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Abstract

Deploying large language models (LLMs) of-001
ten encounters challenges due to intensive002
computational and memory requirements. Our003
research delves into lexical shortlisting, aim-004
ing to bolster efficiency and deployment readi-005
ness. While lexical shortlisting has been006
shown effective in tasks like machine trans-007
lation, tailoring them to LLMs demands spe-008
cific modifications given the diverse nature009
of their applications. We study two heuris-010
tics to shortlist sub-vocabulary at LLM infer-011
ence time: Unicode-based script filtering and012
corpus-based selection. The work explores013
different LLM families and sizes. It is ob-014
served that lexical shortlisting can reduce the015
memory usage of some models by nearly 50%016
and has an upper bound of 25% improvement017
in generation speed. This preliminary study018
delineates the strengths of vocabulary selec-019
tion, acknowledges the limitations of these020
methods, and finally proposes future avenues021
for refining.022

1 Introduction023

Large language models are gaining increasing at-024

tention given their strong performance in vari-025

ous natural language tasks (Radford et al., 2019;026

Brown et al., 2020; Kaplan et al., 2020; Ouyang027

et al., 2022). Most LLMs are Transformer-based028

(Vaswani et al., 2017; Scao et al., 2022; Touvron029

et al., 2023), which entail a costly matrix multi-030

plication D × |V | in the output layer, where D is031

the output layer hidden size and |V | denotes the032

size of a vocabulary V . This expensive operation033

leads to increased inference cost of both memory034

and speed given the autoregressive nature of LLM035

decoding. Given their substantial size, this latency036

in inference significantly escalates the expense of037

LLM deployment.038

In practical scenarios, choosing a sub-039

vocabulary V ′ with |V ′| ≪ |V |, and only loading040

the corresponding sub-embedding matrix for041

inference seems favourable since the majority 042

of the logits from the output layer do not affect 043

the hypothesis token(s) at each time step. This 044

has been actively explored in machine translation 045

(Schwenk et al., 2007; Le et al., 2012; Devlin 046

et al., 2014; Bogoychev et al., 2022). It can result 047

in a 10-to-30-fold reduction in vocabulary size, 048

massively speeding up the decoding process. 049

For translation, vocabulary selection involves 050

pre-computing word-level alignments and making 051

potential translated words a sub-vocabulary. On 052

the other hand, shortlisting in LLMs poses a fun- 053

damental challenge: often LLM outputs are vari- 054

able and open-ended, complicating the straightfor- 055

ward determination of the required lexicons. 056

This pilot study adapts lexical shortlisting to 057

LLMs. We propose and experiment with two 058

strategies: script-based token filtering where vo- 059

cabulary items are removed if they do not be- 060

long to the output language, and corpus-based pre- 061

selection where we keep items based on vocabu- 062

lary hits from a large representative corpus. Our 063

contributions can be summarized as follows: 064

• We propose two selection methods: writing 065

script-based and corpus-based. 066

• We experiment with various LLM families 067

and sizes (LLaMA and BLOOM) and report 068

varying behaviours. 069

• We measure speed-ups for different hardware 070

and the upper bound of memory reduction. 071

• We discuss the strengths and limitations of 072

applying these two methods in the wild. 073

2 Vocabulary Shortlisting 074

Large language models, especially multilingual 075

ones, hold vocabulary items for many languages 076

and scripts, which are rarely required simultane- 077

ously in a single generation pass. We remove un- 078
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necessary vocabulary tokens according to the lan-079

guage of the query. We describe two ways to pre-080

pare sub-vocabulary for LLMs, both focusing on081

retaining tokens relevant only to the language be-082

ing generated. We test on the fly in a batched set-083

ting: we determine a sub-vocabulary for an entire084

batch because creating the sub-vocabulary sepa-085

rately for each input is too expensive. Further-086

more, we also always include all tokens appearing087

in the inputs.088

Script-based selection We propose to only keep089

the tokens which match the writing script of a de-090

sired language. This can be done by filtering to-091

ken strings based on the Unicode range. It should092

be especially effective for languages operating on093

unique scripts, such as Armenian, Chinese, Ko-094

rean, etc, since it allows for concise vocabulary095

restriction. This method might be less effective if096

the writing system is used in many languages, e.g.097

Cyrillic or Latin alphabets. It would be infeasi-098

ble to limit the sub-vocabulary to the lexicons that099

solely belong to a specific language, resulting in a100

relatively large vocabulary. Moreover, this method101

would strictly rule out code-mixed tokens, emojis,102

etc which are used in real-world communications.103

Corpus-based selection A more comprehensive104

way is to tokenize a representative corpus in the105

desired language in advance and use the vocab-106

ulary entries that have been recorded to build a107

sub-vocabulary. This method is non-exhaustive108

because we could miss rare but valid tokens, or109

suffer from domain mismatch between the vocab-110

ulary selection corpus and the inference prompts.111

3 Experimental Setup112

3.1 Languages113

We experimented on four languages: Bulgarian,114

Chinese, English, and Spanish, to offer distinct115

conditions that cover most use cases. English and116

Spanish use the same script and would have a high117

overlap in vocabulary after tokenization. Since we118

test on English-centric models, we examine how119

good of a sub-vocabulary we can find when it is120

not possible to shortlist merely based on the script.121

Bulgarian is a low-resource language written in122

the Cyrillic script. Most multilingual language123

models have lower amounts of Cyrillic tokens, so124

we expect that script-based filtering will leave a125

small sub-vocabulary; however, since Cyrillic is126

used by a number of languages, we will inevitably127

end up with vocabulary items that do not belong to 128

the Bulgarian. Finally, Chinese is a high-resource 129

language with a unique script; Unicode filtering 130

would be the most effective in this case. 131

3.2 Large language models 132

We experiment with instruction-tuned LLMs 133

based on BLOOM at various sizes (Scao et al., 134

2022) as well as LLaMA-7B (Touvron et al., 135

2023). We adopt Chen et al. (2023)’s models 136

fine-tuned on machine translations of the Alpaca 137

dataset (Taori et al., 2023) to test for open domain 138

question answering, which maximizes the diffi- 139

culty for shortlisting as explained earlier. 140

BLOOM is a multilingual LLM that explicitly 141

supports English, Spanish and Chinese, but not 142

Bulgarian. Consequently, it has a sizeable vocabu- 143

lary of 250K and is therefore a prime candidate to 144

reduce vocabulary for a specific language during 145

inference. We experiment with the 560M, 1B7, 146

and 7B1 checkpoints, with diminishing computa- 147

tional burden on the embedding and output layers. 148

LLaMA is an English-centric LLM with a small 149

32K vocabulary. In this case, we might have 150

reduced benefit from vocabulary shortlisting, be- 151

cause a proportionally lower amount of computa- 152

tion occurs in the output layer. On the other hand, 153

since the LLM is English-focus, we expect drastic 154

vocabulary reductions compared to BLOOM for 155

Bulgarian and Chinese. 156

3.3 Evaluation 157

We test on 50 prompt questions from OpenAssis- 158

tant (Köpf et al., 2023); we human-translate these 159

into all testing languages. We decode them with 160

beam size 1. The time taken to decode the entire 161

test set is measured end-to-end, including model 162

loading, and embedding slicing. As a quality indi- 163

cator, we count the number of times a model fails 164

to produce the exact same output with a full vocab- 165

ulary and with a shortlisted vocabulary, given the 166

same input. We refer to this as miss, which ideally 167

should be zero suggesting no quality impact. 168

3.4 Shortlisting details 169

For vocabulary selection, we tokenize the test in- 170

puts and always include the tokens in the sub- 171

vocabulary. We then apply either of the pro- 172

posed selection methods. Script-based selection 173

checks whether a token falls in a specific Uni- 174

code subset: Cyrillic for Bulgarian, ASCII for En- 175

glish, Latin Extended-A for Spanish, and Chinese 176
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Language |V | BLOOM-560M BLOOM-1B7 BLOOM-7B1

time miss time miss time miss

bg full 250680 05:26 – 15:18 – 65:01 –
Unicode 22912 04:39 1 13:44 4 51:46 10
corpus 58642 04:49 0 09:34 1 60:28 3
oracle 1408 04:22 0 12:31 0 61:06 0

en full 250680 07:37 – 16:35 – 55:08 –
Unicode 186752 07:40 1 16:05 0 58:18 0
corpus 113024 07:00 1 15:08 3 54:20 2
oracle 4736 06:14 0 13:06 0 48:46 0

es full 250680 05:58 – 12:26 – 63.15 –
Unicode 187008 05:48 0 12:01 0 59:15 0
corpus 112128 05:37 0 11:34 4 57:41 4
oracle 4736 04:53 0 09:26 0 51:43 0

zh full 250680 06:29 – 15:27 – 55:09 –
Unicode 51584 05:54 16 13:09 21 50:50 22
corpus 104320 06:08 11 14:08 16 46:39 17
oracle 4096 05:16 0 12:07 0 50:50 0

Table 1: CPU shortlisting results for BLOOM.

characters for Chinese. For corpus-based selec-177

tion, we utilize a subset of the WikiMatrix corpus178

(Schwenk et al., 2021) which contains Wikipedia179

texts for each language. For both selection meth-180

ods, we keep the first 300 vocabulary entries too,181

as those usually correspond to special tokens, Uni-182

code bytes (for byte-level BPE), numbers, etc.183

We pre-compute the vocabulary subset offline184

and we do not record the time spent on pre-185

tokenizing a large corpus or extracting a Uni-186

code subset in the measurements, as these can187

be reused for every batch during inference once188

done. Script-based filtering takes under 60 sec-189

onds and corpus-based selection takes up to 10190

minutes. Adding the inputs’ tokens to the exist-191

ing pre-selected sub-vocabulary is extremely fast.192

3.5 Upper bound performance193

We conduct an oracle vocabulary selection experi-194

ment to find the theoretical upper bound for speed195

and memory improvements: we run inference us-196

ing full vocabulary and we select the used vocab-197

ulary items for the oracle sub-vocabulary.198

3.6 Hardware199

We perform our experiments both on CPU and200

GPU devices. For the CPU tests we use Xeon201

Gold 6248 (40 Cores, 80 Threads), and for GPU202

tests we use an RTX 3090. Inference on CPU is203

performed in float32 precision, whereas on GPU204

it is in int8 following Dettmers et al. (2022).205

Language |V | LLaMA-7B

time miss

bg full 32000 117:15 –
Unicode 4736 125:55 19
corpus 26496 132:24 5
oracle 2048 123:06 0

en full 32000 113:52 –
Unicode 27520 125:57 6
corpus 30720 111:30 19
oracle 4480 119:32 0

es full 32000 131:03 –
Unicode 27648 128:00 8
corpus 30336 129:26 2
oracle 3456 123:25 0

zh full 32000 130:42 –
Unicode 2688 114:39 13
corpus 28160 119:58 2
oracle 1536 126:16 0

Table 2: CPU shortlisting results for LLaMA-7B.

4 CPU Results and Discussions 206

We present CPU results on the BLOOM family 207

in Table 1 and the results on LLaMA-7B in Ta- 208

ble 2. We observe around 20% improvements 209

with the smaller BLOOM-560M and BLOOM- 210

1B7, but only 5-10% in the 7B models. As the 211

models grow in size, the oracle upper bound gain 212

decreases, due to the proportion of the embed- 213

ding and output matrices becomes smaller in a 214

larger model. By comparing BLOOM-7B1 with 215

LLaMA-7B, we also find that the larger the base 216

vocabulary, the more effective shortlisting is. We 217

note that the oracle vocabulary is more than an or- 218

der of magnitude smaller than the other shortlist- 219

ing approaches, but in practice, it would be diffi- 220

cult to reduce the vocabulary size by as much. 221

Speed numbers of LLaMA-7B on CPU are rel- 222

atively inconsistent and had wide variance across 223

test runs. We attribute this to the small vocab- 224

ulary size and thus less computational footprint 225

in the output layer affected by shortlisting. Also, 226

there could be various scheduling issues and non- 227

deterministic cache accesses as GEMM operations 228

are split across the 40 cores of the CPU we used. 229

4.1 Script-based shortlisting 230

When applying script-based shortlisting, we ob- 231

serve different trends in English and Spanish com- 232

pared to Bulgarian and Chinese. For BLOOM, 233

the sub-vocabulary size for Bulgarian and Chinese 234

can be reduced to only 10-20%, whereas for En- 235

glish and Spanish, it has about 60% of the origi- 236
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nal size. This is potentially because BLOOM al-237

located more vocabulary items for European lan-238

guages which are the dominant ones when the to-239

kenizer is trained. Generally, the inference time240

reduces to between using the full vocabulary and241

the oracle shortlisting. In terms of misses, the242

model can maintain almost the same outputs with243

and without shortlisting for English and Spanish.244

However, there are 10-20% misses for Bulgarian245

and 30-40% for Chinese.246

LLaMA-7B results are less favourable: script-247

based shortlisting does not significantly reduce the248

vocabulary size for English and Spanish, and all249

languages suffer from relatively high misses be-250

tween 10-40%. Specifically for Bulgarian and251

Chinese, we argue that Unicode filtering could252

be too harsh as sometimes English characters253

are code-mixed in the language and cannot be254

avoided, e.g., when generating a website link.255

Therefore, we conclude that shortlisting based on256

the writing script can improve inference efficiency257

without degrading performance for a multilingual258

LLM to generate Latin languages, but it is less fea-259

sible for non-Latin languages or English-centric260

LLMs with a smaller vocabulary.261

4.2 Corpus-based shortlisting262

Corpus-based shortlisting leaves a much larger vo-263

cabulary for Bulgarian and Chinese, but reduces264

the vocabulary to half or less for English and Span-265

ish. This method achieves a more balanced short-266

listing effect for each language potentially because267

of the inclusion of many tokens outside of the268

output language’s writing system. However, for269

LLaMA-7B which has a small vocabulary in the270

first place, this approach keeps the majority of the271

entries for all languages and is thus not useful.272

Corpus-based shortlisting also ameliorates the273

quality problem to some extent, although the Chi-274

nese models still struggle to produce identical out-275

put as the full vocabulary models. Overall, we see276

a small but consistent reduction in runtime with277

BLOOM too for this shortlisting approach, indi-278

cating its practicality at least for English.279

4.3 Memory280

Lexical shortlisting leads to ample memory foot-281

print reduction, especially for smaller models like282

BLOOM-560M, where the model size is domi-283

nated by the vocabulary (nearly 50% of all model284

parameters). In practice, these models are small285

enough to fit in modern GPUs and CPUs, so the286

reduced memory is not game-changing. On the 287

other hand, when looking at bigger models like 288

BLOOM-7B1 or LLaMA-7B, vocabulary makes 289

up just a tiny portion of the overall number of pa- 290

rameters and thus the relative reduction in model 291

size is modest and could not enable the use of 292

smaller GPUs. We can use this as a proxy judge- 293

ment about the computational distribution of the 294

model: The larger the model, the less time is spent 295

in the output layer, and thus the smaller the im- 296

pact of shortlisting is. Exact memory numbers are 297

available in the appendix. 298

5 GPU results 299

In addition to CPU tests, we performed the same 300

BLOOM experiments on GPU and we observed 301

that all three selection criteria including the or- 302

acle do not lead to improved inference speed. 303

Small performance differences might amount to 304

little more than noise, when the overhead of model 305

slicing is considered. We hypothesize that GPUs 306

are designed for multiplying large matrices, so re- 307

ducing the matrix size, even to the extremity of 308

an oracle sub-vocabulary, is not able to offer any 309

speedup. This is consistent with Bogoychev et al. 310

(2020)’s findings in applying shortlists to neural 311

machine translation on GPUs. Exact GPU perfor- 312

mance numbers available in the appendix. 313

6 Related Work 314

Gee et al. (2022) switched the vocabulary of a pre- 315

trained language model to a smaller one that im- 316

proves inference speed, but it requires fine tuning. 317

The most similar to our work are vocabulary 318

trimming by Abdaoui et al. (2020) and Ushio et al. 319

(2023). They slice the vocabulary of a model 320

based on language criteria. Their work focuses on 321

reducing the model size with no speed considera- 322

tions. Furthermore, they only target models with 323

very large vocabularies. 324

7 Conclusion 325

We presented a study of using lexical shortlisting 326

to speed up inference with large language models. 327

While we can achieve speed improvements, it does 328

not guarantee that the output is not altered com- 329

pared to full vocabulary generation. With the mod- 330

els tested, we see the feasibility of our proposed 331

approaches for English and Spanish, but there are 332

shortcomings when considering languages written 333

in non-Latin script. 334
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8 Limitations335

We used (mis)matches to indicate the quality of336

generation when applying shortlisting. However,337

this is a strict metric that penalizes a different out-338

put regardless of its length or the number of in-339

correct tokens. Since the inference time of an au-340

toregressive LLM can be affected by the number341

of tokens generated for each input, it is reason-342

able to include metrics like BLEU and ROUGE to343

take the generation length or recall into account.344

Furthermore, the shortlisted vocabulary, inference345

time, and mismatch are entangled and we are not346

aware of an ideal evaluation setup.347

9 Risks348

This work is aimed solely at reducing the compu-349

tational resources necessary for running large lan-350

guage models, thus we see no risks associated with351

it.352
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A Memory479

Detailed memory footprints shown on 3.480

B GPU Performance481

Exact GPU performance numbers on Table 4482

Language BLOOM LLaMA

|V | 560M 1B7 7B1 |V | 7B

Full model 250680 2.10 6.10 27.10 32000 27.10

Embedding matrix or output layer
full vocab 250680 0.90 1.90 3.80 32000 0.50

bg Unicode 22912 0.09 0.18 0.36 4736 0.07
bg corpus 58642 0.22 0.45 0.90 26496 0.41
en Unicode 186752 0.70 1.40 2.80 27520 0.43
en corpus 113024 0.44 0.88 1.70 30720 0.48
es Unicode 187008 0.70 1.40 2.80 27648 0.43
es corpus 112128 0.43 0.86 1.70 30336 0.47
zh Unicode 51584 0.20 0.40 0.80 2688 0.04
zh corpus 104320 0.40 0.80 1.60 28160 0.44

Table 3: Theoretical memory footprint (in GB) for
BLOOM and LLaMA with float32 featuring the em-
bedding matrix.

Language |V | BLOOM-560M BLOOM-1B7 BLOOM-7B1

time miss time miss time miss

bg full 250680 05:22 – 08:29 – 14:43 –
Unicode 22912 05:23 0 08:45 6 14:35 17
corpus 58642 05:22 0 08:38 1 14:33 10
oracle 1408 05:21 0 09:06 0 14:33 0

en full 250680 06:50 – 09:02 – 11:54 –
Unicode 186752 06:54 0 08:52 0 11:46 0
corpus 113024 06:38 2 08:56 3 11:59 3
oracle 4736 06:43 0 09:00 0 11:52 0

es full 250680 06:17 – 07:05 – 12:35 –
Unicode 187008 06:13 0 07:03 0 12:17 0
corpus 112128 06:15 1 7:10 3 12:30 3
oracle 4736 06:26 0 07:23 0 12:17 0

zh full 250680 05:37 – 08:47 – 11:58 –
Unicode 51584 06:10 15 08:34 20 11:22 29
corpus 104320 06:03 11 09:01 16 11:35 13
oracle 4096 05:35 0 08:42 0 11:46 0

Table 4: GPU shortlisting results for BLOOM.
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