
Under review as a conference paper at ICLR 2024

ADAPTIVE RESOLUTION RESIDUAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The majority of deep learning methods for signals assume a fixed signal resolution
during training and inference, making it impractical to apply a single network at
various signal resolutions. We address this shortcoming by introducing Adaptive

Resolution Residual Networks (ARRNs) that implement two novel components:
Laplacian residuals, which define the structure of ARRNs and allow compress-
ing high-resolution ARRNs into low-resolution ARRNs, and Laplacian dropout,
which improves the robustness of compressed ARRNs through a training augmen-
tation. We formulate Laplacian residuals by combining the properties of standard
residuals and Laplacian pyramids. Thanks to this structure, lower resolution sig-

nals require a lower number of Laplacian residuals for exact computation. This
adaptation greatly reduces the computational cost of inference on lower resolu-
tion signals. This adaptation is effectively instantaneous and requires no addi-
tional training. We formulate Laplacian dropout through the converse idea that
randomly lowering the number of Laplacian residuals is equivalent to randomly

lowering signal resolution. We leverage this as a training augmentation that has
the effect of improving the performance of the many low-resolution ARRNs that
can be derived from a single high-resolution ARRN. We provide a solid theoret-
ical grounding for the advantageous properties of ARRNs, along with a set of
experiments that demonstrate these properties in practice.

1 INTRODUCTION

Natural signals such as images, audio, and volumetric scans are acquired by sensor systems whose
resolution can vary widely. The majority of deep learning methods for signals disregard the chal-
lenges posed by this variety, compromising robustness and computational efficiency for simplicity.
These methods are constrained to use identical training resolution and inference resolution, mean-
ing inference at various resolutions requires rediscretizing to the training resolution of the model as
a preprocessing step. When inference resolution is lower than training resolution, this wastes the
computational advantage that could be gained by leveraging the lower information content of the
input and also presents the model with an input that may be out-of-distribution. The methods that
tackle this problem directly make the opposite trade-off. These methods support arbitrary inference
resolution independently of training resolution but operate on atypical signal representations that are
incompatible with most standard layers.

We combine the best features of both approaches by introducing Adaptive Resolution Residual Net-

works (ARRNs), which can adapt to various resolutions easily and robustly thanks to two compo-
nents: Laplacian residuals, which define the structure of ARRNs and allow rediscretization, and
Laplacian dropout, which improves the robustness of rediscretized ARRNs through a training aug-
mentation.

We formulate Laplacian residuals by combining the properties of standard residuals (He et al.,
2016b;a) and Laplacian pyramids (Burt & Adelson, 1987). Thanks to this structure, rediscretizing

an ARRN to a lower resolution simply means evaluating a lower number of Laplacian residuals.
This form of rediscretization has many benefits: it improves computational efficiency at lower reso-
lutions; it can be applied instantaneously at inference suit the given resolution; it imposes very few
design constraints on the layers nested within Laplacian residuals, unlike prior work based on neu-

ral operators and implicit neural representations, which are incompatible with most layers typically
used with signals.

1



Under review as a conference paper at ICLR 2024

We formulate Laplacian dropout through the converse idea that randomly lowering the number of

Laplacian residuals is equivalent to randomly rediscretizing an ARRN to a lower resolution. We
leverage this as a training augmentation that has the effect of improving the robustness of the many
low-resolution ARRNs that can be derived from a single high-resolution ARRN.

We situate ARRNs relative to prior works in section 2, provide theoretical analysis for the advan-
tageous properties of ARRNs in section 4, and show a set of experiments that demonstrate these
properties in practice in section 5, where we train ARRN and competing methods at a single resolu-
tion, then evaluate them at various resolutions.

2 RELATED WORKS

In this section, we review related works that allow the formulation of deep learning architectures
which can adapt to various resolutions.

Adaptive resolution through neural operators. Li et al. (2020); Kovachki et al. (2021); Fanaskov
& Oseledets (2022); Bartolucci et al. (2023) are neural architectures whose inputs and outputs are
formalized as continuous functions that are encoded and manipulated as discrete functions. The
layers that form these architectures are conceptualized as operators on continuous functions which
are translated to operators on discrete functions for computation. This allows adaptation to various
resolutions in principle but comes at the cost of added complexity in layer design. Each layer must
maintain an equivalence between its continuous operator form and discrete operator form at any
resolution for correctness, which is challenging to enforce (Bartolucci et al., 2023). Our method is a
type of neural operator, but it escapes the burden of maintaining the equivalence between continuous
functions and discrete functions by delegating the task to Laplacian residuals, which allow the layers
within to operate at a fixed resolution.

Adaptive resolution through implicit neural representations. Park et al. (2019); Mescheder
et al. (2019); Sitzmann et al. (2020); Mildenhall et al. (2021); Chen et al. (2021); Yang et al. (2021a);
Lee & Jin (2022); Xu et al. (2022) allow representing the inputs and outputs of neural architectures
as continuous functions that are encoded implicitly by parameterized neural functions. Neural func-
tions are often governed by a learnable parameter space that is shared across different instances
of functions, and that decodes individual functions by navigating across a latent space (Park et al.,
2019; Mescheder et al., 2019; Chen et al., 2021). Neural functions can be specialized to represent
signals in a variety of contexts, and have had great success with volumetric data and images Park
et al. (2019); Mescheder et al. (2019); Sitzmann et al. (2020); Mildenhall et al. (2021). These meth-
ods lend themselves well to tasks such as adaptive super-resolution (Chen et al., 2021; Lee & Jin,
2022; Yang et al., 2021a), where a neural function is used to approximate a continuous function that
is partially observed at an arbitrary input resolution, which can then be evaluated at an unobserved
and also arbitrary output resolution. These methods are much more challenging to use in classi-
fication tasks, and generally in any task that involves learning maps between distinct continuous
functions, as layers need to operate on a latent representation that is far removed from typical signal
representations. Even the implementation of convolution is strenuous (Xu et al., 2022).

Methods similar to Laplacian residuals. Singh et al. (2021) incorporates filtering operations
within residuals to separate the frequency content of convolutional networks, although it provides
no mechanism for adaptive input or output resolution. Lai et al. (2017) uses Laplacian pyramids to
solve super-resolution tasks with adaptive output resolution, with residuals ordered by increasing

resolution. This is unlike our method, which is well suited to classification tasks with adaptive input

resolution, with residuals ordered by decreasing resolution.

Methods similar to Laplacian dropout. Huang et al. (2016) implements a form of dropout where
the layers nested within residual blocks may be bypassed randomly. This is somewhat similar to
Laplacian dropout, however, this is not equivalent to a form of bandwidth augmentation and does
not result in improved robustness to various resolutions. This is highlighted in subsection 5.1.

2



Under review as a conference paper at ICLR 2024

3 BACKGROUND

In this section, we provide a short discussion of Laplacian pyramids that helps interpret the formu-
lation of our Laplacian residuals. We assume some familiarity with the theory of signals from the
reader (Fourier, 1888; Whittaker, 1915; 1927; Shannon, 1949; Petersen & Middleton, 1962). As in
most neural operators methods, we follow the perspective of continuous signals rather than discrete

signals. We conceptualize signals as functions s : X ! Rf mapping from a spatial domain X ⇢ Rd

to a feature domain Rf .

3.1 LAPLACIAN PYRAMIDS

Definition. Laplacian pyramids (Burt & Adelson, 1987) are a useful tool for decomposing signals
s into m parts according to their frequency content. They are usually formulated through a recur-
rence relation that relies on Gaussian lowpass filter kernels, but they can also be formulated with
Wittaker-Shannon filter kernels �low

n (Whittaker, 1927), which are ideal. This property makes them
act as binary masks in the frequency domain. This property also allows us to construct a filter that is
fundamentally tied to a specific resolution, in the sense that convolving any signal with it will yield
a lower bandwidth signal that can be correctly sampled at that specific resolution without causing
errors, in accordance with the Shannon-Nyquist theorem Shannon (1949). In the recursive formula-
tion of Laplacian pyramids, these filters are ordered by decreasing bandwidth, which is synonymous
with decreasing resolution. The base case (Equation 1) takes the original signal s as the starting
point of recurrence plow

0 :

plow
0 = s (1)

The recursive case takes the preceding lower bandwidth signal plow
n�1, forms the next lower bandwidth

signal plow
n (Equation 2), and forms a difference signal pdiff

n (Equation 3) such that both parts sum to
the preceding lower bandwidth signal:

plow
n = plow

n�1 ⇤ �low
n (2)

pdiff
n = plow

n�1 � plow
n (3)

The conditional part (Equation 4) sets what we refer to as the level of the pyramid pn to the difference
signal pdiff

n for all levels except the last one, which is instead set to the lower bandwidth signal plow
n .

This ensures all pyramid levels sum to the original signal:

pn =

⇢
pdiff
n if n 6= m

plow
m otherwise

(4)

The Laplacian pyramid can be seen as a form of signal decomposition that allows us to reconstruct
the signal with progressively more bandwidth as we add more difference signals (indexing back-
wards from the last level of the pyramid):

s ⇤ �low
n = pm + pm�1 + · · ·+ pn+1 + pn (5)

Visualization. In Figure 1, we summarize this recursive formulation into a simple diagram that
shows one step of recursion; this is intended to allow easy comparison with the Laplacian residuals
we later illustrate in Figure 3. In Figure 2, we show an example where we decompose a pair of
images using a shallow Laplacian pyramid; we later illustrate its Laplacian residual counterpart in
Figure 4.

× +

-1

Lowpass

Laplacian Pyramid Block

plow
n plow

npdiff
nplow

n - 1

Figure 1: High-level diagram of a single recurrence step of a Laplacian pyramid.

3



Under review as a conference paper at ICLR 2024

plow
0

pdiff
1

plow
1

pdiff
2

plow
3

plow
2

pdiff
3

Laplacian Pyramid Block

Laplacian Pyramid Block

Laplacian Pyramid Block

Figure 2: Images decomposed through a Laplacian pyramid. The recursive process starts in the
top left with the source image plow

0 and progressively creates lower bandwidth signals plow
n+1 moving

right, and difference signals pdiff
n+1 moving down. Together, pdiff

1 , pdiff
2 , pdiff

3 and plow
3 sum to the

original signal plow
0 ; they are a form of linear decomposition.

4 METHOD

In this section, we formulate the two main components of ARRNs: Laplacian residuals (subsec-
tion 4.1) and Laplacian dropout (subsection 4.2).

4.1 LAPLACIAN RESIDUALS

Definition. Laplacian residuals rn : (X ! Rfn) ! (X ! Rfn+1) are composed recursively in a
chain of m residuals. Each residual contains some architectural block bn : (X ! Rfn) ! (X !
Rfn) that can perform any operation as long as its output signal is a constant whenever its input
signal is zero (Equation 6, where a is a constant signal); bn does not need to be conceptualized in
the framework of neural operators; bn does not need the ability to be rediscretized because its dis-
cretization is fixed; bn can be a convolution, transformer, normalization, or composition of multiple
layers.

bn(0) = a (6)

The filter kernels of Laplacian residuals are set up as in Laplacian pyramids. The base case takes the
original signal and performs a linear projection through A0 to allow a change in feature dimension-
ality from f0 to f1:

r0 = A0s (7)

The recursive case takes the preceding residual rn�1, forms a lower bandwidth signal rlow
n (Equa-

tion 8), and forms a difference signal rdiff
n (Equation 9):

rlow
n = rn�1 ⇤ �low

n (8)

rdiff
n = rn�1 � rlow

n (9)

The difference signal rdiff
n is given to the architectural block bn contained in the residual. Like in

the Laplacian pyramid (Burt & Adelson, 1987), the difference signal rdiff
n explains the gap between

two representations of the same signal at different resolutions, one higher, and one lower. We are
especially interested in what happens when a signal can be fully captured at either the higher resolu-
tion or the lower resolution, meaning a higher resolution representation would be wasteful. We can
see that in that case, the difference signal rdiff

n is zero. We want to leverage this by causing a chain
of zero terms that we can use for simplifying rediscretization. We do this by using a zero-blocking
filter which subtracts the mean:

bn(0) ⇤ �zero = 0 (10)

4



Under review as a conference paper at ICLR 2024

We also must perform further filtering with �low
n so that the output conforms to the lower bandwidth

signal that the next residual expects as an input. We then apply a skip connection by adding rlow
n to

the output, as in standard residuals (He et al., 2016b;a), and apply a linear projection through An to
allow a change in feature dimensionality from fn to fn+1 before processing the next residual:

rn = An

�
bn(r

diff
n ) ⇤ �low

n ⇤ �zero + rlow
n

�
(11)

Rediscretization. If the spectrum of the signal s is entirely confined within the spectrum of the first
filter kernel �low

1 , then the value of the lower bandwidth residual rlow
1 is given by a linear projection

of s (Equation 13), and the difference signal rdiff
1 is zero (Equation 14). Because the input to the

inner architectural block b1 is zero, its output is a constant (Equation 6). Because we then perform
filtering with �zero, the output of the inner architectural block b1 contributes zero to the residual r1
(Equation 10). The value of the residual r1 is therefore entirely defined by a linear projection of s;
its exact computation does not need to involve the inner architectural block b1 (Equation 15). We see
that this cascade of zeros persists as long as the spectrum of the input signal s is entirely confined
within the spectrum of all the lowpass filters �low

n0 it encounters, with n0 2 [1, n]:

s ⇤ �low
n0 = s 8 n0 2 [1, n] (12)

=) rlow
1 = A0s ⇤ �low

1 = A0s (13)

=) rdiff
1 = A0s�A0s = 0 (14)

=) r1 = A1

�
b1(0) ⇤ �low

1 ⇤ �zero +A0s
�
= A1A0s (15)

...

=) rlow
n = An�1 · · ·A0s ⇤ �low

n = An�1 · · ·A0s (16)

=) rdiff
n = An�1 · · ·A0s�An�1 · · ·A0s = 0 (17)

=) rn = An

�
bn(0) ⇤ �low

n ⇤ �zero +An�1 · · ·A0s
�
= An · · ·A0s (18)

We can therefore exactly evaluate rn by skipping all filters �low
n0 and all inner architectural blocks

bn0 with n0 2 [1, n], by instead applying a single linear projection with a precomputed matrix
Achain

n = An · · ·A0. This allows us to rediscretize high-resolution ARRNs into low-resolution AR-
RNs with greater computational efficiency, without performance degradation, and without difficult
design constraints.

Implementation. We implement all filtering and rediscretization operations using Kaiser-
windowed Whittaker-Shannon interpolation (Whittaker, 1915) based on separable polyphase convo-
lutions that effectively extend Smith (2002); Yang et al. (2021b) to higher dimensionality. We apply
an approximation that includes 6 zero-crossings, includes no rolloff, uses � = 14.769656459379492
and uses edge replication padding. We merge consecutive rediscretization operations into single op-
erations based on the analytic interpretation of Whittaker-Shannon filtering.

In Laplacian residuals, the rdiff
n terms of Equation 9 are computed while preserving the original

resolution, while the rlow
n and bn(rn) ⇤ �low

n terms of Equation 11 are computed while rediscretizing
to a lower resolution. By following this process, we always use the lowest resolution that allows
appropriate representation of the signals. In the experimental setup, all rediscretization needed as a
preprocessing step is done through this interpolation method.

Visualization. In Figure 3, we illustrate the recursive formulation of Laplacian residuals in a sim-
ple block diagram; we can see on the left the same elements that compose the Laplacian pyramid
shown in Figure 1. In Figure 2, we show a visualization of a small ARRN by tapping into rlow

n , the
input to every Laplacian residual, and rdiff

n , the input to every architectural block wrapped within a
Laplacian residual; this echoes the structure of the Laplacian pyramid shown in Figure 2.

5



Under review as a conference paper at ICLR 2024

× +

+

-1

×

~Bernoulli(1 - Dropout)

+Inner Architectural
Block Ȓ BlockingLowpassLowpass

Laplacian Residual Block

Linear

r low
n r diff

nr n - 1

d n - 1
chain d n

indep d n
chain

r n

Figure 3: High-level diagram of a Laplacian residual which implements Laplacian dropout.

r low
0

r diff
1

r low
1

r diff
2

r low
2

r diff
3

Laplacian Residual Block

Laplacian Residual Block

Laplacian Residual Block

r low
3

Figure 4: Images of PCA analysis of feature maps created by an ARRN’s Laplacian residuals. The
process starts in the top left with the source image r0 that has been mapped through A0. Moving
downwards, we see the difference signal rdiff

n+1 that is later given to the architectural block bn, which
is formed in the same way as with Laplacian pyramids. Moving right, we get a lower bandwidth
signal rlow

n+1 based on the output of the last Laplacian residual.

4.2 LAPLACIAN DROPOUT

When we show a low-bandwidth signal to a high-resolution ARRN, a set of consecutive early Lapla-
cian residuals may be zero. Conversely, if we show a high-resolution signal to a high-resolution
ARRN but randomly zero out a set of consecutive early residuals, this will be equivalent to showing
a randomly lowered resolution signal to a correspondingly lowered resolution rediscretized ARRN.
Laplacian dropout simply implements this during training to encourage robustness at low resolution.
We gate the difference signal rdiff

n with a Bernoulli random variable chained through the logical or
operator (Equation 20) to implement the consecutiveness constraint.

dindep
n ⇠ B(1� pn) (19)

dchain
n = dindep

n � dchain
n�1 (20)

rdiff
n = dchain

n (rn�1 � rlow
n ) (21)

5 EXPERIMENTS

Our experiments demonstrate that rediscretized ARRNs have identical or better performance than
non-rediscretized ARRNs; that rediscretized ARRNs have vastly lower inference time than non-
rediscretized ARRNs; and that ARRNs are robust to low-resolution signals.

We construct a set of experimental setups each evaluated on the CIFAR10, CIFAR100 (Krizhevsky
et al., 2009), TinyImageNet (Le & Yang, 2015) and STL10 (Coates et al., 2011) image classifica-

6



Under review as a conference paper at ICLR 2024

tion datasets. All models are trained once for 100 epochs at the native dataset resolution (32 ⇥ 32
for CIFAR10 and CIFAR100, 64 ⇥ 64 for TinyImageNet, and 96 ⇥ 96 for STL10). All models are
then evaluated at various lower resolutions. Since the methods we compare do not have the ability to
adapt to lower resolutions, the images are rediscretized to the lower resolutions, then rediscretized
back to the native dataset resolution during evaluation (see subsection A.1 for an illustrated expla-
nation). Thus, all methods have access to the same information in a fair manner.

We compare our ARRN (subsection A.1 explains the architecture design in detail; 5.33M-8.09M
for CIFAR10, 9.59M-14.5M for CIFAR100, 15.0M-19.8M for TinyImageNet, and 13.8M-18.4M
for STL10 depending on rediscretization) against a wide range of convolutional network families
that are well-suited for the classification task we test: ResNet (11.1M-42.5M) He et al. (2016b),
WideResNetV2 (66.8M-124M) (Zagoruyko & Komodakis, 2016), MobileNetV3 (1.52M-4.21M)
Howard et al. (2019), and EfficientNetV2 (20.2M-117.2M).

5.1 ROBUSTNESS

We validate the ability of Laplacian dropout to increase the robustness of ARRNs to low-resolution
signals. Figure 5 shows that ARRNs with Laplacian dropout (red lines) are vastly superior to ARRNs
without Laplacian dropout (black lines), and stronger than all standard methods. We also note that
EfficientNetV2 implements a form of residual dropout (Huang et al., 2016) yet does not display
improved robustness at low resolution.

5.2 REDISCRETIZATION: CORRECTNESS

We confirm that ARRNs can be rediscretized without degrading performance. Figure 5 shows the
performance of ARRNs evaluated with rediscretization (full lines), meaning they discard certain
Laplacian residuals, and without rediscretization (dashed lines), meaning they always use all Lapla-
cian residuals. For models trained with Laplacian dropout (red lines), the performance of redis-
cretized ARRNs is identical or better in nearly all cases. For models trained without Laplacian
dropout (black lines), the performance of rediscretized ARRNs is worse. This is likely a result of
the approximate filters used by the implementation, which allow a small quantity of information to
bleed through. This bleed-through is zeroed out both by Laplacian dropout and by rediscretization,
which is consistent with the observation that ARRNs trained with Laplacian dropout perform better
with rediscretization, and that ARRNs trained without Laplacian dropout perform better without
rediscretization.

5.3 REDISCRETIZATION: INFERENCE TIME

We confirm the computational savings granted by rediscretization, reusing the previous experimental
setup. We perform time measurements by using CUDA event timers and CUDA synchronization
barriers around the forward pass of the network to eliminate other sources of overhead, such as data
loading, and we sum these time increments over all batches of the full dataset. We repeat this process
10 times and pick the median to reduce the effect of outliers. Figure 6 shows the inference time of
ARRNs with rediscretization (full lines) and without rediscretization (dashed lines). As expected,
rediscretization reduces inference time at lower resolutions, as a lower number of Laplacian residuals
need to be evaluated. Relative to well-engineered standard methods, ARRNs also have reasonable
inference time.

5.4 REDISCRETIZATION: ADAPTATION TIME

We measure the computational cost that is incurred at the moment we rediscretize a network. This
consists in precomputing the matrix product Achain

n = An · · ·A0 outlined in subsection 4.1. We
again reuse the previous experimental setup, performing measurements with the same techniques.
Figure 7 shows that adaptation takes at most 750 microseconds, which is negligible even for many
real-time applications.

7



Under review as a conference paper at ICLR 2024

Figure 5: Performance of all methods at changing resolution. Each model is trained at the native
dataset resolution and tested at various lower resolutions. Our method ARRN robustly maintains its
accuracy at lower resolutions.

Figure 6: Inference time of all methods at various resolutions. This is summed over the whole
dataset for each resolution. Our method ARRN lowers its inference time at lower resolutions thanks
to rediscretization, and displays a reasonable inference time relative to typical convolutional neural
networks despite not having a highly optimized implementation.

8



Under review as a conference paper at ICLR 2024

Figure 7: Adaptation time of ARRN at various resolutions. This computation spans less than 750
microseconds and is only required once when adapting to a specific resolution when the first batch
is processed.

6 DISCUSSION

We have introduced ARRN, a deep learning architecture for tasks involving multidimensional sig-
nals which allows constructing adaptive resolution networks that are free from difficult design con-
straints. ARRNs substitute standard residuals with Laplacian residuals, which allows incorporat-
ing a wide variety of architectural blocks into networks that can nearly instantly adapt to various
resolutions, and that have a drastically lower computational cost at lower resolution. ARRNs also
implement Laplacian dropout, which greatly promotes robustness to low resolution. These two com-
ponents allow training high-resolution ARRNs that can then be adapted into robust low-resolution
ARRNs on the fly.

Future Work: We have provided evidence on image-based tasks, and explored one possible ar-
chitectural block that can be nested within Laplacian residuals. Many other tasks may be interest-
ing candidates for our method; real-time applications that have a computation budget which varies
through time could greatly benefit from the adaptive nature of our method; the extension of our
method to adaptive resolution U-Nets for tasks such as segmentation and depth estimation is also
possible. Many other architectural blocks are compatible with ARRNs and could be nested within
Laplacian residuals.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Francesca Bartolucci, Emmanuel de Bezenac, Bogdan Raonic, Roberto Molinaro, Siddhartha
Mishra, and Rima Alaifari. Representation equivalent neural operators: a framework for alias-
free operator learning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=7LSEkvEGCM.

Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. In Readings

in computer vision, pp. 671–679. Elsevier, 1987.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
implicit image function. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pp. 8628–8638, 2021.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudı́k (eds.), Proceedings

of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pp. 215–223, Fort Lauderdale, FL, USA, 11–13 Apr
2011. PMLR. URL https://proceedings.mlr.press/v15/coates11a.html.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Vladimir Fanaskov and Ivan Oseledets. Spectral neural operators. arXiv preprint arXiv:2205.10573,
2022.

Jean Baptiste Joseph Fourier. Théorie analytique de la chaleur. Gauthier-Villars et fils, 1888.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual net-
works. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-

lands, October 11–14, 2016, Proceedings, Part IV 14, pp. 630–645. Springer, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016b.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-

ceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The

Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 646–661. Springer, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of

the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Ma-

chine Learning Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL https:
//proceedings.mlr.press/v37/ioffe15.html.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep laplacian pyramid
networks for fast and accurate super-resolution. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pp. 624–632, 2017.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

10

https://openreview.net/forum?id=7LSEkvEGCM
https://proceedings.mlr.press/v15/coates11a.html
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html


Under review as a conference paper at ICLR 2024

Jaewon Lee and Kyong Hwan Jin. Local texture estimator for implicit representation function. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1929–
1938, 2022.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv

preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint

arXiv:1711.05101, 2017.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Oc-
cupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 4460–4470, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications

of the ACM, 65(1):99–106, 2021.

Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmenta-
tion. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 774–782,
2021.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, pp. 165–174, 2019.

Daniel P. Petersen and David Middleton. Sampling and reconstruction of wave-number-limited
functions in n-dimensional euclidean spaces. Information and Control, 5(4):279–323, 1962.
ISSN 0019-9958. doi: https://doi.org/10.1016/S0019-9958(62)90633-2. URL https://www.
sciencedirect.com/science/article/pii/S0019995862906332.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 4510–4520, 2018.

Claude E Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
1949.

Satya Rajendra Singh, Roshan Reddy Yedla, Shiv Ram Dubey, Rakesh Sanodiya, and Wei-Ta Chu.
Frequency disentangled residual network. arXiv preprint arXiv:2109.12556, 2021.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information

processing systems, 33:7462–7473, 2020.

Julius O Smith. Digital audio resampling home page ”theory of ideal bandlim-
ited interpolation” section. Online] http://www-ccrma. stanford. edu/˜ jos/resample,
2002. URL https://ccrma.stanford.edu/˜jos/resample/Theory_Ideal_
Bandlimited_Interpolation.html.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International

conference on machine learning, pp. 10096–10106. PMLR, 2021.

ET Whittaker. On the functions which are represented by the expansion of interpolating theory. In
Proc. Roy. Soc. Edinburgh, volume 35, pp. 181–194, 1915.

John Macnaughten Whittaker. On the cardinal function of interpolation theory. Proceedings of the

Edinburgh Mathematical Society, 1(1):41–46, 1927.

11

https://www.sciencedirect.com/science/article/pii/S0019995862906332
https://www.sciencedirect.com/science/article/pii/S0019995862906332
https://ccrma.stanford.edu/~jos/resample/Theory_Ideal_Bandlimited_Interpolation.html
https://ccrma.stanford.edu/~jos/resample/Theory_Ideal_Bandlimited_Interpolation.html


Under review as a conference paper at ICLR 2024

Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and Zhangyang Wang. Signal processing for
implicit neural representations. Advances in Neural Information Processing Systems, 35:13404–
13418, 2022.

Jingyu Yang, Sheng Shen, Huanjing Yue, and Kun Li. Implicit transformer network for screen
content image continuous super-resolution. Advances in Neural Information Processing Systems,
34:13304–13315, 2021a.

Yao-Yuan Yang, Moto Hira, Zhaoheng Ni, Anjali Chourdia, Artyom Astafurov, Caro-
line Chen, Ching-Feng Yeh, Christian Puhrsch, David Pollack, Dmitriy Genzel, Donny
Greenberg, Edward Z. Yang, Jason Lian, Jay Mahadeokar, Jeff Hwang, Ji Chen, Pe-
ter Goldsborough, Prabhat Roy, Sean Narenthiran, Shinji Watanabe, Soumith Chintala,
Vincent Quenneville-Bélair, and Yangyang Shi. Torchaudio: Building blocks for au-
dio and speech processing. arXiv preprint arXiv:2110.15018, 2021b. URL https:
//pytorch.org/audio/stable/generated/torchaudio.functional.
resample.html#torchaudio.functional.resample.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint

arXiv:1605.07146, 2016.

12

https://pytorch.org/audio/stable/generated/torchaudio.functional.resample.html#torchaudio.functional.resample
https://pytorch.org/audio/stable/generated/torchaudio.functional.resample.html#torchaudio.functional.resample
https://pytorch.org/audio/stable/generated/torchaudio.functional.resample.html#torchaudio.functional.resample

	Introduction
	Related Works
	Background
	Laplacian pyramids

	Method
	Laplacian residuals
	Laplacian dropout

	Experiments
	Robustness
	Rediscretization: correctness
	Rediscretization: inference time
	Rediscretization: adaptation time

	Discussion
	Supplementary Material
	Experiments


