Tree-Guided Diffusion Planner

Hyeonseong Jeon! Cheolhong Min! Jaesik Park'?

'Department of Computer Science & Engineering, *Interdisciplinary Program of Al
Seoul National University

Abstract

Planning with pretrained diffusion models has emerged as a promising approach
for solving test-time guided control problems. Standard gradient guidance typically
performs optimally under convex, differentiable reward landscapes. However, it
shows substantially reduced effectiveness in real-world scenarios with non-convex
objectives, non-differentiable constraints, and multi-reward structures. Further-
more, recent supervised planning approaches require task-specific training or value
estimators, which limits test-time flexibility and zero-shot generalization. We
propose a Tree-guided Diffusion Planner (TDP), a zero-shot test-time planning
framework that balances exploration and exploitation through structured trajectory
generation. We frame test-time planning as a tree search problem using a bi-level
sampling process: (1) diverse parent trajectories are produced via training-free
particle guidance to encourage broad exploration, and (2) sub-trajectories are re-
fined through fast conditional denoising guided by task objectives. TDP addresses
the limitations of gradient guidance by exploring diverse trajectory regions and
harnessing gradient information across this expanded solution space using only
pretrained models and test-time reward signals. We evaluate TDP on three diverse
tasks: maze gold-picking, robot arm block manipulation, and AntMaze multi-goal
exploration. TDP consistently outperforms state-of-the-art approaches on all tasks.
The project page can be found at: tree-diffusion-planner.github.io.

1 Introduction

Diffusion models offer a data-driven framework for planning, enabling the generation of coherent
and expressive trajectories learning from offline demonstrations [1H4]. Compared to single-step
model-free reinforcement learning (RL) methods [} 6], diffusion planners are more effective for
long-horizon planning by generating temporally extended trajectories through multi-step prediction.
Without task-specific dynamics models, pretrained diffusion planners can be adapted for test-time
planning through guidance functions that provide numerical scores for user requirements such as
state conditions or physical constraints. Prior studies in diffusion guidance algorithm (e.g., classifier
guidance [7]]) have been successfully incorporated to generate conditional trajectory samples given
test-time reward signals [[1,[8]]. These guidance algorithms present an exploration-exploitation trade-
off [9]], balancing adherence to the pretrained model for feasibility against maximizing the external
guide score, which may require exploring out-of-distribution trajectories.

As the main bottleneck in guided planning lies in the limited quality of trajectory samples produced
by the pretrained models, prior works have primarily focused on improving general sample quality
and mitigating planning artifacts, while the guidance algorithms themselves remain relatively un-
derexplored. The majority of recent studies on diffusion planners emphasize advancing supervised
planning capabilities [2H4} [10H12]. They are categorized into sequential [10, 1 1], hierarchical [3} 4],
and fine-tuning [2} [12] approaches. These works improve the modeling of the underlying system
dynamics from the static offline RL benchmarks. Recent works successfully solve challenging offline

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://tree-diffusion-planner.github.io

benchmarks by reformulating the training scheme, learning value estimator, and test-time scaling.
Another recent research direction in diffusion planners aims to enhance zero-shot planning capabili-
ties [[13]]. Test-time tasks are shifted from the training distribution, and planners are given access to a
pretrained model along with dense reward signals to adapt to these unseen tasks effectively.

However, test-time planning capabilities are often evaluated in relatively simple optimization tasks,
such as minimizing the distance to optimal trajectories or matching the outputs of pretrained classifiers
trained on expert demonstrations [[1, 4], and predominantly within in-distribution trajectory settings [2}
4]. Typical benchmarks include maze navigation tasks [10] where agents minimize distance to a
single goal, or block stacking tasks [[1] where a unique target configuration maximizes reward. These
tasks generally involve convex optimization problems, where a unique global optimal trajectory
maximizes a smooth guide function. In addition, similar to model-free RL methods [14], guided
planning often relies on a pretrained value estimator trained on supervised trajectory data; however,
collecting optimal trajectories for each new task is often impractical or infeasible, particularly for
tasks with complex dynamics or limited simulation control.

In this work, we address a fundamental challenge of existing diffusion-based planners: while they
excel at generating low-level action sequences, most real-world planning tasks require decision-
making over high-level abstractions. These abstractions often introduce non-convex guide functions
or non-differentiable constraints, making them incompatible with conventional test-time guidance
methods that assume smooth, convex optimization landscapes. For example, maze navigation with
intermediate goal bypassing [2] introduces a non-differentiable rule into the planning process. In
multi-reward block stacking, the agent must reconcile multiple configuration-dependent reward
signals to determine the most favorable block arrangement. These scenarios underscore the need
for guided planning algorithms that flexibly accommodate complex test-time specifications while
ensuring both trajectory feasibility and task-specific fitness. Recently, several training-free guidance
algorithms have been proposed in the image domain [[15H18]], but their capabilities are typically
restricted to smooth differentiable guide functions. Since test-time guide functions can take any form,
there is a need for a flexible planning algorithm that can handle a broad class of guide functions.

We propose Tree-guided Diffusion Planner (TDP), which formulates test-time planning as a tree
search problem that balances exploration via diverse trajectory samples and exploitation via guided
sub-trajectories. While pretrained diffusion planners model underlying system dynamics, TDP
samples high-reward (i.e., high guidance score for the test task) solution trajectories conditioned on
the learned dynamics in a zero-shot manner. TDP equips the pretrained diffusion planner model with
the ability to reason over higher-level objectives. TDP outperforms state-of-the-art planning methods
on challenging tasks with non-convex guide functions and non-differentiable constraints across all
test scenarios. TDP enables flexible task-aware planning without requiring expert demonstrations.

2 Related Work

Existing Diffusion Planners. Despite strong performance on standard offline benchmarks, existing
diffusion planners face limitations in zero-shot planning:

¢ Sequential approaches [[10, [11] explore one action at a time, which works well in single-goal
convex tasks but struggles with multi-goal tasks where different goals have varying test-time
priorities. In such settings, they often converge on local optima rather than discovering distant,
high-priority goals. Furthermore, sequential approaches like MCTD [11] typically require training
task-specific value estimators to guide their single-step decisions, limiting applicability to zero-
shot scenarios where no task-specific training is available. In contrast, TDP performs multi-step
exploration through diverse bi-level trajectory sampling, which better handles challenging multi-
goal scenarios without requiring additional training components beyond the pretrained planner.

 Hierarchical diffusion planners [3| 4] rely on training-time supervision to learn sub-goal distri-
butions. They perform well when both initial and goal states are given, but struggle on unlabeled
zero-shot tasks such as the test-time gold-picking task [2]]. In standard maze navigation bench-
marks, Hierarchical Diffuser [4] tends to generate shortest-path trajectories when initial and goal
states are specified. However, the gold-picking task poses a fundamentally different challenge: the
goal is hidden and often misaligned with the shortest path.

¢ Diffusion model predictive control (D-MPC) [12] adapts to changing dynamics via few-shot
fine-tuning with expert demonstrations, but struggles with unseen long-horizon tasks and complex

behaviors as standard dynamics models p(s|a) struggle to capture long-context reward structures
effectively. In contrast, TDP models the joint distribution p(s, a) to enable solving long-horizon
and multi-goal tasks and is a fully zero-shot planner that operates without test-time demonstrations.

Training-free Guidance. Training-free guidance methods leverage structural priors and domain
knowledge for control without additional learning. Classical planners (e.g., A*, potential fields) [[19-
23] compute feasible trajectories through graph search or geometric reasoning. In continuous domains,
trajectory optimization and model predictive control [[24} 25] refine actions iteratively using known
dynamics. Local search techniques (e.g., hill climbing), guided policy search, and reward shaping [26-
28] serve as strong baselines for structured, domain-specific control problems but typically lack the
flexibility to generalize beyond narrow task settings. In contrast, diffusion-based test-time planning
targets complex tasks that need out-of-distribution generalization and adaptability.

Tree-based Decision Making. Tree structures naturally represent hierarchical sequential decisions.
Trajectory Aggregation Tree (TAT) [29] mitigates artifacts in diffusion-generated trajectories by
aggregating similar states near the initial state, but it struggles with complex long-horizon dependen-
cies due to its limited aggregation depth early in the trajectory. Monte Carlo Tree Search [30H33]]
explores full-horizon trajectories via stochastic roll-outs, but its reliance on discrete actions and
reward heuristics limits scalability in high-dimensional or continuous control tasks with external
guidance. In contrast, TDP’s bi-level tree framework integrates gradient-based guidance at both parent
and child levels, enabling structured and adaptive planning under complex test-time objectives.

3 Background

3.1 Problem Setting

We consider the test-time reward maximization problem on a discrete-time dynamics system s, =
f(st,a;) via a pretrained planner model, where the agent has access to the user-defined guide
function J (), which indicates the fitness of the generated trajectory 7. As per-timestep reward
does not guarantee the optimality of a low-level action (e.g., non-convex reward landscape), planning
capability based on exploration is required to find the optimal trajectory 7 that maximizes 7. The
agent must find an action sequence that maximizes the guide score within a limited number of steps:

T =a,.; =argmax J(sg,ar.r) subjectto Tpreq < T < Thax e
y @1:T

Planning horizon Tjq is determined by the choice of planner model. Model-free RL methods with
single step execution [3}16]] predict a single action at each timestep so Tjeq = 1, whereas diffusion
planner [1]] predicts a sequence of actions a;.7,,, at once. As diffusion planners predict more future
states, they benefit from capturing longer-term contextual information. For example, in a long-horizon
multi-goal navigation task [34]], an agent may encounter several intermediate suboptimal goals, but
reaching a farther goal yields a substantially larger reward, requiring planning several steps rather
than greedy pursuit of nearby rewards. Planning over longer horizons can enhance performance on
more challenging tasks, particularly when future rewards are more significant [35}136].

3.2 Test-time Guided Planning with Diffusion Models

The standard approach to guide diffusion planning in test time is to use naive gradient guidance [18]],
which progressively refines the denoising process by combining the score estimate from the uncondi-
tional diffusion model with the auxiliary guide function [1, 4]. It approximates the reverse denoising
process as Gaussian with small perturbation if the guidance distribution h(7;) is sufficiently smooth
and the gradient of the guide function is time-independent:

P(Tica|Ti) o< po(Tici|Ti)h(Ts) = N (Tim1; 1’ + aXlg,))

where ¢ = V., log h(7;) is the gradient of the guidance distribution [37]], « is guidance strength,
and p, > are the mean and covariance of the pretrained reverse denoising process. On the other
hand, classifier guidance (CG) [7]] and classifier-free guidance (CFG) [38]] are also broadly used in
guided planning [3l 8} 139]. However, they require access to expert demonstration data to train either a
time-dependent classifier model or a conditional diffusion planner model based on trajectory rewards

-I I-I I-IL

=
~ it 'IlJr-r g

Diﬁusery- u-l I-Iu _-_J,[Ltl -IL
T T BT S BT

m l.lru -IEEJFEJ-!H L

" e s Th 1) = P =

Figure 1: Rollout Trajectories for the Gold-Picking in Maze2D. In the Maze2D-Large environment [40], the
agent must collect an additional gold objective (yellow) positioned off the shortest navigation path. Trajectories
are generated by Diffuser [[1]] (with gradient guidance), Diffuser” [29], and our method. See Sec. for details.

5
3

?IL:_
]

s;,&;
Elﬁ_:_

for a given task. Despite their simple yet powerful architecture, it is expensive to extend CG and CFG
in test-time as it requires collecting expert demonstrations for each new task and retraining the model.
The ultimate goal of test-time guided planning is adaptive planning, identifying trajectories that
satisfy user requirements using a pretrained diffusion planner without additional expert supervision.

3.3 Challenges in Guided Planning

Guided planning has primarily been evaluated on simple tasks where expert demonstrations are
available or the guide function is convex and differentiable. As a result, prior work has focused on
improving the sampling quality of the pretrained diffusion model, which was the main bottleneck for
test-time guidance in these simplified settings [4}, 41]]. Despite the importance of improving trajectory
sampling quality, there has been limited investigation into how guidance algorithms themselves adapt
to increasing task complexity and respond to various forms of test-time objectives. In this section, we
first study a fundamental challenge in guided planning: the exploitation-exploration trade-off, and
then discuss the limitations of naive gradient guidance, a standard test-time planning approach.

Exploration-Exploitation Trade-off. Test-time guided g, *: Riow :Rnign
planning employs two distinct score functions: score esti-
mate from the pretrained diffusion model and a user-defined *

*
guide score. Not only to generate a feasible trajectory but
also to maximize its fitness, the agent is encouraged to bal- /\ /
ance the exploitation of the pretrained model and the ex- ,
ploration of novel trajectories. Gradient-based guidance data ideal S§?§;2‘22
typically requires selecting a guidance strength « to bal-
ance adherence to the guide signal and trajectory fidelity.
However, « is highly task-dependent, and exhaustive tuning

across tasks introduces significant overhead during evalu- . I
ation. For example, Fig. [I]illustrates several gold-picking F

: intermediate goal

tasks within a fixed maze map. The optimal value of « varies
across tasks, depending on how far the gold location deviates
from the unconditional navigation trajectory, which favors

the shortest path (see the supplement for more details). Figure 2: Limitation of Gradient-based
Guided Planning. a. In-distribution pref-

erence. b. Naive gradient guidance is in-
compatible with non-differentiable rules.

In-distribution Trajectory Preference. Diffusion models
are capable of generating compositional behaviors [[1} [42],
but often get stuck in local optima due to insufficient explo-
ration of the trajectory space. Most previous works on guided planning did not adequately address
the exploration-exploitation trade-off, as they typically assume convex (or concave) guidance with a
single optimal trajectory that globally maximizes the reward [2, 43]. However, real-world tasks often
involve multiple objectives with different priorities, where the agent must explore the trajectory space
to avoid sub-optimality. Pretrained diffusion planners tend to favor generating in-distribution trajecto-
ries that align with previously seen data, rather than discovering novel compositional solutions [4]].

Consequently, gradient-based guidance algorithms do not effectively address this dilemma, as they
often prioritize local optimal trajectories within the learned distribution (see Fig. 2}a).

Non-differentiable Rule. Gradient-based guidance algorithms face significant challenges in plan-
ning tasks with non-differentiable constraints. Since diffusion planners are trained on trajectories
with fixed start and end states, they struggle to generate feasible paths that incorporate additional
intermediate goals. For example, as described in Fig. [2]-b, navigation trajectories conditioned to
test-time intermediate goal often result in suboptimal (left) or infeasible (right). This introduces a
non-differentiable constraint from the planner’s perspective, as the requirement to pass through a
specific state imposes a discrete structural condition not reflected in the training distribution. Similar
challenges arise in other domains of diffusion-based generation, such as enforcing chord progression
in music generation [44] or satisfying chemical rules in molecule generation [45]]. Both introduce
hard constraints that are difficult to optimize with standard gradient-based methods.

4 Method

We introduce Tree-guided Diffusion Planner

(TDP), a zero-shot test-time planning framework

leveraging a pretrained diffusion planner for

adaptive trajectory generation. While naive gra- ¢~ x (0,1
dient guidance often converges to local optima
due to limited gradient signals, TDP addresses
this by combining diverse trajectory samples (ex-
ploration) with gradient-guided sub-trajectories
(exploitation) to identify optimal solutions (see
Fig. [3). This tree structure enables coverage
over a broad range of reward landscapes. By - ;
branching into diverse regions, TDP increases . TRe—
the chance of finding globally high-reward solu-
tions that naive gradient methods may miss.

Appendix outline the overall TDP pipeline
and present the full algorithms. We detail
the core modules of TDP: state decomposition
(Sec.[4.1), parent branching (Sec.[4.2)), and sub-
tree expansion (Sec. {.3).

== : Parent Branching
=== : Sub-Tree Expansion

i | === : gradient guidance

Data space

So

Figure 3: Tree-guided Diffusion Planner (TDP). TDP
constructs a trajectory tree combining diverse parent
trajectories (navy) and guided sub-trajectories (red) in

the 2D data space. The 3D surface represents the reward
landscape, with peaks indicating high-reward regions.

4.1 State Decomposition

Given a guide function for the test-time task, states are autonomously decomposed based on gradient
signals: observation states receive non-zero gradients, while control states receive none. This gradient-
based criterion enables scalable and domain-agnostic decomposition at planning time. Observation
states are directly steered by the guide function, whereas control states are unaffected by the guide
function but govern the underlying system dynamics that support high-level objectives.

For instance, the KUKA robot arm environment provides state vectors containing multiple features
such as robot joint angles and block positions. Since TDP operates as a zero-shot planner, it does
not have prior knowledge of the state category for each feature of the state vector. Given a test-time
block stacking task with a distance-based guide function, TDP autonomously categorizes each feature
value in the state vector using Algorithm[I] It evaluates whether the gradient of the guide function
with respect to the ith feature (i.e., 3—;71_) is zero or non-zero. If non-zero, the ith feature is classified
as an observation state; if zero, it is classified as a control state. Consequently, features related to
robot physics are detected as control states. In contrast, block position (xy) features are detected as
observation states, because the block-stacking guide function is only affected by the block positions.

4.2 Parent Branching

In the first phase of our bi-level planning framework, control states are applied to fixed-potential
particle guidance (PG) [46] to explore diverse control trajectories. PG promotes diversity among
generated samples within a batch. For instance, when moving a block to a target position, multiple

control trajectories can accomplish this task. Standard gradient-based approaches often suffer from in-
distribution bias and limited exploration, constraining trajectory diversity. In contrast, TDP enhances
exploration through this procedure, generating what we term parent trajectories.

Specifically, fixed-potential PG is implemented using the gradient of a radial basis function (RBF),
denoted V&, which can be computed directly from all pairwise distances between control trajectories
within a batch. Unlike conventional gradient guidance methods that pull samples toward high-reward
regions, PG introduces repulsive forces that push samples apart in the data space. This leads to a broad
coverage of dynamically feasible trajectories independent of task objectives. Although fixed-potential
PG incurs some inference overhead from computing kernel values between all trajectory pairs, it is
significantly more sample-efficient than learned-potential variants [46]], while remaining training-free
and modular. A single denoising step for parent branching is denoted as:

“l‘zc;irol — /'l'iomrol + apziv(b(“éomrol)v y‘ci)b_sl — ”?)bs + O‘gzivJ(“ébs)v (3)

where p! . and pl . denote the control and observation components of the predicted mean of
the denoising trajectory at timestep 4. Particle guidance V®(4..,o;) introduces repulsive updates
among control states to diversify denoising paths. In contrast, gradient guidance V.7 () steers
observation states toward task-relevant regions defined by the guide function. This enables a wide
exploration in the control state space, which helps to discover diverse observation state configurations
and exposes the planner to richer gradient signals from the guide function 7.

Notably, TDP formulates a single joint conditional distribution with an integrated guidance term.
As shown in Eq. [2} the overall guidance distribution is defined as h(7;) = hge(T;) - hpg(T;) Where
hee () denotes the gradient guidance component, and Ay, (-) denotes the particle guidance component.
Since both components jointly condition the same pretrained reverse denoising process, the perturbed
reverse denoising process is approximated as p(7;_1|7;) = N (7i_1; ui + atprX gTOP, Ei) where
gtop = V108 (heg(Ti) - hpg(T3)) = V108 heo (i) + V7 10g hpe (T3) = gog + gpe- Therefore,

i

p't v pt + arppXigrop 4

denotes the integrated guidance term from Eq. [3| where pu’~! = [,ui;nhol, uf,gj] and grpp = ggg +
goe = 7= (VO (Wonpor) + gV T (1)), TDP employs a single integrated guidance term,

which is the sum of the gradient guidance part (g,¢) and the particle guidance part (gp,).

4.3 Sub-Tree Expansion

In the second phase, we apply fast denoising with reduced steps Ny < N, where N is the original
number of diffusion steps, to refine parent trajectories using task gradient signals. For each parent
trajectory, we select a random branch site and generate a child trajectory by denoising from a partially
noised version of the parent, conditioned on the preceding segment. Sub-tree expansion proceeds as:

Té\k;fid ~ qN; (Tparent, C) where C' = {sk}zzo and b ~ Unif(0, Tprea), 5)

where C' denotes the parent trajectory prefix, gy, is the partial forward noising distribution with N

denoising steps, and ‘ri\}:{ld is the partially noised trajectory from which the child trajectory is denoised
during sub-tree expansion. These child trajectories enable fine-grained local search around the parent
branch, improving alignment with the guide signal. Sub-tree expansion offers two key advantages:

« Enhance dynamic feasibility of parent trajectories: Diverse parent trajectories benefit exploration,
but perturbing the control states may lead to dynamically infeasible plans. During sub-tree
expansion, perturbed control states are refined by a pretrained diffusion denoising process.

« Efficient Local search: Sub-Tree expansion refines observation states of parent trajectories with
gradient guidance signal. Parent trajectories serve as initial points to guide child trajectories. Since
parent trajectories are intended to cover a broad region of search space, local search conditioned
on the parent trajectories is an efficient way to find better local optima.

Why is bi-level sampling necessary? We investigate the role of our bi-level sampling framework
in handling multi-reward structures, as illustrated in Fig.[3] We characterize problems with both local
and global optima and demonstrate that bi-level trajectory generation avoids local optima. Consider

trajectory data in a learned subspace, where the pretrained diffusion planner maps Gaussian noise
back to data space via the reverse denoising process. Given a test-time guide function defined as the
sum of Gaussian components (as defined in Proposition I, the following statements hold:

Proposition 1. Initialization problem in gradient guidance with diffusion planner. Assume that the
trajectory data X € R¥*D follows the Assumption 1 in [I8], and given guide J(X) = J1(X) +

J2(X) where J1(X) = exp (—%HX — Av1|\2), J2(X) = exp (—%HX —wJ_H2), wy L
span(A), vy is the first eigenvector of AT A, 01 < 02, and By (0,1 [J1(n)] < Eponr(o,1)[T2(n)].

a. If Xo ~ N(0,1), then the guided sample X1 converges to a local optimal solution.

b. If Xo ~ qn, (X T 5T where X7 is an unconditional sample with small perturbation, then the
guided sample X converges to a global optimal solution.

The proof is provided in Appendix [C] Guided sampling initialized from standard Gaussian noise can
be steered away from the subspace, converging to off-subspace local optima [[18], as illustrated in
Proposition[T}a. These samples may locally optimize the task objective but lie outside the learned
data manifold, resulting in unrealistic or infeasible trajectories. This occurs because standard gradient
guidance modifies the pretrained denoising process without preserving the underlying data structure,
causing the sampling to drift toward regions that satisfy the guidance objective but violate the
training distribution constraints. In practice, many test-time planning problems exhibit off-subspace
optima—for example, in maze navigation, unseen obstacles can block the learned shortest path,
making pretrained trajectory preferences suboptimal. In contrast, unconditional samples naturally
remain close to the learned data subspace since they follow the original training distribution. When
guided sampling is initialized from these on-subspace points, it can leverage both data structure and
gradient information to converge to the global optimum, as demonstrated in Proposition [T}b.

TDP’s bi-level planning framework enables flexible exploration through structural search over
trajectories. During parent branching, gradient guidance can be optionally applied to steer the
observation states, depending on task characteristics. Unconditional PG supports broad exploration
of the data space, effective for discovering diverse solutions in under-specified or multi-goal settings.
In contrast, conditional PG directs exploration toward regions aligned with the guide function, useful
for convex objectives where a single high-quality solution is desired (e.g., PNP tasks in Sec.[5.3).
Gradient guidance in parent branching provides a prior for sub-tree expansion but may also limit the
breadth of exploration in trajectory space. Each strategy offers complementary benefits: unconditional
PG promotes diversity without task-specific priors, while conditional PG enables targeted search.

S Experiments

We evaluate TDP across diverse zero-shot planning tasks featuring non-convex and non-differentiable
objectives. Our experiments assess zero-shot planning capabilities and robustness when addressing
unseen test-time objectives. All experimental hyperparameters are reported in Appendix [D}

While existing diffusion planners (e.g., MCTD [11]], Hierarchical Diffuser [4]) excel on standard
offline benchmarks, they suffer from zero-shot scenarios as discussed in Sec.[2] Consequently, we
focus comparisons on recent zero-shot planning approaches, particularly Trajectory Aggregation Tree
(TAT) [29], Monte-Carlo sampling [43]], and stochastic sampling [13]. We design our benchmarks to
challenge planners with unseen test-time objectives, in contrast to offline benchmarks that only test
learned dynamics aligned with the training distribution. For completeness, we provide supplementary
comparisons with sequential approaches (i.e., MCTD [L1], Diffusion-Forcing [10]) on standard maze
benchmarks in Appendix [J} Notably, despite being designed specifically for zero-shot planning, TDP
still surpasses these sequential approaches on standard benchmarks.

5.1 Baselines and Ablations

* Diffuser [1]: Diffusion-based approach that plans by iteratively denoising complete trajectories.
¢ AdaptDiffuser [2]: Fine-tune pretrained Diffuser with synthetic expert demonstrations.

 Diffuser” (TAT) [29]: Aggregate diffusion samples into a tree structure, bounding trajectory
artifacts. Although TAT equips the pretrained Diffuser with better performance in offline RL tasks,
its zero-shot planning capability is strictly constrained by standard diffusion sampling.

Table 1: Result of Maze2d Gold-picking. Mean performance of our method and baselines across 20 tasks (5
random seeds each). Four types of test maps are depicted in Appendix [E] + denotes standard error.

Environment \ Diffuser Diffuser” MCSS MCSS+SS TDP wiochiidy TDP woprGg) TDP
Maze2d Medium 10.1 £25 123 +26 172 £34 174 +32 19.0 £35 39.1 £42 39.8 +42
Maze2d Large 43 +18 9.3 +26 250 +38 212 435 304 +4.1 41.1 +42 47.6 + 4.1
Single-task Average | 6.8 10.8 21.1 19.3 24.7 40.1 43.7
Multi2d Medium 7.7 +24 8.6 +24 323 +39 292 +36 353 +43 75.9 +30 74.7 30
Multi2d Large 9.9 +26 23.1+36 57.5+40 58.0+3s8 59.1 +39 64.9 +37 70.0 £35
Multi-task Average \ 8.8 15.9 449 43.6 47.2 70.4 72.4

* Monte-Carlo Sampling with Selection (MCSS) [43]]: Sample multiple trajectories from the
pretrained Diffuser and select the best trajectory based on the guidance score. Monte Carlo
sampling methods effectively explore the solution space and approximate optimal trajectories [47]].

* Stochastic Sampling (MCSS+SS) [13]: MCMC-based, training-free guided planning method
requiring M times more computation than MCSS, where M is the number of iterations in the
inner loop of diffusion sampling. Following [13]], we set M = 4 in all our experiments.

* TDP (wio chila): Remove the Sub-Tree Expansion phase from TDP, relying solely on parent trajec-
tories generated by conditional PG sampling without further refinement through sub-trajectory
sampling. This isolates the contribution of parent trajectories to overall planning performance.

e TDP wioPG): Ablate the particle guidance step in Parent Branching, relying solely on gradient
guidance to generate parent trajectories. This highlights PG’s role in producing diverse parents
that serve as initialization points for Sub-Tree Expansion.

5.2 Maze2d Gold-picking

We extend the single gold-picking example [2] in the Maze2D environment [40] to a multi-task
benchmark. The agent is initialized at a random position in the maze and has to find the gold at least
once before it reaches the final goal position. As discussed in Sec.[3.3] the gold-picking task is a
planning problem with a test-time non-differentiable constraint, where the agent must generate a
feasible trajectory that satisfies an initial state, a final goal state, and an intermediate target (the gold
position). In addition, the task is a black-box problem that requires inferring the intermediate goal
(i.e., gold) location using only a distance-based guide function, without access to the gold’s exact
position. To address this setting with diffusion planners, prior work [2] proposes an approximate,
distance-based guide function 7 (7) = — ZTif |si — Sgold||, Where sgo1q denotes the gold position.
While this approximate function is used for the gradient guidance sampling, the true guide function
J(r)=—- . min ||s; — Sgoual| is used for selecting the best one from the generated candidates.
% v+ s Tpred

We report the performance of TDP and baselines in Table [I] TDP consistently outperforms both
Diffuser” and MCSS across single- and multi-task settings. Notably, even TDP (wro child) achieves
approx. a 7% performance improvement over MCSS overall. TDP generates farther sub-trajectories
through sub-tree expansion, allowing the planner to localize the gold position better and collect
stronger gradient signals from the surrounding region to guide the trajectory effectively. This bi-level
trajectory sampling approach enables the discovery of the hidden gold location within the map.

5.3 KUKA Robot Arm Manipulation

We evaluate the test-time planning performance of TDP and baselines on robotic arm manipulation
tasks. Diffusion planners are pretrained on arbitrary block stacking demonstrations collected from
PDDLStream [48]] and are typically evaluated on downstream tasks such as conditional stacking [[1]]
and pick-and-place [2]], where test-time goals are specified to the planner. Both tasks aim to place
randomly initialized blocks into their corresponding target locations in a predetermined order. The
pick-and-place task is more challenging because it requires placing each block at a unique target
without access to expert demonstrations. To better isolate test-time planning capability, we evaluate
a variant of the conditional stacking task [2]] without using the pretrained classifier on expert data.
We refer to this variant as PNP (stack), and the original task is denoted as PNP (place). For both
tasks, the pretrained diffusion planner is guided to generate 4 sequential manipulation trajectories,

one for each block, toward its target location Sy, Using a naive guidance objective defined as
J(1) ==, 1I8i — Starget||- As shown in Table 2] TDP achieves an average improvement of 10%
over MCSS and 20% over TAT in two PNP tasks, demonstrating strong generalization to diverse task
configurations. Notably, TDP (w/o PG) outperforms MCSS by 18% on PNP (place), underscoring the
role of our sub-trajectory refinement mechanism in such out-of-distribution planning scenarios.

Moreover, we carefully design a more challeng-
ing test-time manipulation task which extends PNP
(place), namely pick-and-where-to-place (PNWP). As

Reward

shown in Fig.] the agent must find a global op- Xjocal

timal trajectory given non-concave guide function ;

J(T) = =2 c1llsi— Sicall — c2|8i — Smiall + X
global

¢3||8; — Sglobal || Where 1, c2, c3 are positive constants
and Siocal, Smid, Sglobal are the local, middle, and global
target positions, respectively. Both sgjoba and Siecal
are equidistant from the robot arm’s attachment point. Figure 4: Pick-and-Where-to-Place (PNWP).
Since the local optimum has a wide peak while the PNWP evaluates the agent’s exploration capacity
global optimum has a narrow peak, agents easily get in the robot arm manipulation environment. The
trapped in local optima without sufficient exploration. agent must infer suitable placement locations for
‘While PNP requires ﬁtting blocks into a target Conﬁg_ each block based on the reward distribution and
uration, PNWP challenges planners to distinguish be- plan corresponding pick-and-place actions.
tween globally optimal and suboptimal arrangements.

X

X * *
Xlocal xglobal

Table 2: Result of Robot Arm Manipulation. Mean performance of baselines, ablations, and our method.
Diffuser uses 1 sample, while others use samples € {6, 12, 18,24} with 100 seeds. + denotes standard error.

Environment \ Diffuser Diffuser” AdaptDiffuser MCSS MCSS+SS TDP wiochiiay TDP worc) TDP
PNWP ‘ 31.13 +007 34.72+000 39.72 +0.08 35.69 +007 36.24 +009 35.53 + 008 66.63 +0.15 66.81+0.17
PNP (stack) 51.5 008 60.08 +0.16 60.54 +o0.18 5991 +019 56.8 +o0.16 60.00 +0.19 59.42 +019 61.17 +024
PNP (place) 2131 +o00s 2144 +o010 36.17 o1 31.37 010 35.5 019 32.19 +o.10 36.94 013 36.94 + 0.3
PNP Average | 36.41 40.76 48.36 45.64 46.15 46.10 48.18 49.06

We report the performance of TDP, baselines, and ablations in Table[2] Mono-level guided sampling
methods (i.e., AdaptDiffuser, MCSS(+SS), TAT, and TDP (w/o child)) tend to converge to local optima,
often stacking all blocks at a single position, since a landscape of local optima is spread out in a
broader range as shown in Fig.[d] In contrast, bi-level sampling approaches (i.e., TDP and TDP
(wlo PG)), which combine parent branching and sub-trajectory refinement, are better able to identify
globally optimal placements consistently. Notably, TDP outperforms AdaptDiffuser both on the
standard benchmark (PNP) and on the custom task (PNWP). This demonstrates that TDP’s test-time
scalability and generalization enable zero-shot planning that surpasses the training-per-task approach.

a. b.

: x4
x;ocal ' &

Pairwise traj. distance

" MCSs TAT TDP TDP TDP MCSS TDP
/o chitd) /o PO

Figure 5: Diverse Trajectory Generation. a. Mean pairwise distance computed over 32 trajectories, averaged
across 100 planning seeds in PNWP. Error bars indicate standard error. b. Visualization of trajectory generation
process and rollout results of MCSS and TDP.

The key advantage of our method over the baselines comes from employing unconditional PG in
the parent branching phase, enabling broad exploration of the trajectory space. Both TDP and its
ablations produce diverse trajectories (see Fig. E]-a); however, TDP (w/o child) often fails to find the
global optimal placement due to the use of conditional PG in parent branching, which can bias samples
toward local optima. The mean pairwise trajectory distance decreases when PG is combined with
sub-tree expansion, as the generated sub-trajectories share segments with their corresponding parent
trajectories. Unconditional PG enables the generation of diverse, gradient-free parent trajectories.
When combined with sub-tree expansion guided by the objective, this bi-level strategy supports
compositional solutions that successfully stack blocks into global optimal placement (see Fig. [5}b).
More detailed information on the evaluation metrics among these tasks is available in Appendix [F}

5.4 AntMaze Multi-goal Exploration

Figure 6: AntMaze Multi-goal Exploration. A priority-aware multi-goal exploration designed to evaluate
exploration in AntMaze locomotion planning. A diffusion planner predicts the next Tp.q = 64 steps (bright
areas on the map) using a net guide signal from multiple goals, with a maximum horizon of 2000 steps.

We finally evaluate test-time multi-goal exploration capability on AntMaze [40], which is more
challenging than Maze2D due to its high-dimensional observation space for controlling the embodied
agent. Its complexity causes the pretrained diffusion planner to predict shorter horizons than the
full trajectory length [49]. We design a new multi-goal task in which the agent must visit all goal
positions in the correct order of priority, as specified by the guide function J(7) =). geg Mg -

exp (— Zi<de |si — sg 12/ 07) where G is the set of goal positions and &, o, are parameters for

gaussian guide function at each goal g € G. For example, the agent in Fig. [f] first visits goal g, at
t = t3. If it subsequently visits g1, g4, and g3 after ¢ = t3, it successfully reaches all four goals in
the sequence go — g1 — g4 — g3. However, two precedence rules are violated (g2 — g1, g4 — 9g3)
while the remaining four (g2 — g4, g2 — 93, g1 — g4, and g1 — g3) are satisfied. In this scenario,
the agent achieves a goal completion score of 4/4 but only 4/6 priority sequence match accuracy.
Maximum accuracy of 6/6 can only be achieved by visiting all goals in the correct prioritized order.

Table 3: Result of AntMaze Multi-goal Exploration. Mean performance of baselines, ablations, and our
method. Diffuser uses 1 sample, while others use samples € {32, 64,128, 256} with 100 seeds. We report three
metrics: number of found goals, sequence match score, and average timesteps per goal. + denotes standard error.

Metric | Diffuser Diffuser” MCSS MCSS+SS TDP wiochilay TDP wopc)y TDP
found goals T 1.5 +03 124 +08 613 +20 628 +19 65.8 + 1.9 64.6 + 1.9 66.1 + 1.9
sequence match 1 1 +o0s6 1.2 +027 302413 31.2+13 338 +15 32.7 +14 33.8 +14
timesteps per goal | | 5333.3 4020.1 612.1 604.4 574.3 578.3 558.4

We report the performance of TDP, baselines, and ablations in Table |§| using three metrics, with
detailed definitions in Appendix [} TDP achieves about 11% improvements over MCSS in both the
number of found goals and the sequence match score, while also reducing timesteps per goal. The
ablations highlight complementary roles of the components: when PG is removed (TDP (w/o pG)), all
three metrics degrade, confirming that PG is essential for both goal discovery and sequence alignment.
In contrast, removing child branching (TDP (wro child)) maintains performance on the first two metrics
but requires more timesteps per goal, suggesting less efficient exploration in the environment.

6 Conclusion

In summary, we propose TDP, a flexible test-time planning framework that leverages a pretrained
diffusion planner via a bi-level trajectory-sampling process without training. By balancing trajectory
diversity and gradient-guided refinement via a branching structure of sampled trajectories, our method
addresses key limitations of conventional test-time-guided planning. Empirical results across both
structured and compositional manipulation tasks demonstrate consistent performance gains over
existing baselines, particularly in scenarios that demand out-of-distribution generalization. Our
experiments also highlight the robustness of the framework in handling non-convex, multi-objective
guidance and non-differentiable constraint problems, where naive gradient guided methods often fail.

Limitation and Future Work. While TDP outperforms existing planning approaches across a suite
of challenging test-time control tasks, our bi-level trajectory generation process incurs additional
computational cost due to the expanded search in trajectory space and the pairwise trajectory distance
calculations. We analyze the additional computational time required for the two PNP tasks and the
PNWP task in Appendix |G| Future work may explore more efficient search strategies or learned
priors to reduce overhead while ensuring sufficient exploration and preserving planning performance.

10

Acknowledgements

This work was supported by IITP grant (RS-2021-11211343: AI Graduate School Program at Seoul
National Univ. (5%) and RS-2025-25442338: AI Star Fellowship Support Program (Seoul National
Univ.) (60%)) and NRF grant (No.2023R1A1C200781211 (35%)) funded by the Korea government
(MSIT).

References

(1]

2

—

(3]

[4

—

(5

—

[6

—_

[7

—

[8

—_—

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for flexible
behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision
making. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning (ICML),
volume 202 of Proceedings of Machine Learning Research, pages 20035-20064. PMLR, 23-29 Jul 2023.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical planning
with diffusion. In The Twelfth International Conference on Learning Representations (ICLR), 2024.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS), 33:1179-1191,
2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-learning.
arXiv preprint arXiv:2110.06169, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in
Neural Information Processing Systems (NeurlPS), 34:8780-8794, 2021.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is
conditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022.

R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. IEEE Transactions on Neural
Networks, 9(5):1054-1054, 1998. doi: 10.1109/TNN.1998.712192.

Boyuan Chen, Diego Marti Monsd, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.
Diffusion forcing: Next-token prediction meets full-sequence diffusion. Advances in Neural Information
Processing Systems (NeurlPS), 37:24081-24125, 2024.

Jaesik Yoon, Hyeonseo Cho, Doojin Baek, Yoshua Bengio, and Sungjin Ahn. Monte carlo tree diffusion
for system 2 planning. arXiv preprint arXiv:2502.07202, 2025.

Guangyao Zhou, Sivaramakrishnan Swaminathan, Rajkumar Vasudeva Raju, J Swaroop Guntupalli,
Wolfgang Lehrach, Joseph Ortiz, Antoine Dedieu, Miguel Lazaro-Gredilla, and Kevin Murphy. Diffusion
model predictive control. arXiv preprint arXiv:2410.05364, 2024.

Yanwei Wang, Lirui Wang, Yilun Du, Balakumar Sundaralingam, Xuning Yang, Yu-Wei Chao, Claudia
Pérez-D’ Arpino, Dieter Fox, and Julie Shah. Inference-time policy steering through human interactions.
In 2025 IEEE International Conference on Robotics and Automation (ICRA), pages 15626-15633. IEEE,
2025.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi Zhang,
Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement learning. arXiv
preprint arXiv:1907.02057, 2019.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul Ye.
Diffusion posterior sampling for general noisy inverse problems. In The Eleventh International Conference
on Learning Representations (ICLR), 2023.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin Chen,
and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning (ICML), volume 202 of
Proceedings of Machine Learning Research, pages 32483-32498. PMLR, 23-29 Jul 2023.

11

[17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free energy-
guided conditional diffusion model. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 23174-23184, 2023.

Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, and Mengdi Wang. Gradient guidance for
diffusion models: An optimization perspective. Advances in Neural Information Processing Systems
(NeurIPS), 37:90736-90770, 2024.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100-107, 1968. doi:
10.1109/TSSC.1968.300136.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):
269-271, 1959.

Lei Tang, Songyi Dian, Gangxu Gu, Kunli Zhou, Suihe Wang, and Xinghuan Feng. A novel potential
field method for obstacle avoidance and path planning of mobile robot. In 2010 3rd International
Conference on Computer Science and Information Technology, volume 9, pages 633-637, 2010. doi:
10.1109/ICCSIT.2010.5565069.

Roland Geraerts and Mark H. Overmars. A comparative study of probabilistic roadmap planners. In Jean-
Daniel Boissonnat, Joel Burdick, Ken Goldberg, and Seth Hutchinson, editors, Algorithmic Foundations of
Robotics V, pages 43-57. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-45058-0.
doi: 10.1007/978-3-540-45058-0_4.

Juan Cortés and Thierry Siméon. Sampling-based motion planning under kinematic loop-closure constraints.
In Michael Erdmann, Mark Overmars, David Hsu, and Frank van der Stappen, editors, Algorithmic
Foundations of Robotics VI, pages 75-90. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN
978-3-540-31506-3. doi: 10.1007/10991541_7.

Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable mpc for
end-to-end planning and control. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. Review on model predictive control: An
engineering perspective. The International Journal of Advanced Manufacturing Technology, 117(5):
1327-1349, 2021.

Sergey Levine and Vladlen Koltun. Guided policy search. In Sanjoy Dasgupta and David McAllester,
editors, Proceedings of the 30th International Conference on Machine Learning (ICML), volume 28 of
Proceedings of Machine Learning Research, pages 1-9, Atlanta, Georgia, USA, 17-19 Jun 2013. PMLR.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance: Solving
sparse reward tasks using self-balancing shaped rewards. Advances in Neural Information Processing
Systems (NeurlPS), 32, 2019.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping. Advances in Neural
Information Processing Systems (NeurIPS), 33:15931-15941, 2020.

Lang Feng, Pengjie Gu, Bo An, and Gang Pan. Resisting stochastic risks in diffusion planners with the
trajectory aggregation tree. arXiv preprint arXiv:2405.17879, 2024.

Maciej Swiechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mandziuk. Monte carlo tree search:
areview of recent modifications and applications. Artificial Intelligence Review, 56(3):2497-2562, July
2022. ISSN 1573-7462. doi: 10.1007/s10462-022-10228-y.

Daniel Hennes and Dario 1zzo. Interplanetary trajectory planning with monte carlo tree search. In
International Joint Conference on Artificial Intelligence (IJCAI), pages 769-775, 2015.

Yann Labbé, Sergey Zagoruyko, Igor Kalevatykh, Ivan Laptev, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. Monte-carlo tree search for efficient visually guided rearrangement planning. /EEE Robotics and
Automation Letters (RA-L), 5(2):3715-3722, 2020. doi: 10.1109/LRA.2020.2980984.

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang. Deep learning for
real-time atari game play using offline monte-carlo tree search planning. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems
(NeurIPS), volume 27. Curran Associates, Inc., 2014.

12

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

[52]

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain exploration
for long horizon multi-goal reinforcement learning. In International Conference on Machine Learning
(ICML), pages 7750-7761. PMLR, 2020.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based rein-
forcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and David Silver.
Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604-609,
December 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-03051-4.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning (ICML), pages
2256-2265. pmlr, 2015.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Siyuan Zhou, Yilun Du, Shun Zhang, Mengdi Xu, Yikang Shen, Wei Xiao, Dit-Yan Yeung, and Chuang Gan.
Adaptive online replanning with diffusion models. In Thirty-seventh Conference on Neural Information
Processing Systems (NeurlPS), 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Kyowoon Lee, Seongun Kim, and Jaesik Choi. Refining diffusion planner for reliable behavior synthesis
by automatic detection of infeasible plans. In Thirty-seventh Conference on Neural Information Processing
Systems (NeurlPS), 2023.

Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation and inference with energy
based models. arXiv preprint arXiv:2004.06030, 2020.

Haofei Lu, Dongqi Han, Yifei Shen, and Dongsheng Li. What makes a good diffusion planner for decision
making? In The Thirteenth International Conference on Learning Representations (ICLR), 2025.

Yujia Huang, Adishree Ghatare, Yuanzhe Liu, Ziniu Hu, Qinsheng Zhang, Chandramouli S Sastry,
Siddharth Gururani, Sageev Oore, and Yisong Yue. Symbolic music generation with non-differentiable
rule guided diffusion. arXiv preprint arXiv:2402.14285, 2024.

Yuchen Shen, Chenhao Zhang, Sijie Fu, Chenghui Zhou, Newell Washburn, and Barnabas Poczos.
Chemistry-inspired diffusion with non-differentiable guidance. In The Thirteenth International Con-
ference on Learning Representations (ICLR), 2025.

Gabriele Corso, Yilun Xu, Valentin De Bortoli, Regina Barzilay, and Tommi S. Jaakkola. Particle guidance:
non-i.i.d. diverse sampling with diffusion models. In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

Alexander Shapiro. Monte carlo sampling methods. In Stochastic Programming, volume 10 of Handbooks
in Operations Research and Management Science, pages 353—425. Elsevier, 2003. doi: https://doi.org/10.
1016/50927-0507(03)10006-0.

Caelan Reed Garrett, Tomdas Lozano-Pérez, and Leslie Pack Kaelbling. Pddlstream: Integrating symbolic
planners and blackbox samplers via optimistic adaptive planning. In Proceedings of the international
conference on automated planning and scheduling, volume 30, pages 440-448, 2020.

Zibin Dong, Yifu Yuan, Jianye HAO, Fei Ni, Yi Ma, Pengyi Li, and YAN ZHENG. Cleandiffuser: An
easy-to-use modularized library for diffusion models in decision making. In The Thirty-eight Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the polyak-tojasiewicz condition. In Joint European conference on machine learning and
knowledge discovery in databases, pages 795-811. Springer, 2016.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking offline
goal-conditioned rl. arXiv preprint arXiv:2410.20092, 2024.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte
carlo tree search methods. IEEE Transactions on Computational Intelligence and Al in Games, 4(1):1-43,
2012. doi: 10.1109/TCIAIG.2012.2186810.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction explicitly outline the claims and contributions,
which are consistent with our experimental findings.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed limitation in the conclusion section. (see Sec.[6)
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: We provide the proof of our proposition in Appendix [C]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide comprehensive implementation details through step-by-step guide-
lines in Appendix [A] [B]which outline TDP’s complete pipeline. Additionally, all hyperpa-
rameters for every experiment reported in the main paper are documented in Appendix
ensuring full reproducibility of our results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code with instructions to reproduce the main results is available on the project
website.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental details are provided in the appendix/supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the performance with their standard errors.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources required for the experiments are provided in Appendix [D}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Research in this paper conform with the Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The paper poses no such societal impacts.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original papers that produced any code or data used in our paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Tree-guided Diffusion Planner

Step 1. Parent Branching In the first phase of bi-level sampling, N parent trajectories are generated
via Algorithm[2] IV denotes the number of trajectories sampled in a batch.

Step 2. Sub-Tree Expansion In the second phase of bi-level sampling, N child trajectories are
generated via Algorithm 3| Each child trajectory is generated from a parent trajectory, and the
branching site is randomly chosen among intermediate states in the parent trajectory.

Step 3. Leaf Evaluation Now we construct a trajectory tree consisting of parent and child
trajectories. The root node of the tree corresponds to the initial state, and the tree has 2V leaf nodes.
Each leaf node represents a complete trajectory and is associated with a guide score of the path from
the root. The path to the leaf with the highest score is selected as the final solution trajectory.

Step 4. Action Execution TDP supports both open-loop and closed-loop planning. In open-loop
planning, the agent executes the entire solution trajectory as planned. In closed-loop planning, the
agent executes only the first action of the planned trajectory, then replans by repeating Step 1-3 at
each timestep.

B Algorithms

Algorithm 1 State Decomposition (SD)
1: Input: 7, trajectory T
2: W = number of features in state vector of T
3 (81,82,...8w) =T
4: lcontrol < [] lobs H
5: fori=1to W do
6.
7
8

if 22 —= 0 then
Append 8 10 leontrol

: else
9: Append s; to lops
10: end if
11: end for

12: return [leontrol, Lobs)

Algorithm 2 Parent Branching Algorithm 3 Sub-Tree Expansion

1: Input: py, SN, T, oy, C, parent trajecto-
ries Tparent, NUMber of samples B, planning
horizon T', fast diffusion steps Ny < N

: for j =1to Bdo
: // random branch site

1: Input: 1, X%, N, J, scales (a, o), parti-
cle guidance kernel ®(-), condition C'
2: Initialize plan 7 ... ~ N(0,1)

3: fori = Nto1do
p' 4 g (T;arent)

// state decomposition

[Méontrol’ u(;bs] « SD(j :u’)
// particle guidance

—1
Mcomrol — Mcontrol + apz V<I)(:ucontrol)
9: // gradlent guidance

10: Mobs « Mobs + Qg 2 V*7(:’-Lobs)
L1 :uparent « [N’conr_rol’ /”Lobs]

12: parent ~ N(,uparemv Z)

13: Constrain Tparent with C'

14: end for

15: return 7.

A

2

3

4: b; ~Uniform([0,T))

5: Extract first b; states from T parent, ;

6: C— {sp}v,

7 // perturb parent traj.
N

8: Tchjf]d,j 4Ny (Tparent.,ja C)

9: // fast planning

10: fori= Nytoldo

11: ph = :u9(T<i:hild,_j) _ o
12: Tinid, ™ /\/(/ﬁ + SV T (i), B
13: Constrain Tchﬂd j with C'

14: end for

15: end for

16: return 79,

C Proof of Proposition [I]

Given guide J(X) = J1(X) + J2(X), orthogonal gradient V| 7 (X) to the subspace spanned by
A is calculated as follows:

VLJ(X) = — |:01%(I - AAT)(X — A’Ul)jl(X) + ;%(X - wl)jQ(X) (6)

We examine the orthogonal reverse process applying the orthogonal gradient guidance:

1 1 —
dX@L = (2 - h(T—t)) Xt,Ldt + VLf(Xt)dt + (I — AAT)th (7)

where the conditional distribution X;| X in forward process is Gaussian, i.e., N (a(t)zg, h(t)I)

where h(t) = 1 —a?(t) = 1 — exp(—+/t) [18]. First we consider the case when Xy ~ N(0, I). The

orthogonal gradient can be approximated as V.7 (X) ~ — 2 (X, — w,)J2(X) by assumption. As
o2

J2(X) > Ex,[J2(Xo)] =: bp > 0 and taking expectation, it is derived by linear ODE dE[X, || =

[(*y(t) - %) E[X, 1]+ %wl} dt. Solving this ODE, we get lower bound of the expectation of
2 2
displacement of the final state E[| X7 | |] > exp (—®(T,0)) (g—% fOT exp (P(s, O))ds) |w, | where

D(t,s) = f; ~y(u) — %) du. Since the coefficient of direction vector w is a tractable positive
2

constant, the final state is always off-subspace. The final state converges linearly as the given guide

function satisfies the PL condition and the Lipschitz property [50]. However, the global optimal

solution lies in the subspace spanned by A, guided sample converges to local optimal solution which

is orthogonal to the subspace.

Second, we consider the case when X ~ g, (X T 7). As the small perturbation is added to the
unconditional sample in the subspace, the orthogonal gradient can be approximated as V.7 (X)
,%(] —AAT)(X — Av)) I (X) = fﬁlel (X). From Eq. we get linear ODE dE[X; || =

[(7(7&) — %%Jl(X)) E[Xt7L]} dt. AsE[Xy] =0, we have E[X7 || = 0, which means the final

state is on-subspace. Similar to the previous case, the final state converges linearly to the global
optimal solution lying on the subspace as the given guide function satisfies the PL condition and
Lipschitz property [50].

Q

0.5 1 — y=lexp(-x?) +Lexp(-(x - 4)?)

==~ Local Maximum
——- Global Maximum

% -4 2 0 2 4 6 8 10
X
Figure 7: 1D Example of Local&Global optimum existing reward problem. When gradient guidance is
initialized at x = —2, it converges to a local maximum at x = 0. This example highlights the importance
of using multiple initial points when applying gradient-based guidance, which can improve the probability of
reaching the global optimum under a test-time guide function.

22

D Hyperparameters

In Maze2D gold-picking tasks, we use the same number of diffusion steps for both parent trajectory
generation and sub-tree expansion, as any state within a valid maze cell can serve as a feasible
trajectory starting point. For fair comparison, we evaluate MCSS and TAT with twice the number of
samples (256) to account for their single-stage sampling design. All experiments were conducted

using a single NVIDIA GeForce RTX 3090 GPU.

Table 4: Hyperparameters of three tasks.

Task Name Value
maze2d-medium planning horizon 7jreq 256
maze2d-medium maximum steps 7max 600
maze2d-large planning horizon Tjeq 384
maze2d-large maximum steps 7ax 800

Maze2D Gold-picking Threshold distance 0.3
gradient guidance strength o 62.5
particle guidance strength «), 0.1
diffusion steps N = Ny 256
Number of samples B 128
planning horizon T}yeq 256
maximum steps 7 max 800
guide function parameters ci, c2, €3 1.0,1.5,2.0
Peak width ratio (Hsmid — Slocal H : ||Smid - Sgl(ybal H) 3:1
Threshold distance (PNP (stack), PNP (place)) 0.2

Kuka Robot Arm Manipulation Threshold distance (PNWP) 0.4
gradient guidance strength oy 100
particle guidance strength cv, (PNP (stack)) 0.25
particle guidance strength o, (PNP (place)) 0.50
diffusion steps N 1000
fast diffusion steps Ny 100
planning horizon Tjyeq 64
maximum steps Zmax 2000
Threshold distance 0.1
gradient guidance strength oy 0.1
particle guidance strength o, 0.1

AntMaze Multi-goal Exploration first goal configuration (hg, , og,) (4.0, 0.05)
second goal configuration (hg,, 0g,) (2.0, 0.15)
third goal configuration (hg,, 0gs (0.5,0.2)
fourth goal configuration (hg,, 04, (0.25,0.25)
diffusion steps N 20
fast diffusion steps [Ny 4

23

E Maze2D Gold-picking Test Map

FIF[FIF T I[F[FLF
s O o)) e e e

@ @

L L2 DA DA LR L B S DA

Figure 8: Maze2d-Medium Single-Task Test Map.

CFITFTIFIFIFIFIFLEF
lll.ol.el.ol.l.l. .

. -'.' i ".' "i' ".- AL "i'

Figure 9: Maze2d-Medium Multi-Task Test Map.

E:u -|°u -lu -l.u Flu -lu -lu -Olu ilu'

U L VeI U U UEI LTI
ATV e T e T e T e e T e T T

Figure 10: Maze2d-Large Single-Task Test Map.

-lu -IL -IL -alu

r-

r
-

=
|

r

~-|'-|--ﬁ-|=-|- md L

Figure 11: Maze2d-Large Multi-Task Test Map.

F Evaluation Metrics
We explain the evaluation metrics used in Table 2]and Table[3]

KUKA Robot Arm Manipulation. In PNP (stack), the agent gets 1 point whenever it stacks a
block on the existing block. The maximum points the agent can get is 3 points since there are 3
blocks to stack (one is fixed). In PNP (place), the agent gets 1 point whenever it moves a block to a
desired space. The maximum points the agent can get is 4 points since there are 4 blocks to move. In
PNWP, if the agent moves a block to a region of global optimum, it will get 1 point, while it can get
only half a point if it moves a block to a region of local optimum. Therefore, the maximum score that
the agent can achieve in this task is 4 points, as it is guided to move 4 blocks in total.

AntMaze Multi-goal Exploration. The number of found goals denotes the number of goals that

the agent has found until the task is ended. The number of timesteps per goal indicates the timesteps
consumed to reach each goal. Sequence match evaluates how closely an agent follows a predefined

24

sequence of visits. For example, if the defined sequence is 1 — 2 — 3 — 4, the agent earns points
based on the number of ordered pairs (i.e., {(1,2), (1, 3), (1,4), (2, 3), (2,4), (3,4)}) included in its
path. The maximum score an agent can obtain is 6 points (.’ (3) = 6). If the agent’s visiting order
is 2 - 3 — 4 — 1, then the ordered pairs (2,3), (3,4), and (2,4) match the order in the defined
sequence, resulting in a score of 3 points.

G Time Budget Analysis

We analyze the extra time cost of our method 1) to calculate pairwise distance of trajectory samples
for particle guidance and 2) to expand sub-tree trajectories by fast-denoising, as shown in Table[3]

Table 5: Planning Time Comparison in KUKA Robot Arm Manipulation. The results are
averaged over 100 planning seeds per trajectory generation. All test results are measured on a single
NVIDIA GeForce RTX 3090 GPU core. The unit is second (s).

Task \ Diffuser Diffuser”™ MCSS TDP (w/ochild) TDP (woPG) TDP
PNP (stack-place) | 16.28 16.73 16.39 17.25 18.02 19.08
PNWP 16.66 17.53 16.89 17.59 17.87 18.31

H Hyperparameter Selection

TDP relies on three key hyperparameters: gradient guidance scale oy, particle guidance scale oy,, and
fast denoising steps N ;. We provide an empirical analysis of these hyperparameters on the KUKA
tasks (PNP (place) and PNWP), demonstrating the robustness of TDP across a broad range of values
for each hyperparameter. Each result used 18 samples per planning. Bolded values indicate the
defaults used in the main experiments, and the rest of the hyperparameters are fixed to their default
values as denoted in Appendix [D]

Table 6: Effect of Ny on TDP Performance. + denotes standard error.

Ny | 50 100 200 400
PNP (place) | 37.1 £008 37.8 +009 38.1 £008 38.0 +0.07
PNWP 65.7 014 67.1 £010 683 +£009 68.8 +0.10

Table 7: Effect of o, on TDP Performance. + denotes standard error.

ap | 0.1 0.25 0.5 1.0
PNP (place) | 37.4 008 36.6 +008 37.8 £009 35.5 +o.11
PNWP 66.5 o014 66.1 £o11 67.1 £o10 64.8 +013

Table 8: Effect of oy on TDP Performance. + denotes standard error.

Qg \ 25 50 100 200
PNP (place) | 38.1 £008 38.6 £007 37.8 £009 36.0 £0.12
PNWP 67.8 +009 682 +o011 67.1 010 64.0 +0.14

Based on the ablation study, we provide practical guidelines for selecting each hyperparameter for
unseen test tasks.

* Ny: This can be selected based on the environment before planning time. A common heuristic is
to set Ny between 10% and 20% of the original diffusion steps used by the pretrained diffusion
planner.

* «p: In practice, o, typically lies within the range [0.1, 0.5]. This range is compatible across stan-
dard environments, where state spaces are normalized (e.g., to [-1, 1]). Increasing «,, encourages
greater diversity in parent trajectory sampling.

* ag: This should be empirically tuned based on the characteristics of the test-time task and guide
function.

25

I Ablation Study: Number of Samples

Our framework aggregates multiple trajectory samples during test-time planning, where the number
of samples significantly impacts performance. While the main paper reports averaged results across
different sampling budgets, here we provide a detailed ablation to show how performance varies with
the number of samples.

L1 Kuka Robot Arm Manipulation

Table 9: Result of PNP (stack). + denotes standard error.

#samples | Diffuser” MCSS TDP wiochilay TDP wopG) TDP

6 59.3+0.10 61.3+010 62.0+008 56.0+0.10 62.3+0.09
12 61.0+0.09 58.7+0090 57.0+0.09 59.7+0.10 56.0+ 0.09
18 58.7+0.09 58.0+010 62.0+0.09 59.7+ 0.09 66.0+0.10
24 61.3+008 61.7+000 59.0+0.10 62.3+0.10 60.3+0.09

Table 10: Result of PNP (place). + denotes standard error.

samples \ Diffuser” MCSS TDP (wiochily TDP woprc)y TDP

6 20.8+ 0.08 30.2+008 31.8+008 34.0+ 0.08 35.2+0.07
12 21.0+0.07 31.2+008 31.0+008 37.2+ 008 35.5+008
18 21.2+0.06 32.2+007 33.2+007 37.5+ 007 37.8+0.09
24 22.8+0.07 31.8+008 32.8+007 39.0+0.09 39.2+0.08

Table 11: Result of PNWP. + denotes standard error.

#samples | Diffuser” MCSS TDP wiochilay TDP wopG) TDP

6 33.5+ 005 34.8+005 34.4+ 005 64.5+0.11 65.1+0.11
12 33.6+0.05 35.2+005 36.0+00s5 65.6+0.10 65.0+0.11
18 36.0+ 0.05 35.5+005 34.9+0.0s5 67.6+0.10 67.1+0.10
24 35.8+0.05 37.2+004 36.9+004 68.8+0.10 70.0+ 0.10

1.2 AntMaze Multi-goal Exploration

Table 12: Number of Found Goals + denotes standard error.

#samples | Diffuser” MCSS TDP wiochilay TDP wopG) TDP

32 11.5 +16 535 +37 53.8 £38 59.8 +37 57.5 +309
64 135 +17 56.5 +41 73.8 £34 61.0 +338 73.8 +34
128 135 +19 66.0 £38 673 £37 67.3 +£36 63.5 +36
256 11.3+16 69.3 +39 70.8 £36 70.3 +309 69.5 +33

Table 13: Sequence Match Score. + denotes standard error.

samples \ Diffuser” MCSS TDP (wiochity TDP woprc) TDP

32 0.8+022 253+147 243+ 15 27.7+ 150 27.3+157
64 1.2+ 029 27.8+168 35.0+1381 30.5+ 170 36.5+ 145
128 2.0+ 047 337+171 385+ 174 34.8+ 1.62 33.8+1.87
256 0.8+022 34.0+152 373+186 37.8+1.78 37.5+ 177

Table 14: Number of timesteps per goal. + denotes standard error.

#samples | Diffuser” MCSS TDP (wochitay TDP wopc) TDP

32 4347.8 801.1 773.4 661.6 708.4
64 3703.7 667.5 598.7 626.7 462.0
128 3703.7 549.0 545.2 564.3 594.1
256 44445 481.1 467.4 478.7 504.0

26

J TDP performance on the standard maze benchmark

TDP surpasses sequential approaches (i.e., MCTD [11]], Diffusion-Forcing [10]]) on the standard maze
offline benchmarks [51]].

* pointmaze-{medium, large, giant}-navigate-v0: 100 £ 0
* antmaze-{medium, large}-navigate-v0: 100 £ 0
* antmaze-giant-navigate-v0: 98 = 6

TDP has advantages over sequential approaches even in single-task scenarios, in terms of trajectory
optimality. For instance, in standard maze benchmarks, the shortest-path trajectory between initial
and goal states represents the globally optimal solution, while longer trajectories correspond to
suboptimal (local optimal) solutions [4]. As maze environments scale up, identifying globally optimal
solutions requires evaluating combinatorially diverse trajectory candidates with varying structures.

Single-step exploration methods like MCTD optimize actions one step at a time (via guided vs.
non-guided action selection), which tends to lead to locally greedy decisions [52] and results in longer
trajectories than the shortest path. In contrast, TDP employs a multi-step exploration framework via
bi-level search, enabling per-step action selection based on multi-step future rewards evaluated across
diverse-branched trajectory candidates. This approach allows TDP to be able to assess long-term
action consequences and avoid the local optimal path.

K Learned PG vs. Fixed PG

Learned potentials [46]] offer slight improvements in both sample diversity and overall performance.
The results below compare TDP using learned versus fixed potentials on the KUKA benchmarks.

 pairwise trajectory distance: Learned PG (17.54 +o0.04) vs. Fixed PG (17.38 +0.0s)

¢ performance:
— PNP (stack): Learned PG (61.28 +022) vs. Fixed PG (61.17 +0.24)
— PNP (place): Learned PG (37.04 +o0.12) vs. Fixed PG (36.94 +0.13)
— PNWP: Learned PG (67.23 +o0.5) vs. Fixed PG (66.81 +0.17)

However, training a task-specific particle guidance potential model requires expert demonstrations,
making it impractical for unseen tasks.

27

	Introduction
	Related Work
	Background
	Problem Setting
	Test-time Guided Planning with Diffusion Models
	Challenges in Guided Planning

	Method
	State Decomposition
	Parent Branching
	Sub-Tree Expansion

	Experiments
	Baselines and Ablations
	Maze2d Gold-picking
	KUKA Robot Arm Manipulation
	AntMaze Multi-goal Exploration

	Conclusion
	Tree-guided Diffusion Planner
	Algorithms
	Proof of Proposition 1
	Hyperparameters
	Maze2D Gold-picking Test Map
	Evaluation Metrics
	Time Budget Analysis
	Hyperparameter Selection
	Ablation Study: Number of Samples
	Kuka Robot Arm Manipulation
	AntMaze Multi-goal Exploration

	TDP performance on the standard maze benchmark
	Learned PG vs. Fixed PG

