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Abstract
MRI is an essential medical imaging modality, yet long acquisition times and organ-specific
reconstruction methods often hinder clinical efficiency. In this paper, we propose training
a unified deep learning framework (UNIFORM) for reconstructing undersampled multi-coil
MRI data across diverse anatomical sites and multiple contrasts. Leveraging a state-of-the-
art MRI reconstruction algorithm (vSHARP), UNIFORM was trained on diverse multi-coil
k-space datasets, including knee, brain, prostate, and cardiac MRI. Evaluated across mul-
tiple acceleration factors (2×, 4×, 6×, 8×), it demonstrated robust performance in terms of
quantitative evaluation. Additionally, UNIFORM supports zero-shot self-supervised learn-
ing (SSL), enabling effective reconstruction of unseen organs. Zero-shot SSL experiments
were conducted on prospectively undersampled breast MRI acquisitions at high acceleration
factors (10×, 17×), demonstrating improved anatomical detail and reduced noise compared
to conventional zero-filling approaches. UNIFORM offers a promising avenue for clinically
robust, accelerated multi-organ and multimodal MRI workflows.
Keywords: Accelerated MRI Reconstruction, Deep Learning, Multimodal MRI, Zero-shot
Self-supervised Learning

1. Introduction

MRI’s exceptional soft-tissue contrast and non-invasive nature have solidified its role in
modern diagnostics, but its slow acquisition process often results in long scan times, patient
discomfort, and motion-induced artifacts (Lustig et al., 2008; Zaitsev et al., 2015). While
accelerated MRI techniques based on undersampling have been introduced (Pruessmann
et al., 1999), traditional model-based methods like compressed sensing and parallel imaging
depend on handcrafted priors and are computationally demanding (Lustig et al., 2008;
Uecker et al., 2013; Griswold et al., 2002). In contrast, deep learning (DL) techniques have
emerged as powerful alternatives, delivering rapid inference and high-fidelity reconstructions
(Hammernik et al., 2018; Sriram et al., 2020; Yiasemis et al., 2022). Yet, these methods
are typically tailored to specific organs, contrasts, or sampling schemes and accelerations,
thereby restricting their scalability and clinical generalization (Huang et al., 2022). To
address these challenges, we propose UNIFORM—a unified framework that leverages a
single DL model to reconstruct undersampled MRI data across diverse organs and contrasts.
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Figure 1: The UNIFORM training and inference pipeline.

2. Methods

2.1. The UNIFORM Framework

UNIFORM is designed to integrate data from multiple anatomical regions and imaging
contrasts into one comprehensive training paradigm. Let {Dj}J

j=1, denote the collection
of training datasets, each representing a different imaging condition. The optimization
objective is expressed as:

θ∗ = argmin
θ

J∑
j=1

Nj∑
i=1

L(fθ(x̃j
i ), xj

i ), (1)

where xj
i is the fully-sampled ground truth, x̃j

i the undersampled input, and fθ the parametrized
reconstruction model. This formulation ensures that during inference, the model generalizes
across diverse distributions. The UNIFORM training and inference pipeline is depicted in
Fig. 1. For our experiments, we adopt the 2D variant of the vSHARP algorithm (Yiasemis
et al., 2025)—a physics-driven method that fuses variable splitting with iterative ADMM
optimization—to efficiently reconstruct multi-coil k-space data, with state-of-the-art per-
formance (Lyu et al., 2025; Wang et al., 2025).

Undersampling During training, we retrospectively apply undersampling to fully-sampled
k-space data. The acceleration factor is randomly selected from {2×, 4×, 6×, 8×}, and the
undersampling scheme is also chosen randomly to improve generalization. At test time, we
evaluate reconstructions at all acceleration factors using fixed undersampling patterns.

Datasets The datasets we employed (Tab. 1) consist of multi-coil k-space data from
various sources, spanning different anatomical regions and imaging contrasts.

2.2. Zero-Shot Self-Supervised Learning on Unseen Data

In scenarios where fully sampled data is impractical, we assess UNIFORM’s zero-shot (ZS)
generalization on unseen datasets. We employ self-supervised test-time adaptation (Yaman
et al., 2023; Yiasemis et al., 2024) using prospectively undersampled data from organs or
modalities absent during training. The UNIFORM model is adapted solely with the un-
dersampled data by optimizing a loss function based on the available measurements, elimi-
nating the need for ground truth. In our experiments, we applied ZS-SSL to prospectively
undersampled in-house breast T1w data at high acceleration factors (10× and 17×).
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Dataset Contrasts Train (#) Validation (#) Test (#)
fastMRI Knee (Zbontar et al., 2019) PD with & without fat suppression 973 100 99
fastMRI Brain (Zbontar et al., 2019) T1w, T2w, FLAIR 4284 1577 557

fastMRI Prostate (Tibrewala et al., 2023) T2w 218 48 46
CMRxRecon Cardiac (Lyu et al., 2025) Cine, T1w, T2w 203 229 373

Table 1: Overview of the training datasets used in UNIFORM.

2.3. Training Details

We trained the vSHARP model with default parameters (Yiasemis et al., 2025) over 420k
iterations (until validation metrics converged) on two NVIDIA A100 GPUs. The Adam
optimizer was employed with default settings, and random augmentations (cropping, flips,
rotations) were applied to improve generalizability.

Figure 2: Quantitative performance of UNIFORM on test datasets.

3. Results

Reconstruction fidelity was evaluated using SSIM. As shown in Fig. 2, UNIFORM main-
tained high image quality across different anatomical regions and acceleration factors. Fur-
thermore, the ZS-SSL experiments (Fig. 3) demonstrated that UNIFORM produced re-
constructions with superior anatomical detail and reduced noise compared to conventional
zero-filling methods.

Figure 3: ZS-SSL evaluation on prospectively undersampled breast MRI. Left: Undersam-
pled k-space & images. Right: UNIFORM reconstructions. Top: 10×. Bottom: 17×.

4. Discussion and Conclusion

UNIFORM eliminates the need for organ-specific models by integrating diverse datasets
across various organs, contrasts, and acceleration schemes. The zero-shot SSL results fur-
ther demonstrate the potential of self-supervised learning to adapt UNIFORM to new imag-
ing domains without additional supervised training, effectively leveraging information from
datasets used during training. Future work should explore explicitly conditioning the model
on input data characteristics, incorporating a wider range of training data, and refining
zero-shot self-supervised learning strategies to enhance domain adaptation.
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