
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LINEAR RECURRENT NEURAL NETWORKS WITH A
FEATURE-SEQUENCE TWIST

Anonymous authors
Paper under double-blind review

ABSTRACT

The transformer network architecture has led to advances in artificial intelligence.
Conversational AI applications, such as ChatGPT, and protein folding predic-
tions with AlphaFold are made possible by transformer architectures and the self-
attention mechanism. However, advancing towards more general, flexible, and
energy-efficient artificial intelligence may require exploring new architectures that
differ significantly from those currently used. Transformer networks have largely
replaced recurrent neural networks (RNNs) for state-of-the-art performance on
sequence-based tasks. However, in recent years there has been some successful
competition from linear recurrent neural networks (LRNNs) and state space mod-
els (SSMs). A core advantage of LRNNs and SSMs over traditional RNNs is that
the hidden states can be calculated in parallel. Therefore, like the transformer,
they can make efficient use of GPU computation. Unlike the transformer, compu-
tational costs of parallelized LRNNs and SSMs can scale sub-quadratically with
sequence length. Despite these advantages, LRNNs and SSMs often struggle to
generate the deep and rich representations that have contributed to the success
of transformer architectures. We introduce Feature-Sequence Twisting (FST),
a novel technique that transposes the sequence and feature dimensions between
LRNN blocks. The purpose of FST is to generate deeper representations of the
sequence in subsequent LRNN blocks. Since the computational cost of LRNNs
scale sub-quadratically with sequence length, FST remains practical to compute
even for large feature dimensions. Our experiments demonstrate that the FST
architecture outperforms transformer networks on tasks such as Long ListOps,
achieving performance competitive with state-of-the-art models.

1 INTRODUCTION

Advancements in artificial intelligence may require exploring architectures that differ significantly
from those currently used. However, the search for novel architectures is challenging due to the vast
range of network architectures that could be explored. Biological neural networks comprising the
human brain and nervous systems of other complex species are capable of cognitive flexibility, rapid
learning ability, and high energy efficiency. We can use known biological structures as a guide to
navigate the possibilities for artificial neural networks, as argued in Hassabis et al. (2017).

Recurrent neural networks (RNNs) are an important class of artificial neural networks inspired by
the recurrent connectivity observed in biological neural systems, such as those in the mammalian
neocortex. This recurrence, and the neural dynamics which arise from it, are central to diverse
computations and functions in the brain, including short-term memory, attention, and response nor-
malization. RNNs are thus important tools for modeling neural circuit functions in computational
neuroscience studies, and have many applications in AI, particularly for solving tasks that require
integrating or comparing information across time. The basic RNN works by updating the activity of
a hidden state ht at time-step t with the equation

ht = f(Wrnnht−1 +Winxt + b),

where f is the activation function, Wrnn is the recurrent matrix, Win is the input matrix, xt is the
input at time-step t and b is the bias. These networks are designed for handling sequential inputs
x0,1,2,...,T . The activation function in RNNs can be loosely compared to the nonlinear response

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of biological neurons to synaptic inputs, with hidden state activities representing the firing rates of
neurons or neural populations. Early examples of recurrent networks include Hopfield networks
introduced in Hopfield (1982), which were used to model associative memory. Later, the ability of
artificial RNNs to perform well at sequence-based tasks expanded further with the introduction of
more advanced architectures using multiple hidden states, such as long short-term memory networks
(LSTMs) introduced in Hochreiter & Schmidhuber (1996).

Introduced in the paper ‘Attention is All You Need’, Vaswani et al. (2017), the transformer network
has revolutionized AI for sequence based tasks. Transformer architectures are the underlying net-
works behind products like ChatGPT, AlphaFold, and more effective versions of Google Translate.
The key innovation in this architecture is the ”self attention” (SA) mechanism. This works by cal-
culating ’attention weights’ which transmit information about how elements of a sequence relate to
one another. It is clear that the transformer is not directly analogous to biological neural networks;
notably, the transformer network does not involve recurrence, which is thought to be crucial to the
way the brain processes sequential information.

Contrary to the argument that we need new architectures inspired by biological neural networks,
much progress has been made by simply scaling up the size of transformer networks and the data
used to train them. Much of the transformer’s success comes from the computational efficiency
of its large matrix multiplication operations, which are well-suited for GPU-based training. The
transformer is also good at providing deep representations of sequences by capturing long-range
dependencies. However, transformers do have some important limitations. One such limitation is
that the SA mechanism does not inherently capture sequence order and requires positional encoding
to provide positional information for each element. When using RNNs, we naturally preserve infor-
mation about sequence order in the dynamics of recurrent network activity. The parallel structure of
the transformer is also a double-edged sword, as the operations scale with the square of the sequence
length. We aim to construct RNNs that offer the same parallel GPU training efficiency, provide deep
representations of sequences, and scale sub-quadratically with sequence length. By doing so, we
hope to maintain the advantages of transformers without some of their limitations.

We will describe some of the advantages of using a linear recurrent neural network (LRNN). These
networks are simple and well-studied, but they have several unique properties that make them highly
relevant for comparison with transformers. By leveraging LRNNs as building blocks and applying
several computational and structural tricks, we demonstrate how this network type can outperform
transformer networks.

Traditionally, when using RNNs, the representation of the sequence dimension is not changed by
treating it as a set of features. What sets this work apart from other approaches is that we aim for
subsequent layers of the network to contain deeper representations of the sequence dimension. We
introduce a novel Feature-Sequence Twisting (FST) layer. In this layer, we transpose the sequence
and feature dimensions between LRNN blocks. We find that networks using the FST blocks can
perform well on the WikiText-103 language task and the Long ListOps task, designed to test a
model’s ability to handle long-range dependencies.

2 NETWORK STRUCTURE

2.1 LINEAR RECURRENT NEURAL NETWORKS

As before, we can describe a simple RNN by

ht = f(Wrnnht−1 +Winxt + b).

If we use a linear activation function and set the bias to zero we get

ht = Wrnnht−1 +Winxt.

If we substitute ht−1 for the activity at t− 2 we get

ht = W 2
rnnht−2 +WrnnWinxt−1 +Winxt.

By continuing this recursively until we get to the initial activity h0 we get the relationship

ht = W t
rnnh0 +

t−1∑
i=0

W i
rnnWinxt−i.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We can use this equation to take a series of inputs x0,1,2... and calculate the set of activities h1,2,3...

in parallel, without the need to compute intermediate states. This property has been long known, but
it is one of the reasons that linear RNNs have been gaining more attention recently in studies such
as Orvieto et al. (2023).

The parallel calculation is made much simpler and equally expressive if Wrnn is diagonalized such
that

W t
rnn = CΛtC−1 = Cdiag(λ1, λ2, λ3...)

tC−1,

where C and Λ are complex. We can then write

ht = CΛt
rnnC

−1h0 +

t−1∑
i=0

CΛi
rnnC

−1Winxt−i,

which can be written as,

C−1ht = Λt
rnnC

−1h0 +

t−1∑
i=0

Λi
rnnC

−1Winxt−i.

To simplify this even more, we can subsume C−1 into h̄t = C−1ht and W̄in = C−1Win, making
the activity and input weights complex. We do not calculate C−1 directly; instead we treat W̄in and
h̄0 as complex and trainable parameters. The equation is no longer equivalent to a real-valued RNN,
but it is more general, and we can choose to consider only the real part of the resulting activities.
The final equation is

h̄t = Λt
rnnh̄0 +

t−1∑
i=0

Λi
rnnW̄inxt−i,

where h̄, Λrnn and W̄in are all complex.

If the modulus eigenvalues of Λrnn are above one, the associated activity rapidly increases, and if
they are below one the activity will rapidly decrease. For stability, the modulus eigenvalues must
remain close to unity. In order to enforce the condition that |λi| does not go above one and remains
close to one, each complex component of the network can be constructed such that

λi = exp(−exp(αi) + iexp(θi)).

This is the stable exponential parameterization method, as described in Orvieto et al. (2023). The
trainable parameters for the network are the set of αi and θi variables. The output sequence is given
by the real part of the hidden states. The network can then be trained efficiently in the parallel form
on a GPU using back-propagation. By constructing our network in this parallel form, along with
careful parameterization and initialization, we can alleviate the vanishing and exploding gradient
problem first noted in Bengio et al. (1994). Ordinarily, the lack of vanishing and exploding gradients
is one of the main advantages that transformers have over RNNs.

Now that we have constructed the parallelized LRNN, we can chain them together in blocks and ap-
ply multi-layer perceptrons (MLPs) with non-linear activation functions between the blocks. Since
we have lost some complexity in the network dynamics of the RNN by choosing a linear activation
function, the hope is that by chaining together the LRNN blocks in this manner, we can recover some
of the fitting ability of non-linear RNNs. This aspect of the architecture is also described in Orvieto
et al. (2023).

2.2 FEATURE SEQUENCE TWISTING

We introduce the novel Feature Sequence Twisting (FST) technique to the block LRNN architecture.
This is done by transposing the feature and sequence dimensions between each LRNN block. Ordi-
narily, with an RNN we ask, ”How do the elements of a sequence relate given a set of features?” The
RNN produces a new representation of the features based on these relationships. When we transpose
the feature and sequence dimensions we now ask, ”how do the features of a sequence relate given
the elements of the sequence?”. A new representation of the sequence is then generated based on
the relationship between the features. As a loose biological analogy, FST could be thought of as
a way of processing a sequence held in long-term memory. By chaining the blocks together and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

applying FST the goal is to produce deeper-and-deeper representations of the sequence as well as
the features. We present a diagram of the FST architecture in Figure 1. Each FST module contains
two LRNNs and two MLPs. The ’hidden feature size‘ is a hyperparameter of the model and is equal
to the hidden state of LRNN 1 and the hidden layers of MLP 1. The second, transposed LRNN 2 and
MLP 2 have a hidden state and hidden layers equal to the original sequence length. The coefficients
α1 and α2 are defined as α1 = σ(p1) and α2 = σ(p2), where p1 and p2 are trainable parameters
initialized at zero, and σ represents the sigmoid function.

While investigating prior work, we find that the idea behind FST shares some similarities to the
”MLP-mixer” architecture from Tolstikhin et al. (2021), which similarly used reshapes and transpo-
sitions of the ”patches” and ”channel” dimensions for computer vision tasks. However, this work
relied solely on MLPs rather than blocks of RNNs.

One could apply a similar technique to blocks of transformer networks, transposing the feature and
sequence dimensions between blocks. However, because computational costs scale quadratically
with sequence length in the self-attention mechanism, this approach would also cause the model to
scale quadratically with the hidden feature size. Using LRNNs, we avoid this problem by utilizing
an algorithm for parallel computation that scales sub-quadratically.

Figure 1: Diagram showing an FST layer with two LRNNs. The multilayer perceptrons (MLPs)
use a single hidden layer with a ReLU activation function. The coefficients α1 and α2, which are
bounded between 0 and 1, control the proportion of the new representation contributed by the LRNN
and MLPs versus the skip connection. Feature-sequence twisting is a reference to the two transpose
operations where initial dimensions 1 and 2 refer to the sequence and feature dimensions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To compute the LRNN in parallel, we used an algorithm presented in Algorithm 1, which was intro-
duced in Yue et al. (2024). This was found to be much more memory efficient than pre-computing
all of the powers of the recurrent matrix. This algorithm requires a loop over log2 L, where L is the
sequence length.

Algorithm 1 Algorithm for computing LRNNs, taken from Yue et al. (2024). Here, Win is the input
matrix, Λ is the diagonal recurrent weight matrix, and x is the input vector.

Input: x,Win,Λ
1. sequence padding
Llog2 = int(⌈log2(shape(x)[1])⌉)
x = F.pad(x, (0, 0, 2Llog2−shape(x)[1], 0, 0, 0))
N,L,D = shape(x)
2. recursive split
h = torch.matmul(x,Win)
for i = 1 to Llog2 + 1 do

l = 2i

h = reshape(N × L/l, l,D)
3. parallel forward pass
h1, h2 = h[:, : l//2], h[:, l//2 :]
if i > 1 then
Λ = torch.cat((Λ,Λ× Λ[−1]), 0)

end if
h2 = h2 + Λ× h1[:,−1 :]
h = torch.cat([h1, h2], 1)

end for
Return: h

3 RESULTS

3.1 LONG LISTOPS TASK

The benchmark task ListOps was introduced by Nangia & Bowman (2018) to evaluate performance
of models on sequence-based tasks. It was expanded in the Long Range Arena from Tay et al. (2020)
to assess how effective transformers were at computation across a long context length. We present
the results of the FST architecture on the Long ListOps task in Table 1. We find that FST with an
accuracy of 63.11% outperforms most models, including large transformer models. The exception
is the MEGA model, which achieved a slightly greater score of 63.14%, from Ma et al. (2023).

ListOps involves evaluating a nested mathematical operation. For example,

Max(2,Min(3, 9),Sum Mod(1, 1),Median(0, 1, 2), 0),

for which the answer would be 3. There are four operators used in Long ListOps; Min, Max, Median
and Sum Mod. Sum Mod is the sum of the list, constrained to 0-9 by applying the modulo-10
operator to the result.

The maximum sequence length for Long ListOps is 2000, with an input feature size of 16 tokens
and an output prediction range of 0-9. The architecture consists of six sequential FST blocks, each
with a hidden feature dimensions of 256. We used an Adam optimizer with a fixed learning rate
of 10−4, a weight decay of 10−5 and a training batch size of 16. We generated 6 × 106 training
examples using code from the Long Range Arena GitHub repository, and used the default testing
set for evaluation, from Tay et al. (2020). This experiment was run on a single NVIDIA RTX 3090
GPU.

There is quite a large gap between transformer models and SSMs on performance in ListOps. It
should be noted that the results provided here are for models trained from scratch. It is argued
in Amos et al. (2024) that this gap can be closed somewhat by ’self-pretraining‘ transformers. How-
ever, even with self-pretraining these models do not outperform SSMs like S4 (Gu et al., 2021).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of models on Long ListOps. The first set of results are taken from the current
github leaderboard of Tay et al. (2020). The S4 result is taken from Gu et al. (2021). The MEGA
results are taken from Ma et al. (2023).

Models Long ListOps % Accuracy
Local Att 15.82
Linear Trans. 16.13
Reformer 37.27
Sparse Trans. 17.07
Sinkhorn Trans. 33.67
Linformer 35.70
Performer 18.01
Synthesizer 36.99
Longformer 35.63
Transformer 36.37
BigBird 36.05
MEGA 63.14
MEGA-chunk 58.76
S4 59.60
FST 63.11

3.2 PIXEL-BY-PIXEL MNIST

To demonstrate the limitations of transformers for tasks where information is largely contained
within the sequence order, we evaluate the results on a simple sequential MNIST task, where the
pixels of MNIST are presented one at a time. This task was first introduced in Le et al. (2015) as a
benchmark for sequential data modeling. We used an unmodified transformer encoder with a model
size of 512, two encoder blocks, and trainable positional encoding. For comparison, we used two
FST blocks with a hidden feature size of 128. Each model was trained with an Adam optimizer with
a fixed learning rate of 10−4. In each case, the target prediction is the output of the final element of
the generated sequence. These experiments were run on a single GTX 1080 Ti.

We find that, in half an hour of training, the transformer model is unable to achieve much beyond
chance performance. This makes some intuitive sense since the model is fully reliant on positional
encoding to transmit information about the sequence order. By contrast, when using an FST model
an accuracy of 98.3% is reached quickly.

Since we aim to demonstrate a limitation of the transformer architecture, we do not include con-
volutional layers or average pooling in this example. This is why this result is different from other
studies performed on pixel-by-pixel MNIST using transformers, such as Trinh et al. (2018).

3.3 WIKITEXT-103 TASK

In the paper introducing the MAMBA model from Gu & Dao (2024), it is argued that LRNNs and
SSMs are incapable of selectively deciding which inputs affect the hidden state passed along the
sequence. They argue that it is this property which makes linear time-invariant models such as
LRNNs poorly suited to language modeling. However, with FST, we suggest that this argument
no longer applies since the representation of the sequence can be selectively altered. To test the
language modeling abilities of FST, we use the Wikitext-103 benchmark from Merity et al. (2016).
Wikitext-103 contains over 100M tokens of text extracted from Wikipedia articles. The data is split
into sequences of token length 512. The perplexity was evaluated using eL, where L is the cross
entropy loss on predicting the next token. We use the ’bert-base-uncased’ tokenizer from Devlin
et al. (2019), with a vocab size of 30522. While training and evaluating, we use a random number
between 0 and 512 to truncate the initial tokens in the data. The model is initialized with six FST
blocks and a hidden feature dimension size of 512. We used an Adam optimizer with a fixed learning
rate of 10−4 and a training batch size of 128. These experiments were run on a single NVIDIA A100
GPU.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Training an FST model and a transformer model for half an hour on the MNIST dataset
where the pixels are presented in a one-by-one sequence. The task demonstrates how difficult it is
for the self-attention mechanism to solve tasks where much of the information is contained in the
sequence order.

After 770 training epochs, we find a minimum perplexity of 52.83 for the FST model. The state of
the art performance using a pre-trained transformer is much lower, for example Hybrid H3 from Fu
et al. (2023) achieves a perplexity of 10.6, though the use of pre-trained transformers makes com-
parisons with a model trained from scratch like FST difficult to interpret. Trained from scratch, the
Transformer-XL model from Dai et al. (2019) achieves a perplexity of 18.3. This model uses many
more trained parameters (257M) compared to our example (44M).

To make a more appropriate comparison to our relatively small model, we also trained a transformer
encoder model with 50M parameters in the same way as we did with our FST example. We use the
same tokenizer, fixed learning rate and batch size. This model used trainable positional encoding, a
model size of 512, 6 encoder blocks and 8 attention heads. After 659 training epochs we achieved a
minimum Wikitext-103 perplexity of 148.93.

3.4 SEQUENCE REPRESENTATION AND DEPTH

To see how much the sequence representation is modified in subsequent FST blocks, we can look at
the trainable α2 parameters in the model. As shown in Figure 3, these α2 coefficients indicate that
the model actively modifies the sequence representation. For the models trained on the Long ListOps
and Wikitext-103 tasks,we observe that the α2 coefficients tend to be higher in deeper FST blocks
compared to shallower ones. This suggests that deeper blocks rely more heavily on the output from
the LRNN to enhance the sequence representation. While this trend is notable, drawing definitive
conclusions would require confirmation by training the model on a broader range of tasks.

3.5 ABLATION STUDIES

We compared performance on CIFAR-100 from Krizhevsky (2009), presented pixel-by-pixel, using
the LRNN model with and without feature-sequence twisting. The sequence length for this task is
1024, with the three color channels as the input features. No convolutional layers are used for the
task.

We perform a parameter scan using FST blocks and, for comparison, blocks without the transposed
section from Figure 1. We refer to the models without the transposed section as ’LRNN-only‘
blocks. The comparisons are presented in Figure 4. We also applied transformers with positional

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Coefficients for the modification of the features α1 (left) and sequence α2 (right), for
different layer depths. Shown for the model trained on Wikitext-103 (dashed blue) and large ListOps
(solid red). Presented to show that the model does choose to modify the sequence and that the model
also has a tendency to result in a higher coefficient for deeper FST blocks.

encoding, and, similarly to the sequential MNIST task, we find that the model struggles to achieve
above chance performance. We use a range of hidden feature sizes [1024, 512, 256, 128] and number
of blocks [2,4] for the LRNN-only experiments. For FST experiments we use the same range of
hidden feature sizes over [1,2] FST layers. The models were trained using an Adam optimizer with
a fixed learning rate of 10−4, a training batch size of 16 for a total of 40k updates. These experiments
were each run on a single NVIDIA GTX 1080Ti GPU.

We find that FST models outperform LRNN-only models at similar parameter sizes. The maxi-
mum accuracy achieved by LRNN-only models was 29.95%, while FST models reached a higher
maximum accuracy of 32.66%. For FST models, the peak performance was obtained with a hidden
feature size of 1024 and 2 FST layers. The LRNN-only models attained their maximum accuracy
with a hidden feature size of 512 and 2 blocks.

Figure 4: Maximum accuracy on CIFAR-100 presented as a pixel-by-pixel sequence. No convolu-
tional layers. The highest performance is achieved by the FST architecture.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4 CONCLUSION

We have demonstrated some advantages of using blocks of FST over transformer models. The FST
architecture achieves good performance on the Long ListOps task, competitive with the state of the
art. We also show the model’s potential for language modeling using the WikiText-103 dataset.

One limitation of the FST model compared to transformers is the lack of an equivalent method to ’at-
tention masking’. It should be noted that LRNNs do not require attention masking for future tokens,
as the temporal ordering of elements in the sequence is naturally preserved. However, when the fea-
ture and sequence dimensions are transposed after an LRNN block for FST, this property is broken.
We can mask certain weights in the FST architecture to ensure that the model is causal. As a future
direction for this work, we aim to use this causal version of FST to train with an encoder-decoder
structure similar to the way transformers are trained on language translation tasks, for example.

By transposing the feature and sequence dimensions, we also lose a property of RNNs whereby
inference can be run on shorter or potentially unlimited sequence lengths. For FST, the sequence
length is fixed and will need to be truncated or padded to match the sequence length used during
training.

Another limitation is that if we require the hidden feature dimension to be much larger than the
sequence length, the cost of computing the LRNN in the transposed mode is expensive. For many
practical purposes, however, we find that this is often not the case.

Despite these limitations, we expect that there are many scenarios where using FST is advantageous,
requiring fewer computational resources to achieve better results. Overall, we hope that FST will
be considered as a competitive and flexible model for use in any sequence-based task. Though this
paper has only considered a limited number of benchmark tasks, there is significant potential for
the application of FST in more complex tasks. Future work could explore the scalability of FST
for longer sequences, including new techniques to condense the information contained within these
sequences. We encourage further exploration with FST models to realize its potential across various
domains.

5 REPRODUCIBILITY STATEMENT

For the purpose of reproducibility, code used for this project is provided as a zip file in supplementary
materials. After review, code will be provided on a GitHub repository. We encourage readers to use
and build upon the code provided.

REFERENCES

Ido Amos, Jonathan Berant, and Ankit Gupta. Never train from scratch: Fair comparison of long-
sequence models requires data-driven priors, 2024. URL https://arxiv.org/abs/2310.
02980.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994. doi: 10.1109/72.279181.
https://ieeexplore.ieee.org/document/279181.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. CoRR,
abs/1901.02860, 2019. URL http://arxiv.org/abs/1901.02860.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. https://arxiv.org/pdf/
1810.04805.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
hungry hippos: Towards language modeling with state space models, 2023. URL https://
arxiv.org/abs/2212.14052.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

9

https://arxiv.org/abs/2310.02980
https://arxiv.org/abs/2310.02980
https://ieeexplore.ieee.org/document/279181
http://arxiv.org/abs/1901.02860
https://arxiv.org/pdf/1810.04805
https://arxiv.org/pdf/1810.04805
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2312.00752

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with struc-
tured state spaces. CoRR, abs/2111.00396, 2021. URL https://arxiv.org/abs/2111.
00396.

Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew Botvinick.
Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258, 2017. ISSN 0896-6273.
doi: https://doi.org/10.1016/j.neuron.2017.06.011. https://www.sciencedirect.com/
science/article/pii/S0896627317305093.

Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard long time lag problems. In Proceed-
ings of the 9th International Conference on Neural Information Processing Systems, pp. 473–479,
Cambridge, MA, USA, 1996. MIT Press. https://proceedings.neurips.cc/paper_
files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf.

J J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982. doi: 10.1073/pnas.
79.8.2554. https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pp. 32–33, 2009. URL
https://www.cs.toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent networks of
rectified linear units. CoRR, abs/1504.00941, 2015. URL http://arxiv.org/abs/1504.
00941.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May,
and Luke Zettlemoyer. Mega: Moving average equipped gated attention, 2023. URL https:
//arxiv.org/abs/2209.10655.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Nikita Nangia and Samuel R. Bowman. Listops: A diagnostic dataset for latent tree learning. CoRR,
abs/1804.06028, 2018. URL http://arxiv.org/abs/1804.06028.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences, 2023.
https://arxiv.org/pdf/2303.06349.pdf.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient trans-
formers. CoRR, abs/2011.04006, 2020. URL https://arxiv.org/abs/2011.04006.
https://github.com/google-research/long-range-arena.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. CoRR, abs/2105.01601,
2021. https://arxiv.org/abs/2105.01601.

Trieu H. Trinh, Andrew M. Dai, Thang Luong, and Quoc V. Le. Learning longer-term dependencies
in rnns with auxiliary losses. CoRR, abs/1803.00144, 2018. URL http://arxiv.org/abs/
1803.00144.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. https://arxiv.org/
pdf/1706.03762.pdf.

Zhenrui Yue, Yueqi Wang, Zhankui He, Huimin Zeng, Julian McAuley, and Dong Wang. Linear
recurrent units for sequential recommendation. WSDM 2024, 2024. URL https://arxiv.
org/abs/2310.02367.

10

https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2111.00396
https://www.sciencedirect.com/science/article/pii/S0896627317305093
https://www.sciencedirect.com/science/article/pii/S0896627317305093
https://proceedings.neurips.cc/paper_files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf
https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://arxiv.org/abs/1504.00941
http://arxiv.org/abs/1504.00941
https://arxiv.org/abs/2209.10655
https://arxiv.org/abs/2209.10655
http://arxiv.org/abs/1804.06028
https://arxiv.org/pdf/2303.06349.pdf
https://arxiv.org/abs/2011.04006
https://github.com/google-research/long-range-arena
https://arxiv.org/abs/2105.01601
http://arxiv.org/abs/1803.00144
http://arxiv.org/abs/1803.00144
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/2310.02367
https://arxiv.org/abs/2310.02367

	 Introduction
	Network Structure
	Linear Recurrent Neural Networks
	Feature Sequence Twisting

	 Results
	 Long ListOps Task
	 Pixel-by-pixel MNIST
	 Wikitext-103 Task
	 Sequence Representation and Depth
	Ablation studies

	 Conclusion
	 Reproducibility Statement

