T ⟩ of N locations.

Setup. We follow the same experimental setup as in Sec. 4.2.1. However, in the context of vision-
language pre-training, making predictions on a global scale poses significant challenges in terms of
computational resources. Thus, similar to Sec. 4.1, we select three representative countries(USA,
CN, AUS) for experiments. We select two representative VLP models in the spatio-temporal domain,
UrbanVLP [34] and UrbanCLIP [86], as well as the classic general baseline CLIP [63]. Similarly, the
dataset is split into training, validation, and test sets in a 7:1:2 ratio, and the performance metrics
used for comparison are: coefficient of determination (R2) and mean squared error (MSE).

Table 5: Results of Vision-Language based Spatial Variable Prediction. UrbanVLP∗ dentoes that we
leverage UrbanVLP without its street-view branch. Red: the best, Blue: the second best.

Methods
Datasets Precipitation Wind Speed Temperature

CN USA AUS CN USA AUS CN USA AUS
Metric R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE
CLIP 0.483 0.537 0.359 0.631 0.321 0.683 0.587 0.429 0.519 0.483 0.266 0.712 0.513 0.454 0.575 0.422 0.178 0.992

UrbanCLIP 0.617 0.418 0.409 0.577 0.383 0.623 0.674 0.352 0.579 0.425 0.340 0.657 0.685 0.343 0.650 0.344 0.210 0.981
UrbanVLP∗ 0.745 0.279 0.589 0.402 0.680 0.323 0.774 0.244 0.750 0.252 0.591 0.407 0.791 0.228 0.802 0.195 0.352 0.804

Result Analysis: Table 5 illustrates the performance of three spatial variable predictions on three
countries. Overall, these models demonstrated similar performance to those presented in [34].
The distinct performance of different models effectively highlights the consistency of our dataset.
Specifically, the performance trends for each metric vary across the three countries. For example,
the USA exhibits relatively poor performance in precipitation prediction, possibly due to its status
as the country with the most diverse climate types in the world, which affects precipitation patterns.
Conversely, Australia’s suboptimal performance in temperature prediction may be attributed to its
unusual geographic situation, being surrounded by oceans while having an inland desert climate.
Additionly, due to being trained on data from a limited number of countries, the performance is
slightly inferior to location-based models, which use pretrained encoders on global-scale datasets.

5 Conclusions
This work introduces the Terra, a multimodal spatio-temporal dataset. Terra is a comprehensive
dataset encompassing various meteorological data spanning the earth, covering 6,480,000 grid
regions over the past 45 years. It includes spatio-temporal observations along with multimodal
spatial information such as geo-images and explanatory texts. Based on a thorough introduction
of the data and analysis of experimental results, we highlight the significant impact of the Terra
dataset on advancing spatio-temporal data mining research and its potential for progressing towards
spatio-temporal general intelligence.
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A More Dataset Details

We provide a comprehensive supplementary introduction to the Terra dataset in this section, covering
data composition, statistics, visualization and analysis. Moreover, We also discuss the risks existing
in the text descriptions derived from LLM and the rationality of our solutions. Lastly, We conclude
by presenting statements on data availability and access links.

A.1 Data Composition and Statistics

After completing the entire process of acquiring and cleaning time series data from different sources,
we further resample the data to obtain time series data of different temporal and spatial resolutions.
For each spatial unit area at different spatial resolutions, we also supplement them with other meta
text elements, generated text knowledge, geo-images, and remote sensing images in a multimodal
context. This section provides a detailed description of the various data types contained in each
spatial unit of the dataset, their structure, and key attributes, ensuring a comprehensive understanding
of the content of the dataset and its potential applications.

Figure 8: Example of folder structure and file contents for time series modality.

Time Series. Our dataset is structured based on spatial resolution, with initial directories containing
data at 1° / 0.5° / 0.1° resolutions. The 1° and 0.5° resolutions are obtained by downsampling 0.1°
data by a factor of 10 and 5, respectively. For the time series data within each spatial resolution
directory, we further categorize them into subdirectories based on temporal resolution, including
monthly / daily / 3 hourly data. The monthly and daily data are obtained by downsampling the 3
hourly data by a factor of 8 and 8 times the number of days in a month (28-31 days). Specifically,
under each temporal resolution, there are usually 8 sub-files, each recording climate index values from
00:00 on January 1, 1979, to 00:00 on January 1, 2024 (inclusive start, exclusive end), spanning 45
years. These files contain data on precipitation, air temperature, surface pressure, relative and specific
humidity, wind speed, and downward shortwave and longwave radiation. Note that for individual
sub-files that take up a large amount of storage, we will split them into multiple files based on the
year. The complete folder directory and the contents of a single file are shown in Figure 8, where
each file under the subdirectory is stored in .csv format, and the shape is summarized in Table 6.

Table 6: Shape of a single file at different spatial and temporal resolutions.

Temporal
Spatial Spatial Resolution

0.1° 0.5° 1°

Te
m

po
ra

l
R

es
ol

ut
io

n 3 Hourly [131488, 6480000] [131488, 259200] [131488, 64800]

Daily [16436, 6480000] [16436, 259200] [16436, 64800]

Monthly [540, 6480000] [540, 259200] [540, 64800]
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The grid cell at (22,23)N and (112,113)E in China is located in the southeastern part of the country, 

bordering the East China Sea. This region falls under the category of a subtropical climate, 

characterized by hot summers and mild winters. The oceanic influence is significant, with the East 

China Sea playing a crucial role in shaping the local climate. The warm, moist air from the sea brings 

significant rainfall to the area, with most of it occurring during the summer months. The terrain is 

generally flat to gently sloping, with an average elevation of approximately 90 meters, which allows for 

the formation of a humid subtropical climate. The region is not directly affected by monsoons, but it 

does experience a significant amount of rainfall during the summer months due to the Asian summer 

monsoon circulation. The main airflows affecting the area are the East Asian monsoon and the westerly 

winds from the Tibetan Plateau. The vegetation cover is a mix of cropland, including irrigated and 

rainfed areas, as well as natural vegetation such as broadleaved evergreen forests and shrublands. 

Human activities, such as agriculture and urbanization, also play a significant role in shaping the local 

climate, with the construction of irrigation systems and the release of heat and pollutants contributing to 

the local microclimate. Overall, the combination of oceanic and continental influences, as well as the 

varied terrain and vegetation cover, creates a unique climate in this region.

latitude range: (22,23), longitude range: (112, 113)

Country: China

Landvegetation: cropland_rainfed: 0.1944; cropland_rainfed_herbaceous_cover: 0.0056; 

cropland_irrigated: 0.2889; mosaic_cropland: 0.0972; mosaic_natural_vegetation: 0.0694; 

tree_broadleaved_evergreen_closed_to_open: 0.1139; tree_broadleaved_deciduous_closed_to_open: 

0.0083; tree_needleleaved_evergreen_closed_to_open: 0.0444; mosaic_tree_and_shrub: 0.0805; 

shrubland: 0.0027; shrubland_evergreen: 0.0222; urban: 0.05278; water: 0.0194; 

Climate:  Mild temperate, Fully humid, Hot summer: 0.5; Mild temperate, Dry winter, Hot summer: 0.5; 

Mean Elevation: 89.73333333333333

meta_23N_112E.txt

llm_23N_112E.txt

Figure 9: Example of folder structure and file contents for text modality.

Text. As mentioned in the previous section, our text dataset also includes initial directories at different
spatial resolutions. Due to the significant time and cost involved, we currently only provide text
modal information at 1° and 0.5° spatial resolutions. For the text data at each spatial resolution,
we provide two types of text description files. The first type of description file is meta-text data.
We crawl the corresponding spatial unit area metadata for the project as introduced in the main
body, including latitude and longitude ranges, countries, land types, climate conditions, and average
elevation, organized and stored together in a .txt file. The file name is named after the upper left

Table 7: Processing methods and raw information of the meta text.

Meta Name Processing Raw Information Area

Range Split Segment [−90 ∼ +90] S / N,
[−180 ∼ +180] W / E Global

Country Index Search
Afghanistan, Antarctica, Andorra

...,
Yemen, Zimbabwe, Zambia

Global

Mean Elevation Calculate Average [−8775.47 ∼ +5371.13] meter Global

Land Vegetation Proportional Allocation

no_data, cropland_rainfed, cropland_rainfed_herbaceous_cover,
cropland_rainfed_tree_or_shrub_cover, cropland_irrigated,

mosaic_cropland, mosaic_natural_vegetation,
tree_broadleaved_evergreen_closed_to_open,
tree_broadleaved_deciduous_closed_to_open,

tree_broadleaved_deciduous_closed,
tree_broadleaved_deciduous_open,

tree_needleleaved_evergreen_closed_to_open,
tree_needleleaved_evergreen_closed,
tree_needleleaved_evergreen_open,

tree_needleleaved_deciduous_closed_to_open,
tree_needleleaved_deciduous_closed,
tree_needleleaved_deciduous_open,
tree_mixed, mosaic_tree_and_shrub,

mosaic_herbaceous, shrubland, shrubland_evergreen,
shrubland_deciduous, grassland, lichens_and_mosses,

sparse_vegetation, sparse_tree, sparse_shrub,
sparse_herbaceous, tree_cover_flooded_fresh_or_brakish_water,

tree_cover_flooded_saline_water,
shrub_or_herbaceous_cover_flooded,

urban, bare_areas, bare_areas_consolidated,
bare_areas_unconsolidated, water, snow_and_ice

Global

Climate Proportional Allocation

Tropical rain forest, Tropical monsoons,
Tropical savanna with dry summer,
Tropical savanna with dry winter,
Desert (arid), Steppe (semi-arid),
Mild temperate with dry summer,
Mild temperate with dry winter,

Mild temperate, fully humid,
Snow with dry summer, Snow with dry winter,

Snow, fully humid, Tundra, Frost,
Hot arid, Cold arid, Hot summer,

Warm summer, Cool summer, Cold summer

Mainland
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corner latitude and longitude of the unit area (for example, the file for the 22-23N, 112-113E grid
area is named meta_23N_112E.txt). The specific processing methods and original information for all
categories in the meta text are shown in Table 7. The second type of description file is LLM-derived
text description. Similarly, for each unit spatial area, we use the spatial cue engineering technology
introduced in the text and generate climate description information for each grid area using the latest
open-source LLM model LLama3, storing the content in a .txt file (the file for the same area grid is
named llm_23N_112E.txt). The complete folder directory and the contents of a single text modality
file are shown in Figure 9.

faa_ 20N_109E.pnggeoid_20N_109E.png

mask_21N_92E.pngma_ 20N_109E.png

vgg_ 20N_109E.pngrelief_ 20N_109E.png

satellite_ 20N_109E.png

Figure 10: Example of folder structure and file contents for image modality.

Image. Similarly, our image dataset is also contained in initial directories with different spatial
resolutions. Due to significant time and cost constraints, we currently provide modal information
images at 1° and 0.5° spatial resolutions. The image data provides descriptions of both overall
and detailed aspects of all spatial regions. For each spatial resolution, we offer various types of
image information. Specifically, as described in the text, there are seven main categories of images,
namely the geoid area map, spatial error area map, lithosphere magnetic field area map, hydrological
area map, topography area map, and gravity geological area map, along with the satellite remote
sensing area map. The first six can be considered as geo-image categories, primarily describing
inherent properties of the Earth’s terrain, topography, land, and sea. The last one is classified as a
remote sensing image category, mainly used to describe overall regional geographical information.
Different types of image folders are named sequentially as (img_geoid, img_faa, img_ma, img_mask,
img_relief, img_vgg, img_satellite), and for each type, individual spatial region images are named
based on the upper left corner’s longitude and latitude (for example, the relief map for the 19-20N,
109-110E grid is named relief_20N_109E.png). The complete folder directory and the contents of a
single image modality file are shown in Figure 10. Due to the adoption of the Mercator projection,
distortions are unavoidable for images in the polar regions; therefore, we disregard high latitude areas
in the Arctic and Antarctic circles. Additionally, for the img_mask files, completely oceanic and
completely terrestrial regions cannot be projected as image types, so they are omitted. The summary
of all file types, areas, and levels is presented in Table 8.

Table 8: Basic information about different image.

Image Name Type Area Level Source time

img_geoid geo-image [−80 ∼ +80] S / N,
[−180 ∼ +180] W / E Code: 01m 2008

img_faa geo-image [−80 ∼ +80] S / N,
[−180 ∼ +180] W / E Code: 01m 2019

img_ma geo-image [−80 ∼ +80] S / N,
[−180 ∼ +180] W / E Code: 02m 1946-2014

img_mask geo-image [−80 ∼ +80] S / N,
[−180 ∼ +180] W / E Code: 15s -

img_relief geo-image [−80 ∼ +80] S / N,
[−180 ∼ +180] W / E Code: 01s 2019

img_vgg geo-image [−80 ∼ +80] S / N,
[−180 ∼ +180] W / E Code: 01m 2019

img_satellite satellite-image [−85 ∼ +85] S / N,
[−180 ∼ +180] W / E Zoom: 10 / 11 2023-2024
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A.2 Data Visualization and Analysis

We further selected representative regions used in the experiment and visualized some modal data
metadata corresponding to them, aiming to provide local intuitive insights.

Time Series. As shown in Figure 11, we randomly selected precipitation time series data from
three spatial regions and aligned them for visualization. The first column displays the precipitation
variations in these three spatial regions over more than 20 years. Among them, Grid 98 and Grid
99 are geographically adjacent, while Grid 3 is geographically distant from the other two grids.
It can be observed that the precipitation amounts in Grids 98 and 99 exhibit similar patterns of
change, reflecting spatial correlation. In contrast, Grid 3 shows a distinctly different precipitation
pattern compared to the other two grids, indicating spatial heterogeneity. Further Seasonal and Trend
decomposition using Loess (STL) of the precipitation time series data for each spatial region reveals
similar observations in terms of trend, seasonality, and residuals.

Figure 11: Statistical and visual insights of time series modality data.
Text. Figure 5 presents statistics and visual insights of the selected LLM text modality data. As
we can observe, the text length predominantly centers around 200, which is longer than that found
in current state-of-the-art datasets such as ChatEarthNet dataset [91], whose highest frequency
distribution occurs at 155 (for texts generated by GPT-3.5). Our most common content words are
primarily related to geography, environment, and climate, reflecting the consistency between the text
content and the thematic focus of the Terra dataset.
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bare_areas_consolidated
sparse_shrub

Figure 12: Land type frequency diagram.
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Image. Due to the difficulty of direct image visualization, we use metadata on land types and climate
types as proxy labels for spatial area images. Specifically, we select the predominant land or climate
type in the current spatial area as the true label. As shown in Figure 12, we first visualize global
surface types. It is well known that oceans cover approximately 71% of the Earth’s surface area,
which aligns with our visualization finding that water has the highest frequency. As illustrated in
Figure 13, we further visualize the climate type proportions for all regions. It is evident that polar
frost and snow climates, as well as snow, fully humid and cool summer have the highest proportions.
In contrast, temperate climates with dry summers and cool summers, and temperate climates with dry
winters and cool summers, have the lowest proportions.

23.8%0.3%

8.7%

3.6%

2.4%

0.2%

1.6%
0.0%

Proportion
Climate Type

Dry, Steppe, Hot arid
Polar, Frost
Snow, Fully humid, Warm summer
Mild temperate, Dry summer, Cool summer
Snow, Dry winter, Cold summer
Tropical, Dry summer
Dry, Desert, Cold arid
Polar, Tundra
Tropical, Fully humid
Dry, Desert, Hot arid
Snow, Fully humid, Cool summer
Tropical, Dry winter
Mild temperate, Dry winter, Hot summer
Mild temperate, Fully humid, Hot summer
Mild temperate, Dry summer, Warm summer
Mild temperate, Fully humid, Warm summer
Snow, Fully humid, Hot summer
Tropical, Monsoon
Mild temperate, Dry summer, Hot summer
Dry, Steppe, Cold arid
Snow, Dry winter, Hot summer
Mild temperate, Fully humid, Cool summer
Snow, Fully humid, Cold summer
Snow, Dry winter, Warm summer
Mild temperate, Dry winter, Warm summer
Snow, Dry winter, Cool summer
Snow, Dry summer, Cool summer
Snow, Dry summer, Warm summer
Snow, Dry summer, Hot summer
Snow, Dry summer, Cold summer
Mild temperate, Dry winter, Cool summer

Figure 13: Climate type proportion diagram.

A.3 Discussion of LLM-Derived Text Description

In this section, we further discuss the technology of LLM-derived text description. Specifically, we
first analyze the spatial prompt engineering strategy and rationality we designed, and then compare
the impact of different open source LLMs on the quality of text descriptions.

The Suitability of Current Text Data. The text generation methods of LLMs are promising;
however, it remains unclear to what extent the text generated by LLMs is reliable, even with the
use of metadata. One suggested approach for quantification is to extract text embeddings from the
generated text, using either the LLM itself or BERT, and then train a multi-class classifier or regressor
on these embeddings to predict each metadata attribute present in the txt metadata file. The accuracy
of the classifier serves as a rough proxy for the illusion rate of each attribute (the frequency at which
the LLM omits or incorrectly alters attributes). We refer to paper [28] to calculate the illusion rate of
the generated text. Due to the diversity of metadata, we simultaneously train both a regressor and
a classifier. For the regression task, we predict the elevation and latitude/longitude coordinates of
the current area. For the classification task, we identify the dominant land vegetation type in the
region. Additionally, we choose BERT as the backbone encoder. The dataset is split in a 7:1:2 ratio.
Table 9 presents the NRMSE and accuracy metrics for several text regions used in this study. The
experimental results indicate that our spatial prompting engineering approach achieves approximately
70% retention and success rates, effectively mitigating the illusion problem to some extent.

Table 9: The Suitability study of experimental text data

Country NRMSE Accuracy

USA 0.0519 0.764

AUS 0.056 0.724

SA 0.0705 0.696
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The necessity of Spatial Prompt Engineering. As shown in Figure 14, here we provide an
illustration example of comparison of generated text with prompt with meta data and without meta
data. As observed, the absence of metadata can cause large language models (LLMs) to experience
hallucinations, resulting in factual inaccuracies, generalized climate descriptions, erroneous terrain
depictions, and incomplete vegetation information. Conversely, the provision of precise metadata can
effectively steer LLMs towards generating accurate and detailed descriptions.

The grid cell located at (50.5°N, 4.5°W) in the 
United Kingdom belongs to the continent of 
Europe. 
This region has a temperate maritime climate, 
characterized by mild winters and cool summers.
.…. The terrain in this area is relatively flat, 
with a mean elevation of approximately 70.8 
meters……
The presence of various vegetation types, such 
as water bodies (67.22%), grasslands (20.56%), 
and croplands (5.56%), plays a crucial role in 
influencing the rainfall patterns in this region. 
The vegetation cover helps to moderate the local 
climate, with the water bodies and grasslands 
acting as natural reservoirs for storing and 
releasing water. ……

The grid cell at (50,51)N and (4,5)W is 
located in the northern part of Western 

Europe, specifically in the France. This area 
falls under the category of a mild temperate 

climate, characterized by warm summers 
and fully humid conditions. .…. The terrain 

has some rolling hills and coastal areas. The 
area is not directly affected by monsoons, 
but it does experience occasional rainfall 

from the Atlantic low-pressure systems. The 
main airflow affecting this region is the 

westerly wind belt, which brings air from the 
Atlantic Ocean. The vegetation cover in this 

area is predominantly grasslands, which 
help to moderate the climate and influence 

rainfall patterns…...

Factual 
error

(a) Prompt with meta data. (b) Prompt without meta data.
Rectified by Meta data

Broad climate 
description

Inaccurate terrain 
description 

Incomplete 
vegetation 
description

Figure 14: Comparison of generated text with prompt with meta data and without meta data.

The impact of different LLM choices. We compare four common popular large language models,
including the open-source language models LLaMA3-8B, Vicuna-13b, Gemini-1.5 Pro, and the
closed-source language model GPT3.5, as shown in a simple comparison example in Figure 15.
Among them, LLaMA3-8B and GPT3.5 have achieved similarly excellent results. Compared to
other open-source large language models, LLaMA3-8B can generate more accurate descriptions
of climate types and provide more detailed subdivisions of various components, which has been
confirmed by numerical data. In addition, the acceptable performance of other models also proves
the effectiveness of our prompts, highlighting the potential of using LLM to extract and elucidate
compressed geographical spatial knowledge.

The grid cell located at (50.5°N, 4.5°W) in the United Kingdom belongs to the continent of Europe. This region has a 
temperate maritime climate, characterized by mild winters and cool summers..…. The terrain in this area is relatively flat, 
with a mean elevation of approximately 70.8 meters…… The presence of various vegetation types, such as water bodies 
(67.22%), grasslands (20.56%), and croplands (5.56%), plays a crucial role in influencing the rainfall patterns in this 
region. The vegetation cover helps to moderate the local climate, with the water bodies and grasslands acting as natural 
reservoirs for storing and releasing water. ……The prevailing westerly winds and the influence of the Atlantic Ocean are the 
primary drivers of rainfall in this region.…

Located in the United Kingdom, specifically at approximately 50-51°N and 4-5°W, this area experiences a mild temperate 
climate characterized by fully humid conditions with warm summers. With a significant percentage of water bodies, including 
rivers and coastal areas, nearby, the ocean exerts a considerable influence on the region‘s rainfall patterns, contributing to the 
overall humidity. The terrain features mainly consist of low-lying plains and some scattered hills. While not directly impacted 
by monsoons, the area is affected by prevailing westerly winds, bringing moisture-laden air from the Atlantic Ocean. 
Vegetation cover includes a mix of grasslands, croplands, and urban areas, with some pockets of natural vegetation…

llama3

GPT3.5

Vicuna-13b

The grid cell located at (50,51)N and (4,5)W in the United Kingdom is situated in the northwestern part of the country... The 
climate in this region is classified as a mild temperate climate with fully humid conditions, characterized by warm summers and 
cool winters...
The terrain in this area is mainly flat, with low-lying hills and valleys. However, the western part of the region is more hilly, with 
the Shropshire Hills and the Welsh Mountains reaching elevations of up to 700 meters…
The vegetation cover in this region is diverse, with a mix of grassland, cropland, and natural vegetation. The grassland and 
cropland contribute to the local microclimate by influencing temperature and rainfall patterns through evapotranspiration…

Gemini-1.5 
Pro

Located in the United Kingdom, this region experiences a mild temperate climate characterized by fully humid conditions and 
warm summers. Its proximity to the Atlantic Ocean exerts a significant influence on its climate, contributing to ample rainfall 
throughout the year.... The terrain, while not characterized by high mountains, exhibits a mix of rolling hills and plains, which 
can influence local wind patterns and precipitation distribution. While not directly affected by monsoons, the region‘s rainfall 
patterns can be indirectly influenced by large-scale atmospheric circulation patterns associated with monsoons in other parts of
the world. The vegetation cover, consisting primarily of grassland and a significant proportion of water bodies, plays a role in 
the local water cycle, influencing evapotranspiration rates and soil moisture…

Figure 15: Comparison of generated text with different LLMs.
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A.4 Data Statements and Accountability.

The code and data used for the experiment can be accessed in the repository https://github.
com/CityMind-Lab/NeurIPS24-Terra. The official dataset will be hosted on the Hugging Face
repository https://huggingface.co/datasets/onedean/Terra. Our code and dataset follow
the CC BY-NC 4.0 International License. All authors confirm the data license and commit that the
dataset will only be used for academic research.

B More Experimental Details

B.1 Training Resources & Code Implementation.

Our running environment consists of a Linux server equipped with a 2× AMD EPYC 7763 128-Core
Processor CPU (512GB memory) and 8× NVIDIA RTX A6000 (48GB memory) GPUs. To carry
out benchmark testing experiments, all baselines are set to run for a duration of 24 hours by default,
with specific timings contingent upon the method.

B.2 Spatio-Temporal Analysis Experiment

GlobalSA

USA
UK

CN

AUS

Figure 16: Visualization of dataset regions.

Detail Datasets. As shown in Table 10, we provide the statistical information of the datasets used
in this experiment. Five representative countries were selected from the five continents around the
world. However, since we directly used rectangles to cover the selected countries, the area covered
may exceed the actual country area, or miss areas outside the main continent (such as Alaska State in
the USA). Below are the specific ranges of different countries and basic geographical information
introductions. To further illustrate, we give an intuitive visualization as shown in Figure 16.

Detail Baselines. The essence of spatio-temporal forecasting lies in predicting the time series
of multiple spatial regions, thus the available method choices include time series forecasting and
spatio-temporal forecasting methods. In addition, we also include models specifically designed for
precipitation prediction and the traditional HI method. Below is a brief introduction to each method:

• TimesNet [82]: This paper presents a novel time series forecasting model that consistently achieves
state-of-the-art performance in various time series analysis tasks by capturing the multi-periodicity
and complex variations of time series through the transformation of one-dimensional time series
into two-dimensional tensors.

• FEDformer [99]: The paper introduces a Transformer model that combines seasonal trend decom-
position and frequency enhancement for long-term time series forecasting, improving the efficiency
and accuracy of predictions by applying the Transformer in the frequency domain.
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Table 10: Spatio-temporal analysis dataset statistics. Please note that due to the use of rectangular
selection, the current latitude and longitude coverage only includes parts of the country’s territory,
and may also include some territories and oceans of other countries. The dataset name is used for
identification purposes only and does not represent actual national territories.

Dataset Spatial Coverage Temporal
Coverage

Resolution
Variable

Bottom-left Top-right Spatial Temporal
Global -90°S, -180°W 90°N, 180°E 1996/10/1-2022/6/30 1° Daily Precipitation

UK 50°N, -8°W 60°N, 2°E 1996/10/1-2022/6/30 1° Daily Precipitation
USA 25°N, -125°W 49°N, -67°W 1996/10/1-2022/6/30 1° Daily Precipitation
CN 20°N, 75°E 50°N, 135°E 1996/10/1-2022/6/30 1° Daily Precipitation
SA -35°S, 16°E -22°S, 33°E 1996/10/1-2022/6/30 1° Daily Precipitation

AUS -40°S, 113°E -10°S, 154°E 1996/10/1-2022/6/30 1° Daily Precipitation

• PatchTST [60]: A highly efficient Transformer-based model for multivariate time series forecasting
and self-supervised representation learning is proposed. This model significantly enhances the
accuracy of long-term predictions by segmenting the time series into small pieces and processing
each channel independently.

• DLinear [92]: The paper introduces a simple linear model called DLinear, which decomposes
the time series into trend and remainder sequences and uses a two-layer linear network for direct
multi-step forecasting, often outperforming existing complex Transformer models.

• STAEformer [54]: A new type of spatio-temporal Transformer model is introduced, which sig-
nificantly enhances the accuracy of spatio-temporal forecasting by incorporating spatio-temporal
adaptive embeddings. The STAEformer achieves state-of-the-art performance on six real-world
datasets.

• STID [70]: This paper presents a simple and effective baseline model for multivariate spatio-
temporal forecasting, which addresses the indistinguishability of samples in spatial and temporal
dimensions by adding spatial and temporal identity information. Based on a simple multi-layer
perceptron (MLP), it achieves optimal performance and efficiency.

• GWNet [83]: This paper introduces a novel graph neural network architecture called Graph
WaveNet for spatial-temporal graph modeling. It effectively captures hidden spatial dependencies
and long sequence time trends in the data through adaptive dependency matrices and stacked dilated
one-dimensional convolutional components.

• STGCN [89]: A new deep learning framework for spatio-temporal forecasting, STGCN, is intro-
duced. It combines graph convolution and gated temporal convolution to capture spatio-temporal
correlations in the network, achieving excellent performance on multiple real-world traffic datasets.

• ConvLSTM [71]: This paper proposes a new convolutional LSTM network for precipitation
forecasting. By extending the traditional fully connected LSTM to include convolutional structures
for input-to-state and state-to-state transitions, ConvLSTM is better equipped to capture correlations
in spatio-temporal sequences. https://github.com/jhhuang96/ConvLSTM-PyTorch

• HI [24]: This paper introduces historical inertia (HI) as a new baseline for long-term time series
forecasting. Research indicates that even when HI is used directly as the output, it can achieve
improvements on four public real-world datasets.

We have chosen the benchmark toolbox BasicTS+ https://github.com/zezhishao/BasicTS/
tree/master designed specifically for spatio-temporal and time series forecasting as our code
framework. However, it should be noted that TimesNet, STAEformer, and STID require date
embeddings. Since we are predicting the future 30 days based on the past 30 days, we use "day of
month" and "month of year" as substitutes for the original more fine-grained time embeddings to
capture trends on a daily and monthly basis. Additionally, for GWNet and STGCN, spatial graphs are
constructed by connecting each region with its neighboring regions. Finally, following the original
paper on ConvLSTM, we implement it in the code framework for ease of comparison. For all methods,
we adhere to the original default parameter settings and make appropriate adjustments for optimal
performance.

Detail Metrics. Our evaluation is conducted on re-normalized data, employing metrics such as MAE,
MSE. Formally, assuming n represents the indices of all observed samples, yi denotes the i-th actual
sample, and ŷi is the corresponding prediction, these metrics are formulated as following:
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MAE =
1

n

n∑
i=1

|yi − ŷi|, RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

B.3 Spatial Analysis Experiment

Detail Datasets. As shown in Table 11, we summarize the statistical information of the datasets used
for spatial analysis tasks. In contrast to spatio-temporal analysis tasks, we utilize daily averages with
a finer spatial resolution of 0.1° from 2020 to 2022 to represent spatial indicators. Specifically, we
selected three indicator variables: precipitation, wind speed, and air temperature.

Table 11: Spatial analysis dataset statistics. Please note that due to the use of rectangular selection,
the current latitude and longitude coverage only includes parts of the country’s territory, and may also
include some territories and oceans of other countries. The dataset name is used for identification
purposes only and does not represent actual national territories.

Dataset Spatial Coverage Temporal
Coverage

Resolution #LLM
Text

#Satellite
Image

Variable
Bottom-left Top-right Spatial Temporal

Global -90°S, -180°W 90°N, 180°E 2020/1/1-2022/12/31 0.1° → 1° Daily-Mean / /
Precipitation,
Wind Speed,

Air Temperature

USA 25°N, -125°W 49°N, -67°W 2020/1/1-2022/12/31 1° Daily-Mean 1,392 1,392
Precipitation,
Wind Speed,

Air Temperature

CN 20°N, 75°E 50°N, 135°E 2020/1/1-2022/12/31 1° Daily-Mean 1,800 1,800
Precipitation,
Wind Speed,

Air Temperature

AUS -40°S, 113°E -10°S, 154°E 2020/1/1-2022/12/31 1° Daily-Mean 1,230 1,230
Precipitation,
Wind Speed,

Air Temperature

Detail Baselines. For spatial analysis tasks, we have chosen two types of spatial variable prediction
methods based on location and visual-language. A brief overview of all methods is as follows:

• CSP [56], also known as Contrastive Spatial Pre-Training, is a robust and innovative multi-
modal, self-supervised pre-training methodology, capitalizing on extensive collections of un-
labeled geo-tagged imagery. This approach significantly advances the acquisition of location-
specific representations, thereby facilitating their application in few-shot learning scenarios.
https://github.com/gengchenmai/csp

• GeoCLIP [78] pioneers the worldwide geo-localization task through an image-to-GPS retrieval
methodology, explicitly aligning image features with their corresponding GPS locations. By
integrating positional encoding with random Fourier features, its location encoder effectively
encodes GPS coordinates, thus reducing spectral bias in multi-layer perceptrons (MLPs). https:
//github.com/VicenteVivan/geo-clip

• SatCLIP [45] introduces the first global-coverage, general-purpose pretrained geographic location
encoder, utilizing Satellite Contrastive Location Image Pretraining. SatCLIP distills spatially
varying visual patterns from globally distributed satellite data into an implicit neural representation
within a compact and efficient neural network, achieving excellent performance across a wide range
of downstream tasks. https://github.com/microsoft/satclip

• CLIP [63], as a milestone in the field of Vision-Language Pretraining (VLP), it has demonstrated
that cross-modal learning with web-scale data can exhibit outstanding performance. CLIP excels
in various domains such as image-text retrieval, image-text generation, and possesses zero-shot
capabilities. https://github.com/openai/CLIP

• UrbanCLIP [86] is the pioneering framework that integrates textual modality knowledge into
urban region analysis. It demonstrates that the comprehensive textual data generated from Large
Multimodal Models is an siginificant supervision signal to urban area representations. Through
a contrastive learning-based encoder-decoder architecture, UrbanCLIP injects textual knowledge
into visual representations by incorporating contrastive loss as well as language modeling loss,
making it a versatile and robust approach for urban region profiling. https://github.com/
StupidBuluchacha/UrbanCLIP
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• UrbanVLP [34] introduces a pioneering framework for urban region representation learning that
comprehensively explores multi-granularity cross-modal alignment. This framework also facilitates
automatic text generation and calibration through the application of PerceptionScores, thereby
ensuring the high quality of generated texts. This innovative approach has exhibited exceptional
performance across six downstream tasks, spanning environmental, social, and economic domains.

For all methods, we followed the default parameters and architectural designs as stated in the original
papers, and conducted experiments using their official codes. The only modification made was to
UrbanVLP, as this method requires street view images which were not effectively obtainable in
our dataset. Therefore, the encoder branch used for street view images was removed while the rest
remained unchanged.

Detail Metrics. To assess the spaital prediction performance, we also adopt three commonly used
evaluation metrics: mean squared error (MSE), mean absolute error (MAE) and coefficient of
determination (R2). MAE and MSE are calculated in a similar way as in the previous section, and
both of these metrics are better when they are smaller. The R2 is a statistical measure that indicates
how well a regression model fits the data. It represents the proportion of the variance in the dependent
variable that is predictable from the independent variables. The formulation for R2 is:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

where ȳ is the mean of the actual values. An R2 value closer to 1 indicates that the model explains a
large proportion of the variance in the data, meaning the model has a good fit. The advantage of R2 is
that it provides a measure of how well the model explains the variability of the data. However, it can
be less useful for non-linear relationships and is sensitive to outliers. In summary, MSE, MAE, and
R2 have their respective strengths and weaknesses. MSE and MAE primarily measure the magnitude
of prediction errors, while R2 evaluates the explanatory power of the model.

C More Discussion

Potential for Higher Resolution. Currently, the time series modality in our dataset has achieved
a spatial resolution of 0.1°, while the corresponding text and image modalities have not reached
this level. Specifically, the main challenge in achieving higher spatial resolution for text lies in the
reliability and redundancy of the Large Language Model generating the text, as text descriptions are
mainly related to the climate, terrain, and environment of the current area. Fine-grained spatially
adjacent regions may have a large amount of redundant text descriptions, posing greater challenges
for noise removal. On the other hand, the main adjustment in achieving higher spatial resolution for
images lies in the significant time and monetary costs required to handle and manage such fine-grained
data. However, increasing the resolution to a spatial scale of 0.1° will exponentially increase the
amount of data, necessitating advanced storage solutions, more powerful computing resources, and
substantial financial investment. To address this issue, we are committed to continuously investing
time and resources in gradually improving the resolution of various modalities in our dataset. This
includes leveraging advancements in data storage technologies, optimizing data processing algorithms,
and exploring cloud platforms that can support scalable storage.

Risk of LLM Obsolescence. The use of LLMs to generate explanatory text data is a double-edged
sword. While LLMs provide a powerful tool for creating comprehensive and detailed textual data,
they are also prone to rapid obsolescence due to the fast-paced advancements in AI research and
technology. As newer, more advanced LLMs emerge, the text generated by older models may become
outdated or less accurate, potentially compromising the quality of the dataset. Moreover, keeping
the text data relevant and accurate necessitates regular updates and replacements, which can be
resource-intensive. To mitigate these risks, we hope to regularly update our dataset with the latest
and best open-source LLMs. This involves a systematic review process to identify advancements
in LLM capabilities, followed by the selective replacement of existing text data. By doing so, we
ensure that our dataset remains at the forefront of technological innovation and continues to provide
high-quality, reliable data for research and practical applications.

Instability of Satellite Distribution. Due to potential redistribution constraints, the reliance on
commercial satellite remote sensing imagery introduces a certain degree of instability in data ac-
quisition. These constraints may stem from changes in commercial policies, geopolitical factors,
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or fluctuations in the satellite data market dynamics. For example, Esri grants recipients of Esri
information contained in the esri.com website the right to freely copy, redistribute, rebroadcast, and/or
retransmit this information for personal non-commercial purposes (including educational, classroom
use, academic and/or research purposes) 2; however, these permissions may expire or encounter
issues over time. Therefore, in future iterations, we will explore alternative satellite image products
from the open-source community, such as Sentinel-2 provided by the European Space Agency (ESA).
Open-source satellite data offers a more stable, cost-effective solution, ensuring continued access
to high-quality imagery reliably. Furthermore, establishing partnerships with academic and govern-
mental institutions that provide open access to satellite data can further enhance the robustness and
stability of our dataset.

Timeliness of Spatial Text and Images. One potential assumption of our dataset is that spatial infor-
mation is stable and not time-dependent. However, despite spatial information typically being static
or slowly changing, it can undergo significant changes over time. For instance, rapid urbanization can
lead to substantial changes in land use, infrastructure, and population density. Areas that were once ru-
ral may urbanize, altering the spatial features captured in early images. Furthermore, natural disasters
such as earthquakes, floods, and hurricanes can completely transform landscapes, necessitating image
updates to accurately reflect these changes. These examples underscore the importance of ensuring
the timeliness of spatial images and related textual data in a dataset. Nevertheless, obtaining dynamic
temporal text and images is currently impractical, not only due to the challenge of accessing valid
sources but also because of the massive storage and crawling costs involved. As a future research
direction, we look forward to developing automated systems for detecting changes in spatial data and
triggering updates of images and text. Machine learning algorithms can be utilized to identify areas
undergoing significant changes, prompting a review and update of the corresponding data.

D Broader Impact

The introduction of this Terra dataset will undoubtedly have a profound impact in the fields of earth
science and deep learning, and these impacts will be reflected in many aspects.

Positive Impact

• More Accurate Weather Forecasting and Environmental Monitoring: The Terra dataset pro-
vides hourly time series data spanning 45 years globally, enabling meteorologists and environmental
scientists to predict weather patterns, climate trends, and the likelihood of natural disasters more
accurately. This is crucial for preparedness, ecological protection, and ensuring human safety.

• Enhanced Training and Application of Deep Learning Models: The scale and multimodal
nature of this dataset will provide rich data resources for the development of deep learning models.
Training and evaluating on spatio-temporal data can improve existing models and lay a solid
foundation for future spatio-temporal general intelligence.

• Promotion of Scientific Research and Interdisciplinary Collaboration: The open sharing of the
Terra dataset will facilitate collaboration between fields such as Earth science, computer science,
and data science. Researchers can jointly utilize this dataset to explore the complexity of the Earth
system, advancing interdisciplinary research.

Negative Impact

• Data Bias and Misinterpretation: In constructing and utilizing the Terra dataset, there may be
issues of data bias and misinterpretation. For example, uneven distribution of observation stations
or sensor malfunctions may result in inaccurate or incomplete data for certain regions, leading to
misinterpretation of environmental characteristics.

• Technological Dependency and Data Dominance: Over-reliance on the Terra dataset may lead
to neglect of other data sources, weakening diversity and reliability. When using this dataset, it is
important not to overly rely on it but to complement it with other data resources for comprehensive
analysis and validation.

2https://www.esri.com/en-us/legal/copyright-proprietary-rights
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] we summarize the contributions of this paper into three
main points in Section 1

(b) Did you describe the limitations of your work? [Yes] We discuss three potential issues
with our dataset in detail in Section 3 and provide further discussion in Appendix C.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss
potential impacts in Appendix D.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have read the ethical review guidelines and ensured that the paper
complies with these guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] Our work

does not involve theoretical analysis.
(b) Did you include complete proofs of all theoretical results? [N/A] Our work does not

involve theoretical analysis.
3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We describe the method, experimental setup, and reproduction
parameters in detail in Appendix B, and we also provide a code repository to support it.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] In fact, we conducted 3 experiments and showed the mean
results. Due to limited display space and most of the variance errors are very small (3
decimal places), we ignore the error results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We describe in detail the training
resources needed to reproduce the experiment in Appendix B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We thoroughly review

the assets used and give correct citations for all of them.
(b) Did you mention the license of the assets? [Yes] We provide guidelines for licensing

and access to assets in Section 3.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We fully describe the assets we used in the main text, and the appendix is only used to
further analyze and illustrate.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We have reviewed all asset permissions and summarized them in
section 3.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Since our datasets are earth science and climate
related datasets, concerns such as personal privacy do not apply.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Our dataset does not involve any human experiments.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] Our dataset does not involve any human
experiments.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] Our dataset does not involve any human
experiments.
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