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ABSTRACT

Transformer-based large language models (LLMs) play a vital role in various NLP
tasks, but the internal neurons are rather functioning in a black box style. In this
work, we introduce the Neuron Predictability Lens (NPL), an analytical frame-
work that focuses on the way neurons work within feed-forward networks (FFNs).
NPL is useful in understanding and analyzing transformer-based LLMs. Based on
this framework, we conduct experiments on LLaMA-2 and GPT-J. Firstly, we
show that neuron activations are predictable and for the first time we introduce
the concept of Neuron Predictability. Secondly, we apply NPL to both global and
local analysis. For global analysis, we investigate how FFNs contribute to model
behaviors explicitly and implicitly with the aid of NPL. For local analysis, we
explore the connection between neuron predictability and neuron interpretability.
We examine various functional neurons under NPL and uncover the existence of
“background neurons.” With the findings mentioned above, we demonstrate the
value of NPL as a novel analytical tool and shed light on its future application on
model efficiency and/or effectiveness for improved language modeling.

1 INTRODUCTION

Large Language Models (LLMs) exhibit human-level proficiency in completing multiple natural
language tasks (Vaswani et al., 2017; OpenAI, 2022; Touvron et al., 2023). However, these models
are often regarded as “black boxes” since how their inner neuron function is mysterious (Bommasani
et al., 2021). Insufficient understanding of LLMs hinders further optimization and responsible de-
ployment of such powerful tools. Thus, paving the way towards a more transparent internal struc-
ture of LLMs becomes increasingly important. Efforts to understand and analyze LLMs range from
global examinations of model behaviors to local dissections of specific modules (Luo & Specia,
2024). From a global view, researchers delve into comprehending the model’s output and decision-
making processes, e.g. detect how the activations in FFN contribute to the logits (Geva et al., 2021).
In contrast, the local analysis seeks to unravel the mysteries of specific modules. For example, neu-
ron interpretability research has dived into the relationship between individual neurons and specific
linguistic tasks or functions (Dai et al., 2022a). Bridging these two perspectives, our work introduces
a novel concept called Neuron Predictability Lens, which potentially encapsulates both the broader
granularity and the finer granularity of LLM analysis with the discovery of Neuron Predictability.
Figure 1 is an illustration of the concept.

Neuron Predictability Lens (NPL) is an analytical framework devised to provide a new perspective
for understanding the behavior of transformer-based LLMs. NPL is performed through linear trans-
formation, mapping FFN neurons across different layers. This method provides new insights, and
renews the interpretability of vast concepts for transformer-based LLMs, such as logits contribution
(i.e. the contribution of specific modules to the final logits, same hereafter) and neuron activation.

To make it clearer, we use neuron activation to denote the intermediate representation of the FFN
module. We establish mappings between different layers and project activations in either a forward
or a backward direction. We need to answer a natural research question (RQ1): can neuron acti-
vation be predicted? To answer this question, we train the neuron mappings across possible layer
pairs on LLaMA-2 and GPT-J. Our experiments demonstrate that neuron activations are indeed pre-
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Figure 1: Neuron Predictability: The basis of NPL. The predicted version of neurons in layer j (in
orange) can be extracted from the actual neurons in layer i (in blue), and vice versa.

dictably interconnected; the predictability persists even when transferring to data distribution away
from the training data.

With the feasibility of neuron predictability established, we then raise the second research question
(RQ2): how to use NPL for model analysis?

We utilize NPL to analyze LLMs in both global and local ways, unveiling findings in both branches:
(1) In the global analysis, we substitute the predicted neuron activations for the actual ones and
record the corresponding performance changes. Through this analysis, explicit and implicit contri-
butions are investigated along with various substitution strategies. The main experiment reveals that
shallow layers contribute to the final logits more implicitly while deep layers contribute more explic-
itly. The follow-up experiment delves deeper into the phenomenon and demonstrates that neurons
with higher predictability are more crucial to the model performance. (2) Local analysis is con-
ducted where we explore the relationship between neuron predictability and neuron interpretability.
Through the lens of neuron predictability, we examine a variety of “functional” neurons pinpointed
by prior research (Dai et al., 2022a), uncovering common characteristics among these functionally
specialized neurons. From this analysis, we uncover “background neurons” – neurons that are vital
to model performance, easy to predict, but do not exhibit explicit functional roles.

Overall, our contributions are as follows:

• The NPL framework: we propose and verify the effectiveness of Neuron Predictability Lens to
analyze transformer-based LLMs;

• Findings from the global analysis with NPL: we find that shallow layers have more implicit logits
contributions while deep ones have more explicit contributions; neurons with higher predictability
contribute more to the final logits;

• Findings from the local analysis with NPL: our proposed method measures the predictability of
functional neurons, and uncovers the existence of “background neurons.”

2 NEURON PREDICTABILITY LENS

A major LLMs family is implemented based on transformer-based auto-regressive language models,
which is our primary focus in this paper. Models are comprised of layers, and each layer contains two
modules: a multi-head self-attention module (MHSA), and a FFN module. We define the outputs of
MHSA and FFN of lth layer as al and ml respectively. Then we have:

hl+1 = hl + al +ml, (1)
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where hl denote the input vector of lth layer. Based on this equation, we can derive the formulation
of the final representation:

hfinal = h1 +

L∑
l=1

al +

L∑
l=1

ml. (2)

In this work, we focus on the FFN module specifically, which has been proven to bear vast informa-
tion (Suau et al., 2020; Geva et al., 2021; 2022; Dai et al., 2022a; Wang et al., 2022; Luo & Specia,
2024; Gurnee et al., 2024). The inner structure of FFN comprises two full-connection feed-forward
layers with the activation function sandwiched between them. Formally:

FFN (x) = WO · σ
(
WI · x

)
, (3)

where σ is the activation function, and WI ∈ Rd×dffn and WO ∈ Rdffn×d are learnable weight
matrices. d is the hidden size and dffn is the intermediate dimension of FFN. For simplicity, the bias
terms of linear layers are ignored.

Neurons in FFN NPL is proposed based on the Neurons in FFN. To elaborate the neurons, we
rewrite Equation 3 as:

FFN (x) =

dffn∑
i=1

[g]iW
O
:,i,

g = σ(WI · x).

(4)

Just like the previous studies (Dai et al., 2022a; Wang et al., 2022; Zhang et al., 2023), neurons
are defined here as the column vectors WO

:,i. We denote g as the activation vector, indicating the
activation of neurons. The ith element of g is the activation of the ith neuron.

The Neuron Predictability indicates a mapping between neurons in different FFN modules. Given
two layers i and j, we establish projection Mi→j : Rdffn → Rdffn which projects from the activation
vector gi of layer i to the activation vector gj of layer j. From this projection, we could get g̃j =
Mi→j(g

i), where g̃j is a predicted item of real gj . NPL measures how well g̃j fits gj . We use two
metrics to evaluate the prediction, the L2 distance and the Pearson Correlation (Pearson, 1895). The
prediction mapping is implemented by a linear transformation and is optimized by minimizing the
mean square error (MSE). Below are the corresponding equations.

Mi→j(g
i) := WMi→j

· gi (5)

WMi→j
= argmin

W
E||W · gi − gj ||2 (6)

3 PRELIMINARY ANALYSIS: PREDICTABILITY OF NEURON ACTIVATIONS

In this section, we implement NPL in real settings to answer RQ1. The results prove the existence
of neuron predictability in tested models.

3.1 EXPERIMENTAL SETUP

We establish mapping Mi→j across every other layer on LLaMA-2-7b (Touvron et al., 2023) and
GPT-J-6b (Wang & Komatsuzaki, 2021) (∀i, j ∈ {2k | 2k < L, k ∈ N}; L is the number of layers).
Not all layers are utilized due to constraints by computational resources. Here, i could be either
smaller than, larger than, or equal to j.

We use the training set of WikiText2 (Merity et al., 2016) to train the mappings. Since a quick and
consistent convergence emerges while training, we sample a subset (about 107 tokens) instead of
using the entire dataset in the real process. We employ the Adagrad optimizer (Duchi et al., 2011)
and set the initial learning rate as 0.01. The training is completed for a single epoch with a batch
size of 104 tokens. All experiments are conducted on one A100.
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Figure 2: (a, b) Performance evaluation of learned neuron mappings for LLaMA-2 and GPT-J using
the MSE score. Appendix A.1 provides more interpretations of these MSE results; (c, d) Averaged
training curve on LLaMA-2. M∗→j denotes mapping from any layer to layer j, and Mi→∗ denotes
mapping layer i to any layer. The L2 distance of random activation is 0.0971 (with a std of 5.154e-6
over five runs) and the cosine similarity is 0.

3.2 RESULTS AND ANALYSIS

Figure 2 (a, b) is the visualization of NPL implementation. The figures illustrated the layer-wise
neuron predictability on LLaMA-2-7b and GPT-J-6b. The predictability is measured by L2 distance.
In the results, the overall L2 distances are around or less than 0.05, and the largest L2 distance is
no more than 0.07. This decent result shows that neurons demonstrate a predicting relation between
layers, and the phenomenon exists in both models. Figure 2 (c,d) visualize the training process of
the NPL mappings. The MSE losses decrease more than 10× when converge, which indicates the
effectiveness of the learned NPL mapping.

The predictability varies among layers. Shallow layers tend to yield better predictability than deeper
ones regardless of the projecting direction. Similar results are shown in the averaged training loss in
Figure 2 (c, d), where shallow layers converge quicker and better in both projecting directions.

Furthermore, we calculate the average L2 distance for three different cases: 0.037 for shallow-to-
deep prediction (i < j), 0.024 for deep-to-shallow prediction (i > j), and 0.020 for self-prediction
(i = j). These results indicate that deep-to-shallow prediction is more accurate than the reverse, with
self-prediction yielding the best performance. This means deeper layer FFN activations encapsulate
information from shallower layers, which accounts for the greater ease of predicting shallower layer
outputs from deeper FFN activations. (In addition to L2 distance, we also calculate the cosine
similarity as the evaluation metric, which gives us similar results. See in App. B.1)

We conduct a follow-up experiment on cross-domain generalization. Results in Table 1 show that
the NPL framework performs well in different tasks. We provide more interpretations of the table
below in App.A.2. We also investigate the neuron predictability of different models and context
lengths, which you can see in App. C.
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Table 1: Averaged performance of Chunks 1-4 on WikiText-2, Alpaca Taori et al. (2023), and
XSum Narayan et al. (2018).

Mapping Substitution WikiText-2 Alpaca XSum

Random Complete > 200 > 200 > 200
Partial 55.69 13.49 12.37

NPL Complete 42.67 12.44 12.16
Partial 38.53 9.76 8.21

Original 33.35 8.63 6.23

4 GLOBAL ANALYSIS: ANALYZING THE LOGITS CONTRIBUTION OF
PREDICTED NEURONS

This is our first step to answer RQ2. Through NPL, we evaluate how the predicted activations affect
the model performance, which both provides a global LLM analysis and validates the effectiveness
of NPL. Specifically, we substitute the actual neuron activations with those predicted by the NPL
Mapping. Given a mapping Mi→j where the activation of layer i serves as the stimulus for predicting
the response in layer j, we substitute the authentic activations in layer j with the predicted ones.

4.1 EXPERIMENTAL SETUP

Recalling Equation 2, due to the existence of residual connection, the final representation of the
model hfinal can be viewed as a summation of the outputs from the FFN and MHSA modules of
each layer. This final representation is normalized and projected to the “logits” over vocabulary
via the language modeling head. We refer to the FFN output ml as the explicit contribution from
the FFNl to the logits as ml is explicitly added to the final output hfinal. There is also an implicit
contribution from FFNl, as deeper layer representations are computed based on the outputs of those
shallower layers. Therefore, ml also contributes to hfinal implicitly by involving the computation
of all its subsequent layers.

In this section, we conduct substitution experiments to study how the predicted neuron activations
affect the explicit and implicit contributions. Figure 3 is the visualization of the two settings. As
forward propagation proceeds from shallow layers to deep ones, we only consider the mapping
Mi→j , i.e. when i < j (if not specified, we set i = j − 1 in the rest of the paper).

We split all layers into four chunks and enumerate them from shallow to deep. In each trial, we
substitute neuron activations of one chunk of layers. For each setting, the following three types of
mappings are compared with NPL Mapping.

• Random Mapping substitutes actual activations with activations obtained through a randomized
mapping. In the random mapping, we run the evaluation 5 times and compute the average.

• Zero Mapping zero-outs actual activations.

• Identical Mapping substitutes actual activations with activations from its previous layer.

4.2 RESULTS AND ANALYSIS

Table 2 presents the results extracted in various substitution settings in LLaMA-2 and GPT-J. The
NPL Mapping exerts the most negligible impact on the logits, corroborating that neuron predictabil-
ity indeed captures information intrinsically linked to the model’s capabilities. In contrast, the Ran-
dom Mapping and Zero Mapping either introduce meaningless noise or remove the activations within
certain chunks, both resulting in a substantial perturbation of the logits.

There is a strong correlation between the depth of substituted layers and the resultant effect. Sub-
stituting activations within the two middle chunks causes a relatively minor impact on the final
logits, whereas substitution at either the bottom or top chunks introduces a more pronounced effect.
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Original

Explicit  (Residual Connection)

(a) Complete Substitution

Original Substituted Influenced by substitution

(b) Partial Substitution

Implicit  (Forward Propagation)

Figure 3: An illustration of the substitution settings in the global analysis: (a) Complete Substitution
where both explicit and implicit contributions are substituted, (b) Partial Substitution where only
implicit contribution is substituted.

Table 2: Perplexities of various settings. The perplexity of LLAMA-2 and GPT-J without substitu-
tion is 33.08 and 26.58, respectively. We calculate the sentence-level perplexity upon sentences with
varied length. We also provide full results on Alpaca and XSum in App. B.3.

Settings LLaMA-2 GPT-J

Mapping Substitution Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 1 Chunk 2 Chunk 3 Chunk 4

Random Complete > 1000 47.54 54.49 55.82 > 1000 403.02 45.23 580.48
Partial 33.98 33.37 42.52 112.89 25.09 27.77 53.09 282.60

Zero Complete > 1000 43.56 50.07 55.14 > 1000 383.30 43.88 557.31
Partial 33.33 33.40 42.34 109.47 24.98 27.38 49.32 286.14

Identical Complete > 1000 58.96 65.19 62.35 > 1000 94.99 41.20 246.34
Partial 34.83 33.56 43.59 114.07 24.21 27.48 58.72 231.28

NPL Complete 47.23 37.78 38.51 47.17 247.76 58.73 34.92 46.82
Partial 33.41 33.54 37.49 49.66 23.64 24.60 32.01 50.30

Additionally, our findings indicate that this correlative relationship manifests differentially when
assessing explicit versus implicit contributions.

Here is a bulleted list of our findings:

• Only FFN in deep layers (Chunk 4) exhibit a significant explicit contribution to the
logits. Conversely, substituting the activations in the shallow layers, particularly layers in
Chunk 1, demonstrate an almost negligible explicit contribution to the logits regardless of
the substitution setting.

• The trend is reversed for implicit contributions. FFN in shallow layers (Chunk 1) con-
tribute more implicitly than those in deep layers (Chunk 4). Since the shallow layers
play foundational roles and influence all the subsequent computations, this phenomenon
is explainable. Thus, if these layers are compromised, the ability of the model would be
severely impaired. On implicit contribution, NPL Mapping shows an evident advantage
over other substitution strategies, again suggesting that NPL captures anticipated meaning-
ful semantic information to some extent.

• Another intriguing finding is that in Chunk 4, complete substitution outperforms partial
substitution in all mappings for LLaMA-2 and in NPL Mapping for GPT-J. This coun-
terintuitive phenomenon suggests that in deep layers, the presence of a “fake” explicit
contribution appears to elicit a negative effect on the actual implicit contribution.

4.3 FINER-GRAINED NEURON SUBSTITUTION

In this part, we further investigate the performance of neurons with different predictability. This
time, for each layer in one chunk, more/less predictable neurons are substituted by different strate-
gies. Two distinct metrics are utilized to guide our selection: the L2 distance and the Pearson
correlation. Figure 4 shows the results of the experiment.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

L2 Distance Pearson Correlation

30
40pe

rp
le

xi
ty

(a1) top 50% predicted; bottom 50% actual
(a2) top 50% actual; bottom 50% predicted
(b1) top 50% predicted; bottom 50% zero
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Figure 4: Comparison of perplexities for different neuron substitution strategies. We categorize
all neurons into two groups based on two metrics and then implement substitution strategies. For
instance, (b1) top 50% predicted; bottom 50% zero indicates that the 50% more predictable neurons
under the chosen metric are replaced with predicted activations, while the rest are set to zero. Here
we report the averaged results of all chunks.

Results Figure 4 shows both the effectiveness of the prediction and the relationship between neu-
ron predictability and model performance. The substitution of either more or less predictable neu-
rons extracts a similar performance to the actual as shown in (a1) and (a2). Comparing (b1) with
(b2), we find that preserving the information of 50% more predictable neurons is sufficient for main-
taining acceptable performance, even if the remaining neurons are masked. Also, there is a strong
relationship between predictability and perplexity as shown in (b) and (c). Neurons being easier to
predict tend to be more important to the model performance.

Insights The experiment leads to several findings: (1) The predicted neuron activations are effec-
tive in retaining model performances. (2) Neurons with higher predictability are more important for
the model performance. (3) The correlation between neuron predictability and the importance of the
neuron implies that NPL Mapping is not random but rather related to neurons’ intrinsic properties.

4.4 INTERIM SUMMARY

With NPL, the above global analysis delves into LLMs’ inner structures by detecting corresponding
contributions to the model’s logits. Apart from the analysis itself, this section validates the effec-
tiveness of the NPL framework as the neuron predictability indeed captures information relevant to
model capability instead of learning irrelevant features.

5 LOCAL ANALYSIS: ANALYZING THE PREDICTABILITY OF FUNCTIONAL
NEURONS

This section demonstrates how the NPL framework could adapt to the local LLMs analysis and
steps further to answer RQ2. We classify neurons according to their specialties and detect the
predictability of functional neurons. Following the previous works, we use the term “functional
neuron” to denote neurons whose activation patterns correlate to a specific function, such as token
identification, position encoding, knowledge storing, etc. (Gurnee et al., 2024; Voita et al., 2023; Dai
et al., 2022b). We conduct further analysis on functional neurons and examine their characteristics
under NPL. To this end, we first locate functional neurons, and then evaluate their predictability. We
follow the procedure of Gurnee et al. (2024) to locate these neurons. For a given neuron i in layer l,
we compute:

µl,i
P = 1− (1− β)σ2([gl]i|P(x)) + βσ2([gl]i|¬P(x))

σ2([gl]i)
, (7)

where P represents the property function that determines whether the input token x exhibits the
specific functionality, and β is the proportion of tokens that possess this functionality. The resulting
µl,i
P serves as the importance score of neuron i in layer l concerning functionality P . Neurons with

7
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the functionality are those extracting higher µl,i
P . Afterward, we compute the mean difficulty score

Sl
P of predicting those neurons:

Sl
P =

1

|N l
P |

∑
i∈N l

P

sl,i, (8)

where N l
P = {i|µl,i

P > θP} is the subset of filtered neurons and sl,i is the difficulty score of
predicting neuron i in layer l. This difficulty score is measured by L2 distance. A lower Sl

P indicates
an easier prediction of neurons with property P , which means they have higher predictability. For
comparison, we also compute the difficulty score on all evaluation data and on a random subset of
tokens as shown in Fig. 5 (a). The series of experiments shows the predictability of the functional
neurons. The presence of the specific functionality is considered a sufficient condition for high
activation. In each following section, we examine one specific kind of functional neuron. All results
in this section are with complete substitution.

5.1 N-GRAM-SENSITIVE NEURONS Pn−gram

Some neurons are found to activate exclusively when specified n-grams are present in the input, as
a result, they are named as “n-gram detecting” neurons (Voita et al., 2023).

We examine n-grams with n ranging from 1 to 3, conduct a comprehensive analysis of all n-grams
presented within the test corpus, filter out meaningless ones, and select the 1,000 most frequent ones
for each n for further investigation. As shown in Fig. 5 (b), there is a clear distinction between
the predictability of n-gram sensitive neurons and the random baseline across most of the layers.
Different n extract similar difficulty scores. This means n-gram sensitive neurons are difficult to
predict regardless of the choice of n. This result shows the consistent feature of predictability of the
n-gram sensitive neurons.

5.2 DIFFICULTY-SENSITIVE NEURONS Ploss

Neuron prediction could be easily associated with token prediction, which leads our investigation
toward difficulty-sensitive neurons. We found that the activations of certain neurons are correlated
with the performance of the causal language modeling objective. Tokens that are hard to predict,
manifesting in high cross-entropy loss (denoted as hard tokens), tend to activate specific neurons.
Similarly, there are the easy tokens which are activated in response to tokens that are easy to predict.

We filter the tokens based on their cross-entropy loss, and then get the hard and easy tokens. As
depicted in Fig. 5 (c), difficulty-sensitive neurons exhibit significantly higher scores than the random
baseline for all the conditions, which means they are harder to predict. Furthermore, it is observable
that the neurons corresponding to hard tokens exhibits greater difficulty when being predicted.

The identification of difficulty-sensitive neurons is intriguing. These functional neurons are harder
to predict, and those responding to hard tokens are even harder to predict. As hard tokens represent
greater challenges for the model, their information flow within the model would be complicated,
making their prediction more difficult. We also examined the hardest and easiest 10000 tokens in
the same experiment (See App. B.4).

5.3 POSITION-SENSITIVE NEURONS Ppos

Another branch of neurons is those associated with positional information, which activates in re-
sponse to the position rather than the token or its context. Inspired by Voita et al. (2023), we
hypothesize that positional neurons can work in teams and collectively respond to various positional
patterns. Based on this hypothesis, we explored two types of positional pattern: (1) the arbitrary
pattern includes a randomly-sampled subset of all positions; (2) the successive pattern includes a
fixed-length span of consecutive positions. We clip the maximum input length to 1024 and examine
positions ranging from 1 to 1024. As illustrated in Figure 5 (d), only the scores of successive pat-
terns exhibit significant deviations from the random baseline. This means there are neurons with the
special function of successive-position detection, and their activations are hard to predict. Results
of another positional pattern are shown in Appendix B.5.
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Figure 5: Results of functional neuron experiments in LLaMA-2. (a-d) shows the difficulty score for
predicting the neurons. All values pass the significant test with p < 0.001. Please note that the scale
of the y-axis is logarithmic. The numerical results are shown in App. B.2; (e) shows the percentage
of background neurons across different layers.

5.4 “BACKGROUND” NEURONS

In the above examination, all neurons associated with specific functionalities exhibit high difficulty
scores, indicating that they are hard to predict. Conversely, we are also interested in those more
predictable neurons. To this end, we set the random baseline as a threshold of the difficulty score
and get those neurons with higher predictability. As depicted in Figure 5 (e), a substantial proportion
of neurons (ranging from 40% to 80%) fall into this category. Appendix B.6 provides perplexities
after replacing the background neurons and the layer-wise statistics of background neurons. This
suggests that a majority of the neurons within FFNs are relatively easy to predict. The precise
function of these neurons is challenging to define, but their critical importance is evident based on
the results after masking them out.

The masking experiment is conducted in the same setting described in Section 4 and the results
are averaged over four chunks. The perplexity after masking those background neurons is 170.80.
Compared with the original perplexity of 33.08, the performance decays significantly after masking
the background neurons. Masking the same amount of random neurons causes less severe degrada-
tion and extracts a perplexity of 55.53. The mysterious nature of background neurons shows that a
considerable proportion of neurons contribute to model behavior while “working in the dark.” This
prompts us to rethink how we credit the success of the model’s performance.

5.5 INTERIM SUMMARY

In this section, a variety of functional neurons are examined through NPL. Functional neurons tend
to have a consistent feature of lower predictability. Besides, a large number of neurons have high
predictability, and do not have defined functional roles, but are vital for model performance. Thus,
we name them as the “background neurons.” We also examined outlier neurons in Appendix B.7.

6 DISCUSSIONS AND IMPLICATIONS

The above analysis reveals NPL as an effective analytical tool for LLMs. Here, we discuss the
following applications and implications.

First, NPL would help inference acceleration by short-cutting transformers. Previous research has
investigated inference acceleration by establishing linear shortcuts across transformer blocks (Din
et al., 2023). NPL bears a resemblance to these efforts by predicting the neuron activations in FFN
without significant performance drop, suggesting the potential of NPL as a promising avenue for
bypassing the complicated computations of vanilla transformers.

Second, NPL can uncover causal relationships between neuron activations across different layers.
For instance, if a later-layer neuron’s activation is precisely predictable from early-layer neuron
activations, we can infer causal links between these neurons. By integrating NPL with existing
circuit discovery techniques, we can enhance the mechanism analysis of LLMs.

9
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Third, NPL encourages us to rethink the role of FFN. Some researchers posit FFN functions as
key-value memories (Geva et al., 2021), while others suggest it projects hidden representations onto
a distribution over the output vocabulary, thus amplifying the predicted probability of some words
while diminishing that of others (Geva et al., 2022; Belrose et al., 2023; Katz & Belinkov, 2023).
Our investigation reveals these arguments to be incomplete. FFNs at various depths play diverse
roles, and even within the same layer, individual neurons exhibit varied behaviors.

7 RELATED WORK

Though the proposal of NPL is initial, its implementations are built on previous research. As ana-
lyzing transformers has attracted much attention in recent years, researchers have delved into this
intricate structure with multiple methods. Following Luo & Specia (2024), we roughly categorize
transformer analysis into two streams: local analysis, which delves into the intricacies of individual
transformer components, and global analysis, which seeks a holistic understanding of the behaviors
and capabilities of the model.

Among local analysis, Dai et al. (2022a) shed light on the storage of knowledge within model pa-
rameters by identifying specific “knowledge neurons.” Similarly, Voita et al. (2023) uncover a range
of functional neurons characterized by regular activation patterns. They target individual neurons
and experiment on their functionalities. Global analysis encompasses a variety of approaches, in-
cluding probing techniques (Rogers et al., 2020; Petroni et al., 2019; Li et al., 2023), mechanistic
interpretability (Elhage et al., 2021; Wang et al., 2023), and more. Among these, the “Vocabulary
lens,” which projects weights and activations onto the vocabulary space, is a trending analytical
tool (Geva et al., 2021). This lens allows researchers to explore how different modules and inputs
contribute to model performance(Belrose et al., 2023; Ram et al., 2023; Geva et al., 2023). Another
direction is to analyze transformers through simple mappings between modules. For example, Dar
et al. (2023) learn to project parameters into a shared embedding space, while Din et al. (2023) ex-
plore linear shortcuts between layers, which bears conceptual relevance to our approach. Different
from previous studies, our introduction of the neuron predictability lens encompasses both the local
and global facets of transformer analysis.

8 CONCLUSION

In this work, we discover the predictability of neuron activations and present the Neuron Predictabil-
ity Lens (NPL) as a powerful analytical framework for examining transformer-based LLMs.

Through extensive experiments, the predictability of neuron activations has been demonstrated and
significant insights have been uncovered into the contributions of different layers to the final logits.
The global analysis highlights the distinct roles of shallow and deep layers, while the local analysis
in this paper sheds light on the existence and importance of “background neurons” in LLMs.

The contribution of our NPL framework in analyzing LLMs is unique. Moving beyond traditional
approaches, we offer a new perspective for this research line. The NPL framework has the potential
to uncover the predictable relations within the LLM models, providing a new lens for LLM studies.
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Below is the additional information we provide for better understanding. The appendix includes
three parts: Additional Interpretations, Additional Results, and Additional Experiments.

A ADDITIONAL INTERPRETATIONS

A.1 EVALUATION OF PREDICTABILITY USING MSE

To rethink the rationality of MSE evaluation, we propose and test the following hypotheses toward
a sounder evaluation of predictability using MSE:

• Hypothesis A: Finer Granularity Our current version of MSE calculates the averaging
mean-squared error of all neurons in the layer, which is rather coarse-grained. In Sec. 4.3,
we have shown that neurons in the same layer have diverse predictability. Therefore, a
proper metric should capture such characteristics.

• Hypothesis B: Magnitude-invariance The metric should be magnitude-invariant, espe-
cially in a scenario where the neuron activations are small.

Then we evaluate the effectiveness of the above hypotheses. We calculate the neuron-wise Relative
Squared Error (RSE) for comparison.

We conduct substitution experiments to see how these metrics fit the model performance. Specifi-
cally, we filter top/bottom neurons with metrics and then substitute them with zero/predicted activa-
tion. The perplexity scores are shown in Table 3.

Table 3: Perplexity scores of the substitution experiments for MSE interpretation.
Top 1000 Bottom 1000

Metrics Mean PPL. (Zero) PPL. (Predicted) Mean PPL.(Zero) PPL. (Predicted)

Tensor-Wise MSE — — — — — —

Neuron-Wise MSE 0.0073 171.7 33.88 0.0016 >1000 36.25

Neuron-Wise RSE 0.6719 >1000 41.36 1.1094 210.4 35.28

From the experiment, we can infer that (a) hypothesis A is correct because there exists a significant
difference between the performance of high/low MSE/RSE neurons; (b) hypothesis B is wrong
because neuron-wise MSE aligns better with the performance than RSE.

Then, why do magnitude-invariant metrics fail to evaluate predictability?

Magnitude-invariant metrics normalize the difference between predicted values and the actual ones
so that large and small values can have a ”fair” comparison. For example, for two variables x , y we
have xactual = [100, 120] , xpredict = [90, 125] , yactual = [0.1, 0.12] , ypredict = [0.09, 0.125].
The two variables have the same RSE. Behind these metrics, there lies a presupposed assumption:
large values can tolerate larger deviations while small values bear less.

The predictability is not suitable to be measured with magnitude-invariant metrics because the neu-
ron activation does not follow the assumption. There is no evident correlation between the magni-
tude of neuron activation and robustness against deviations. Thus, a small RSE does not guarantee
a better approximation in terms of performance. This means our evaluation with MSE is effective
when detecting the predictability.

A.2 CROSS-DOMAIN GENERALIZATION OF NPL

To demonstrate that NPL Mapping does not just imitate the distribution of the training data, we
evaluate its cross-domain generalization ability. The experimental setting is the same as Section 4.
As shown in Table 1, while trained on Wikitext, NPL Mapping successfully generalizes to other
data distributions by outperforming Random Mapping and closely approximating the performance
of real activations. These results suggest that NPL is not limited to the specificities of the training
data but rather captures broader, more universal patterns that are applicable even in contexts that
diverge from the original training domain or language.
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A.3 LIMITATIONS OF OUR WORK

Since NPL is a newly proposed analytical framework, more applications are to be explored. Our
work is an initial attempt to analyze transformers with NPL, and even at this early stage, we have
already uncovered interesting insights. Due to space limitations, some experimental results are not
fully elaborated. We include them in the appendix. Moreover, we use linear mapping to implement
the NPL framework, while other kinds of mappings could also be explored, though this would likely
incur additional computational overhead. Future research may explore other mappings to further
leverage the potential of NPL.

B ADDITIONAL RESULTS

B.1 RESULT OF COSINE DISTANCE AS A METRIC

We add cosine distance as the additional metric, which is consistent with L2 distance, indicating the
effectiveness of neuron predictability.
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Figure 6: L2 distance, cosine similarity, and representational similarity analysis (RSA) of layer pre-
diction in LLaMA-2. For RSA analysis, we use Centered Kernel Alignment (CKA) for evaluation.
The black dashed lines in RSA plots represent the RSA distance of the random noise.

B.2 NUMERICAL RESULTS ON FUNCTIONAL NEURONS

Table B.6 includes the numerical results in different experimental settings. Note that all values pass
the significance test with p < 0.001.

We calculate the following results: (a) the averaged result of N-gram sensitive neurons, (b) the results
on easy/hard tokens of the Difficulty Sensitive neurons, (c) the results of the successive pattern for
the Position Sensitive neurons, and (d) the results of the random setting.

Table 4: Numerical results on functional neurons
N-gram (average) Difficulty (easy) Difficulty (hard) Position (successive) Random

Averaged Predictability 0.024 0.025 0.095 0.037 0.012

B.3 ADDITIONAL RESULTS OF THE SUBSTITUTION EXPERIMENT IN SECTION 4

Full results for the substitution experiment on Alpaca and XSum are shown in Table 5.
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Table 5: Full results for the substitution experiment on Alpaca and XSum.

Mapping Substitution Chunk 1 Chunk 2 Chunk 3 Chunk 4

Alpaca

Random Complete > 1000 11.98 11.44 12.12
Partial 9.16 8.78 10.38 25.62

NPL Complete 17.68 10.37 10.27 11.44
Partial 8.67 8.83 9.63 11.91

XSum

Random Complete > 1000 10.38 11.56 13.47
Partial 6.94 6.68 9.08 26.78

NPL Complete 19.57 8.45 9.57 11.06
Partial 6.63 6.67 8.30 11.25

B.4 ADDITIONAL DETAILS ON DIFFICULTY-SENSITIVE NEURONS

We extract results from four settings in the experiment. As shown in Figure 7 (a), neurons responding
to: 1) the hardest 5000 tokens, 2) the easiest 5000 tokens, 3) the hardest 10000 tokens, and 4) the
easiest 10000 tokens are in detection. The first two conditions are elaborated in Sec. 5.2. All
difficulty scores are higher than the random baseline. When we scale up target tokens, the difficulty
score fluctuates across layers. The predictability associated with neurons corresponding to hard
tokens exhibits greater fluctuations. This suggests LLMs possess a form of self-awareness regarding
the confidence in predicting the next tokens. By probing its internal representations, we can uncover
such “mental states” of LLMs without external signals.
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Figure 7: Full results on difficulty-sensitive neurons and position-sensitive neurons.

B.5 ADDITIONAL DETAILS ON POSITION-SENSITIVE NEURONS

In the real settings, we explored three types of positional patterns: (1) the arbitrary pattern includes
a randomly-sampled subset of all positions; (2) the successive pattern includes a fixed-length span
of consecutive positions; (3) the oscillatory pattern includes selected positions at regular intervals.
The oscillatory pattern shows a slight difference from the random baseline, which means they do
not present a lower predictability in our experiment. Results are shown in Fig. 7 (b).

To be mentioned, Voita et al. (2023) has uncovered the oscillatory positional neurons. However,
their definition of “FFN neurons” is different from the “neurons” in our work. Thus, though there is
no difference between the predictability of oscillatory positional neurons and the random baseline,
this could not demonstrate the predictability feature of the former discovered neurons.
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B.6 ADDITIONAL DETAILS ON BACKGROUND NEURONS

We replace the activation of background neurons with zero/mean/noise. The conclusion is that all
three ablations hurt the performance badly. We represent the results as follows:

Original Zero Mean Random

33.08 170.80 145.21 153.34

From these results, we can conclude that background neurons are not just for adjusting norms. There
is rich information hiding behind them, which requires further investigation.

Figure 8 shows that background neurons are easier to predict (with lower L2 distance) and have a
large quantity (painted with yellow).
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Figure 8: Statistics of background neurons in layer 2, 10, 18, 28 in LLaMA-2-7b.

B.7 ADDITIONAL DETAILS ON OUTLIER NEURONS

Outlier phenomenon has been observed across various LLMs (Puccetti et al., 2022). This phe-
nomenon refers to the persistent emergence of extreme values within the models’ activations and
weights which, though comprising less than 0.1% of the values, can exceed the magnitude of other
values by several hundredfold and are thus termed “outliers”.

For LLaMA-2-7b, we find the 7890-th neuron of layer 2 (shorted as L2.7890) to be an outlier.
We observe that the occurrence of outliers is associated with meaningless tokens, such as <SOS>,
<UNK>. As for neuron predictability, outlier neurons are extremely hard to predict.

C ADDITIONAL EXPERIMENTS

C.1 CROSS-MODEL NEURON PREDICTABILITY

Neuron mapping can be established not only within a single but also across different models. To
validate this, we conduct experiments applying NPL between the LLaMA-2-7b and LLaMA-2-13b
models. Figure 9 shows that the neuron mapping across models is learnable. Our observations
reveal a strong correlation between the layers of the two models, with the most effective mappings
establishing when layers of similar depth are used to predict each other. Additionally, based on the
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L2 distance metric, we have noted that shallower layers tend to be more predictable than their deeper
counterparts, a similar phenomenon observed in single-model experiments.

C.2 CONTEXT LENGTH AFFECTS NEURON PREDICTABILITY

We investigate scenarios where tokens are exposed only to a constrained segment of the preceding
context. To achieve this, we employ a context window, denoted by w, to limit the range of context
accessible to each token. Subsequently, we train multiple NPL mappings for various w values and
visualize the differences. As shown in Figure 10, a larger w extends the context scope and also
results in increased predictability for neurons in shallower layers, while simultaneously decreasing
predictability in deeper layers. We hypothesize that an extended context provides the NPL with
more comprehensive information, aiding in the accurate prediction of neuron activations in shallow
layers. Contrastingly, the semantics in deeper layers may become too complex to be captured by the
NPL.
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Figure 9: NPL between LLaMA-2-7b and LLaMA-2-13b.
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Figure 10: L2-distance difference of NPL mappings on LLaMA-2-7b under the settings of different
window sizes w. The window sizes selected for this analysis include w ∈ {3, 7, 15, 30, 60, 120}.
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