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Abstract

Universal Dependencies (UD) is a global ini-001
tiative to create a standardized annotation for002
the dependency syntax of human languages.003
Addressing its deviation from typological prin-004
ciples, this study presents an empirical inves-005
tigation of a typologically motivated transfor-006
mation of UD proposed by William Croft. Our007
findings underscore the significance of the mod-008
ifications across diverse languages, shedding009
light on the advantages and limitations of the010
transformations.011

1 Introduction012

Universal Dependencies (UD) (Nivre et al., 2016;013

de Marneffe et al., 2021) is widely used as a stan-014

dard for morphosyntactic annotations. Ever since015

its initial release in October 2014, however, the016

scheme has been criticized with respect to its ad-017

herence to typological principles (Choi et al., 2021;018

Kanayama and Iwamoto, 2020). Croft et al. (2017)019

argue that the UD initiative, akin to prior parsing020

and tagging scheme proposals aimed at universal021

description of the world’s languages, fails to re-022

fer explicitly to the extensive typological literature023

on universals, which accounts for the language-024

specific annotations that it provides besides those025

that are actually universal in typological terms.026

Therefore, they continue to propose their own de-027

pendency annotation scheme, claiming to represent028

cross-linguistic variations more comprehensively029

based on the following four design principles.030

The first principle distinguishes constructions,031

which are universal, from strategies, which are032

language-specific, and favors classification based033

on the former. For example, a copula strategy, used034

in English to realize a predicate nominal construc-035

tion, may be represented by a different strategy in036

another language, so the separate relation in UD for037

copulas, i.e., ’cop,’ is absent in Croft et al. (2017)’s038

revision. The second principle emphasizes the use039

of the same labels for the same functions realized 040

syntactically and morphologically, as in UD’s re- 041

placement of the earlier dependency relations used 042

to mark prepositional phrases, indicating a syntac- 043

tic strategy, by the ’case’ label, which is already 044

used in these schemes to represent a morpholog- 045

ical strategy with the same function. The third 046

principle prioritizes information packaging over 047

lexical semantics and contributes significantly to 048

the provision of a more economic tag set, as in 049

the substitution of the UD relations for different 050

nominal modifiers with a single label, detailed in 051

Section 3. The fourth principle emphasizes con- 052

sideration of dependency structure ranks, includ- 053

ing predicates, arguments, modifiers, and adverbs 054

qualifying modifiers, as instantiated by Croft et al. 055

(2017)’s different treatments of complex sentences, 056

complex predicates, and arguments although they 057

are all dependent on the predicate. 058

Croft et al. (2017) emphasize that the advan- 059

tages brought about by their scheme may sacrifice 060

the practical purposes pursued by UD, including 061

achieving high parsing accuracy. However, they 062

never admit that this is necessarily the case, and 063

the exact state of affairs needs to be investigated 064

through experimentation and empirical evaluation. 065

This paper seeks to empirically investigate the im- 066

pact of the proposed revisions on parsing accuracy. 067

We hypothesize that it is more straightforward to 068

parse treebanks with topologically informed UD 069

annotation (referred to as TUD henceforth) than 070

to parse ones with standard UD annotation. We 071

expect significant but not necessarily fundamen- 072

tal improvement, as Croft et al. (2017)’s proposals 073

address only the classification of dependency rela- 074

tions without affecting the overall tree structure. 075

2 Related Work 076

Some proposals address the typological limitations 077

of UD through parsing architecture. Basirat and 078
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Nivre (2021) integrate the notion of syntactic nu-079

clei into the UD parsing framework to cope with080

the typological differences of languages. Their081

experimentation demonstrates that nucleus compo-082

sition consistently improves parsing accuracy. This083

idea is further explored by Nivre et al. (2022), who084

find that the observed parsing improvement results085

from the greater capability of the enriched models086

of analyzing main predicates, nominal dependents,087

clausal dependents, and coordination structures.088

Other proposals present alternative annotation089

schemes or revisions to UD. Gerdes et al. (2018)090

propose the Surface-Syntactic Universal Depen-091

dencies (SUD), claimed to be a richer and easier092

variant of UD. They argue that SUD treebanks en-093

able cross-linguistic typological measures thanks to094

their distributional and functional criteria. Gerdes095

et al. (2019) recall the SUD’s general principles,096

update its relation set, address annotation issues,097

and present an orthogonal layer of syntactic fea-098

tures. Gerdes et al. (2021) further suggest that a099

new treebank should initially be developed in SUD,100

even if a UD treebank is intended. The 2021 In-101

ternational Conference on Parsing Technologies102

(Oepen et al., 2021) Shared Task was dedicated103

to the additional structural layer of UD, known as104

Enhanced Universal Dependencies (EUD), used105

to encode grammatical relations that can be repre-106

sented more adequately using graphical rather than107

purely rooted trees.108

This paper examines an annotation scheme that109

can be regarded as a revised version of UD. Our110

modifications concern only the dependency labels111

and their scopes of application, while the head-112

dependent relations remain intact. This is because113

Croft et al. (2017) adopt the same dependency tree114

topology as that of UD, while they classify the115

dependencies differently in a number of cases. Fur-116

thermore, our conversion involves less radical de-117

pendency relation mappings and retains the major-118

ity of original UD labels regardless of the POS tags119

of the corresponding head and dependent tokens.120

3 Transformation121

One of the four ranks that Croft et al. (2017) enu-122

merate for dependency structure is that of argu-123

ments, where they distinguish the subject relation124

from object and oblique. They label this rela-125

tion ’sbj’ regardless of its categorization as a noun126

phrase or a relative clause. This is realized in our127

script via the consolidation rules nsubj→sbj and128

csubj→sbj. Furthermore, they find it redundant 129

to tag direct and indirect objects differently, so 130

iobj→obj* and obj→obj* are included in our script 131

as consolidation rules aimed to exclude ’iobj’ from 132

the list of dependency relations. 133

Croft et al. (2017) disagree on the dependency la- 134

bel distinction made in UD between complements 135

in terms of grammatical role, including obliga- 136

tory and nonobligatory control. Our consolida- 137

tion rules ccomp→comp and xcomp→comp serve 138

to neutralize the distinction. Moreover, they as- 139

sert that UD treats resultatives as controlled com- 140

plements, which it labels ’xcomp.’ They suggest 141

that these complex predicate elements should be 142

labeled similarly to other secondary predicates 143

and adverbs of manner, which are tagged ’sec.’ 144

The rule xcomp→sec is included to realize this. 145

Thus, the fragmentation rules xcomp→comp and 146

xcomp→sec have the same UD relation on their 147

left-hand sides. xcomp→comp is set to apply 148

where the POS tag of the token with the ’xcomp’ de- 149

pendency relation is VERB, which is assumed not 150

to be the case for resultatives, where xcomp→sec 151

is set to apply instead. 152

UD treebanks optionally set the type of an ad- 153

verb as a morphological feature known as AdvType, 154

with different values for adverbs of manner, loca- 155

tion, time, quantity or degree, cause, and modal 156

nature. On the other hand, Croft et al. (2017) pro- 157

pose that the diversity of adverbs in semantics, syn- 158

tactic distribution, and morphological form needs 159

to be captured and suggest that adverbs of manner 160

should be labeled ’sec,’ and ones expressing de- 161

gree or hedging, aspect or modality, and location 162

or time should be tagged ’qlfy,’ ’aux,’ and ’obl,’ 163

respectively. Therefore, the fragmentation rules 164

advmod→sec, advmod→qlfy, advmod→aux*, and 165

advmod→obl* are there to convert ’advmod’ to 166

each of the above relations if AdvType is set to the 167

corresponding value. In cases where a different 168

or no setting exists, advmod→obl* will apply by 169

default, as Croft et al. (2017) assert that the UD 170

’advmod’ relation should be excluded altogether. 171

Croft et al. (2017) analyze light verbs as com- 172

plex predicates, tagged ’cxp,’ unlike in UD, where 173

they are treated similarly to nominal compounds. 174

Therefore, the rule compound→cxp is included 175

in our script to transform the UD compound re- 176

lation to ’cxp’ where the token’s parent is POS 177

tagged VERB, assumed to signal a light verb con- 178

struction alongside the token’s own compound de- 179

pendency relation label. They also suggest that 180
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Figure 1: A summary of the transformation rules.

copulas should be treated as light verbs, hence the181

consolidation rule cop→cxp in our script. Further-182

more, they suggest that ’nummod,’ ’amod,’ and183

’det’ should all be tagged ’mod,’ as they involve184

the same type of information in general. The con-185

solidation rules nummod→mod, amod→mod, and186

det→mod are there to realize this simplification.187

Figure 1 summarizes the transformations.188

4 Experiments and Results189

We evaluate the impact of the typological transfor-190

mations based on their contribution to the parsing191

performance. Our test benchmark consists of 20192

treebanks from UD 2.12 belonging to diverse lan-193

guage families. In addition to the language diver-194

sity, we consider the presence of labels needed for195

the maximal application of the transformation rules.196

Table 1 outlines the selected treebanks with statis-197

tics about their sizes and transformed token ratios198

(Col. IR). Our analysis is based on the Labeled At-199

tachment Score (LAS) obtained from two primary200

dependency parsing architectures: transition-based201

(Nivre, 2004) and graph-based parsing (McDonald202

et al., 2005). We use the UUParesr (de Lhoneux203

et al., 2017) for the former and the Biaffine parser204

(Dozat and Manning, 2017) for the latter with the205

settings outlined in Appendix A. We apply the206

transformation rules on each treebank and indepen-207

dently train three parsing models, each with distinct208

random seeds, using both the original (UD) and209

transformed treebanks (TUD). The average LASs210

on the development sets are reported in Cols. UD211

and TUD. Additionally, Col. Ora(cle) represents212

the upper bound for parsing performance, achiev-213

able if the dependency relations of the transformed214

tokens are predicted correctly. To assess the sig-215

nificance of differences between the UD and TUD216

results, we utilize McNemar’s test, as detailed in217

Appendix B, and mark the significant differences218

(p-value < .05) with an asterisk.219

First of all, the IR values indicate the importance220

of the typological transformation, applicable to al-221

most 30% of the tokens, and that, if predicted cor-222

A
ra

bi
c

A
rm

en
ia

n

B
as

qu
e

C
hi

ne
se

C
l-

C
hi

ne
se

D
an

is
h

E
ng

lis
h

Fi
nn

is
h

H
in

di

It
al

ia
n

L
at

in

L
at

vi
an

M
ar

at
hi

N
or

w
eg

ia
n

Pe
rs

ia
n

R
us

si
an

Sw
ed

is
h

U
rd

u

V
ie

tn
am

es
e

W
ol

of

A
ve

ra
ge

0

0.5

1

1.5

* * * * * * * ** * * * * * * * * * * *
.3

−.2
.0

−.1

.2
.3

.2

.0

.2 .2

−.3

.0

.3

.0

.0

.5
.4

.7

.4 .4

.2
.0

.7

1.4

.2
.1 .1

.0

.5

.2

.4 .4 .4 .4

.0
−.1

.7

.4

.9

−.3

.8

.4

Transition-based Graph-based

Figure 2: Absolute LAS improvement (or degradation).
Significant results with p-value < 0.05 are marked.

rectly (Col. Ora), it can improve the performance 223

by 2.1 and 3.0 points for the transition and graph- 224

based parsing, respectively. However, the parsers 225

can only harness a small but statistically signifi- 226

cant portion of this potential improvement, with 227

transition-based achieving 0.16 points and graph- 228

based achieving 0.35 points. Figure 2 visualizes 229

the absolute LAS improvement (or degradation) 230

caused by the typological transformations. We can 231

observe that, on most treebanks, the parsing mod- 232

els result in a better performance on typologically 233

transformed treebanks and that, except for Latin, 234

the negative results are statistically insignificant. 235

These findings highlight the transformation’s con- 236

structive role in enhancing parsing accuracy with- 237

out introducing significant adverse effects. 238

Further investigation of the results reveals the 239

varying contribution of the rules to the performance 240

gain. Figure 3 illustrates the enhancement achieved 241

by each transformation in classifying tokens that 242

underwent the respective transformation. We can 243

see that most rules constructively impact parsing 244

with similar ranks for both parsers and that untrans- 245

formed tokens (x→x) are not influenced. The most 246

significant contribution arises from the consolida- 247

tion rules. A crucial factor influencing their effec- 248

tiveness is the inherent difficulty in distinguishing 249

between source relations, often being misclassified 250

as one another in UD, which is no longer an issue 251

once they are merged in TUD. In particular, the 252

effectiveness of the iobj→obj* rule is highlighted 253

by the common misclassification scenario, where 254

indirect objects (’iobj’) are mistakenly identified as 255

direct objects (’obj’). Therefore, the unification of 256

’iobj’ and ’obj’ prevents the parser from misclassi- 257
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Transition-based Graph-based
Language Treebank Family Genus Size IR UD TUD Ora UD TUD Ora

Arabic padt Afro-Asiatic Semitic 254K 0.20 77.83 78.10* 79.28 78.45 78.47 80.23
Armenian armtdp Indo-European Indo-Iranian 47K 0.25 73.13 72.91 75.74 66.03 66.73* 70.88
Basque bdt Isolate 97K 0.26 74.94 74.90 76.87 67.74 69.16* 71.73
Chinese gsd Sino-Tibetan Sinitic 111K 0.23 70.05 69.90 71.78 66.77 66.98 69.26
Classical Chinese kyoto Sino-Tibetan Sinitic 406K 0.31 75.33 75.51 77.40 74.77 74.86 77.10
Danish ddt Indo-European Germanic 91K 0.32 75.94 76.21 77.43 74.30 74.37 76.77
English ewt Indo-European Germanic 230K 0.33 82.75 82.91 83.85 81.77 81.76 83.45
Finnish tdt Uralic Finno-Ugric 181K 0.29 78.15 78.10 79.54 72.08 72.62* 74.72
Hindi hdtb Indo-European Indo-Iranian 316K 0.22 87.58 87.79* 89.05 89.06 89.25* 90.67
Italian isdt Indo-European Romance 288K 0.34 87.24 87.43* 88.26 87.15 87.55* 88.39
Latin ittb Indo-European Italic 421K 0.33 83.26* 82.95 84.64 85.43 85.80* 87.10
Latvian lvtb Indo-European Baltic 253K 0.29 79.81 79.83 81.48 78.14 78.49* 80.68
Marathi ufal Indo-European Indo-Iranian 3K 0.30 48.71 49.01 57.31 49.77 50.15 59.82
Norwegian bokmaal Indo-European Germanic 280K 0.31 87.42 87.41 88.34 88.12 88.09 89.21
Persian seraji Indo-European Indo-Iranian 137K 0.26 81.26 81.27 82.63 78.47 78.33 80.40
Russian taiga Indo-European Slavic 187K 0.28 64.95 65.50* 67.18 62.45 63.18* 65.50
Swedish talbanken Indo-European Germanic 76K 0.34 76.02 76.40 78.21 70.71 71.07* 74.24
Urdu udtb Indo-European Indo-Iranian 123K 0.24 76.19 76.87* 78.34 75.83 76.75* 78.66
Vietnamese vtb Austroasiatic Vietic 46K 0.31 48.62 49.04* 52.75 47.55 47.25 51.79
Wolof wtb Niger-Congo Atlantic-Congo 34K 0.28 72.02 72.42 73.93 67.04 67.83* 70.20

Summary 179K 0.28 75.06 75.22* 77.20 73.08 73.43* 76.04

Table 1: Average parsing accuracy (LAS) before (UD) and after (TUD) typological transformation.

fying them as each other. We found an analogous258

explanation for other consolidation rules that unify259

the clausal complements ’ccomp’ and ’xcomp’ into260

’comp,’ combine the subject relations ’nsubj’ and261

’csubj’ into ’sbj,’ and merge the determiner ’det’262

with modifiers ’amod’ and ’nummod’ into ’mod.’263

The small improvement made by cop→cxp in the264

transition-based parser is also due to the misclassifi-265

cation of copula as the compound, which is unified266

with copula in the typological scheme.267

However, the fragmentation rules such as268

xcomp→sec and advmod→qlfy exhibit a neg-269

ative influence. The detrimental impact of270

advmod→qlfy stems from the frequent mutual mis-271

classification of adverbial and adjectival modifiers272

in UD, which persists even after typological trans-273

formation, manifested as mislabeling qualifying274

adverbs (’qlfy’) as modifiers (’mod’) in TUD, al-275

beit at a higher rate, which is in turn because ’mod’276

in TUD has a broader scope than ’amod’ in UD.277

In addition to the erroneous items present in both278

schemes, the rule introduces multiple frequent er-279

rors in TUD for tokens accurately classified in UD.280

The top four recurring errors include the misclassifi-281

cation of ’qlfy’ as ’sbj’ (13%), ’obl*’ (12%), ’mod’282

(4%), and ’aux*’ (4%) for tokens correctly classi-283

fied in UD as ’advmod.’ Similarly, the xcomp→sec284

rule negatively impacts parsing accuracy by mis-285

classifying open clausal complements (’xcomp’)286

and objects (’obj’) in UD. This misclassification is287
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Figure 3: The transformation rules’ contribution (or de-
traction). The results with p-value < 0.05 are marked.

due to their ambiguities and syntactic similarities, 288

which persist between ’sec’ and ’obj’ in TUD, en- 289

compassing a large number of tokens, leading to in- 290

creased errors. Putting it all together, we conclude 291

that the fragmentation rules detract from parsing 292

performance and that their degradation levels are 293

proportional to the scales of their target relations. 294

Conclusion 295

The typological transformation of Universal De- 296

pendencies presents an advantage in terms of pars- 297

ing performance. This benefit is observable across 298

the two primary parsing approaches, namely the 299

transition-based and the graph-based parsing, and 300

in many languages. The positive impact on parsing 301

performance can be attributed to the consolidation 302

rules, which merge the dependency relation with 303

similar typological properties. On the contrary, the 304

parsing performance is hindered by fragmentation 305

rules, indicating their detrimental effect in the con- 306

text of Universal Dependencies. 307
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5 Limitations308

A limitation of this study is that not all of Croft309

et al. (2017)’s suggested transformation rules are310

considered due to a lack of annotation in the bench-311

mark. Besides the labels on the right-hand sides312

of the rules in Section 3, Croft et al. (2017) name313

two tags for independent elements indicating in-314

dexation or agreement and linkers: ’idx’ and ’lnk.’315

They categorize the above relations as common316

strategies, implying that they are not regarded as317

universal constructions. We have decided to ignore318

the above phenomena at this stage in the absence319

of clear clues as to how they are marked in each320

of the treebanks that contain them as independent321

tokens. We make the same decision for cases where322

it would be extremely difficult to identify the condi-323

tions for applying a rule, as in the case of depictives324

that are closely similar in structure to adverbial325

clauses. While these are both marked in UD as326

’advcl,’ Croft et al. (2017) suggest that the former327

should be labeled ’sec,’ similarly to resultatives and328

manner adverbs, transformed via the consolidation329

rules xcomp→sec and advmod→sec, respectively.330

Our script, however, leaves ’advcl’ tags unchanged,331

as one could hardly set proper conditions for an332

’advcl’-to-’sec’ transformation to apply, given the333

clues available on UD treebanks. In addition to334

these, our benchmark lacks any application for the335

rules advmod→sec and advmod→aux* due to the336

absence of optional morphological annotation in337

UD.338
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A Parsing Setup433

Our transition-based parsing experiments utilize434

the implementation from Basirat and Nivre (2021),435

with the nucleus composition disabled.1 For the436

graph-based experiments, we rely on the Biaffine437

module integrated into the SuPar parser.2 In both438

parsers, we refrain from employing pre-trained439

embeddings, including both static and contextual-440

ized models, due to their inconsistent performance441

across different languages, which could potentially442

impact the research outcomes. Instead, we opt for443

a BiLSTM encoder in both scenarios to mitigate444

external influences and maintain result consistency.445

Neither do we employ any morphosyntactic fea-446

tures such as part-of-speech tags or morphological447

features to train the parsing models.448

Both parsers are trained for 30 epochs with the449

word embedding size of 100 and the character em-450

bedding dimension of 100 for UUParser and 50 for451

SuPar. The UUParesr parameters are set to their452

default values as suggested by Nivre et al. (2022).453

The arc and relation MLP projection sizes of Su-454

Par are set to 500 and 300, respectively, and the455

other parameters are set to their default values. We456

disable the projective parsing in both parsers.457

The computational resource we use to train one458

transition-based model is a node of three CPUs and459

5-10 GB memory in an HPC—however, the graph-460

based models, each consisting of 12M trainable461

parameters, are trained on NVIDIA Tesla V100462

GPU.463

1https://github.com/abasirat/uuparser
2https://github.com/yzhangcs/parser

Transformation
After (TUD)
1 0

Before (UD)
1 A B
0 C D

Table 2: The contingency table for McNemar’s test.

B Hypothesis Testing 464

We utilize McNemar’s test to evaluate the signif- 465

icance of the parsing difference between the two 466

schemes. McNemar’s test is a paired-sample t-test 467

for a dichotomous variable that takes two values. 468

In our study, the dichotomous dependent variable 469

of the test indicates whether a token is correctly 470

classified in a scheme or not. The variable takes 471

a value of 1 if the dependency head and label of 472

a token are predicted accurately and a value of 0 473

otherwise. The categorical independent variable 474

of the test refers to the two dependency schemes, 475

UD and TUD. We collect the value of the depen- 476

dent variable for all tokens across the two schemes, 477

resulting in two lists of the size of the number of 478

tokens, with the values in each list determining 479

whether the token is classified correctly in the cor- 480

responding scheme or not. From these lists, we 481

build a contingency table, shown in Table 2, with 482

the following description: 483

• A: the number of tokens predicted correctly in 484

both schemes 485

• B: the number of tokens predicted correctly in 486

UD but incorrectly in TUD 487

• C: the number of tokens mispredicted in UD 488

but predicted correctly in TUD 489

• D: the number of mispredicted tokens in both 490

schemes. 491

With this setting, we estimate the p-value to reject 492

the null hypothesis that the typological transforma- 493

tion does not impact parsing accuracy (pb = pc). 494

We estimate the p-value based on the binomial dis- 495

tribution. To address the effect of randomness in 496

the parsing models, we collect the statistics from 497

the concatenation of the three runs with different 498

random seeds. 499
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