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ABSTRACT

Robust reinforcement learning (RL) considers the problem of learning policies
that perform well in the worst case among a set of possible environment parameter
values. In real-world environments, choosing the set of possible values for robust
RL can be a difficult task. When that set is specified too narrowly, the agent will
be left vulnerable to reasonable parameter values unaccounted for. When speci-
fied too broadly, the agent will be too cautious. In this paper, we propose Feasible
Adversarial Robust RL (FARR), a novel problem formulation and objective for
automatically determining the set of environment parameter values over which to
be robust. FARR implicitly defines the set of feasible parameter values as those
on which an agent could achieve a benchmark reward given enough training re-
sources. By formulating this problem as a two-player zero-sum game, optimizing
the FARR objective jointly produces an adversarial distribution over parameter
values with feasible support and a policy robust over this feasible parameter set.
We demonstrate that approximate Nash equilibria for this objective can be found
using a variation of the PSRO algorithm. Furthermore, we show that an optimal
agent trained with FARR is more robust to feasible adversarial parameter selec-
tion than with existing minimax, domain-randomization, and regret objectives in
a parameterized gridworld and three MuJoCo control environments.

1 INTRODUCTION

Recent advancements in deep reinforcement learning (RL) show promise for the field’s applicability
to control in real-world environments by training in simulation (OpenAI et al., 2018; Hu et al.,
2021; Li et al., 2021). In such deployment scenarios, details of the test-time environment layout and
dynamics can differ from what may be experienced at training time. It is important to account for
these potential variations to achieve sufficient generalization and test-time performance.

Robust RL methods train on an adversarial distribution of difficult environment variations to attempt
to maximize worst-case performance at test-time. This process can be formulated as a two-player
zero-sum game between the primary learning agent, the protagonist, which is a maximizer of its
environment reward, and a second agent, the adversary, which alters and affects the environment
to minimize the protagonist’s reward (Pinto et al., 2017). By finding a Nash equilibrium in this
game, the protagonist maximizes its worst-case performance over the set of realizable environment
variations.

This work aims to address the growing challenge of specifying the robust adversarial RL formulation
in complex domains. On the one hand, the protagonist’s worst-case performance guarantee only
applies to the set of environment variations realizable by the adversary. It is therefore desirable to
allow an adversary to represent a large uncertainty set of environment variations. On the other hand,
care has to be taken to prevent the adversary from providing unrealistically difficult conditions. If
an adversary can pose an insurmountable problem in the protagonist’s training curriculum, under a
standard robust RL objective, it will learn to do so, and the protagonist will exhibit overly cautious
behavior at test-time (Ma et al., 2018). As the complexity of environment variations representable in
simulation increases, the logistic difficulty of well-specifying the limits of the adversary’s abilities
is exacerbated.
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For example, consider an RL agent for a warehouse robot trained to accomplish object manipula-
tion and retrieval tasks in simulation. It is conceivable that the developer cannot accurately specify
the distribution of environment layouts, events, and object properties that the robot can expect to
encounter after deployment. A robust RL approach may be well suited for this scenario to, dur-
ing training, highlight difficult and edge-case variations. However, given the large and complex
uncertainty set of environment variations, it is likely that an adversary would be able to find and
over-represent unrealistically difficult conditions such as unreachable item locations or a critical
hallway perpetually blocked by traffic. We likely have no need to maximize our performance lower
bound on tasks harder than those we believe will be seen in deployment. However, with an increas-
ingly complex simulation, it may become impractical to hand-design rules to define which variation
is and is not too difficult.

To avoid the challenge of precisely tuning the uncertainty set of variations that the adversary can and
cannot specify, we consider a new modified robust RL problem setting. In this setting, we define
an environment variation provided by an adversary as feasible if there exists any policy that can
achieve at least λ return (i.e. policy success score) under it and infeasible otherwise. The parameter
λ describes the level of worse-case test-time return for which we wish our agent to train. Given
an underspecified environment, i.e. an environment parameterized by an uncertainty set which can
include unrealistically difficult, infeasible conditions, our goal is to find a protagonist robust only to
the space of feasible environment variations.

With this new problem setting, we propose Feasible Adversarial Robust Reinforcement learning
(FARR), in which a protagonist is trained to be robust to the space of all feasible environment
variations by applying a reward penalty to the adversary when it provides infeasible conditions.
This penalty is incorporated into a new objective, which we formulate as a two-player zero-sum
game. Notably, this formulation does not require a priori knowledge of which variations are feasible
or infeasible.

We compare a near-optimal solution for FARR against that of a standard robust RL minimax game
formulation, domain randomization, and an adversarial regret objective similarly designed to avoid
unsolvable tasks (Dennis et al., 2020; Parker-Holder et al., 2022). For the two-player zero-sum game
objectives of FARR, minimax, and regret, we approximate Nash equilibria using a variation of the
Policy Space Response Oracles (PSRO) algorithm (Lanctot et al., 2017). We evalaute in a gridworld
and three MuJoCo environments. Given underspecified environments where infeasible variations
can be selected by the adversary, we demonstrate that FARR produces a protagonist policy more
robust to the set of feasible task variations than existing robust RL minimax, domain-randomization,
and regret-based objectives. To summarize, the primary contributions of this work are:

• We introduce FARR, a novel objective designed to produce an agent that is robust to the
feasible set of tasks implicitly defined by a threshold on achievable reward.

• We show that this FARR objective can be effectively optimized using a variation of the
PSRO algorithm.

• We empirically validate that a near-optimal solution to the FARR objective results in higher
worst-case reward among feasible tasks than solutions for other objectives designed for
similar purposes: standard robust RL minimax, domain randomization, and regret, in a
parameterized gridworld and three MuJoCo environments.

2 RELATED WORK

2.1 DOMAIN RANDOMIZATION

Domain randomization methods train in simulation on a distribution of environment variations that
is believed to generalize to the real environment. The choice of a distribution for training-time
simulation parameters plays a major role in the final test performance of deployed agents (Vuong
et al., 2019). While domain randomization has been used with much success in sim-to-real settings
(OpenAI et al., 2018; Tobin et al., 2017; Hu et al., 2021; Li et al., 2021), its objective is typically
the average-case return over the simulation uncertainty set rather than the worst-case. This can
be desirable in applications where average training-time performance is known to generalize to
the test environment or where this can be validated. However, average-case optimization can be
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unacceptable in many real-world scenarios where safety, mission-criticality, or regulation require
the agent to perform well in test environments whose weight in the average would be small and
where sufficient validation is unavailable.

2.2 ROBUST REINFORCEMENT LEARNING

Robust reinforcement learning methods optimize reward in the worst-case and provide a promising
approach for sim-to-real. Robust Adversarial Reinforcement Learning (RARL) (Pinto et al., 2017),
which this work builds upon, optimizes return under the worst-case environment variations by op-
timizing a two-player zero-sum game between a task-performing protagonist and an environment-
controlling adversary. Numerous mechanisms by which the adversary affects the environment have
been explored including perturbing forces and varying environment dynamics (Pinto et al., 2017;
Mandlekar et al., 2017; Nakao et al., 2021), disturbances to actions (Tessler et al., 2019; Vinitsky
et al., 2020; Tan et al., 2020), and attacks on agent observations (Pattanaik et al., 2017; Gleave
et al., 2019; Zhang et al., 2020; 2021; Kumar et al., 2021). However, each of these works makes
the assumption that the uncertainty set from which perturbations and variations may be sampled is
well-specified and tuned such that an agent robust to a minimax selection over the entire set will
perform optimally in deployment. FARR relaxes this assumption and intends to produce a robust
agent to the real environment, even when the adversary can select unrealistically hard variations.

2.3 AUTOMATIC CURRICULUM DESIGN

Similar to finding the worst-case distribution of environment variations is finding the best-case dis-
tribution for improving an existing agent. Automatic curricula seek to find environment parameters
that are challenging but not too difficult for a training agent. Racaniere et al. (2019), Campero
et al. (2020), and Florensa et al. (2018) generate useful curricula for a single learning agent to solve
difficult tasks by proposing appropriately challenging goals for the agent’s current abilities. POET
(Wang et al., 2019; 2020) co-evolves a population of tasks and associated agents to produce an in-
creasingly complex set of tasks with coupled agents capable of solving their associated task. While
each of these methods can create increasingly capable agents, they offer no guarantees for final agent
robustness.

Asymmetric self-play (Sukhbaatar et al., 2018; OpenAI et al., 2021) facilitates two agents with
similar capabilities to compete in a two-player game where one attempts to reach goals that are
achievable but difficult to the other agent. PAIRED (Dennis et al., 2020) and subsequent improve-
ments to optimization (Parker-Holder et al., 2022; Du et al., 2022) extend this concept beyond goals
to the generation of parameterized environments by introducing a two-player zero-sum regret objec-
tive between an adversary and a protagonist. The adversary learns to specify environment conditions
in which regret is highest such that the protagonist’s performance most differs from estimated op-
timal performance. Although the regret and FARR objectives both involve estimating optimal per-
formance with respect to the adversary, optimizing regret does not necessarily provide the hardest
possible tasks like robust RL and instead selects tasks where improvements to behavior most af-
fect incurred reward. Regret is useful for training a broadly capable agent given no preference over
tasks. Robust RL, which we are interested in extending, optimizes performance under a worst-case
distribution of conditions, and FARR does the same while applying constraints on the difficulty of
said conditions.

3 BACKGROUND

3.1 UNDERSPECIFIED PARTIALLY-OBSERVABLE MARKOV DECISION PROCESSES

We adapt Underspecified Partially-Observable Markov Decision Processes (UPOMDPs) from Den-
nis et al. (2020) where there exists a parameter of variation θ ∈ Θ that is hidden from the agent.
This parameter θ controls some aspect of the environment that can potentially be discovered through
interaction. For example, θ could control the friction of a robot arm, the mass of a cartpole, or the
layout of a room.

We model a UPOMDP as a tuple M = ⟨A,S,O,Θ, T , ρ, I,R, γ⟩ where A is the set of actions,
S is the set of states, O is the set of observations, and γ is the discount factor. The choice of
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parameter θ ∈ Θ controls the conditions in this environment, namely the transition distribution
function T : S × A × Θ −→ ∆(S), the initial state distribution ρ : Θ −→ ∆(S), the observation
function I : S × Θ −→ O, and the reward function R : S × Θ −→ R. Given an observable
history h ∈ H = (O × A)∗ × O, a protagonist policy πp : H → ∆(A) decides at each time
step t on the distribution of the action at after seeing h = o0, a0, . . . , ot. Jointly with a UPOMDP
M and a specific environment parameter θ, the policy induces a distribution pθπp

over the states,
actions, observations, and rewards in an interaction episode. We define the protagonist’s utility
Up(πp, θ) = Epθ

πp
[
∑

t γ
trt] as the expected episode discounted return for a protagonist policy πp

and choice of θ.

3.2 POLICY SPACE RESPONSE ORACLES

Policy Space Response Oracles (PSRO) (Lanctot et al., 2017) is a deep RL method for calculat-
ing approximate Nash equilibria (NE) in zero-sum two-player games. It extends the normal-form
Double-Oracle algorithm (McMahan et al., 2003) to games with sequential interaction. At a high-
level, PSRO iteratively adds new policies for each player to a population until a normal-form mixed-
strategy solution to the restricted game induced by selecting population policies closely approxi-
mates a NE in the full game.

PSRO operates by maintaining a population of policies Πi for each player i and a normal-form
mixed strategy σi ∈ ∆(Πi). This mixed strategy σi represents a distribution over policies πi ∈ Πi

to sample from at the beginning of each episode, and upon algorithm termination, σ = (σ1, σ2)
is the final output of PSRO. The utility of player i of playing a mixed strategy σi against an op-
ponent’s policy π−i is therefore Ui(σi, π−i) = Eπi∼σi

[Ui(πi, π−i)], and likewise, Ui(σi, σ−i) =
Eπi∼σi,π−i∼σ−i

[Ui(πi, π−i)].

In each iteration of PSRO, new policies for each player i are added to its population Πi. In the case
of sequential interaction, this is typically an RL best-response BR(σ−i) = argmaxπi

Ui(πi, σ−i)
that maximally exploits the opponent mixed-strategy. However, this choice of new policy is not a
requirement, and PSRO maintains NE convergence guarantees so long as novel policies are contin-
uously added for each player.

After adding new policies, utilities UΠ(π1, π2) between each pairing of player policies π1 ∈ Π1 and
π2 ∈ Π2 are empirically estimated using rollouts to create a normal-form restricted game in which
population policies are the strategies. A new NE mixed-strategy that solves the restricted game, a
restricted NE σ = (σ1, σ2), is then cheaply calculated for each player. This process is repeated
until no new policies are added to either player’s population or the process is externally stopped.
As the number of strategies in each player’s population grows, a NE solution to the restricted game
asymptotically converges to a NE solution to the full game.

While other potentially suitable methods for solving extensive-form games exist, for example NFSP
(Heinrich & Silver, 2016) and Deep-CFR (Brown et al., 2019), PSRO was chosen out of practicality
because it can be implemented as an additional logic layer on top of existing reinforcement learning
software stacks. Although PSRO-based methods are competitive in sample-efficiently solving two-
player zero-sum games (Lanctot et al., 2017; Vinyals et al., 2019; McAleer et al., 2021; 2022b;a;
Liu et al., 2022), the purpose of experiments in this work is not focused on improving the speed
at which we might reach optima. Rather, we are interested in ensuring that we can reliably reach
approximate NE for each objective we test by using PSRO in order to compare their near-optimal
solutions on even ground.

4 FEASIBLE ADVERSARIAL ROBUST REINFORCEMENT LEARNING

4.1 MOTIVATION

We begin our discussion of the FARR method with a motivating example. Consider a cartpole envi-
ronment where the pole is subject to perturbing forces of an unknown magnitude. To maximize our
worse-case performance, we could formulate a robust RL game in which the adversary provides the
most difficult possible mixed strategy of force magnitudes. By learning a best response strategy to
this adversary, the protagonist will maximize its worst-case performance at test-time when presented
with an unknown distribution of forces.
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Importantly, to achieve this process, we would need to allow the adversary to specify a sufficiently
wide range of force magnitudes such that the real environment is believed to be in this range. How-
ever, we would not want to allow the adversary to specify force magnitudes so large that the task
becomes impossible, because the adversary would then always select overly difficult parameters and
the protagonist would only train on impossible task variations, failing at test time.

In this cartpole example, it is possible to manually adjust the range of allowed force values until
the widest possible uncertainty set is found that still avoids the learning of a degenerate protagonist
strategy. However, if this setting were scaled up to specifying the allowed values of many coeffi-
cients, level layouts, or environmental events where the adversary has complex, high-dimensional
interactions with the protagonist, hand tuning these limits may no longer be viable.

To remove the need for human expert tuning of the adversary limits, we instead create a game where
the adversary is allowed to specify impossible environment variations but is heavily penalized for
doing so, using the method we describe below.

4.2 FEASIBILITY

We define an environment parameter θ ∈ Θ as λ-feasible if a best-response to θ can achieve an
expected return of at least λ ∈ R. Heuristically, the value for λ could be set as the lowest aver-
age return that we would expect an agent to receive across variations in deployment if it could act
optimally with respect to each variation. We define the feasible set Fλ of environment parameters
as:

Fλ = {θ ∈ Θ|Up(BR(θ), θ) ≥ λ}. (1)

Fλ matches our motivation for considering feasible parameters when either of two conditions is
satisfied. First, we may have a lower bound on the achievable performance in the real environment,
and we can set λ at or below that bound. If the real environment is feasible, θ∗ ∈ Fλ, then we
are justified in avoiding training the protagonist on infeasible environments. Second, there may be
a performance threshold such that only above it we have a preference over agent behaviors. For
example, we may only care where a warehouse robot navigates if it has a valid path to its target
shelf.

The set of feasible variations Fλ is generally unknown. As part of optimizing the FARR objective,
the adversary will learn an approximation of Fλ and use it to guide the selection of a mixed strategy
over discovered feasible environment variations. We note that, in order to measure robustness to
Fλ in this paper, we focus on environments where we can, in fact, calculate Fλ for the purpose of
test-time evaluation. It is reasonable to expect our findings to carry over to some domains where Fλ

is truly unknown and where the method cannot be directly evaluated.

4.3 FARR OBJECTIVE

We wish to optimize the standard zero-sum robust adversarial game through PSRO with the addi-
tional constraint that the support of the adversary mixed strategy σθ contains only strategies in the
feasible set Fλ. Define supp(σθ) = {θ ∈ Θ|σθ(θ) > 0}. Our intended FARR objective is to solve
the game:

min
σθ

max
σp

Up(σp, σθ) subject to supp(σθ) ⊆ Fλ. (2)

An adversary mixed strategy σθ with support that is a subset of Fλ will only provide feasible envi-
ronment variations to the protagonist.

In order to provide flexibility in how novel adversary strategies that satisfy this constraint could be
optimized, we can replace the hard constraint with a sufficiently large penalty C to the adversary
when it violates the constraint. An equivalent zero-sum FARR objective would then be to optimize:

min
σθ

max
σp

Uλ
p (σp, σθ), (3)
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(a) (b)

Figure 1: (a) An adversarial item retrieval game. The adversary can hide a bowl in a left, middle,
or locked right cabinet. The protagonist chooses whether or not to attempt to find and grab the
bowl. The protagonist receives a penalty for attempting to grab a bowl placed in the locked right
cabinet and failing. (b) Matrix game representation of the original game and FARR transformed
game. Protagonist utilities are shown. NE for the original game place weight on infeasible tasks
with suboptimal behavior from the protagonist. NE for the FARR game provide feasible but difficult
tasks and optimal protagonist behavior supposing feasible tasks are expected in deployment.

where the FARR utility function Uλ
p (πp, θ) is unchanged from the original game if the adversary’s

provided environment parameter is feasible, and where otherwise a large constant adversary penalty
C is applied:

Uλ
p (πp, θ) =

{
C if Up(BR(θ), θ) < λ

Up(πp, θ) otherwise.
(4)

4.4 MATRIX GAME EXAMPLE

We demonstrate the effect of the FARR utility function (equation 4) through a matrix game example
shown in Figure 1. The adversary specifies the location of a bowl among three cabinets, where
the middle cabinet is more difficult for the protagonist to access than the left, and the right cabinet
is locked and inaccessible. Without observing the bowl’s location, the protagonist must choose
whether or not to attempt to find and grab the bowl, receiving a penalty for a failed retrieval attempt.
In deployment, we expect that the item will always be placed in a feasible, accessible cabinet, either
the left or the middle, so ideal behavior for the protagonist would be to always attempt to grab the
bowl. For this game, we define the feasibility threshold over task variations as λ = 1.

The original game, shown in matrix-form in Figure 1(b), contains an infeasible adversary pure strat-
egy (bowl in locked right cabinet). Because of the presence of this infeasible adversary strategy,
the protagonist will never attempt to grab the bowl in any of the game’s Nash equilibria (one pure
strategy NE is displayed in green). If we now replace the original game’s utility function Up with
the FARR utility function Uλ

p using C = 500, the adversary receives a penalty of −500 for placing
the bowl in the infeasible locked right cabinet because there exists no protagonist strategy that can
achieve a utility of a least λ = 1 under that environment variation. Instead, in the FARR transformed
game, a NE adversary places the bowl in the feasible but difficult middle cabinet, and the protagonist
learns, facing a selection of feasible tasks, to always attempt to retrieve the bowl. This new protag-
onist NE strategy for the FARR game is optimal with respect to anticipated feasible deployment
conditions.

4.5 OPTIMIZING WITH PSRO

Shown in algorithm 1, we use PSRO to solve for an approximate NE of the FARR transformed game
with the penalty-based objective defined in equation (3). To optimize FARR with PSRO, only the
scalar values λ and C need to be provided, where λ is the maximum difficulty expected among tasks
in deployment and C is an arbitrarily large positive value. We represent environment parameters θ
as strategies in the adversary population Πθ with an output mixed-strategy σθ over Πθ. Similarly,
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Algorithm 1 FARR Optimized through PSRO
Input: λ,C, and Initial policy sets Π = (Πp,Πθ) for Protagonist player and Adversary player
Compute expected FARR payoff matrix UΠ

λ as utilities Uλ
p (πp, θ) for each joint (πp, θ) ∈ Π

repeat
Compute Normal-Form restricted NE σ = (σp, σθ) over population policies Π using UΠ

λ
Calculate new Protagonist policy πp (e.g. BR(σθ))
Πp = Πp ∪ {πp}
for at least one iteration do

Calculate new Adversary strategy θ and associated estimator for BR(θ)
Πθ = Πθ ∪ {θ}

end for
Compute missing entries in UΠ

λ from Π
until terminated early or no novel policies can be added
Output: current Protagonist restricted NE strategy σp

we represent protagonist RL agent policies as strategies πp ∈ Πp with an output mixed-strategy
σp over Πp. In each PSRO iteration, to best-respond to the current adversary restricted NE σθ,
a new protagonist policy is trained using RL with a fixed environment experience budget. One
or more random novel adversary pure strategies are added in each PSRO iteration. For wall-time
parallelization, we add 3 in each iteration. For each adversary strategy θ, we also train an evaluator
RL policy πθ

e with the same hyperpameters as the protagonist to estimate BR(θ) and feasibility for
the FARR utility function Uλ

p .

5 EXPERIMENTS

To illustrate the utility of filtering out infeasible tasks in a robust RL setting, we perform experiments
in environments where overly difficult or unsolvable task variations are possible while measuring
performance under feasible conditions. In a goal-based gridworld environment and three perturbed
MuJoCo (Todorov et al., 2012) control environments, we compare the performance of FARR with
three alternative objectives: a standard minimax robust adversarial RL objective, domain random-
ization, and the regret objective as proposed in Dennis et al. (2020). Given a threshold for feasibility
λ, we evaluate worst-case performance within the set Fλ of feasible environment parameters. FARR
outperforms each of these objectives because it is able to provide an adversarial training distribu-
tion of environment variations limited only to instances that are discovered to be feasible, while
other methods provide overly difficult or otherwise mismatched training distributions for worst-case
feasible conditions.

We optimize FARR and other baseline objectives with PSRO and identical protagonist RL best-
response algorithms in order to compare final performance given guarantees of asymptotically reach-
ing an approximate NE for each zero-sum objective. We describe each baseline objective below:

Minimax The standard objective for robust adversarial RL using unmodified Up(σp, σθ). When
infeasible tasks are allowed to the adversary, the standard minimax robust RL objective will
focus on such tasks, resulting in overly cautious protagonist behavior or failed learning.

Domain Randomization (DR) With domain randomization, we train a single protagonist policy
πDR
p = BR(σDR

θ ) to saturation against a uniform mixture of all possible environment
variations σDR

θ = U(Θ). Domain randomization can result in an exploitable agent if the
relevant feasible part of configuration space is underrepresented by the uniform measure.
This objective is optimized by training a single RL policy rather than with PSRO.

Regret Matching the objective used by PAIRED (Dennis et al., 2020), we use PSRO to approxi-
mately solve for NE using the objective minσθ

maxσp
Eθ∼σθ

[Up(σp, θ)− Up(BR(θ), θ)].
BR(θ) is estimated using the same method as with FARR by training an evaluation agent
πθ
e against each θ. While designed to provide a distribution of tasks where the protagonist

is known to be able to positively affect its performance through optimal behavior, this cur-
riculum learning objective does not generally provide a task distribution suitable for robust
learning to a specific set of tasks such as Fλ.
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(a) (b) (c)

Figure 2: (a) The Lava World grid environment. The adversary specifies the location of an unob-
servable goal. The protagonist receives -1 reward each timestep until it reaches the hidden goal. If
the protagonist steps in lava (red), the episode ends and it receives a penalty of -15 reward. (b) The
environment is underspecified and the goal can be placed in lava, forcing the agent to receive the
lava penalty and creating an infeasible task given λ = −10. (c) Solving for approximate NE using
PSRO, the FARR objective results in an agent maximally robust to the feasible, non-lava goals while
other objectives result in suboptimal worst-case performance among the feasible set of tasks.

To calculate the worst-case episode reward within the set Fλ of feasible environment parameters,
we use our knowledge of Fλ to enumerate a comprehensive set of feasible tasks on which every
baseline’s performance is measured. For the gridworld environment, the entire feasible set Fλ is
calculated analytically. For MuJoCo, a discretization of the continuous parameter space Θ is calcu-
lated. Feasibility for each θ in the discretized space is then measured by training an RL best-response
BR(θ) to completion and averaging final utility Up(BR(θ), θ) over 7 seeds. Fλ is then determined
using equation (1). We measure feasible worst-case episode reward as minθ∈Fλ Up(σp, θ), averag-
ing over 100 episodes for each value of θ. We use this as our metric for robustness to the feasible
set Fλ.

5.1 LAVA WORLD

The gridworld task “Lava World” consists of a small platform surrounded by lava, as depicted in
Figure 2 (a). The adversary specifies a goal location θ that the protagonist needs to reach, however
the protagonist does not observe the goal, and the goal can be placed in lava. With an episode horizon
of 20, the protagonist receives a reward of -1 for every timestep that it does not reach the goal. If
the protagonist moves into lava, the episode ends, and it receives a reward of -15 even if the goal is
at that location. The feasibility threshold for this task is λ = −10, thus making a parameter for this
environment infeasible if the goal is put in lava and feasible otherwise. We use DDQN (Van Hasselt
et al., 2016) to train protagonist RL policies.

Worst-case protagonist episode reward among all values in the feasible set θ ∈ Fλ is shown as a
function of PSRO iterations for FARR and baseline objectives in Figure 2 (c). The minimax objec-
tive fails because the adversary learns to always suggest infeasible lava goals, and the protagonist
learns to immediately jump in lava rather than waste time searching for a goal in non-lava cells.
Likewise, domain-randomization fails because the majority of goals are infeasible lava goals, so in
order to optimize the average-case, the protagonist learns the same suboptimal behavior as it does
with minimax. The regret objective produces a distribution of both feasible and infeasible goals
where non-lava goals are the majority, however this distribution is not an adversarial robust NE
with respect to the set of feasible goals, so worst-case performance with the regret objective is still
not optimal. FARR penalizes the adversary for suggesting the infeasible lava goals and otherwise
provides base robust adversarial RL utilities for feasible goals, thus resulting in a protagonist that
maximizes worst-case reward among the actual feasible non-lava goal set Fλ.

5.2 MUJOCO

We compare FARR and other objectives on three MuJoCo control tasks, HalfCheetah, Walker2D,
and Hopper using PPO (Schulman et al., 2017) to train protagonist RL policies. In each of these
environments, the adversary specifies parameters θ = (α, β) where α ∈ (0, 10], β ∈ (0, 10] for a
beta distribution B(α, β) used to sample from and generate 1D horizontal perturbing forces every
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(a)

(b)

Figure 3: Worst-case MuJoCo HalfCheetah (a) and Hopper (b) average episode reward among task
parameters in the feasible set Fλ as a function of PSRO iterations for FARR and other baselines
with multiple values of λ.

timestep that are applied to the torso of the protagonist’s robot. The adversary has the ability to spec-
ify infeasible distributions of forces which make accruing reward in each task virtually impossible.
We conduct experiments with each MuJoCo environment using three different feasibility threshold
values for λ, representing three different assumptions regarding the difficulty of test-time conditions
that we wish to prepare for.

For HalfCheetah, in Figure 3 (a) we show worst-case protagonist reward among environment pa-
rameters in the feasible set Fλ as a function of PSRO iterations with λ values {−1000, 0, 1000}.
The same is shown for Hopper with λ ∈ {200, 400, 600} in Figure 3 (b), and for Walker2D with
λ ∈ {200, 400, 600} in the appendix due to space limitations.

Across different values for λ in each of these environments, we see that FARR is able to train an
agent which maximizes worst-case reward under the ground-truth Fλ by penalizing the adversary to
prevent it from providing infeasible variations. Domain randomization and regret provide training
distributions unconditioned on λ or any notion of Fλ, which are only sometimes appropriate for
robust performance as seen for λ = 600 in Figure 3 (b) with domain randomization and regret and for
λ = 1000 in Figure 3 (a) with regret. Otherwise, domain randomization and regret result in agents
exploitable to some configuration in Fλ. Likewise, minimax consistently provides insurmountable
conditions to the protagonist, resulting in failed learning and highlighting the need for methods like
FARR to automatically limit adversary abilities in robust RL.

6 DISCUSSION AND FUTURE WORK

We present FARR, a novel robust RL problem formulation and two-player zero-sum game objective
in which we consider an underspecified environment allowing infeasible conditions and we train
a protagonist to be robust only to the tasks which are feasible. By solving for approximate Nash
equilibrium under the FARR objective using PSRO, we demonstrate that this method can produce
a robust agent even when the adversary is allowed to specify parameters which make sufficient
performance at a task impossible. A limitation and avenue for future work is that our current method
for optimizing FARR does not directly optimize the adversary, instead relying on random search
and the PSRO restricted game solution to provide an optimal mixed strategy. In future work, if
high-dimensional joint adversary best-responses with feasibility estimates can be sample-efficiently
optimized, FARR can provide a prescribable solution to avoid the manual creation of complex rules
to limit robust RL adversaries in higher-dimensional sim-to-real configuration spaces.
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