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ABSTRACT

Existing end-to-end visual recognition models do not possess innate spatial in-
variance and are thus vulnerable to out-of-training attacks. This suggests the need
of a better representation design. This paper follows existing cognitive studies to
investigate a sketch representation that specify stroke information on vertices and
inter-stroke information on edges. The resultant representation, combined with
a graph neural networks (dubbed as SSR-GNNGs), achieve both high classifica-
tion accuracy and high robustness against translation, rotation, and stroke-wise
parametric and topological attacks thanks to the use of spatially invariant stroke
features and GNN architecture. While prior studies demonstrated similar sketch
representations for classification and generation, these attempts heavily relied on
run-time statistical inference rather than more efficient bottom-up computation
via GNN. The presented stroke-based sketch representation poses good structured
expression capability as it enables generation of sketches semantically different
from the training dataset. Lastly, we show SSR-GNNs are able to accomplish all
tasks (classification, robust feature learning, and novel pattern generation), which
shows that the representation is task-agnostic.

1 INTRODUCTION

Unlike human vision system, it is well acknowledged that end-to-end deep learning methods lack
intermediate representations that enable innately invariance to spatial translation and rotation (Hin-
ton, 2021; 1979; Snead, 2017; Baggaley, 2017; Levesque et al., 2011; Clark, 2015; Marcus, 2013;
2017). While such transformation invarianace can potentially be achieved through expensive robust
training, it is believed that invariance (1) should be an innate property rather than an external model
constraint, and (2) should not trade off recognition accuracy.

A commonly sought-after solution is to identify a part-whole structure (Hinton, 202 1), following the
insights that the human vision system parses scenes into atomic parts for recognition and generation,
while both parts and the topologies of parts are invariant to spatial transformations. The part-whole
structure is also supported by the Gestalt principles (Desolneux et al., 2007) and cognitive science
(Lake et al., 2017).

Building on top of existing work and within the context of computer vision, we propose a part-
whole representation where strokes, as parts, are connected as a graph to form a sketch. The focus on
sketches draws inspiration from studies in biology and cognitive science. (Landau et al., 1988) shows
that human vision relies more on shapes than on textures or colors. Studies also show that successful
CNNs learn shape representations from natural images (Geirhos et al., 2019; Kriegeskorte, 2015).
In this paper, we assume that non-sketch inputs, e.g., textures, can be ignored, and it is feasible to
convert images into sketches, e.g., through (Geirhos et al., 2019; Lamb et al., 2020).

An example of the proposed representation is shown in Fig. 1: From an input image of “R”, we
use unsupervised image processing to identify fork points that separate strokes (Lake et al., 2015),
and estimate control points of these strokes to form an undirected graph representation where each
vertex contains stroke information and edges specify interactions between strokes. Specifically,
to achieve spatial invariance, each vertex encodes pairwise spatial distances between each pair of
control points for the corresponding stroke (see vs in Fig. 1), which is a n x n matrix. If two strokes
(each with n control points) are connected, we form an edge in the graph. The edge encodes the pair-
wise distance between each control point from one stroke to each of the other (see ez 3 in Fig. 1).
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Figure 1: An overview of SSR-GNNs. We take "R” for example. The image "R” is composed of 4 strokes
s = {s1, 82, 53, s4}. Each stroke is composed of 5 control points. ss = {c3, c3, 3, c3, c3}. The 4 strokes are
associates with 4 vertices v = {v1, v2, v3, v4} in graph g. The value of vertex is the pairwise distance between
control points. ve = {¢(ch,x3)}»—’=]. The value of edge is the pairwise distance between two connecting
. =5,9q=5
control point. e23 = {@(ch,c)}h_7i_7.
the high level representation of the image x.

After passing to a learnable graph neural network(GNN), the z is

Since distances between control points are invariant to spatial transformations, our graph design is
innately spatially-invariant. To use the graph representation for classification, we adopt a Graph
Neural Network (GNN) for its good generalization capability (Scarselli et al., 2008), flexibility at
managing variable input graph topologies, and perseverance of spatial invariance.

In summary, we present a Stroke-based Sketch Representation for GNNs (dubbed as SSR-GNNs) to
learn spatial-invariant classifiers. We claim the following new contributions:

* Through extensive experiments on both MNIST and two subsets of the Quickdraw
dataset (Ha & Eck, 2017), we show that SSR-GNNSs are innately robust to rotations and
translations, while maintaining high classification accuracy.

* In addition, we show that SSR-GNNss are robust to parametric and topological attacks with-
out robust training, which suggests that stroke-based graphs are robust features for percep-
tion.

 Lastly, we show that SSR-GNNs can generate novel sketch patterns distinguishable from
the training set. E.g., by learning to classify decimal digits, the model can then be used to
generate hypothetical “A”s to “F”s for a hexadecimal system. This shows that SSR-GNN
has strong structured expression capability.

Task-agnostic is another desired property of representations, meaning that while the representation
should facilitate down-stream tasks such as classification and generation, its learning is not depen-
dent on any specific tasks. Being able to accomplish all tasks (classification, robust feature learning,
and novel pattern generation) shows that the proposed stroke-based representation is task-agnostic.

2 METHODS

The procedure of obtaining the high level stroke representation Z from the image X can be sum-
marized as: 1) decomposing the source image X to a stack of expressive stroke representation .5,
2) associating the S to the graph representation GG and 3) learning the mapping G to the high-level
representation Z through supervised training. Our paper aims to link the strokes of an image to
a graph and so that the produced representation inferred from the graph can be further transferred
to series of down-stream tasks. Fig. 1 depicts the overall, and we break it down to sub-steps and
describe each step’s details in the following sections.

2.1 ACQUIRING STROKES FROM AN IMAGE

We first decompose a source image x € X into a set of strokes, s = {si}|5‘ € S, where the number
of strokes |s| varies for each image. We follow the pre-process procedures from (Lake et al., 2015),
which include thinning the image (Lam et al., 1992), detecting the fork points (Liu et al., 1999)
and finally merging the noisy & redundant fork points by the maximum circle criterion (Liao &
Huang, 1990). The order of the strokes is then formed by a random walk between fork points. Fig. |
showcases an example of strokes acquired from the image “R”.
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2.2 STROKE-BASED GRAPH REPRESENTATION

Taking strokes as input, we associate them with a graph g, denoted as sets of vertices and edges
(v, e), where each vertex v; € v corresponds to an independent stroke s;, and e denotes the set of
edges e = {eiyj}si’sjaIe connected CONNECting two vertices v;, vj. Here, we consider the geometrical
connection between two strokes s;, s; (see Fig. 1). V, E/ denote the collections of v, ¢ from X.

Building upon (Lake et al., 2015)’s stroke representation, s; is modeled as an uniform cubic b-spline
and decomposed into three variables, namely, the control point, the scale and the mean. In practice,
we fit the stroke with varying sizes using b-spline and then re-fit back to a new stroke which contains
n fixed number of points. Then we represent the set of control points for one stroke and we denote
them as s; = {c] }7_;.

For a spatially-robust representation, in this paper, we present a novel stroke-based graph formation
other than directly assigning the control point as a vertex and point-wise relationship as an edge.
Instead, we represent the vertices-edges by the bipartite distance between each two control points.
In particular, for each vertex v; = {¢(c}, ¢f)}p 17— and v; € R"*", where ¢ is the Euclidean
distance and c?, ¢! are control points in stroke s;. Similarly, each single edge is represented as

707 © I
eij = 16(c}, ) }p=1a=1 > where ¢}, c{ are control points from strokes s; and s; respectively.

p:Lq:l > 1“1
2.3 LEARNING WITH THE GRAPH NEURAL NETWORKS

To address the issue of having dynamic number of vertices and interaction between vertices, we
apply a message passing neural networks(MPNNGs) (Gilmer et al., 2017; Duvenaud et al., 2015) (a
sub-category of GNNs) over the formerly constructed stroke-based graphs.

Specifically, the MPNN contains three sub-steps, namely: message passing, update and readout
(Battaglia et al., 2018). Formally, the calculation of the three sub-step are:

mfj’i"'l) = Z Mt(vl(t),v](-t),eg’tj)-), (D
s;,sjare connected

o " = Ui, m{ ), @)

z= R(vi(T)|va) € v). 3)

The message passing and update phase executes for 7" times. The message at phase ¢ + 1, mg,tfl) is

Z(t), adjacent vertex ot and edge information egt])

J
is updated by current vertex information vgt) and message information

encoded by vertex information v
(t+1)

i

at step ¢. The new

vertex information v
mgﬁﬂ). After T steps, the high level representation z is a feature vector, combining all vertices
information by a readout function at step 7. Both of M;,U;, R are parameterized by a neural
architecture with learnable parameters. After the readout, a linear classifier with softmax is used for
the linear classification on the feature vector z. To simplify the notation, we define the MPNN as

F :g = (v,e) = z and linear classifier as Fy : z — .

Our model can be optimized by any typical supervised training objectives and the learned repre-
sentations can be used for other downstream tasks, showing SSR-GNNss is task-agnostic. In this
paper, we adopt specific objective for each empirical task. Briefly, we describe each objective in the
following sections one by one.

2.4 OPTIMIZATION OBJECTIVES

We have two objectives for three experimental tasks in Sec. 3. For classification and spatial-
robustness task in Sec. 3.1, we use the Eq. 4. For robust feature learning in Sec. 3.2, we use the
Eq. 5. For the novel shape/sketch generation in Sec. 3.3, we adopt both objectives and reconcile
them. Note that since the objective will be used from different subsets of the whole set X later, we
define the y € X. The notation of S, V, I/ on subset x are referred to S,, V,, F,. For the whole
framework, we define the process mapping the s to v, e as a deterministic function P : s — v, e.
The function P can be applied to the set S, mapping S, — V,, F, and S, mapping S — V, E, in
the same manner.
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2.4.1 CLASSIFICATION OBJECTIVE

The objective for classification is the typical cross-entropy loss. Given the label set Y, for x, the
objective function is:

;_n}_p L(F,Fy,Sy,Yy) = max E[Y, log(Fy(F(Vy, Ey)))], where V,, E, = P(Sy). (4

2.4.2 OBIJECTIVE OF GENERATING/MODIFYING THE STROKES

The objective to generate or modifying the strokes is to optimize the stroke s on the classification
loss. If labeling the stroke graph as y, we fix the feature extractor F and linear classifier Fy, and
minimize the objective function over s:

min L£(P, F, Fy, s,y) = max E[y log(Fy(F(v,€)))], where v, e = P(s). (5)

The objective function only guarantees generating s to fit label y. To generate more natural looking
strokes, additional constraints on s are furthered needed and we list them below.

Boundary Constraint: Preventing the generated strokes to be out of image boundary, we supple-
ment a boundary constraint on s. It is accomplished by clipping s to the image size.

Distance Constraint: To avoid having strokes with abnormal length, we design constraints on
the pairwise distance between control points. There are two types of constraints. Taking V) for
example, the hard constraint is by measuring the ¢; difference between the mean of V, and v as
Lhara = |E(Vy) —v|. The soft constraint is measuring how well the log-likelihood of v follows the
distribution formed by the set V, . The objective function is:

Lsort = —Elog p(v|V, )] — E[log p(e| Ey )], where v, e = P(s). (6)

Radius Constraint: Except the distance constrain, we can also pose constraint on the radius of the
stroke. The radius r; of a stroke s; is defined as:

(] =™ (] =)

— 2
lle] =< el =<l

Here, we further extend the definition of P to P : s — v, e, r inducing radius measure. The way to
formulate constraint on the radius is similar to the distance constraint.

¥ (7)

(2

3 EXPERIMENTS

We empirically evaluate the validity of our SSR-GNNs framework from the aspects of spatial ro-
bustness, performance on classification task, and the structured expression capability. In particular,
we first conduct the hand-written digit classification experiments using the stroke representation un-
der a wide range of spatial transformations to test whether our representation achieve high spatial
robustness while maintaining high accuracy. Spatial robustness can also be implicitly leveraged by
exploring the robust feature without the robust training, compared with the robust model by adver-
sarial training (Tsipras et al., 2019). To show our representation is with high structured expression
capability. Similar to the generation experiment from (Goodfellow et al., 2014) showing genera-
tive neural networks is able to create new samples based on known distribution, we demonstrate
SSR-GNNSs is capable of generating novel categories of sketch patterns that are categorically distin-
guishable from the existing set (from the existing decimal digits to generate digits A (10) to F (16)
in a hexadecimal system).

3.1 CLASSIFICATION AND SPATIAL ROBUSTNESS

3.1.1 DATASET AND PRE-PROCESSING

We exploit two datasets as our testbeds: MNIST and Google Quickdraw datasets (Ha & Eck, 2017).
MNIST is a hand-written digit dataset containing the numerical digits from 0-9. It contains 60, 000
training samples and 10, 000 testing samples. Google Quickdraw is a human hand-drawn sketch
dataset with 345 different categories, ranging from The Great Wall, airplane, to hands, square and
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dogs. They have two types of input. The first type is the sketch image, shifted to top-left corner and
normalized the scale to 224 x 224. CNNs and our method use this type of input. The second type is
the simplified stroke key points in temporal order (Xu et al., 2021; 2018), computed by the Ramer-
Douglas-Peucker algorithm (Ramer, 1972). The Graph transformer (Xu et al., 2021) and Recurrent
Neural Network (Xu et al., 2018) uses this type of input. Due to the abstractness of some categories
in Quickdraw, we just adopt two sub-parts of the dataset for our experiments. The first sub-part is
relatively simple, containing all shape categories including circle, hexagon, line, octagon, square,
triangle, zigzag (see Fig. 2(b)). We then test the model on a more complex sub-part, containing all
body categories including arm, ear, elbow, face, finger, foot, hand, nose, toe, tooth (see Fig. 2(c)).
For both parts, we select 1000, 100, 100 samples per category for training, validation and testing.
To avoid the spatial transformation moving strokes out of image, we zero-pad 40 pixels at each side
of the image. In the pre-processing step acquiring strokes from sketch image, we follow procedure
(Lake et al., 2015) in Sec. 2.1. Since the strokes in the sketch image are mostly short ones, we set
n = 10 for all experiments. Due to the existence of noisy fork points, the maximum circle criterion
cannot be used on sketch image. We dilate the sketch with 4 pixels which allows maximum circle
criterion to remove the noisy fork points.

3.1.2 NETWORK ARCHITECTURE AND TRAINING DETAILS

We adopt the MPNN (from Sec. 2.3) following the same architecture as the gated graph neu-

ral networks(GG-NNs) (Li et al., 2015). The message passing function is Mt(vi(t), vj(t), ez(tj)) =

(I>1(el(-7tj)-) . vj(-t). The update function is a Gated recurrent unit (Cho et al., 2014), where U; =
GRU(vgt),mgfiH)). The readout function is R = }° ), o((I)z(ng) U(O))) ) (@3(U(T))). For

3 ? (2

MNIST, &, @5, &3 each is a linear four layers networks, with the intermediate feature size as 128,
256, and 128. The message passing iterations 7" is set to 1 and the final feature vector size is set to
10. We use the batch size 128, with an initial learning rate = le~*. To handle the complex images
in Quickdraw, we increase the depth of our architecture to 8 linear layers and the dimension of the
intermediate features are 128, 256, 512, 2048, 521, 256, 128. The message passing iterations is set
to 3 and the dimension of the final feature vector is 1024. We set the the batch size as eight with an
initial learning rate = 2¢~* using SGD optimizer. The objective function is a typical cross-entropy
loss, as depicted in Sec. 2.4.1.

3.1.3 BASELINES

Convolutional Neural Network (CNN) is one of the important baseline in our comparisons. On the
MNIST dataset, we build the CNN with two convolutional layers and two linear layers maintaining
comparable learnable parameters as our models for fair comparisons. On Quickdraw dataset, we
choose the Inception network (Szegedy et al., 2015) as the baseline.

Graph Transformer (Xu et al., 2021) can also be applied as encoding the sketch image as a graph.
However, the encoded graph differentiates from our method in such a way that each of the vertex in
it is an independent stroke key point represented by its coordinates. Such representation is therefore
not invariant to spatial transformation. In addition, Graph Transformer based method needs flag bits,
indicating the start or end of a stroke, and temporal information which tracks sequence of the pen
states. These information is not needed for the presented method.

3.1.4 EVALUATION

To evaluate the spatial robustness of the model, we apply the rotation 6 and translation (d,,d,)
attacks on the input images (Engstrom et al., 2019). It moves the pixel at (z, y) to (2, y'):

cosf) —sinf T Ou| _ |2
[sinG cos 0 } ' {y] * [51/} - [y’} ’ o

For MNIST dataset, we rotate at most 30° and translates with at most 3 pixels. For Quickdraw
dataset, since the image size increases, we increase the maximum translation to 10 pixels. To gen-
erate the transformed images, we discretize the parameters to grids of rotations and translations (as
shown in Fig. 2). We sample 5 values per translation direction and 31 values for rotations. Together,
the procedure yields 775 transformed samples per image. If one of the transformed sample fails a
model, the model is then considered not robust against spatial transformation w.r.t. the input image.
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(a) MNIST (b) Quickdraw(Shape) (c) Quickdraw(Body)

Figure 2: Spatial transformation on MNIST, Quickdraw(shape), Quickdraw(body). The grid of each
row is the rotation of —, 0, . The grid of each column is the translation of (—dz, —dy), (0,0), (0, d). For
MNIST, 6 = 30°, §» = 0y = 3px. For Quickdraw, § = 30°, J, = &, = 10px.

Method Evaluation MNIST | Quickdraw(Shape) | Quickdraw(Body)

Accuracy 98.98% 87.14% 80.10%

CNNs Spatial Robustness | 0.01% 21.90% 31.10%
Parameter Size 600,810 25,315,474 25,315,474

Accuracy - 80.71% 75.4%

Graph Transformer | Spatial Robustness - 0.00% 0.00%
Parameter Size - 39,984,729 39,984,729

Accuracy 93.01% 73.00% 64.20%

Ours (SSR-GNNs) | Spatial Robustness | 93.01% 73.00% 64.20%
Parameter Size 546,634 8,707,868 8,707,868

Table 1: The accuracy and spatial robustness on three dataset(MNIST, Quickdraw(Shape), Quick-
draw(Body)). We compare our method(SSR-GNNs) with CNNs(Inception-V3 for Quickdraw) and graph
transformer. Our evaluation metrics are accuracy, spatial robustness and the parameter size.

3.1.5 CLASSIFICATION AND SPATIAL ROBUSTNESS RESULT

Table 1 summarizes the experimental results. 1) For accuracy, CNNs achieve the best result. Our
method achieves comparable accuracy. Specifically comparing to CNNs, our method’s accuracy is
5.97%, 14.14%, and 15.90% lower on MNIST, Quickdraw(Shape) and Quickdraw(Body). The gaps
between ours with graph transformer’s are even smaller (MNIST cannot be processed to the graph
transformer). 2) For spatial robustness, since our stroke representation is invariant to spatial trans-
formations, SRR-GNNs’ performance before and after spatial transformation keep the same. We can
see that SSR-GNNss outperforms all other methods with a significant margin taking spatially trans-
formed inputs. The spatial robustness of CNNs drops to 0.01%, 21.90%, 31.10% on three datasets.
And spatial robustness of graph transformer is essentially 0% on the two subsets of Quickdraw. 3)
Our model is also parameter-size-wise efficient. We only compare the number of parameters on the
Quickdraw dataset because we design the CNN containing similar number of parameters to ours on
MNIST for a fair comparison. W.r.t. Inception-V3 and Graph Transformer, SSR-GNNs only need
34% and 21% of parameters. The results validate that our SSR-GNNSs achieve significantly higher
spatial robustness while maintaining comparably accuracy with a less amount of model parameters.

3.2 ROBUST FEATURE

A robust model has the capability to explore the robust feature ( ;

). We show SSR-GNNs are spatially-robust by directly exploring the robust feature Wlthout
robust training, unlike current studies that mainly analyze the correlation between image pixels
and label on a robust model by adversarial training ( , ). If features have positive
correlation with the label, they are robust features. We follow the setting, with two major differences:
1) we do not need adversarial training since our model presents high spatial robustness shown in
Sec. 3.1. 2) we can explore the robust feature at stroke level. To seek correlation between the stroke-
based representation and the label, we launch adversarial attack on our stroke-based graph.If either
altering the graph geometry or altering graph vertex and edge values can alter the model prediction,
the corresponding alterations are the robust features. We adopt the same classification model (SSR-
GNNs) from Sec. 3.1.
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3.2.1 ALTERING THE GRAPH GEOMETRY

In our experiment, we consider adding/deleting vertices to alter the graph geometry. We conduct
the experiment by adding one stroke so on digit 1 with single stroke s; and targeting the stroke
graph to be categorized as digit 7. Since our representation is spatially invariant, the starting point
of s is fixed and connected to either side of s; and all other trainable n — 1 control points of s, are
initialized with the same value. The procedure to get so follows the setting described in Sec. 2.4.2.
We apply hard constraint on radius and soft constraint on distance, where the x in Eq. 6 is the set of
all two strokes 7.

We visualize in Fig. 3(a) to show how the added stroke evolves. Part of the new stroke evolves
towards being flat at step 100, while the final newly-added stroke becomes flat after more than 1000
steps. Noting that the confidence score of the sample being classified as 7 increases. We conduct the
same experiment on other sample for adding one stroke to 1, targeting 7 in Fig. 3(b) and adding one
stroke to 7, targeting 2 in Fig. 3(c). Here, we show that the newly generated stroke onto our graph
representation is a kind of robust feature.

Step 0 StepO0  Step 100 Step 1000 Last stef Last step
Image 1(0. 9928) 7(0. 9862) 7(0 9907) 7(0. 996) Image

A - B
Image 6(0.9789) 9(0.4573) 0(0.9640) 0(0.9952) Image
@ 6116116110
1(0.9964) 1(0.7139) 7(0.6389) 7(0. 9788

[x4] |
o I L
6(0.9773) 6(0.8451) 0(0.8163) 0(0.9946)
& © YRS
7(0.9999) 7(0.5978) 2(0.8600) 2(0.9655)
© LY

7(0.9995) 7(0.6192) 1(0.9312) 1(0.9911)

2100

Figure 3: Exploring the robust feature by altering graph geometry and modifying the vertices/edges
value. (a)(b)(c) The robust feature by modifying the graph geometry. The first image is the original image.
The last step image is the image after adding one stroke. The middle ones are intermediate steps. (a)(b) from
a single-stroke digit 1 to a two-strokes digit 7. (c) from a single-stroke 7 to a two-strokes 2. In (a)(b), the red
block on the step 0 image indicates the ZOOM in windows. (d)(e)(f) show the robust feature by modifying the
graph value. (c)(d) from a single-stroke 6 to a single-stroke 0. (f) from a single-stroke 7 to a single-stroke 1.

3.2.2 MODIFYING VERTICES AND EDGES VALUE

Other than modifying the graph geometry, we further show that altering vertices/edges value (namely
the stroke’s control points) will affect the classification output as well. Here, we alter the control
point values influencing an image of 6 towards an image as 0. The control points of stroke s are
initialized from one sample image of 6. The process is the same as Sec. 2.4.2. We adopt the hard
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radius constraint and the soft distance constraint following Eq. 6, where x in Eq. 6 is the set of all 0
images with only single stroke.

Fig. 3(d) shows the intermediate and final results. At step O, the image is recognized as 6 with a high
confidence score 0.9789. While altering the control points, at step 1000, it is recognized as digit 9,
with a confidence score 0.4573, while 0.2552 as 0 and 0.2710 as 6. For the final step, the model
recognizes the altered image as 0, with a high confidence score 0.9952. We show experimental
results on other input samples in Fig. 3(e) and (f). By altering the control point values affects the
classification outputs, thus they are the robust features.

3.3 NEW DIGITS GENERATION

Here we design and present a novel experimental setting: generating new categorical patterns vi-
sually distinguishable from existing categories. The underlying rationale is that if our stroke-based
graph representation is with a strong structured expression capability, the underlying space spanned
by it after supervised training on existing categories, could guide a generation process to come up
with new categorical patterns. In practice, we present a generation process following an iterative
manner.

Algorithm 1 The generation of new digits

Imitial: Function: P, F, Fy, Existing sets: Vp, Fp, Rp, starting stroke (parameterized with 10
control points): ¢ and variance o, Hyper-parameters: «, 81, 82, 83, 7;
Output: ¢, ;
while not converged do
T ~N(t,o);
while not converged do
Vr, Er, Ry < P(T) ;
L = —Ellog(F4(F(Vr, Er))) +log(1 — Fo(F(Vp, Ep)))] ;
0+ 0—~2.
end while
while not converged do
Vt, €, Tt < P(t),
T ~t+oN(0,1);
Vr,Er, Ry + P(T) ;
£ = —Ellog Fo(F(Vr, Er)] — AElogp(uilVp)] — B:EllogpledEp)] —
BsE[log p(re|Rp)];
t—1— a%—f;
o+ o—alk
end while
end while

For initialization, we form the first set of new digits 7" ~ N'(¢t,0) = ¢t + o N'(0,1), drawing from a
Gaussian distribution, where the mean ¢ is the starting stroke (parameterized with 10 control points),
and o is the scale of the Normal distribution noise (we set it to 4 here initially). We consider one
stroke case, thus the a graph geometry is fixed. D denotes the set of all existing patterns. Algorithm
1 depicts the iterative procedure, with two alternating steps of optimization.

The first optimization is over a binary classifier Fy, separating the set D (labeled as 0) and set T’
(labeled as 1). For the MPNN network F (defined in Sec. 2.3), we freeze all parameters. The binary
classification objective function is given as:

H}Eien—E[IOg(]:e(]:(VT, Er))) +log(1 — Fo(F(Vp, Ep)))]- 9)

The second optimization is altering the control points of the starting stroke ¢ and its variance o,
targeting label 1 (following Eq. 5). We adopt the soft distance constraint and the radius constraint
given in Sec. 2.4.2. The constraint set x here is the existing set D. The objective function thus
becomes:

snin ~E[log(Fo(F(Vr Er)))] — Ellog p(ur|Vp)] — Bllog pled| Ep)) — Ellogp(ri|Bp)). (10)
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where vy, e,y = P(t),T ~ N(t,0),Vr, Er, Rr = P(T).

In our experiment, we generate a sequence of novel digits with single stroke (hypothetical A-F in a
hexadecimal system) from the existing decimal digits, illustrated in Fig. 4(a). It is worth noting that
the newly generated digits share a similar visual style of the original MNIST hand-written 0-9s, at
the same time visually distinguishable from them. Fig. 4(b) further confirms our claim, as we can
see that on the space formed by the final MPNN network F, all novel digits are separable from each
other, and are distinguishable from the original set. The new digits generation experiment validates
that our SSR-GNNs have a strong structured expression capability.

5%
<y

v
[ )

7

(a) Generated 6 new digits (b) The generated image’s high level distribution

Figure 4: The generation of new sketch images. (a) The new generated digits replacing A-F in hexadecimal
system. (b) Projecting each digit’s distribution to a 2-dimensional space for visualization

4 RELATED WORK

Part-whole visual representation: Recent studies on cognitive science show that the human vision
system (HVS) parse visual input into part representation, which is invariant to spatial transforma-
tion and viewpoints (Hinton, 2021; Sabour et al., 2018; Singh & Hoffman, 2001). In the literature of
Computer Vision and Signal Processing, there are some notable work compositing the part represen-
tation. The structural description models (Biederman, 1987; Hummel & Biederman, 1992; van den
Hengel et al., 2015; Kodratoff et al., 1984) is one such method, which combines the description
of the part components. Particularly for stroke as the part representation, one sketch image can be
parsed into parts and sub-parts as strokes (Lake et al.,, 2015). Both take strokes as the part repre-
sentation, (Lake et al., 2015) adopts a Bayesian program learning framework, which is an iterative
optimization process searching an optimal parse, while our method yields an end-to-end trainable
framework.

Graph Neural network: The graph neural network(GNNs) (Duvenaud et al., 2015; Bruna et al.,
2013) generalizes the neural network on a graph structured input. The vertex information on the
graph is represented by neighborhood aggregation through the graph topology. Message passing
neural networks (MPNNs) (Gilmer et al., 2017; Li et al., 2015) is a sub-category of the GNNs. Its
convolutional operator directly applies on the spatial graph topology. Since our representation is
a stroke-based sketch graph with a flexible number of vertices, we adopt MPNNs as our learning
backbone.

5 CONCLUSION AND FUTURE WORK

We present a novel stroke-based sketch representation with graph neural networks (SSR-GNNSs).
We show that SSR-GNNSs are spatially-robust (through robust classification, and robust feature ex-
ploration experiments on MNIST and QuickDraw) with a strong structured expression capability
(through novel digits generation experiments) and it is a task-agnostic learning framework. The
promising properties of SSR-GNNs paves the way for a series of exciting future research, including
but not limited to 1) a stroke-based representation learning in an unsupervised manner (a SSR auto
encoder); 2) augmenting SSR-GNNs’ generalization capability by forming analogies between the
graph representations. 3) forming representation of a complicated visual pattern using hierarchical
graphs, further improving the structured expression capability.
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