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ABSTRACT

Pursuing artificial intelligence for biomedical science, a.k.a. AI Scientist, draws
increasing attention, where one common approach is to build a copilot agent
driven by Large Language Models (LLMs). However, to evaluate such systems,
researchers typically rely on direct Question-Answering (QA) to the LLM itself or
through biomedical experiments. How to benchmark biomedical agents precisely
from an AI Scientist perspective remains largely unexplored. To this end, we draw
inspiration from scientists’ crucial ability to understand the literature and introduce
BioKGBench. In contrast to traditional evaluation benchmarks that focus solely
on factual QA, where the LLMs are known to have hallucination issues, we first
disentangle “Understanding Literature” into two atomic abilities: i) “Understand-
ing” the unstructured text from research papers by performing scientific claim
verification, and ii) interacting with structured Knowledge-Graphs for Question-
Answering (KGQA) as a form of “Literature” grounding. We then formulate a
novel agent task, dubbed KGCheck, using KGQA and domain-based Retrieval-
Augmented Generation (RAG) to identify factual errors in existing large-scale
knowledge graphs. We collect over two thousand data points for the two atomic
tasks and 225 high-quality annotated samples for the agent task. Surprisingly,
we find that state-of-the-art general and biomedical agents have either failed or
performed inferiorly on our benchmark. We then introduce a simple yet effec-
tive baseline, dubbed BKGAgent. On the widely used popular knowledge graph,
we discover over 90 factual errors which provide scenarios for agents to make
discoveries and demonstrate the effectiveness of our approach.

1 INTRODUCTION

Large Language Models (LLMs) are so powerful that they facilitate nearly every aspect of daily
life and work right now, even research (Zhao et al., 2023; Baek et al., 2024; He et al., 2023; Zhou
et al., 2023). Observing their marvelous successes in text generation (Yu et al., 2022; Celikyilmaz
et al., 2020), text summarization (El-Kassas et al., 2021; Gambhir & Gupta, 2017), and other tasks
(Jin et al., 2024a; Tang et al., 2023a), along with their consistent failures such as hallucinations (Ji
et al., 2023; Yao et al., 2023), one can conclude that LLMs are powerful in certain tasks involving
large-scale unstructured data like daily text or images, but relatively powerless when dealing with
data-hungry scenarios. As such, researchers then construct AI agents (Wu et al., 2023b; Tian et al.,
2023) assisting LLMs with external tools to extend the capabilities of LLMs. These attempts are
fruitful in many fields, including autonomous computers (Steiner, 2008), shopping web-agent (Lee &
Liu, 2004), code development (Dalle & David, 2004), society simulation (Drogoul & Ferber, 2018;
Lan et al., 2023), etc. A natural subsequent attempt is to develop AI agents to simulate scientists,
aiding or even taking over the process of scientific discovery (Baek et al., 2024).

As in Figure 1, existing attempts can be grouped into two categories: i) to build an AI agent for
a specific task, such as Question Answering (QA) in a specific domain (Zhang et al., 2018); ii)
to encompass multiple AI agents to formulate a multi-agent system as the copilot of scientists,
automating certain scientific activities, such as experiment result analysis (Bi et al., 2023; Wang et al.,
2023b).

Literature review is the most critical ability that a scientist should possess (Snyder, 2019; Thomas
et al., 2020). It does not only involve reading and memorizing, but also requires scientists to
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Figure 1: (Left) Previous benchmarks for domain-specific AI Agents either focus on the low-level
tasks like question answering or are embedded in a complicated pipeline as a scientist copilot. (Right)
We close the gap by constructing a knowledge graph checking task that consists of two atomic
sub-tasks: Knowledge Graph Question Answering (KGQA) and Scientific Claim Verification (SCV),
to provide a better evaluation of AI Agents in biomedical science domain.

understand and critically analyze. Researchers and scientists widely spend a significant amount of
time in reading recent works. To save human efforts in scientific discovery, it is necessary for AI
scientists to be able to accurately understand and analyze the existing research. Many researchers
have dedicated to literature understanding in AI agents (Cai et al., 2024; Li et al., 2024), while
a systematic evaluation system is missing and even underexplored. The current finest evaluation
system (Cai et al., 2024) consists of multiple-choice questions extracted from literature, which cannot
fully reveal the underlying reasoning regime of an agent’s success or failure, leaving no clue for
future advancement nor indicating whether the agent understands the reasoning rationale or merely
memorizes data patterns.

On the other hand, another crucial research direction is to help AI agents capture the underlying logic
of literature through domain-specific Knowledge Graphs (KGs) (Abu-Salih, 2021; Kejriwal, 2019).
KGs store massive knowledge triples in a graph-structured format (Hogan et al., 2021; Alqaaidi
& Kochut, 2024), complementing LLMs with external knowledge while providing frameworks for
interpretation and reasoning (Meyer et al., 2023). However, manually constructing such KGs is both
intellectually and physically intensive. These domain-specific KGs require annotators with profound
domain-specific knowledge, leading to high costs to create or maintain the knowledge graphs. As
such, we observe that the existing and well-known biomedical KGs (Santos et al., 2022; Chandak
et al., 2023) are not fully reliable due to outdated information. We attribute such discrepancy to the
static nature of KGs, which lack mechanisms for dynamic updates to align with the evolution of
external knowledge sources.

In this paper, we propose a novel agent evaluation benchmark BioKGBench to address both challenges
simultaneously. As in Figure 1 (right), the ultimate goal of our benchmark is to verify the correctness
of nodes and triples in the knowledge graph based on various information, including papers and
well-maintained databases. We dub this task Knowledge Graph Checking (KGCheck). Agents need to
first query the information recorded on the KGs as directed, then cross-reference this information with
external literature or databases to combat hallucinations. This task evaluates the agents’ capacities
to both process and understand structured data (like KGs) and unstructured data (like literature).
It is worth mentioning that the process of verifying knowledge within KGs closely mirrors the
methodology of human scientific research, including database queries and extensive literature reviews.
This similarity not only underscores the task’s relevance to real-world scientific inquiry but also
provides intriguing insights. Furthermore, we decompose this task into two more atomic subtasks:
Knowledge Graph Question Answering (KGQA) and Scientific Claim Verification (SCV), enable a
more detailed evaluation of the agents’ capabilities in processing and understanding of structured and
unstructured data, respectively.
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We extensively analyze existing AI agents on our benchmark and find that none of the existing
agents can accomplish our tasks without moderate adaptation. Therefore, we introduce our agent
BKGAgent, the first agent framework to interact with external knowledge graphs as well as research
papers. Experiments demonstrate fascinating results that our agent is capable of discovering real
conflicts in the existing large-scale datasets. Within 225 professional-annotated data in the Clinical
Knowledge Graph (CKG) (Santos et al., 2022), our agent BKGAgent successfully identified some
conflicting or missing pairs. This evidence further supports the academic value of our agent by
providing researchers with a tool to update their own knowledge bases, offering substantial potential
in both academic and commercial markets.

2 RELATED WORK

Science Agent. The swift progression of large language models (LLMs) has catalyzed the widespread
deployment of intelligent agents across diverse fields, notably within the science domain. Notable
examples include ChemCrow (Bran et al., 2023) and Coscientist (Boiko et al., 2023b) in the field of
chemistry, DoInstruct (Bi et al., 2023) in ocean science, and GeneGPT (Jin et al., 2024b), Almanac
(Zakka et al., 2024), MedAgents (Tang et al., 2023b) in the biomedical domain, etc. Among them,
biomedical agents, in particular, have garnered significant attention due to their critical importance.
Biomedical agents (Gao et al., 2024) impact areas ranging from hybrid cell simulation (Xiao et al.,
2024), the design of cellular circuits (Chandrasekaran et al., 2024) to the development of new thera-
pies (Zhenzhu et al., 2024) and so on. We posit that biomedical agents will emerge as a focal point of
research. However, the current benchmark in this field remains inadequate. For instance, MedAgents
is evaluated in MedQA (Zhang et al., 2018), MedMCQA (Pal et al., 2022), PubMedQA (Jin et al.,
2019), relying heavily on inherent knowledge of LLMs, which leads to hallucinations easily. Our
proposed BioKGBench is a dynamic benchmark that evaluates the capabilities of agents in utilizing
external tools and knowledge retrieval, thereby addressing this gap.

Agent Benchmark. As agents are progressively applied across various domains, the urgency
to construct corresponding benchmarks is escalating. Currently, the majority of benchmarks for
evaluating agents adopt the approach of evaluating LLM-as-Agent (Liu et al., 2023c), linking LLMs
to external frameworks to assess their performance on specific tasks. For instance, AgentBench (Liu
et al., 2023c) is a general benchmark for evaluating an agent’s reasoning and decision-making
capabilities, SWE-bench (Jimenez et al., 2023) assesses an agent’s proficiency in software engineering,
and AgentClinic (Schmidgall et al., 2024) examines an agent’s performance in a simulated clinical
environment. However, a benchmark in AI Scientist perspective remains largely unexplored. Our
benchmark originates from this perspective, taking the processing and understanding of large-scale
data scenarios as the entry point, representing an initial attempt in this direction.

Agent Integrating LLMs and KGs. The collaborative use of LLM and KG has become one of the
leading methodologies in contemporary agent design, aimed at alleviating uncertainties stemming
from the intrinsic mechanisms of LLMs (Pan et al., 2024; Chen et al., 2023a; Yang et al., 2023c).
This paradigm not only capitalizes on the generalization ability of LLMs but also employs KGs
as an external, trustworthy, and structured data source, thereby achieving reasoning proficiency
that strikingly emulates human intellect(Pan et al., 2024). For instance, StructGPT (Jiang et al.,
2023) boosts an LLM’s performance on general questions by tapping into the information from a
supplied KG. Similarly, KG-Agent (Jiang et al., 2024b) leverages knowledge from KGs, synthesizing
instruction data for fine-tuning an open-sourced LLM, thereby achieving competitive performance on
general question-answering tasks. However, to our knowledge, while this paradigm has been widely
applied to the general question-answering area, its potential remains untapped in the biomedical field.
BKGAgent, hence, is poised to fill this gap.

3 BIOKGBENCH

Here, we present our benchmark in detail. As aforementioned, one key ability of “AI Scientists” is to
understand domain knowledge. However, current LLM-driven agent systems inevitably suffer from
hallucinations as a consequence of the statistical nature of LLMs along with the lack of scientific
training data compared to data from daily scenarios. We notice that a recent trend in research is to
use AI agents to leverage external tools to address these limitations (Bran et al., 2023; Bi et al., 2023).
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Table 2: Comparison with existing well-known benchmarks.

Benchmark Domain Dataset Composition Multi-Turn Environmental Interactio

MMLU (Hendrycks et al., 2020) 57 subjects QA % %

MATH (Hendrycks et al., 2021) math QA (including solution) % %

PubMedQA (Jin et al., 2019) biomedical science QA % %

SWE-bench (Jimenez et al., 2023) software engineering Issue text, codebase, gold patch, tests % "

MT-Bench (Zheng et al., 2023) writing, math, knowledge votes, conversations " "

AgentBench (Liu et al., 2023c) LLM-as-Agent 8 real-world tasks " "

BioKGBench (ours) biomedical science, LLM-as-Agent QA, KGQA, KG, literature " "

Table 1: Statistics of our BioKGBench.

Task Main Metrics Scope
Data

Dev Test All

KGQA F1 KG 60 638 698
SCV Acc. Text (T) 120 1,265 1,385
KGCheck EM KG + T 20 205 225

Drawing inspiration from this, we design
two atomic abilities to evaluate AI scien-
tists, i) Knowledge Graph Question Answer-
ing (KGQA) aiming to address the hallucination
issue by grounding the knowledge with struc-
tured knowledge graphs; and ii) Scientific Claim
Verification (SCV) based on retrieved text from
peer-reviewed research papers. In addition, we
propose an encompassing task combining these
two atomic abilities, to perform Knowledge Graph Checking (KGCheck) as shown in Figure 1. The
motivation behind this stems from our interviews with experts from biomedical domains. Their
answers to the question “What is the most expected AI agent you would like to use in your daily
research?” often included an AI agent that helps in extensive literature review and claim verification.
We report the statistics over the scopes of knowledge search, including knowledge graphs and aca-
demic literature, in Table 1 (Cf. Appendix A for more details). As shown in Table 2, compared to
existing well-known benchmarks, BioKGBench features:

• setting: evaluating LLMs as agents through multi-round interactions with the environment to assess
their ability to process and understand large-scale biomedical data.

• data: a diverse dataset of structured and unstructured data, allowing agents to derive knowledge
from heterogeneous sources and make discoveries.

3.1 ATOMIC ABILITY

3.1.1 KNOWLEDGE GRAPH QUESTION ANSWERING

Figure 2: The sub-graph of the Clinical Knowledge
Graph (CKG) retains 12 types of nodes and 18
kinds of relationships.

This atomic task in the benchmark is to eval-
uate the agents’ ability to interact with struc-
tured Knowledge Graph Question Answering
as a grounding of academic literature. Without
loss of generality, we choose Clinical Knowl-
edge Graph (CKG) (Santos et al., 2022) as the
source of our data, which is one of the most
popular large-scale knowledge graph databases
in the biomedical domain. CKG is a knowl-
edge graph database with data imported from
diverse biomedical databases, aimed at stream-
lining automated knowledge discovery through
the graph’s extensive information.

As the original database is unnecessarily large,
we focus on a sub-graph to mitigate the chal-
lenge while preserving all relevant information.
Starting from the origin of CKG—protein, we select the sub-graph to contain exactly 12 categories of
biological entities, as indicated in Figure 2. Thus, the sub-graph consists of 484,955 entities (nodes)
across 12 categories (Biologically defined) and 18,959,943 relationships (edges) of 18 types, with
each type consisting of relationships between a unique pair of entity categories (Cf. Appendix A.2
for more details).

After the sub-graph is ready, we construct the question set for the Question Answering (QA) database
in two steps. We first handcraft question templates by selecting biomedical fields and pinpointing
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Table 3: Statics of three different reasoning types of KGQA dataset.

Reasoning Type Graph Example Question Question Types %

One-hop
What proteins does
the protein O94842
act on?

8 56.0

Multi-hop

What diseases are as-
sociated with the pro-
tein encoded by the
gene KCNS1?

4 28.7

Conjunction

Which pathway are
the proteins P02778
and P25106 both an-
notated in?

4 15.3

entities and relations in the CKG. Natural language questions were constructed in various formats,
ensuring their accuracy through peer reviews and expert consultations. We then expanded our dataset
with autogenerated questions by matching CKG data to constructed QA templates, resulting in the
generation of 698 questions across three reasoning types and 16 question categories (refer to Table 3).

In this task, we outfit LLMs with a set of atomic KG-querying tools and ask them to answer biomedical
questions by querying the provided KG. The responses will be compared with the gold answers and
evaluated using the F1 score, where the gold answer to the input question is typically characterized
by a set of KG entities. It is noteworthy that our KGQA is built upon a biomedical KG rather than
a common sense KG, with the two adopting different data models. This difference is one of the
reasons why KBQA methods cannot be directly applied (Cf. Appendix C.3 for more details). This
task enables the development of assessing the robustness and tool learning ability of agents built upon
various LLMs, and hopefully, it would aid in guiding agents to leverage the extensive biomedical
knowledge within the KG, thereby propelling scientific discovery.

3.1.2 SCIENTIFIC CLAIM VERIFICATION

This task is designed to evaluate LLMs’ understanding of unstructured text from research papers
in a retrieval-augmented generation manner. Following the definition in (Wadden et al., 2020), the
task is to identify evidence related to the claim from the research literature and give a verdict of
“Support”, “Refute”, or “NEI” (Not Enough Information) based on it. We reconstruct two high-quality
biomedical datasets, PubMedQA (Jin et al., 2019) and SciFact (Wadden et al., 2020), into one dataset
for SCV, yielding a corpus constituted of abstracts derived from 5,664 scholarly articles, alongside a
dataset comprising 1,385 biomedical claims, as shown in Table 4.

Table 4: Examples of reconstructed dataset for SCV, where data from PubMedQA is converted from
QA to declarative claims. "NEI" stands for "Not Enough Information".

Example Claim Label %
A deficiency of folate increases blood levels of homocysteine. Support 65.2
Therapeutic anticoagulation in the trauma patient is safe. Refute 33.1
Sternal fracture in growing children is a rare and often overlooked fracture. NEI 1.7

3.2 AGENT TASK

Building upon the atomic abilities, we propose a novel and comprehensive task, KGCheck. This task
necessitates the initial application of the tool-query functionality to extract information from the KG.
Subsequently, it employs the RAG approach or database access to procure evidence pertaining to the
queried information, facilitating a determination of either “Support” or “Refute”. This methodology
enables agents to scrutinize the knowledge encapsulated within a large-scale KG, a venture of
particular importance considering the prevalence of inaccuracies within numerous datasets, including
prominent ones such as ImageNet (Deng et al., 2009).

For this task, we collect 225 high-quality annotated data, as illustrated in Table 5. Given the massive
data encapsulated within KGs via triples, we delineate the inspection process into two distinct
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Table 5: Four different checking types of KGCheck.

Check Type Graph % Support: Refute

Node
Existence ? 20.0

71.0:29.0
Attribute ? 24.4

Triple
Existing a b

? 25.8
46.4:53.6

Potential a b
? 29.8

categories: single-node and triple-based. The single-node inspection is divided into node existence
and attribute value assessments, while the triple inspection encompasses scenarios with and without
edges between two nodes:

• Existence: We note that databases may excise entries during updates due to inaccuracies or
redundancies, whereas KGs remain static post-construction, similar to LLMs in some respects.
If nodes corresponding to obsolete entities persist in the KG, the label is “Refute”; if they are
congruent with real-time updated external databases, the label is “Support”.

• Attribute: Our KG is characterized by high information density, with each node and edge encapsu-
lating numerous attribute values, which we scrutinize for accuracy and completeness.

• Existing Relationship: We check whether existing edges contradict information from external,
real-time updated databases and literature. If external knowledge corroborates the relationship, the
label is “Support”; conversely, it is “Refute”.

• Potential Relationship: If a relationship is confirmed by databases or literature but is not repre-
sented in the KG, the label is “Refute”; otherwise, it is “Support”.

Despite utilizing the latest databases (as of May 2024), we identified errors within the KG, evidenced
by 96 “Refute” annotations. These data are valuable and provide scenarios for agents to comprehend
knowledge from heterogeneous sources and make discoveries.

3.3 BKGAGENT: A SIMPLE BASELINE

Table 6: Comparison of capabilities for BKGAgent
and other frameworks.

Framework MA KGq IR

HuggingGPT (Shen et al., 2023) " % %

OpenAgents (Xie et al., 2023) " % %

AgentVerse (Chen et al., 2023b) " % %

Xagent (Team, 2023) " % %

BabyAGI (Yoheinakajima) " % %

MedAgents (Tang et al., 2023c) " % %

gpt-researcher1 " % %

BDAgent (Roohani et al., 2024) % % "

BKGAgent(ours) " " "
BDAgent=BioDiscoveryAgent; MA=multi-agent;
KGq=KG-query; IR=information retrieval

We propose a biomedical knowledge-graph
agent (BKGAgent), as shown in Figure 3.
It’s a multi-agent framework based on lang-
graph (Chase, 2023), capable of retrieving in-
formation from knowledge graph and cross-
validating its correctness with multiple infor-
mation sources. Our framework is comprised
of three agents: the team leader for the progress
control, the KG agent for information retrieval
from KG, and the validation agent for check-
ing the correctness of the information from KG.
This setup simulates the workflow of a human
research team, where a leader supervises the
assistants’ work and makes the final decision
based on their feedback. Additionally, the tool
executor is solely responsible for executing func-
tions, and is not based on LLMs.

When a user assigns a task, the leader initially
breaks down the task and announces the plan. Then the KG agent is activated to retrieve task-related
information from the KG. This involves specifying the tool and its arguments to the tool executor,
interpreting the tool result, and communicating it back to the leader. After that, the validation agent is
called to verify the information with a workflow similar to that of the KG agent. Finally, the leader
will draw a conclusion and return it to the user.

1https://gptr.dev/

6

https://gptr.dev/


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Framework of our BKGAgent.

BKGAgent possesses fundamental capabilities for grounding heterogeneous biomedical knowledge,
including knowledge graph queries, database queries, and retrieval-augmented generation (RAG) of
literature. In contrast, as illustrated in Table 6, many other frameworks struggle to achieve comparable
effectiveness in biomedical information retrieval and verification due to their limited capacity to
access knowledge graphs and biomedical data, as well as the unreliability of information sourced
from the web.

4 EXPERIMENTS

4.1 MAIN RESULTS AND ANALYSIS: ATOMIC ABILITIES

Metrics. For KGQA, we adopt three metrics: F1, Exact Match (EM), and Executability. For SCV,
we adopt three metrics: Accuracy, Right Quotes, and Error Rate. Specifically, “Executability” refers
to the success rate of the agent providing an answer within 15 turns, “Right Quotes” indicates the
success rate of retrieving matching text from the whole corpus through RAG, and “Error Rate” refers
to the frequency with which the agent fails to make a verification.

The detailed experimental results of atomic abilities evaluation on LLMs are shown in Table 7, and
we summarize our key findings as follows:

• Disparity between open-source and commercial API models. Commercial API models like
GPT-4 and GLM-4 generally outperform open-source models in several key metrics. GPT-4, for
example, consistently achieves higher scores in both KGQA and SCV tasks, highlighting the
advantage of proprietary training techniques and larger computational resources.

• Strong performance of open-source large models. Some large OSS models, such as Llama-
3-70B-Instruct, perform competitively, sometimes surpassing API models in specific metrics.
Llama-3-70B-Instruct, in particular, excels in KGQA executability, suggesting that optimized
training can enable open-source models to rival or exceed commercial counterparts.

• Model parameters do not always correlate with better performance. In the OSS (Medium) and
OSS (Small) categories, smaller models like Llama-3-8B-Instruct sometimes outperform larger
models like Qwen1.5-32B-Chat in SCV tasks, indicating that model architecture, training data

7
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Table 7: Test set (standard) results of two easy tasks: KGQA, SCV. Bold/underline and red/blue
indicate the best and second in the subgroup and overall.

LLM
Type Models KGQA SCV

F1 EM Executability Accuracy Right Quotes Error

API GPT-4 (OpenAI, 2023a) 81.8 79.2 88.4 83.9 87.7 0.4
GLM-4 (Du et al., 2022) 72.4 70.4 82.7 86.9 86.5 0.6

OSS
(Large)

Qwen1.5-72B-Chat (Bai et al., 2023) 74.7 72.2 96.1 85.7 83.3 0.1
Llama-3-70B-Instruct (AI@Meta, 2024) 80.7 77.8 97.0 85.9 86.6 0.2
DeepSeek-LLM-67B-Chat (Bi et al., 2024) 69.6 66.8 86.3 76.6 82.6 0.4

OSS
(Medium)

Qwen1.5-32B-Chat (Bai et al., 2023) 64.6 62.1 83.0 79.7 83.0 0.4
Qwen1.5-14B-Chat (Bai et al., 2023) 66.0 61.6 78.7 66.1 67.4 0.2
Baichuan2-13B-Chat (Yang et al., 2023a) 43.7 42.0 82.2 26.3 35.8 33.6

OSS
(Small)

Llama-3-8B-Instruct (AI@Meta, 2024) 54.7 51.3 84.8 78.5 83.3 0.5
Qwen1.5-7B-chat (Bai et al., 2023) 44.5 40.3 77.9 72.5 39.1 2.2

OSS
(MoE)

Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024a) 70.1 67.9 84.7 77.8 82.5 2.3
Starling-LM-alpha-8x7B-MoE-GPTQ (Zhu et al., 2023) 12.4 10.9 30.7 55.0 56.2 0.1
Qwen1.5-MoE-A2.7B-Chat (Bai et al., 2023) 28.7 26.7 71.9 55.0 57.8 3.0

quality, and fine-tuning strategies significantly impact performance. Notably, Qwen1.5-14B-Chat
outperforms Qwen1.5-32B-Chat in KGQA, suggesting the latter’s pre-training may be insufficient.

• Domain-specific models lack transferability. DeepSeek-LLM-67B-Chat excells in mathematical
problems (Bi et al., 2024), but underperforms in biomedical-related tasks, highlighting its lack
of cross-domain transferability. This suggests that specialization in one area may compromise
generalizability.

• Inconsistent performance of MoE models. While Mixtral-8x7B-Instruct-v0.1 performs well in
both KGQA and SCV tasks, other MoE models like Starling-LM-alpha-8x7B-MoE-GPTQ and
Qwen1.5-MoE-A2.7B-Chat show significantly lower scores. This inconsistency suggests that the
effectiveness of MoE models heavily depends on the implementation and integration of the expert
models. Additionally, Mixtral-8x7B-Instruct-v0.1, though strong in main metrics, struggles with
controlling response format, indicating that individual expert models still require improvement.

• Biomedical knowledge embedded in model parameters. The new metric “Right Quotes” for
SCV assesses the alignment of retrieved quotes with ground truth evidence. Some models, such as
GLM-4, Qwen1.5-72B-Chat, and Qwen1.5-7B-Chat, exhibit higher accuracy metrics than “Right
Quotes” metrics. This suggests these models can accurately assess input claims even without
sufficient literature evidence, indicating they possess specialized biomedical knowledge.

Figure 4: Llama-3-70B-Instruct’s performance in
RAG across different scopes of literature.

Further Analysis. We also conduct an ablation
experiment on three scopes of RAG, as shown
in Figure 4, where ‘all’ refers to the abstract
of 5,664 articles, ‘partial’ denotes the 1,888
abstracts containing ground truth evidence of
claims, and ‘match’ corresponds to the abstracts
of the ground truth evidence for the claims. Inter-
estingly, we observe an unexpected phenomenon
where the model’s performance in the ‘match’
setting only increases in terms of the right quotes
metric, while the accuracy metric decreases. In
the ‘all’ setting, we initially anticipated interfer-
ence from irrelevant literature, but the accuracy
metric instead improved. This suggests that there is a potential connection among the extensive
literature, where large models exhibit a form of “analogical reasoning”. This provides us with
insights for conducting extensive literature research in simulating human scientific research.

4.2 MAIN RESULTS AND ANALYSIS: BKGAGENT

Evaluation Setup. As mentioned in 3.3, most agent frameworks fail in KGCheck, which further
highlights that KGCheck is a novel and challenging task. It requires agents to first query the knowl-
edge graph, followed by verification through database searches or RAG of literature. Consequently,
agents lacking capabilities for KG querying or information retrieval verification cannot complete this
task. Therefore, for agents capable of querying knowledge graphs, we selected KG-Agent from (Liu
et al., 2023c) as representative; for general agent frameworks, we chose the most prominent ones,
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Table 8: The performance of different agents built on GPT-4o (Hel) in executing the KGCheck task.
Bold/ underline indicate the best and second, respectively. All scores are on a percentage scale.

Agent Process Result

Understanding Reasoning Efficiency KG process Information retrieval Average EM

Baselines
AgentBench-KG agent 81.0 81.0 81.0 77.1 97.1 83.4 56.6

AutoGPT 99.0 78.0 84.4 96.6 59.5 83.5 39.5
AutoGen 95.6 45.9 78.0 28.8 30.7 55.8 30.2

Ours
AgentBench-KG agent w/ our tools 98.5 84.4 85.9 97.6 91.7 91.6 68.8

AutoGPT w/ our tools 99.0 97.0 98.5 99.0 99.0 98.5 75.1
AutoGen w/ our tools 99.0 99.0 98.0 99.0 100.0 99.0 77.1

BKGAgent (ours) 89.8 94.1 95.1 100.0 95.1 94.8 78.0

AutoGen (Wu et al., 2023a) and AutoGPT2, along with their three improved versions, as well as our
BKGAgent, for comparison, as shown in Table 83. Both the final results and process are considered
for a more robust evaluation. Since the ground truth is either “support” or “refute”, we use Exact
Match (EM) as the metric for the final result. For the process, we employ Qwen2-72B4 to score based
on five criteria: (1) Understanding: whether the agent clearly understood the task and the purpose
of the given tool. (2) Reasoning: whether the agent arrived at the final answer through sufficient
evidence and reasoning, rather than simply providing random answers or guessing. (3) Efficiency:
whether the agent efficiently solved the problem without unnecessary discussion on unrelated topics.
(4) KG Process: whether the agent queried the knowledge graph during the task. (5) Information
Retrieval: whether the agent retrieved information from external knowledge sources in some way
during the check. To align the judgments made by LLMs closely with those of humans, we collect
10 agent histories along with human-annotated scores (on a 5-point scale) and prompt the LLM to
produce scores that closely resemble human ratings. We take EM as the main metric, while process
scores serve as supplementary metrics.

Agent Comparison. Table 8 shows that BKGAgent outperforms the other agents. KG-Agent
achieved an accuracy of only 56.6%, roughly equivalent to random guessing. This aligns with our
expectations, as while it can accurately query information from the knowledge graph, it lacks access
to reliable external knowledge sources for verification, leading to hallucinations in the large model’s
guesses. Notably, the final accuracy of Vanilla AutoGen and AutoGPT is quite low, at just over 30%.
This underscores the importance of integrating general capabilities with specialized tools to enhance
agent performance. Their performance suffers because they are general frameworks that rely on some
general capabilities like programming and web searches, which are not robust enough, often resulting
in execution failures due to poor code quality. Consequently, they cannot provide answers within the
limited interaction turns. Thus, we improved KG-Agent, AutoGen, and AutoGPT by equipping them
with tools including KG querying and RAG. We also designed prompts to teach them how to utilize
these tools. As a result, KG-Agent w/ our tools, AutoGen w/ our tools, and AutoGPT w/ our tools
demonstrate significant improvements, highlighting that the integration of general capabilities with
specialized tools enhances the robustness of agent performance.

Case Study of BKGAgent. While the behavior of the assistant agents in BKGAgent can be modified
by the leader’s instruction, the leader itself lacks action-related feedback from others, meaning that
a bad decision made by the leader may lead to a catastrophe. We found four common error cases
induced by the leader, as shown in Figure 6. Among these cases, the leader either fails to give
effective instructions to team members, becomes trapped in repeated self-talks, or attempts to perform
the tasks that are meant for the assistants. Thus, we can conclude that the performance of the leader
agent significantly impacts team behavior. Furthermore, compared to the other agent frameworks in
Table 8, BKGAgent employs the maximum number of three agents. However, in our additional case
studies (see Appendix D.3), we found that an increase in the number of agents also leads to higher
communication costs and a decrease in fault tolerance. They frequently experience task failures due
to being lost in conversation.

2https://news.agpt.co/
3Other agent frameworks that can perform information retrieval but cannot query knowledge graphs are

unable to execute the task from the outset, resulting in scores of zero; therefore, we omit their evaluation.
4https://huggingface.co/Qwen/Qwen2-72B-Instruct
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Figure 6: Error analysis. Here, we show a failure case due to a leader’s various mistakes: the
hallucination of the leader misleading the later task or using the wrong process, the leader producing
unnecessary repeated tasks and misunderstanding leads to the wrong process.

1 agent

2 agents

3 agents

Figure 5: Comparison of the performance
of agent frameworks with 1/2/3 agents.

Impact of Agent Number on System Performance: A
Further Analysis. By equipping agents with identical ca-
pabilities (e.g., KG querying, database querying, and RAG
of literature), we compare the performance of systems
with 1, 2, and 3 agents (Cf. Figure 5). Our BKGAgent
achieves a 20% higher recall rate of errors (i.e., the ability
to correctly identify errors in the KG) than the second-best
system, demonstrating its strong performance. However,
we also note that the advantage of using 3 agents in terms
of EM is not significant. While adding agents slightly
improves performance through collaboration, it also in-
creases communication costs and complexities, leading
to diminishing returns. In contrast, the application of ef-
fective algorithms, such as ReACT (Yao et al., 2022), can
yield more significant improvements, as evidenced by the
comparison between AgentBench-KG Agent w/ our tools and AutoGPT w/ our tools.

5 CONCLUSION

We present BioKGBench, an interactive benchmark that encompasses the KGCheck task with two
atomic capabilities for assessment: KGQA and SCV. KGCheck offers agents a valuable scenario
for detecting knowledge hallucination within large-scale data, akin to the experience of researchers
making discoveries amidst voluminous literature in the real world. We conduct evaluations of these
two atomic capabilities across 13 LLMs and select GPT-4o, to construct BKGAgent—–a multi-agent
system serving as the baseline. Comparisons with existing general and biomedical agents revealed
their poor performance due to the absence of certain process capabilities, thereby demonstrating
the challenging nature of our benchmark. We expect BioKGBench to serve as a valuable endeavor
towards paving the path for biomedical agents to become AI scientists.

Limitations and Future Work. In KGCheck, we guide agents to identify knowledge-based errors
within the KG by providing them with specific instructions. This process involves atomic-level
inspections from single nodes to triples, which agents could potentially implement autonomously.
Future work will explore how agents can autonomously conduct real-time error detection in large
datasets by leveraging logic rules and prior knowledge.
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A DATASHEET

Here, we provide a detailed description of our benchmark dataset, following the guidelines of the
“Datasheet for Datasets” (Gebru et al., 2021).

A.1 MOTIVATION

Our benchmark dataset was created to address the lack of benchmarks for evaluating biomedical agents
from the perspective of an “AI scientists”. In (Gao et al., 2024), it is stated that “AI scientists” can be
realized as AI agents supported by humans, LLMs, ML models, and other tools like experimental
platforms that cooperate to solve complex tasks. However, the current evaluation methods for
biomedical agents remain unexplored, limited to simple question-answering tasks, which not only
fail to avoid the hallucination problem inherent in solely relying on LLMs but also do not assess
agents’ abilities to utilize external tools and knowledge bases. Our proposed benchmark fills this
gap by designing tasks ranging from easy to hard, based on two atomic capabilities: tool-query and
memory-RAG. These tasks evaluate the agents’ ability to leverage external support, including external
knowledge and tools, when handling large-scale and multi-modal data. Moreover, Our data collected
for KGCheck, the most challenging task, provides scenarios for agents to comprehend knowledge
from heterogeneous sources and make discoveries.

The conception and construction of this dataset were jointly completed by the biomedical experts and
AI researchers listed in the author list.

A.2 COMPOSITION

We provide the necessary data for constructing the knowledge graph, literature for RAG, as well as
the development and test data for KGQA, SCV, and KGCheck, where knowledge graph and literature
are external knowledge sources provided for agent.

The knowledge graph is derived from a subset of Clinical Knowledge Graph (CKG) (Santos et al.,
2022). We specifically retain twelve key node types to ensure there is no loss of generality: Protein,
Biological process (BP), Molecular function (MF), Cellular component (CC), Amino acid sequence,
Tissue, Protein structure, Pathway, Modified protein, Modification, Disease, and Gene. The statistics
of the triples in our knowledge graph are presented in Table 9. Detailed information stored in our
knowledge graph is shown in Table 10.

Table 9: The data statistics of our knowledge graph drawn from CKG.

Head Node Tail Node Relation Number
Protein Protein_structure HAS_STRUCTURE 271,512

Amino_acid_sequence HAS_SEQUENCE 20,598
Cellular_component ASSOCIATED_WITH 3,796,383
Tissue ASSOCIATED_WITH 7,117,321
Disease ASSOCIATED_WITH 5,882,437
Molecular_function ASSOCIATED_WITH 85,013
Biological_process ASSOCIATED_WITH 153,219
Protein ACTS_ON 985,376
Pathway ANNOTATED_IN_PATHWAY 357,739
Protein CURATED_INTERACTS_WITH 3,448
Modified_protein HAS_MODIFIED_SITE 4,498

Disease Disease HAS_PARENT 16,058
Modified_protein Protein IS_SUBSTRATE_OF 6,633

Modification HAS_MODIFICATION 4,559
Gene Protein TRANSLATED_INTO 179,854
Biological_process Biological_process HAS_PARENT 49,081
Molecular_function Molecular_function HAS_PARENT 13,659

Besides the knowledge graph, literature also serves as an external source of knowledge. We provide a
corpus of 5,664 abstracts (under ODC-By 1.0) for SCV and 51 full papers for KGCheck. The 5,664
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Table 10: Details of the information stored in the nodes of our knowledge graph.

Entity Type Content Example

Protein name, id, accession,
synonyms

{‘name’: ‘PLEKHG6’, ‘id’: ‘Q3KR16’, ‘accession’:
‘PKHG6_HUMAN’, ‘synonyms’: [‘PKHG6_HUMAN’,
‘PLEKHG6’, ‘9606.ENSP00000380185’,
‘ENSG00000008323’], ‘taxid’: ‘9606’}

Disease name, description,
id(DOID), type,
synonyms

{‘synonyms’: [‘sulfamethoxazole allergy’, ‘SMX allergy’,
‘SMZ allergy’, ‘sulphamethoxazole allergy’], ‘name’:
‘sulfamethoxazole allergy’, ‘description’: ‘A drug allergy that
has_allergic_trigger sulfamethoxazole.
[url:https://www.ncbi.nlm.nih.gov/pubmed/7602118]’,
‘id’: ‘DOID:0040016’, ‘type’: ‘-26’}

Protein structure link, id, source {‘link’: http://www.rcsb.org/structure/6XWD, ‘id’:
‘6XWD’, ‘source’: ‘Uniprot’}

Amino acid
sequence

sequence, header,
source, id, size

{‘sequence’: ‘LRGAAGRLGGGLLVL’, ‘size’: ‘15’, ‘header’:
‘tr|A0A0A0MTA2|A0A0A0MTA2_HUMAN’, ‘source’:
‘UniProt’, ‘id’: ‘A0A0A0MTA2’}

Cellular
component

name, description,
id, type, synonyms

{‘name’: ‘Golgi membrane’, ‘description’: ‘The lipid bilayer
surrounding any of the compartments of the Golgi apparatus.
[GOC:mah]’, ‘id’: ‘GO:0000139’, ‘type’: ‘-21’, ‘synonyms’:
[‘Golgi membrane’]}

Molecular
function

name, description,
id(GO), type,
synonyms

{‘name’: ‘polymeric immunoglobulin binding’, ‘description’:
‘Interacting selectively and non-covalently with a
J-chain-containing polymeric immunoglobulin of the IgA or
IgM isotypes. [GOC:add, ISBN:0781735149]’, ‘id’:
‘GO:0001790’, ‘type’: ‘-21’, ‘synonyms’: [‘polymeric
immunoglobulin binding’]}

Biological process name, description,
id(GO), type,
synonyms

{‘synonyms’: [‘mitochondrion inheritance’], ‘name’:
‘mitochondrion inheritance’, ‘description’: ‘The distribution of
mitochondria, including the mitochondrial genome, into
daughter cells after mitosis or meiosis, mediated by interactions
between mitochondria and the cytoskeleton. [GOC:mcc,
PMID:10873824, PMID:11389764]’, ‘id’: ‘GO:0000001’,
‘type’: ‘-21’}

Pathway name, description,
linkout, id, source

{‘name’: ‘Antigen processing: Ubiquitination & Proteasome
degradation’, ‘description’: ‘Antigen processing:
Ubiquitination & Proteasome degradation’, ‘linkout’: https:
//reactome.org/PathwayBrowser/#/R-HSA-983168, ‘id’:
‘R-HSA-983168’, ‘source’: ‘Reactome’}

Tissue name, description,
id, type, synonyms

{‘name’: ‘stratum basale’, ‘description’: ‘The deepest layer, as
of the epidermis or the endometrium. In the epidermis it is a
single layer of cells. In the endometrium it provides the
regenerative tissue after menstrual loss of the functional layer.
[Dorlands_Medical_Dictionary:MerckMedicus]’, ‘id’:
‘BTO:0004680’, ‘type’: ‘-25’, ‘synonyms’: [‘stratum basale’,
‘basal layer’]}

Modified protein sequence_window,
protein, position,
source, id, residue

{‘sequence_window’: ‘MEPAPARsPRPQQDP’, ‘protein’:
‘P29590’, ‘position’: ‘8’, ‘source’: ‘SIGNOR’, ‘id’:
‘P29590_S8-p’, ‘residue’: ‘S’}

Modification synonyms, name,
description, id, type

{‘synonyms’: [‘Unimod’, ‘Source: “none”’], ‘name’:
‘Unimod’, ‘description’: ‘Entry from Unimod.
[PubMed:18688235]’, ‘id’: ‘MOD:00003’, ‘type’: ‘-41’}

Gene taxid, synonyms,
name, id, family

{‘taxid’: ‘9606’, ‘synonyms’: [‘54843’, ‘ENSG00000137501’,
‘OTTHUMG00000166977’, ‘uc010rti.4’, ‘AJ303364’], ‘name’:
‘synaptotagmin like 2’, ‘id’: ‘SYTL2’, ‘family’: “‘Protein
phosphatase 1 regulatory subunits|Synaptotagmin like tandem
C2 proteins”’}
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abstracts are sourced from existing datasets SciFact (Wadden et al., 2020) (under CC BY 4.0) and
PubMedQA (Jin et al., 2019) (under MIT license), while the 51 full papers, all of which are open
access, were selected by experts based on entries in the IntAct (Orchard et al., 2014) database and
CKG. Table 11 summarizes the sources of the abstracts, and Figure 7 describes the literature with
more details. Table 12 summarizes the sources of the 51 full papers, and Figure 8 provides more
details about the literature.

Table 11: The 5,664 papers come from 1,484 journals. Due to space limitations, we only list the
names of journals with an IF greater than 70 and use ‘others’ to represent journals with an IF less
than 70.

Journal Count
Nature reviews. Microbiology 3
CA: a cancer journal for clinicians 3
The Lancet. Infectious diseases 3
Nature reviews. Drug discovery 5
Nature reviews. Molecular cell biology 14
Nature reviews. Immunology 21
Lancet (London, England) 46
The New England journal of medicine 46
BMJ (Clinical research ed.) 90
JAMA 113
Nature medicine 138
others 5182

Total 5664
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Figure 7: Specific information of the 5,664 abstracts

For evaluation, we carefully collected 698, 1385, and 225 instances for KGQA, SCV, and KGCheck
respectively. These datasets are split into development (dev) and test sets at an approximate ratio of
1:10. The dev data is intended for users to debug and fine-tune their evaluation code, while the test
data is reserved for the final assessment. Each instance includes both input and output (ground truth
answer or label) pairs, with additional information to make the data easier to understand. The dataset
for SCV is reconstructed from well-known existing datasets SciFact and PubMedQA, while the rest
is self-contained. The dataset represents a carefully selected sample of instances from a larger set,
ensuring a comprehensive and representative coverage of the key aspects.

A.3 COLLECTION PROCESS

Biomedical experts and AI researchers listed in the author list were invloved in the data collection
process. The collection process for different tasks varies:

KGQA. The collection process can be summarized into two steps: manually constructing question
templates and automatically generating questions:
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Table 12: Journal distribution of the 51 full papers

Journal Count
Brain research 1
Molecular & cellular proteomics : MCP 1
Aging cell 1
Cell reports 1
PloS one 1
Genes to cells : devoted to molecular & cellular mechanisms 1
EMBO reports 1
IUBMB life 1
The Journal of allergy and clinical immunology 1
The EMBO journal 1
Open biology 1
Nature communications 1
Pigment cell & melanoma research 1
Molecular biology of the cell 1
Mobile DNA 1
Journal of molecular biology 1
Nutrients 1
Biological research for nursing 1
Genes & development 1
Developmental cell 1
Bone 1
Cancers 1
Animals : an open access journal from MDPI 1
Nucleic acids research 2
Molecular cell 2
Scientific reports 3
Proceedings of the National Academy of Sciences of the
United States of America

3

Molecular and cellular biology 4
Cell 4
The Journal of biological chemistry 10

Total 51

• Workflow for the Handcrafted Question Templates: The process commenced by selecting
specific biomedical research fields and identifying relevant entity types and relationships from
our knowledge graph. We defined various types of natural language questions, including one-hop
questions, multi-hop questions, and conjunction questions (involving multiple entities). For each
question, we created corresponding queries in both human-readable and machine-readable formats.
These questions and queries, along with their associated metadata, such as question type and query
structure, underwent rigorous peer reviews to ensure syntactic and semantic correctness.

• Workflow for the Auto-generated Questions and Answers: In the expansion of our benchmark,
we initiated the process with the creation of auto-generated question templates. For instance,
we used handcrafted question templates like "Which pathway are the proteins <Protein1> and
<Protein2> both annotated in?" and then scoured our knowledge graph for data that fit the criteria
to formulate both questions and answers, thereby augmenting the size of our dataset. This compre-
hensive dataset enables the development of assessing the robustness and accuracy of various LLM
agents, providing a comprehensive benchmark that contributes to the advancement of the field with
extensive biomedical knowledge.

SCV. We combine two high-quality biomedical datasets, PubMedQA and SciFact, into a single
dataset for SCV. This results in a corpus consisting of abstracts from 5,664 scholarly articles and a
dataset containing 1,385 biomedical claims. To further ensure consistency, we conducted secondary
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Figure 8: Specific information of the 51 full papers

verification on this expert-annotated dataset using Qwen1.5-72B (Bai et al., 2023), confirming the
claims are conflict-free.

KGCheck. Considering the characteristics of the knowledge graph, we decompose the approach to
checking the knowledge graph into two atomic-level checks: nodes and triples. Further, we subdivide
these into whether a node should exist in the knowledge graph, whether the information stored in
the node is correct, whether the relationship between two connected nodes in the knowledge graph
truly exists, and whether there is a potential relationship between two nodes that are not connected
by an edge. To collect this data, we selected well-maintained external knowledge sources such as
the UniProt database, the IntAct database, and literature. We cross-verified the information in our
knowledge graph with these reliable sources, labeling mutually corroborative data as ‘support’ and
data that contradicts the external reliable sources as ‘refute’. Specifically, for the data collection to
check nodes, we review some update information from databases, such as entries removed due to
errors or entries with updated information. Based on this information, we used Cypher queries to
check our knowledge graph and label the data accordingly. For checking triple relationships, we
sampled some triples from our knowledge graph where two nodes were either related or unrelated.
We then queried the CKG to obtain literature that documents the entities represented by both nodes.
We collected the literature annotated in the database and had experts read these documents to label
the relationships of the triples in the CKG. As a result, we obtained 225 high-quality annotated data.

A.4 USES

The dataset has not been used for any tasks yet. Currently, we have not identified any tasks that are
not permitted to use our dataset.

The way we collect question and answer pairs can be referenced to expand more KGQA data, whether
on our knowledge graph or new knowledge graphs. Additionally, our approach to collecting data for
KGCheck provides insights into identifying errors in these large knowledge graphs, which is very
helpful for subsequent error correction and data updates.

B BREAKDOWN RESULTS

B.1 KGQA

We conducted a more detailed evaluation of LLMs’ performance on the KGQA task based on the
question types: one-hop, multi-hop, and conjunction. The evaluation metrics used were F1 and
executability, as shown in Table 13. We find that although API-based commercial LLMs and large-
scale open-source models generally perform well on overall metrics, when breaking down the KGQA
task by question type, some medium-scale models perform better on certain metrics. For instance,
Qwen1.5-14B-Chat exhibits higher executability on more challenging multi-hop and conjunction
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Table 13: KGQA Test set (standard) results by question type: one-hop, multi-hop, and conjunction.
Bold/underline and red/blue indicate the best and second in the subgroup and overall.

LLM
Type Models F1 executability

one-hop multi-hop conjunction one-hop multi-hop conjunction

API GPT-4 87.2 73.7 77.4 88.0 90.0 86.9
GLM-4 76.0 73.0 58.0 82.9 90.0 68.2

OSS
(Large)

Qwen1.5-72B-Chat 76.3 73.4 71.4 99.7 94.0 86.9
Llama-3-70B-Instruct 83.6 72.5 85.1 95.7 98.5 99.1
DeepSeek-LLM-67B-Chat 80.6 61.8 44.1 88.5 90.5 70.1

OSS
(Medium)

Qwen1.5-32B-Chat 67.3 63.2 57.0 87.2 84.5 64.5
Qwen1.5-14B-Chat 63.7 70.5 65.7 67.5 95.5 87.9
Baichuan2-13B-Chat 64.9 20.4 9.8 81.8 91.5 66.4

OSS
(Small)

Llama-3-8B-Instruct 59.2 66.4 16.5 90.8 66.4 68.2
Qwen1.5-7B-chat 55.7 32.1 26.4 80.3 79.0 67.3

OSS
(MoE)

Mixtral-8x7B-Instruct-v0.1 80.3 68.4 35.9 90.5 91.5 50.5
Starling-LM-alpha-8x7B-MoE-GPTQ 6.2 25.0 11.7 12.0 57.5 48.6
Qwen1.5-MoE-A2.7B-Chat 38.2 20.2 9.7 94.4 45.0 40.2

Figure 9: The pipeline of RAG.

types of questions, although its F1 score is not high. In terms of the executability metric, open-source
models seem to outperform API-based commercial LLMs. This may be because API-based LLMs
are more cautious in determining whether an answer has been obtained, tending to conclude the
interaction and return an answer only after confirming its correctness.

B.2 SCV

As shown in Figure 9, this is the process we followed when performing the SCV task using RAG. In
the main text, we observed an interesting phenomenon where expanding the RAG scope improved
accuracy. To ensure that this result was not due to the idiosyncratic performance differences of a
single model, we conducted the same experiment on another model, as shown in Table 14. It can be
observed that the accuracy of both models in the SCV task increased with the expansion of the RAG
scope, although the right quotes metric was the lowest across the three settings when performing
RAG at the maximum scope. This experimental result further demonstrates that this interesting
phenomenon is not due to model-specific characteristics.
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Table 14: Supplementary Experiments on the Scope of RAG, where ‘all’ refers to the abstract of
5,664 articles, ‘partial’ denotes the 1,888 abstracts containing ground truth evidence of claims, and
‘match’ corresponds to the abstracts of the ground truth evidence for the claims. Bold/underline
indicate the best and suboptimal.

Corpus Qwen1.5-72B-Chat Llama-3-70B-Instruct
accuracy right quotes error accuracy right quotes error

all 86.2 82.1 0.1 86.0 86.9 0.2
partial 84.4 88.1 0.1 82.2 90.4 0.1
match 84.3 88.2 0.1 82.1 89.9 0.1

B.3 KGCHECK

B.3.1 SINGLE AGENT

We develop a single agent based on KG-Agent from (Liu et al., 2023c), shown in Figure 10, and
evaluate LLMs as agents by replacing the LLM with a specific model. We set up a Single Agent
(see Figure 1 and Table 2) and compared it with the BKGAgent, which is a multi-agent system. The
results are shown in Table 15.

Table 15: Performance of single agent on the
KGCheck task. Bold/underline indicate the
best and second.

LLM
Type Models KGCheck

EM Executability

API GPT-4o 68.8 98.0
GLM-4-0520 51.7 96.1

OSS

Qwen2-72B-Instruct 82.9 100.0
Qwen1.5-72B-Chat 43.4 100.0
Llama-3-70B-Instruct 76.1 96.6
Llama-3.1-8B-Instruct 44.4 87.8
Mixtral-8x7B-Instruct-v0.1 57.1 98.0

Tools:
• KG_Tools
• RAG_Tools
• Database_Tools

Memory

Tool Result Process make decisions

Figure 10: Single agent for KGCheck task.

B.3.2 BKGAGENT

We exhibit our BKGAgent performance on KGCheck tasks based on the data source for verification(i.e.
web database KGCheck and publication database KGCheck) in the main body for clarity. However,
there is a more detailed category of the task considering the tools used at different stages (see Table
18). The performance based on this category is shown in Table 16.

Table 16: Task performance categorized on agent tool calling

KG Query Task Validation Task Final ResultModel Tool selection Executability Tool selection Executability Exact Match Executability Sample Size

task type 1 32
GPT-4 78.1 78.1 75.0 75.0 71.9 96.9

Llama-3-70B-Instruct 100.0 100.0 93.8 93.8 62.5 81.3
task type 2 60

GPT-4 70.0 70.0 70.0 71.7 65.0 93.3
Llama-3-70B-Instruct 100.0 100.0 100.0 100.0 36.7 100.0

task type 3 55
GPT-4 32.7 32.7 98.2 98.2 60.0 98.2

Llama-3-70B-Instruct 90.9 90.9 92.7 92.7 36.4 100.0
task type 4 45

GPT-4 97.8 97.8 100.0 100.0 97.8 100.0
Llama-3-70B-Instruct 100.0 100.0 100.0 100.0 42.2 100.0

task type 5 33
GPT-4 57.6 57.6 63.6 63.6 51.5 93.9

Llama-3-70B-Instruct 100.0 100 97.0 97.0 21.2 45.5
type 1 description: find the interaction (CURATED) between two specified proteins and verify it using RAG
type 2 description: find the interaction between two specified proteins and verify it using STRING API
type 3 description: find the specified attribute of the specified protein and verify it using UniProt API
type 4 description: check whether a specified protein exists in KG and validate it using UniProt API
type 5 description: find the relationship between two specified entities (not two proteins) and verify it using RAG
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The GPT-based agent shows better performance compared to the Llama-based one when being
evaluated on a more detailed task category, which is consistent with our conclusion in the main body.
Besides this, there are more details we can delve into:
Possible unfairness in evaluation. It should be pointed out that while the Llama-based agent
successfully executed most of the tasks, it reached a comparably low score in final result excitability
in the tasks involving RAG(i.e. task type 1 and task type 5). It is induced by an 8000 token limit
of the model which means it is unable to process long texts, leading to an underlying unfairness in
evaluation.
One-shot prompt may negatively influence GPT-based agent. GPT-based agent shows even better
performance with zero-shot compared to the current one-shot strategy in our preliminary experiments.
However, since OSS models perform poorly with a zero-shot strategy, we have to make a compromise
and several versions of the prompt have been tested to reach a satisfied state but it is hard to thoroughly
eliminate the negative influence on the GPT-based agent.
The support/refute result given by the agent is NOT reliable. As shown in Table 17, our instruc-
tions only ask the agent to provide a support/refute result as the final answer, which is intended to
standardize the evaluation. However, when we read the chat history of the agent solving one specific
task randomly selected from the all the records, we find out that right support/refute conclusion
can be drawn from wrong analysis process, indicating that the result is not quite reliable. A more
comprehensive evaluation system should be explored in future work, say evidence comparison, chatter
detection, and hallucination detection.
The GPT-based agent tends to explain. Though we urge the agent to respond with support or
refute(see Table 17), the GPT-based agent tends to provide explanations besides the support/refute
conclusion which makes it easier for the user to judge whether the answer is derived from a reason-
able process. The Llama-based agent, in contrast, strictly obeys the requirement, providing only
support/refute answers.

Table 17: Examples of instructions categorized on agent tool calling

Task type instruction example

1

Please check the relationship in the knowledge graph from the node of type ’Protein’ with id ’Q14790’
to the node of type ’Protein’ with id ’Q13158’. If a relationship exists, verify its existence. Please
note that if the relationship between two nodes contains terms like ’CURATED’ in knowledge graph,
you need to find literature evidence to make a judgment. If no relationship exists, confirm that it
indeed does not exist. If the relationship between these two nodes in the knowledge graph is correct,
please respond with ’support’; otherwise, respond with ’refute’.

2

Please check the relationship in the knowledge graph from the node of type ’Protein’ with id ’P84085’
to the node of type ’Protein’ with id ’P11279’. If a relationship exists, verify its existence. Please
note that if the relationship between two nodes contains terms like ’CURATED’ in knowledge graph,
you need to find literature evidence to make a judgment. If no relationship exists, confirm that it
indeed does not exist. If the relationship between these two nodes in the knowledge graph is correct,
please respond with ’support’; otherwise, respond with ’refute’.

3 Please check if the ’name’ attribute of the node with type Protein and id Q4G0T1 in the knowledge
graph is correct. If it’s correct, please respond with ’support’; if not, respond with ’refute’.

4

Due to certain reasons, some entries were removed from the database. Please check whether the node
with the type ’Protein’ and the id ’A2RUG3’ exists in the knowledge graph, and confirm whether
it exists in the corresponding database. If its existence is consistent, please respond with ’support’;
otherwise, answer ’refute’.

5

Please check the relationship in the knowledge graph from the node of type ’Protein’ with id ’Q96QP1’
to the node of type ’Tissue’ with id ’BTO:0000007’. If a relationship exists, verify its existence.
Please note that if the relationship between two nodes contains terms like ’CURATED’ in knowledge
graph, you need to find literature evidence to make a judgment. If no relationship exists, confirm that
it indeed does not exist. If the relationship between these two nodes in the knowledge graph is correct,
please respond with ’support’; otherwise, respond with ’refute’.
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C EXPERIMENTAL DETAILS

C.1 CONSTRUCTION OF KNOWLEDGE GRAPH

We pulled a Neo4j image from Docker Hub and created a Neo4j Docker on the server to host a
knowledge graph. We used the latest data parsed from various databases in April 2024, including
UniProt (uni, 2023), TISSUES (Palasca et al., 2018), DISEASES (Pletscher-Frankild et al., 2015),
HGNC (Seal et al., 2023), IntAct (Del Toro et al., 2022), STRING (Szklarczyk et al., 2023), Dis-
GeNet (Piñero et al., 2020), Pathway Commons (Rodchenkov et al., 2020), Reactome (Fabregat
et al., 2018), SMPDB (Jewison et al., 2014), and SIGNOR (Lo Surdo et al., 2023), Disease Ontol-
ogy (Schriml et al., 2019), Brenda Tissue Ontology (Chang et al., 2015), Gene Ontology (Consortium,
2017), Protein Modification Ontology (Mayer et al., 2013), Molecular Interactions Ontology (Mayer
et al., 2013). These databases are under loose license and the data can be used directly. We parsed the
information from these databases into TSV files in a specific format and then imported the contents of
these TSV files into Neo4j using Cypher statements (Cypher is the declarative graph query language
provided by Neo4j) to construct the knowledge graph. This knowledge graph can be queried using
Cypher statements.

C.2 DEPLOYMENT OF OPEN-SOURCE LLMS

We deployed open-source LLMs using the vLLM framework and inference is performed using
a server with 4 NVIDIA A40 GPUs an Intel(R) Xeon(R) Gold 6330 CPU, with parameters kept
constant at startup.

C.3 EXPERIMENTAL SETUP

Atomic Abilities. To evaluate two atomic abilities, we adopt an interactive evaluation of LLM-as-
Agent (Liu et al., 2023c) and include in total of 13 models for evaluation. These models can be
categorized into API-based Commercial LLMs and Open-Sourced (OSS) LLMs. The latter is further
segmented based on model size into three classifications: ‘Large’, ‘Medium’, and ‘Small’. Models
utilizing the MoE (Mixture of Experts) framework are distinguished as a separate category. Refer to
Appendix C.4 for details about the prompt we designed for the following tasks.

Agent Task. For the construction of our BKGAgent, we selectively employed the best-performing
models in atomic capabilities from both API-based and OSS models, specifically GPT-4 and Llama-
3-70B-Instruct. To avoid being trapped in an endless loop where agents repeat the same talk or start
to chatter, we limit the memory entries of one single agent to 20, which is more than enough to finish
any of the tasks. It should be noted that each agent only keeps memory of the conversations related
to it, while all chats returned by every agent are stored in the graph state. Since zero-shot setup
in various types of tasks shows inferior performances in our preliminary experiments, we provide
one-shot prompt for each type of task. We analyze both the process and final result of each task
execution, considering the correctness of tool selection and agent executability during the process
evaluation, and assessing the exact match of the right answer and framework executability for the
final result evaluation, to gain a comprehensive understanding of the agent’s performance.

We detail our implementation of two sub-tasks here:

• KGQA: We developed a suite of atomic tools for querying KGs for LLMs. Every LLM is prompted
in the same way with a detailed task description, information about provided tools and a one-shot
demonstration, which employs the “Thought,” “Action,” “Observation” cognitive trajectory from
the ReAct (Yao et al., 2022), with the “Thought” component assisted by Chain of Thought (CoT)
(Wei et al., 2022) reasoning. We constrain the LLM to a maximum of fifteen interactive turns,
within which it may only take one action per turn. If the LLM can respond within these fifteen
turns, executability is assigned a score of 1. Subsequently, we compare the response to the ground
truth to calculate the F1 score and the Exact Match score (EM). It is worth noting that existing
works in the KG-guided QA setting are KBQA (Knowledge Base Question Answering). Here, we
highlight the key differences between KBQA and our KGQA task:

– Different input: KBQA datasets, such as CWQ (Talmor & Berant, 2018), WebQSP (Yih
et al., 2016), and GrailQA (Gu et al., 2021), provide the key entity in each question as part
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of the task input. In contrast, our KGQA task takes only the raw question as input, requiring
LLMs not only to select appropriate tools based on context but also to perform Named Entity
Recognition (NER) and relationship matching to derive the tool’s parameters. Therefore, our
task is more challenging and better suited for evaluating LLMs.

– Different KG Structures: Works like Think-on-graph (Sun et al., 2023) utilize knowl-
edge bases such as Freebase (Bollacker et al., 2008), Wikidata (Vrandečić & Krötzsch,
2014), and DBpedia (Auer et al., 2007), which are based on RDF (Resource Description
Framework) representations. In contrast, most biomedical knowledge graphs, such as CKG,
PrimeKG (Chandak et al., 2023), and PharmKG (Zheng et al., 2021), are built using property
graph model. RDF organizes data as strict triples (<subject, predicate, object>), while the
property graph model represents data with nodes (entities) and edges (relationships), both
of which can include attributes as key-value pairs. This structural difference also impacts
their query languages: RDF-based graphs primarily use SPARQL, while property graph-based
graphs commonly use Cypher or Gremlin.

• SCV: We first convert the entire corpus into semantic vectors using jina(Günther et al., 2023)
and store them in a vector database. Claims are similarly transformed into semantic vectors via
Jina, with the top 50 scoring vectors being submitted to the LLM with a standardized prompt
template. We require the LLM to return results in JSON format, considering any deviation as an
error. The outcomes mainly include answers and quotes. It is important to clarify that the SCV
task focuses on evaluating LLMs as agents in a plug-and-play RAG pipeline with fixed embedding
models and rerankers, as shown in Figure 9, where only LLMs are substituted and compared.
This aligns with AgentBench (Liu et al., 2023c), emphasizing LLMs’ capabilities in tool usage,
terminology comprehension, and reasoning, rather than benchmarking RAG methods. For analysis,
we adopt a flexible interpretation of answers: “Unsure” and “Unrelated” as “Unsure”; “Supported”
and “Supports” as “Supports”; “Unsupported” and “Unsupports” as “Unsupports”, “Refuted”, and
“Refutes” as “Refutes”. Any other results are also considered errors. The experiments for each
model are repeated three times, with the final performance averaged to ensure the robustness of the
evaluation. Notably, beyond the conventional accuracy and the aforementioned error metrics, we
introduce a “right quotes” metric, which assesses whether the retrieved quotes match the ground
truth evidences of the claim.

C.4 PROMPT

C.4.1 KGQA

We provide a unified prompt for single-agent systems built on different LLMs, ensuring the fairness
of the evaluation.

You are an agent tasked with answering questions based on the knowledge
stored in a knowledge graph (KG) related to proteomics. To accomplish
this , you are equipped with the following tools to query the KG:

1. get_relations_by_ids_agent(entity_ids: List[str]) -> tuple
Retrieves the relationships of multiple entities in a knowledge graph ,

categorized as 'incoming ' or 'outgoing '.
Use case: get_relations_by_ids_agent (['P123 ', 'P456 ']) to find all

relations connected to the entities with IDs 'P123 ' and 'P456 '.

2. get_neighbor_type_agent(entity_ids: List[str], relation: str ,
direction: str) -> tuple

Retrieves the types of neighboring nodes for multiple entities in a
knowledge graph based on specified relationships and directions.

Use case: get_neighbor_type_agent (['P123 ', 'P456 '], 'ASSOCIATED_WITH ', '
outgoing ') to get outgoing neighbors ' types associated with the
entities 'P123 ' and 'P456 '.

3. get_neighbor_with_type_agent(entity_ids: List[str], relation: str ,
direction: str , neighbor_type: str) -> tuple

Retrieves the neighbors of multiple entities in a knowledge graph based
on a specific relationship , direction , and type.
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Use case: get_neighbor_with_type_agent (['P123 ', 'P456 '], 'ASSOCIATED_WITH
', 'outgoing ', 'Disease ') to get attributes and detailed information
of outgoing neighbors associated with the entities 'P123 ' and 'P456 ',
where the type of neighbors is Disease.

4. get_intersection_agent (*args: List[str]) -> tuple
Calculates the intersection of multiple lists , returning elements common

to all lists.
Use case: get_intersection_agent (['P123 ', 'P456 '], ['P456 ', 'P789 ']) to

find common entities.

5. get_union_agent (*args: List[str]) -> tuple
Calculates the union of multiple lists , returning all unique elements

from all lists.
Use case: get_union_agent (['P123 ', 'P456 '], ['P456 ', 'P789 ']) to combine

unique entities.

Single Action Rule: Execute only ONE action at a time , that is, only the
first action would be executed. After receiving the observation from
its execution , you may proceed with another action.

Action Limit: You can take at most 15 actions to find the answer to the
question.

Objective: Use these tools effectively to navigate through the KG and
gather the necessary information to answer the queries presented to
you. If the query is about the protein sequence , you need to return
the specific sequence. If the query is about the protein structure ,
you can return a link. In other cases , it 's usually to return the
name.

Notice:
1. Please remember to format the FINAL answer as a JSON object , such as,

{" Answer ": ["RND2", "RHOBTB2", "RHOA "]}. The value of "Answer" must
be a list. Only output the JSON format when answering the final
answer.

2. Please be flexible. Due to the diversity of question formulations , you
need to find the most similar relationship in the knowledge graph (

KG) to the one asked in the question for querying.

Considering the complexity of the task and the high information density of our KG, LLMs find it
challenging to address high-difficulty questions, such as multi-hop and conjunction types, within the
constraints of a zero-shot setting and a 15-turn interaction limit. Therefore, we provide a one-shot
demonstration.

Question: What biological processes are associated with the protein
encoded by the gene GOLT1A?

Thought: I need to figure out what proteins are encoded by gene GOLT1A
and then find out the biological processes. Firstly , I need to find
out the relations of the gene node.

Action: get_relations_by_ids_agent (['GOLT1A '])

Observation: {" GOLT1A ": {" Incoming ": null , "Outgoing ": "TRANSLATED_INTO
"}}

Thought: The outgoing relation 'TRANSLATED_INTO ' is what I concern , and
next I need to get neighbor type with the relation.

Action: get_neighbor_type_agent (['GOLT1A '], 'TRANSLATED_INTO ', 'outgoing
')

Observation: {" GOLT1A ": {" NeighborTypes ": [" Protein "]}}
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Thought: Among the neighbor type , 'Protein ' is my concern. So next I
should look for what are the neighboring nodes with 'Protein ' type
that point outward along the edge of the relation 'TRANSLATED_INTO '.

Action: get_neighbor_with_type_agent (['GOLT1A '], 'TRANSLATED_INTO ', '
outgoing ', 'Protein ')

Observation: {" GOLT1A ": {" TRANSLATED_INTO ": [" Q6ZVE7 "]}}

Thought: Now I know that the proteins are [" Q6ZVE7 "]. Now I will find out
the relation to choose for the next step.

Action: get_relations_by_ids_agent ([" Q6ZVE7 "])

Observation: Observation: {" Q6ZVE7 ": {" Incoming ": "TRANSLATED_INTO ,
HAS_SEQUENCE , ACTS_ON", "Outgoing ": "HAS_SEQUENCE , ASSOCIATED_WITH "}}

Thought: The outgoing relation 'ASSOCIATED_WITH ' is exactly what I
concern. Then I'll query the neighbor type with the relation.

Action: get_neighbor_type_agent ([" Q6ZVE7"], 'ASSOCIATED_WITH ', 'outgoing
')

Observation: {" Q6ZVE7 ": {" NeighborTypes ": [" Tissue", "Molecular_function
", "Biological_process", "Cellular_component", "Disease "]}}

Thought: Among the neighbor types , 'Biological_process ' is what I need to
query.

Action: get_neighbor_with_type_agent ([" Q6ZVE7"], 'ASSOCIATED_WITH ', '
outgoing ', 'Biological_process ')

Observation: {" Q6ZVE7 ": {" ASSOCIATED_WITH ": [" endoplasmic reticulum to
Golgi vesicle -mediated transport", "biological_process", "protein
transport", "retrograde transport , endosome to Golgi "]}}

Thought: I have identified the answers. Final Answer: {" Answer ": ["
endoplasmic reticulum to Golgi vesicle -mediated transport", "
biological_process", "protein transport", "retrograde transport ,
endosome to Golgi "]}.

C.4.2 SCV

We provide a unified prompt describing task, where ‘context_docs_str’ represents quotes retrieved
by RAG and ‘user_claim’ represents the input scientific claim to be evaluated.

You are a fact -checking agent that is constantly learning and improving.
A claim is given to you , and you can determine if the claim is
correct with the provided documents.

You ALWAYS respond with only a JSON containing an answer and quotes that
support the answer. The answer can only be "SUPPORTS" or "REFUTES",
with no details. You should reason out the answers step by step , but
make sure they are correct.

Do NOT use your historical knowledge , but answer based on the information
in the provided context.

CONTEXT:
------
{{ context_docs_str }}
------

SAMPLE_RESPONSE:
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"""
{

"answer ": "Place your final answer here. It can only be SUPPORTS or
REFUTES without details.",

"quotes ": [
"Each quote must be UNEDITED and EXACTLY as shown in the context

documents!",
"HINT: quotes are not shown to the user!",

],
}
"""
CLAIM: {{ user_claim }}
Hint: Provide the answer in JSON format!
Quotes MUST be EXACT substrings from the provided documents!

C.4.3 KGCHECK

BKGAgent is a multi-agent system and each agent of it is equipped with a system prompt which
includes role introduction, tool introduction, and tool calling rules.

For team leader:

You are the team_leader tasked with managing a conversation between the
following workers:

kg_agent:
capable of querying the KG(Knowledge Graph) to find out specific

information
validation_agent:

capable of getting access to information within local publication
database , UniProt and STRING database to verify the result

returned by kg_agent
FINISH:

the endpoint of your task. if you finish your answer you can send
messages to it by starting with 'FINISH , '

You should first break down the task into two subtasks given the user
input and send it to yourself to keep it in your mind ,

then respond with the worker to act next and its detailed task.
You should call their name before you assign the task.For example , if you

want to assign task to kg_agent , you should start your conversation
by 'kg_agent , '. It should be noted that if you are talking to
yourself , you should also specify the receiver , that is 'team_leader ,
'.

Each worker will perform the task you assign to and respond with it
result.

REMEMBER you should not talk too much at one specific chat round. If a
task is given to you , you just reply with your plan and send it to
yourself.

Assign subtask to just ONE suitable agent next time you are invited to
speak.If kg_agent or validation_agent tries to assign task to you ,
you should warn them to focus on their task.

When finished , respond with your answer and send it to 'FINISH '.

For KG agent:

You are the kg_agent of a research group , your ability is limited to
answer KG search related questions.

Verification work should be done by validation_agent on which you should
not waste time.

Members of your team are as follows:
team_leader: the leader of your team. You ONLY perform the specific task

it assigned to you and answer to it starting by 'team_leader , '.
validation_agent: responsible for verifying information. You do not

directly communicate with it.
call_tool: the worker to use the tool you asked and will return the

result to you.
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You can call the following tools in call_tool to help you:
query_node_existence:
Determine whether the node with the given type and ID exists in the

knowledge graph.
Args:

type (str): the type of the query node
id (int or str): the id of the query node

Returns:
str: A description of whether the node with given type and id

exists in the knowledge graph.

query_node_attribute:
Retrieve the specific attribute value of the node with the given type

and id.
Args:

type (str): the type of the query node
id (int or str): the id of the query node
attr (str): the attribute to be retrieved

Returns:
str: A description of the query result

query_relation_between_nodes:
Retrieve the relationship from node with type1 and id1 to the node

with type2 and id2 in the knowledge graph(KG)
Args:

type1 (str): _description_
id1 (int or str): _description_
type2 (str): _description_
id2 (int or str): _description_

Returns:
str: A description about the relationship from node with type1

and id1 to the node with type2 and id2 in the knowledge
graph

ATTENTION! You can call tools in this way: 'call_tool , tool = tool_name ,
args = ...', where args should be in the format of dict.

Directly jump into your work when task is given to you and do not waste
time replying just courtesies.

Do not try to ask team_leader to your task!

For validation agent:

You are the validation_agent of a research group , specialized at
verifying information by searching on UniProt , STRING database and
local publication database , Members of your team are as follows:
team_leader: the leader of your team. You ONLY perform the specific

task it assigned to you and answer to it starting by 'team_leader
, '.

kg_agent: responsible for querying KG to get information. You do not
directly communicate with it.

call_tool: the worker to use the tool you asked and will return the
result to you.

You can call the following tools in call_tool to help you:
get_uniprot_protein_info:

Fetch protein information from UniProt by protein ID and return a
description about the protein , including id, accession and name.

:param protein_id: UniProt protein ID
:return: Formatted string with protein information , including id,

accession and name

check_interaction_string:
This tool checks for the interaction or relationship between two

proteins using the STRING database API. Given two protein ids , it
will return a description on whether there is an interaction or

relationship between them.
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Args:
protein1 (str): a protein id
protein2 (str): a protein id

Returns:
str: A description about whether there is an interaction

between the two proteins.

pub_rag:
retrieve evidence from provided documents to help making a verdict of

the given claim
ONLY when asked to verify 'CURATED ' related claim should you call

this tool!
Args:

query(str): the claim to be verdicted
Returns:

no more than 10 documents ralated to the claim.
ATTENTION! You can call tools in this way: 'call_tool , tool = tool_name ,

args = ...', where args should be in the format of dict.
then send the message to call_tool , which means you should start your

messages by 'call_tool , '.

For the baseline agents, we provide prompts detailing how to query the KG (e.g., URL, username,
password) and include instructions to verify findings using reliable external literature and databases.

Considering the step-by-step nature of agentic systems, we use the LLM-as-a-Judge approach to
evaluate how the agent solves the task throughout the process, rather than just assessing the final
answer. Specifically, we prompt Qwen2-72B to score the agent’s performance based on five criteria,
with the model providing a simple “yes” or “no” response for each.

Criteria 1: Understanding, whether the agent clearly understood the task and the purpose of the given
tool.
You are an evaluation agent tasked with assessing another agent. The

agent being scored is required to complete a KG-checking task , which
involves querying the KG and retrieving reliable external knowledge
to validate the KG 's content.

Based on the chat history of this agent , please carefully determine
whether it clearly understood the task , the purpose of the given
tools , and whether it attempted to validate the KG's content with
reliable external sources. If the agent did not understand that this
is a task for validating the KG 's content or failed to grasp the
input and output of the tools used , you should respond with 'No ';
otherwise , respond with 'Yes '.

Here are some examples:
[Agent history example 1 (omitted here due to length)]: Yes.
[Agent history example 2 (omitted here due to length)]: No.
[Agent history example 3 (omitted here due to length)]: Yes.
[Agent history example 4 (omitted here due to length)]: No.
[Agent history example 5 (omitted here due to length)]: Yes.
[Agent history example 6 (omitted here due to length)]: No.
[Agent history example 7 (omitted here due to length)]: Yes.
[Agent history example 8 (omitted here due to length)]: No.
[Agent history example 9 (omitted here due to length)]: Yes.
[Agent history example 10 (omitted here due to length)]: No.

The chat history: {chat_history}
Only reply with 'Yes ' or 'No ':

Criteria 2: Reasoning, whether the agent arrived at the final answer through sufficient evidence and
reasoning, rather than simply providing random answers or guessing.
You are an evaluation agent tasked with assessing another agent. The

agent being scored is required to complete a KG-checking task , which
involves querying the KG and retrieving reliable external knowledge
to validate the KG 's content.
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Based on the chat history of this agent , please strictly and carefully
determine whether it arrived at the final answer through sufficient
evidence and reasoning , rather than providing random answers or
guessing. You should respond with 'No ' or 'Yes '.

Here are some examples:
[Agent history example 1 (omitted here due to length)]: Yes.
[Agent history example 2 (omitted here due to length)]: No.
[Agent history example 3 (omitted here due to length)]: Yes.
[Agent history example 4 (omitted here due to length)]: No.
[Agent history example 5 (omitted here due to length)]: Yes.
[Agent history example 6 (omitted here due to length)]: No.
[Agent history example 7 (omitted here due to length)]: Yes.
[Agent history example 8 (omitted here due to length)]: No.
[Agent history example 9 (omitted here due to length)]: Yes.
[Agent history example 10 (omitted here due to length)]: No.

The chat history: {chat_history}
Only reply with 'Yes ' or 'No ':

Criteria 3: Efficiency, whether the agent efficiently solved the problem without unnecessary discussion
on unrelated topics.

You are an evaluation agent tasked with assessing another agent. The
agent being scored is required to complete a KG-checking task , which
involves querying the KG and retrieving reliable external knowledge
to validate the KG 's content.

Based on the chat history of this agent , please carefully determine
whether it efficiently solved the problem without unnecessary
discussion on unrelated topics. You should respond with 'No ' or 'Yes
'.

Here are some examples:
[Agent history example 1 (omitted here due to length)]: Yes.
[Agent history example 2 (omitted here due to length)]: No.
[Agent history example 3 (omitted here due to length)]: Yes.
[Agent history example 4 (omitted here due to length)]: No.
[Agent history example 5 (omitted here due to length)]: Yes.
[Agent history example 6 (omitted here due to length)]: No.
[Agent history example 7 (omitted here due to length)]: Yes.
[Agent history example 8 (omitted here due to length)]: No.
[Agent history example 9 (omitted here due to length)]: Yes.
[Agent history example 10 (omitted here due to length)]: No.

The chat history: {chat_history}
Only reply with 'Yes ' or 'No ':

Criteria 4: KG Process, whether the agent queried the knowledge graph during the task.

Hhhhhhhh
You are an evaluation agent tasked with assessing another agent. The

agent being scored is required to complete a KG-checking task , which
involves querying the KG and retrieving reliable external knowledge
to validate the KG 's content.

Based on the chat history , please determine if the agent queried the
knowledge graph (KG) during the check. If the agent performed any of
the following a c t i o n s checking for node existence , querying node
attributes , or examining relationships between n o d e s you should
respond with 'Yes '. If the agent did not query the KG at all , you
should respond with 'No '.

Here are some examples:
[Agent history example 1 (omitted here due to length)]: Yes.
[Agent history example 2 (omitted here due to length)]: No.
[Agent history example 3 (omitted here due to length)]: Yes.
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[Agent history example 4 (omitted here due to length)]: No.
[Agent history example 5 (omitted here due to length)]: Yes.
[Agent history example 6 (omitted here due to length)]: No.
[Agent history example 7 (omitted here due to length)]: Yes.
[Agent history example 8 (omitted here due to length)]: No.
[Agent history example 9 (omitted here due to length)]: Yes.
[Agent history example 10 (omitted here due to length)]: No.

The chat history: {chat_history}
Only reply with 'Yes ' or 'No ':

Criteria 5: Information Retrieval, whether the agent retrieved information from external knowledge
sources in some way during the check.

You are an evaluation agent tasked with assessing another agent. The
agent being scored is required to complete a KG-checking task , which
involves querying the KG and retrieving reliable external knowledge
to validate the KG 's content.

Based on the chat history of this agent , please carefully determine
whether it retrieved information from external knowledge sources in
some way during the check. You should respond with 'No ' or 'Yes '.

Here are some examples:
[Agent history example 1 (omitted here due to length)]: Yes.
[Agent history example 2 (omitted here due to length)]: No.
[Agent history example 3 (omitted here due to length)]: Yes.
[Agent history example 4 (omitted here due to length)]: No.
[Agent history example 5 (omitted here due to length)]: Yes.
[Agent history example 6 (omitted here due to length)]: No.
[Agent history example 7 (omitted here due to length)]: Yes.
[Agent history example 8 (omitted here due to length)]: No.
[Agent history example 9 (omitted here due to length)]: Yes.
[Agent history example 10 (omitted here due to length)]: No.

The chat history: {chat_history}
Only reply with 'Yes ' or 'No ':

Table 18: Task types categorized by requiring tools

Task type Requiring tools DescriptionKG agent Validation agent

1 query relation
between nodes publication RAG

find the interaction (CURATED) between
two specified proteins and verify it using

RAG

2 query relation
between nodes

check interaction on
STRING

find the interaction between two specified
proteins and verify it using STRING API

3 query node attribute get UniProt protein
information

find the specified attribute of the specified
protein and verify it using UniProt API

4 query node existence get UniProt protein
information

check whether a specified protein exists in
KG and validate it using UniProt API

5 query relation
between nodes publication RAG

find the relationship between two specified
entities (not two proteins) and verify it

using RAG

D CASE STUDY

D.1 KGQA

We sampled 6 cases for demonstration, with one correct case and one incorrect case for each question
type: one-hop, multi-hop, and conjunction, as shown in Figures 11 to 16.
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D.2 SCV

We sampled 8 examples for demonstration, including 4 correct answers and 4 incorrect answers.
Each case has certain differences and is representative, as shown in Figures 17 to 24.

D.3 KGCHECK

We select several classic success and failure cases for each type of task as presented in Figures 25
to 39 as a supplementary for some common error cases in our main body. There are many interesting
cases when the team leader properly corrects the behavior of assistant agents, getting the workflow
back on track, and we choose one such case of task type 1 as a representation. As mentioned before,
there are also cases where the right final answer is derived from a wrong analysis process. We select
this kind of case for every type of the task except type 4 (this case does not exist in this type of task).

As introduced in the main body, our BKGAgent framework is comprised of three agents: the team
leader, KG agent, and validation agent. The typical workflow from the agent role perspective of our
framework can be simplified as team leader - KG agent - team leader - validation agent- team leader.
We present the chat of three agents in table format, omitting the interactions of the assistant agent
and tool executor. The columns respectively stand for the agent role, the action they take, the chat
content, and the human annotation of this chat round. The green check mark means the process is
consistent with our anticipation, while the yellow exclamation mark means the chat content may lead
to an unwanted result, and the red cross stands for a wrong action or error chat content. Comments
are attached to a negative review for explanation. Error or dangerous contents are underlined and
colored red, while contents related to tool usage or evidence consistent with the golden answer are in
bold green font. The blue row stands for an expected chat round, in contrast, the yellow row indicates
something is wrong in this chat round. We send tool results and behavior correction prompts in the
role of a human; this kind of chat is colored grey in our table.
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KGQA – one-hop

Action: 
get_relations_by_ids_agent(["Q3MIV0"])

Mixtral-8x7B-Instruct-v0.1 : null

Ground Truth: 

MSFDNNYHGGQGYAKGGLGCSYGCGLSGYGYACYCPWCYERS

WFSGCF

Question: 

Please identify the amino acid sequence of Q3MIV0.

×

Observation: {"Q3MIV0": {"Incoming": "HAS_SEQUENCE, 

TRANSLATED_INTO", "Outgoing": "HAS_SEQUENCE, 

ANNOTATED_IN_PATHWAY, ASSOCIATED_WITH"}}

Action: get_neighbor_with_type_agent(["Q3MIV0"], 

'HAS_SEQUENCE', 'outgoing', 'ProteinSequence’)

Observation: {"Q3MIV0": {"HAS_SEQUENCE": []}}

Thought: I didn't find the amino acid sequence of Q3MIV0 

in the knowledge graph. I will return an empty sequence.

Figure 11: Performance of Mixtral-8x7B-Instruct-v0.1-based Agent: Incorrect final result when
answering the one-hop type questions due to passing incorrect parameters when executing a function.
Session highlighted in pink represents the error information.
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KGQA – one-hop

Question: 

What proteins does the protein Q7Z4N2 act on?

Observation: {"Q7Z4N2": {"Incoming": "ACTS_ON, 

TRANSLATED_INTO, HAS_SEQUENCE", "Outgoing": "ACTS_ON, 

ANNOTATED_IN_PATHWAY, ASSOCIATED_WITH, 

HAS_SEQUENCE"}}

Action: get_neighbor_type_agent(["Q7Z4N2"], 'ACTS_ON', 

'outgoing’)

Observation: {"Q7Z4N2": {"NeighborTypes": ["Protein"]}}

Action: get_neighbor_with_type_agent(["Q7Z4N2"], 

'ACTS_ON', 'outgoing', 'Protein’)

Observation: {"Q7Z4N2": {"ACTS_ON": ["Q8NER1"]}}

Action: 
get_relations_by_ids_agent(["Q7Z4N2"])

GPT-4 : Q8NER1

Ground Truth: Q8NER1

√

Figure 12: Performance of GPT-4-based Agent: Correct final result when answering the one-hope
type questions. Session highlighted in light green represents the correct information.
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KGQA – multi-hop

Action: 

get_relations_by_ids_agent([“SMG7"])

Mixtral-8x7B-Instruct-v0.1 : null

Ground Truth: nuclear-transcribed mRNA catabolic process, 

nonsense-mediated decay, mRNA export from nucleus, regulation of 

dephosphorylation

×

Question: 

What biological processes are associated with the protein encoded 

by the gene SMG7?

Observation: {“SMG7": {"Incoming": null, "Outgoing": 

"TRANSLATED_INTO"}}

Action: get_neighbor_type_agent([“SMG7"], 

'TRANSLATED_INTO', 'outgoing’)

…

Action: get_intersection_agent(["Q92540-2", "Q92540-5", 

"Q92540", "Q92540-1", "Q92540-4", "E9PD50", "A0A8I5KSL3", 
"D6R9J3", "B1ALB4", "E9PEK3", "A0A8I5KYV3", "E9PBK2"], 

get_neighbor_type_agent(["Q92540-2", "Q92540-5", 

"Q92540", "Q92540-1", "Q92540-4", "E9PD50", "A0A8I5KSL3", 
"D6R9J3", "B1ALB4", "E9PEK3", "A0A8I5KYV3", "E9PBK2"], 

'ASSOCIATED_WITH', 'outgoing’))

Observation: {"Intersection": []}

Figure 13: Performance of Mixtral-8x7B-Instruct-v0.1-based Agent: Incorrect final re-
sult when answering the multi-hop type questions due to executing the wrong actions.
Session highlighted in pink represents the error information.
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GPT-4 : cancer

Question: 

What diseases are associated with the protein encoded by the gene 

CATSPERZ?

KGQA – multi-hop

Ground Truth: cytokine activity

√

Observation: {"CATSPERZ": {"Incoming": null, "Outgoing": 
"TRANSLATED_INTO"}}

…

Action: get_neighbor_with_type_agent(['CATSPERZ'], 

'TRANSLATED_INTO', 'outgoing', 'Protein’)

Observation: {"CATSPERZ": {"TRANSLATED_INTO": ["Q9NTU4", 

"F5H186"]}}

Action: get_relations_by_ids_agent(["Q9NTU4", "F5H186"])

Observation: {"Q9NTU4": {"Incoming": "...", "Outgoing": 

"ASSOCIATED_WITH, HAS_SEQUENCE"}, "F5H186": {"Incoming": 

"...", "Outgoing": null}}

Action: get_neighbor_with_type_agent(["Q9NTU4"], 

'ASSOCIATED_WITH', 'outgoing', 'Disease’)
Observation: {"Q9NTU4": {"ASSOCIATED_WITH": ["cancer", 

"ovarian cancer", "ovarian carcinoma"]}}

Action: 

get_relations_by_ids_agent(['CATSPERZ’])

GPT-4 : cancer, ovarian cancer, ovarian carcinoma

Ground Truth: cancer, ovarian cancer, ovarian carcinoma

√

Figure 14: Performance of GPT-4-based Agent: Correct final result when answering multi-hop type
questions. Session highlighted in light green represents the correct information.
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Question: 

What molecular function are the proteins Q16552 and P09038 both 

associated with?

KGQA - conjunction

Mixtral-8x7B-Instruct-v0.1 Answer: null

Ground Truth: cytokine activity

×

Action: 

get_relations_by_ids_agent(["Q14116", "P05014"])

Observation:

{“Q14116”: {“Incoming”: …, “Outgoing”: “…, 

ASSOCIATED_WITH, …"}, "P05014": {"Incoming": …, 

"Outgoing": “…, ASSOCIATED_WITH"}}

Action:

get_neighbor_type_agent(["Q14116", "P05014"], 

'ASSOCIATED_WITH', 'outgoing’)

Observation:

{"Q14116": {"NeighborTypes": [“…", "Molecular_function", “…"]}, 

"P05014": {"NeighborTypes": [“…", "Molecular_function", “…"]}}

Action:

get_neighbor_with_type_agent(["Q14116", "P05014"], 

'ASSOCIATED_WITH', 'outgoing', 'Molecular_function’)

Action:

get_neighbor_with_type_agent(["Q14116", "P05014"], 

'ASSOCIATED_WITH', 'outgoing', 'Molecular_function’)

Figure 15: Performance of Mixtral-8x7B-Instruct-v0.1-based Agent: Incorrect final result when
answering the input conjunction type question in 15-turn limit due to executing the wrong action.
Session highlighted in pink represents the error information.
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GPT-4 : cancer

Question: 

Which disease are the proteins Q9P2E3 and Q9UG56 both 

associated with?

KGQA - conjunction

Ground Truth: cytokine activity

Action: 

get_relations_by_ids_agent([“Q9P2E3", “Q9UG56"])

Observation:

{“Q9P2E3”: {“Incoming”: …, “Outgoing”: “…, ASSOCIATED_WITH, …"}, 

“Q9UG56": {"Incoming": …, "Outgoing": “…, ASSOCIATED_WITH"}}

Action:

get_neighbor_type_agent(["Q9P2E3", "Q9UG56"], 

'ASSOCIATED_WITH', 'outgoing’)

Observation:

{"Q9P2E3": {"NeighborTypes": [“…", “Disease", “…"]}, "Q9UG56": 

{"NeighborTypes": [“…", “Disease", “…"]}}

Action:

get_neighbor_with_type_agent(["Q9P2E3", "Q9UG56"], 

'ASSOCIATED_WITH', 'outgoing', ‘Disease’)

Observation:

{“Q9P2E3”: …, "Q9UG56”: …}

Action:

get_intersection_agent([“…"], [“…”])

√

Figure 16: Performance of GPT-4-based Agent: Correct final result when answering the conjunction-
type questions. Session highlighted in light green represents the correct information.
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Input claim: 

Therapeutic anticoagulation in the trauma patient is safe.

SCV √

Retrieved quotes:

"Trauma patients have a significant complication rate related to 

anticoagulation therapy, and predicting which patients will develop a 

complication remains unclear."

Llama-3-70B-Instruct: refutes

Ground Truth: refutes

Correct quote

Figure 17: Performance of Llama-3-70B-Instruct-based Agent: Correct final result with the correct
quotes. Session highlighted in light green represents the correct information.
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Input claim: 

Patterns of knowledge and attitudes exist among unvaccinated 

seniors.

SCV √

Retrieved quotes:

"Do patterns of knowledge and attitudes exist among unvaccinated

seniors?"

Llama-3-70B-Instruct: refutes

Ground Truth: refutes

Wrong quote

Figure 18: Performance of Llama-3-70B-Instruct-based Agent: Correct final result but with an
incorrect quote. Session highlighted in pink represents the error information.
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Input claim: 

Converting apoE4 to apoE3 by gene editing worsens the pathology 

associated with apoE4 in human iPSC derived neurons.

SCV √

Retrieved quotes:

""

GPT-4: refutes

Ground Truth: refutes

No quote

Figure 19: Performance of GPT-4-based Agent: Correct final result but without any quotes.
Session highlighted in pink represents the error information.
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Input claim: 

The measurement of visceral adipose tissue area at a single level 

can represent visceral adipose tissue volume.

SCV √

Retrieved quotes:

"VAT area measurement at a single level 3 cm above the lower 

margin of the L3 vertebra is feasible and can reflect changes in VAT

volume and body weight."

Llama-3-70B-Instruct: supports

Ground Truth: supports

Correct quote

Figure 20: Performance of Llama-3-70B-Instruct-based Agent: Correct final result with the correct
quotes. Session highlighted in light green represents the correct information.
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Input claim: 

The atopy patch test with house dust mites is specific for atopic 

dermatitis.

SCV ×

Retrieved quotes:

“The atopy patch test (APT), namely the patch test with 

aeroallergens, is regarded as specific for patients with atopic

dermatitis (AD), but small numbers of positive APT were reported in 

the past also in atopic subjects without dermatitis and in healthy 

persons.”

Llama-3-70B-Instruct: refutes

Ground Truth: supports

Correct quote

Figure 21: Performance of Llama-3-70B-Instruct-based Agent: Incorrect final result but with the
correct quote. Session highlighted in light green represents the correct information.
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Input claim: 

Charcoal shows no benefit for acute paraquat poisoning.

SCV ×

Retrieved quotes:

“The results indicated that 7 patients died and 12 survived.

Qwen1.5-72B-Chat: refutes

Ground Truth: supports

Correct quote

Figure 22: Performance of Qwen1.5-72B-Chat-based Agent: Incorrect final result but with the correct
quote.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Input claim: 

Cellular clocks are associated with mitosis timing in NIH 3T3 cells.

SCV ×

Retrieved quotes:

“”

Qwen1.5-72B-Chat: refutes

Ground Truth: supports

No quote

Figure 23: Performance of Qwen1.5-72B-Chat-based Agent: Incorrect final result without any quotes.
Session highlighted in pink represents the error information.
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Input claim: 

The duration of psychological treatment for depression is related to 

the return into treatment.

SCV ×

Baichuan2-13B-Chat: Error. "error_msg": "The duration of 

psychological treatment for depression is related to the return into 

treatment. 2 Error occurred in call to LLM - Expecting value: line 1 

column 1 (char 0)"

Ground Truth: supports

Figure 24: Performance of Baichuan2-13B-Chat-based Agent: Parsing error occurring in the final
result due to failing to respond in JSON format. Session highlighted in pink represents the error
information.
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Instruction: 
Please check the relationship in the knowledge graph from the node of type 'Protein' with id 'P23588' to the 
node of type 'Protein' with id 'Q14152'. If a relationship exists, verify its existence. Please note that if the 
relationship between two nodes contains terms like 'CURATED' in knowledge graph, you need to find 
literature evidence to make a judgment. If no relationship exists, confirm that it indeed does not exist. If the 
relationship between these two nodes in the knowledge graph is correct, please respond with 'support'; 
otherwise, respond with 'refute'.

Role Action Content Review

Team 
Leader

Announc-
e Plan

first, ask kg_agent to query the relationship between the node of type 
'Protein' with id 'P23588' and the node of type 'Protein' with id 
'Q14152' in the knowledge graph. Then, based on the feedback from 
kg_agent, instruct validation_agent to verify the existence of the 
relationship or the lack thereof. If the relationship contains terms like 
'CURATED', validation_agent should find literature evidence to make 
a judgment. Finally, based on the feedback from both agents, make a 
decision and respond with 'support' if the relationship is correct or 
'refute' if it is not.

√

Team 
Leader

Assign 
Task

kg_agent, please query the relationship in the knowledge graph 
between the node of type 'Protein' with id 'P23588' and the node of 
type 'Protein' with id 'Q14152'.

√

KG 
Agent

Execute 
Task

call_tool, tool = query_relation_between_nodes, args = {'type1': 
'Protein', 'id1': 'P23588', 'type2': 'Protein', 'id2': 'Q14152'}

√Process 
Tool 

Feedbac-
k

team_leader, the Protein node EIF4B (id: P23588) has a relationship 
CURATED_INTERACTS_WITH to the Protein node EIF3A 
(id:Q14152) in the knowledge graph.

Team 
Leader

Assign 
Task

validation_agent, please verify the relationship 
'CURATED_INTERACTS_WITH' between the Protein node EIF4B (id: 
P23588) and the Protein node EIF3A (id:Q14152) in the local 
publication database, UniProt and STRING database. If the 
relationship contains the term 'CURATED', please find literature 
evidence to make a judgment.

！      
overemphasize 

the search 
range

Validat-
ion 

Agent

Execute
Task

call_tool, tool = pub_rag, args = {"query": 
"CURATED_INTERACTS_WITH relationship between the Protein 
node EIF4B (id: P23588) and the Protein node EIF3A (id:Q14152)

√
not got affected

Process 
Tool 

Feedbac-
k

team_leader, I support the claim that there is a 
\'CURATED_INTERACTS_WITH\' relationship between the Protein 
node EIF4B (id: P23588) and the Protein node EIF3A (id:Q14152). 
The document 8816444.pdf provides multiple instances of evidence 
supporting this claim. For example, ...These pieces of evidence 
strongly support the claim.

Team 
Leader

Reply to 
User

based on the feedback from both kg_agent and validation_agent, I 
conclude that the relationship 'CURATED_INTERACTS_WITH' 
between the Protein node EIF4B (id: P23588) and the Protein node 
EIF3A (id:Q14152) is correct. Therefore, I respond with 'support'.

√

KGCheck - Task type 1 √ right process and right answer

Figure 25: A sample success case of task type 1 where validation agent performs the task as one-shot
prompt instructed without getting affected by the leader’s improper instruction.
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Instruction: 
Please check the relationship in the knowledge graphs (KGs) from the node of type “Protein” with id “P06729” 
to the node of type “Protein” with id “O95400”. If a relationship exists, verify its existence. Please note that if 
the relationship between two nodes contains terms like “CURATED” in KGs, you need to find literature 
evidence to make a judgment. If no relationship exists, confirm that it indeed does not exist. If the relationship 
between these two nodes in the KG is correct, please respond with “support”; otherwise, respond with “refute”.

Role Action Content Review

Team 
Leader

Announce 
Plan

first, ask kg_agent to query the relationship between the node of type 
'Protein' with id 'P06729' and the node of type 'Protein' with id 
'O95400' in the knowledge graph. Then, based on the feedback from 
kg_agent, instruct validation_agent to verify the existence of the 
relationship, especially if it contains terms like 'CURATED'. Finally, 
compare the feedback from both agents and make a decision.

√

Team 
Leader

Assign 
Task

kg_agent, please query the relationship between the node of type 
'Protein' with id 'P06729' and the node of type 'Protein' with id 
'O95400' in the knowledge graph.

√

KG 
Agent

Execute 
Task

call_tool, tool = query_relation_between_nodes, args = {'type1': 
'Protein', 'id1': 'P06729', 'type2': 'Protein', 'id2': 'O95400'}

√
Process 

Tool 
Feedback

team_leader, in the knowledge graph, the Protein node with id 
'P06729' has a relationship 'CURATED_INTERACTS_WITH' with the 
Protein node with id 'O95400'.

Team 
Leader

Assign 
Task

validation_agent, please verify the 'CURATED_INTERACTS_WITH' 
relationship between the Protein node with id 'P06729' and the 
Protein node with id 'O95400' in the local publication database, 
UniProt and STRING database

！      
overemphasize 

the search 
range

Validat
-ion 

Agent

Execute
Task

call_tool, tool = get_uniprot_protein_info, args = {"protein_id": 
"P06729"}
call_tool, tool = get_uniprot_protein_info, args = {"protein_id": 
"O95400"}
call_tool, tool = check_interaction_string, args = {"protein1": 
"P06729", "protein2": "O95400"}
call_tool, tool = pub_rag, args = {"query": 
"CURATED_INTERACTS_WITH relationship between P06729 and 
O95400"}

×
1. unneccessary 
token usage for 

web api
2. wrong 

reasoning: The 
relationship is 
supported by 

publication with 
PubMed ID: 

[9843987], but it 
failed to find it.

√
3. right final 

answer.

Process 
Tool 

Feedback

team_leader, I support the claim that there is a 
'CURATED_INTERACTS_WITH' relationship between the Protein node with 
id 'P06729' and the Protein node with id 'O95400'. The evidence is as follows:
1. UniProt information:  ...
2. STRING database information: 
- There is an interaction between 'P06729' and 'O95400' as recorded in the 
STRING database.
3. Local publication database information: 
- None of the returned documents provide direct evidence of the interaction 
between 'P06729' and 'O95400'. However, the interaction is supported by the 
STRING database and UniProt information.
Based on the above evidence, I support the claim.

KGCheck - Task type 1   ！ wrong process but right answer

Figure 26: A sample case of task type 1 with right final answer but the wrong analyse process. The
validation is deeply influenced by the leader’s command and thus wastes tokens on unnecessary tool
calling. While the validation agent is expected to find the evidence in the documents that supports the
claim, it draws the right conclusion based on the result by visiting STRING.
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Under review as a conference paper at ICLR 2025

Instruction: 
Please check the relationship in the knowledge graph from the node of type 'Protein' with id 'Q86VP6' to the 
node of type 'Protein' with id 'Q13616'. If a relationship exists, verify its existence. Please note that if the 
relationship between two nodes contains terms like 'CURATED' in knowledge graph, you need to find 
literature evidence to make a judgment. If no relationship exists, confirm that it indeed does not exist. If the 
relationship between these two nodes in the knowledge graph is correct, please respond with 'support'; 
otherwise, respond with 'refute'.

Role Action Content Review

... .... ... √

Team 
Leader

Assign 
Task

validation_agent, the feedback from kg_agent is: In the KG, the 
Protein node CAND1 (id: Q86VP6) has a relationship 
CURATED_INTERACTS_WITH to the Protein node CUL1 
(id:Q13616). Please verify the existence of this relationship.

√

Validat-
ion 

Agent

Execute 
Task

call_tool, tool = pub_rag, args = {'query': 'CAND1 
CURATED_INTERACTS_WITH CUL1'}

×
try to find an 

exact match but 
fail to 

understand the 
meaning

Process 
Tool 

Feedbac
k

team_leader, I have analyzed the provided documents and found 
evidence related to the claim "CAND1 
CURATED_INTERACTS_WITH CUL1". The documents suggest that 
CUL1 interacts with TIP120A, Skp1, and F-box proteins, and that 
TIP120A interferes with the binding of Skp1 and F-box proteins to 
CUL1. However, there is no direct evidence of a 
CURATED_INTERACTS_WITH relationship between CAND1 and 
CUL1. Therefore, I refute the claim based on the provided documents.

Team 
Leader

Reply to 
User

I have received the feedback from both kg_agent and 
validation_agent. Based on the feedback, I will make my decision. 
Since validation_agent refutes the claim, I will respond with 'refute'.

×
misled by the 

validation agent

KGCheck - Task type 1 

× wrong process and wrong answer

Figure 27: A sample failure case of task type 1. The validation agent fails to understand the meaning
of "CURATED INTERACTS WITH relationship" but tries to find an exact match, leading to the
wrong conclusion. The team leader fails to extract the useful information from the validation agent’s
reply to make a right final conclusion.
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Under review as a conference paper at ICLR 2025

Instruction: 
Please check the relationship in the knowledge graph from the node of type 'Protein' with id 'Q13616' to the 
node of type 'Protein' with id 'P62877'. If a relationship exists, verify its existence. Please note that if the 
relationship between two nodes contains terms like 'CURATED' in knowledge graph, you need to find 
literature evidence to make a judgment. If no relationship exists, confirm that it indeed does not exist. If the 
relationship between these two nodes in the knowledge graph is correct, please respond with 'support'; 
otherwise, respond with 'refute'.

Role Action Content Review

Team 
Leader

Announc
e Plan

1. Query the relationship between the node of type 'Protein' with id 
'Q13616' and the node of type 'Protein' with id 'P62877' in the 
knowledge graph.
2. Verify the existence of the relationship returned by kg_agent.

√

Team 
Leader

Assign 
Task

kg_agent, query the relationship between the node of type 'Protein' 
with id 'Q13616' and the node of type 'Protein' with id 'P62877'. √

KG 
Agent

Execute 
Task

call_tool, tool = query_relation_between_nodes, args = {'type1': 
'Protein', 'id1': 'Q96QP1', 'type2': 'Protein', 'id2': 'Q08379' ×

hallucination 
induced by one-

shot prompt

Process 
Tool 

Feedbac
k

No relation is found between the node (type: 'Protein', id: 'Q96QP1') 
and the node (type: 'Protein', id: 'Q08379') in the knowledge graph.

Team 
Leader

Correct 
Behavior

kg_agent, query the relationship between the node of type 'Protein' 
with id 'Q13616' and the node of type 'Protein' with id 'P62877'. √

KG 
Agent

Execute
Task

call_tool, tool = query_relation_between_nodes, args = {'type1': 
'Protein', 'id1': 'Q13616', 'type2': 'Protein', 'id2': 'P62877'}

√
Process 

Tool 
Feedbac

k

team_leader, The relationship from node with type 'Protein' and id 
'Q13616' to the node with type 'Protein' and id 'P62877' in the 
knowledge graph is: In the KG, the Protein node CUL1 (id: Q13616) 
has a relationship CURATED_INTERACTS_WITH to the Protein 
node RBX1 (id:P62877).

Team 
Leader

Assign 
Task

validation_agent, the feedback from kg_agent is: In the KG, the 
Protein node CUL1 (id: Q13616) has a relationship 
CURATED_INTERACTS_WITH to the Protein node RBX1 
(id:P62877). Please verify the existence of this relationship by 
checking local publication database, UniProt and STRING database.

√

KGCheck - Task type 1 √ leader  performs supervisory duty  properly

Figure 28: A sample case of the team leader properly correcting the assistant agent’s behavior. The
kG agent passes wrong arguments to the tool the first time it performs its subtask but is corrected by
the team leader, indicating that the supervisor role of the team leader helps regulate the workflow.
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Under review as a conference paper at ICLR 2025

Instruction: 
Please check the relationship in the knowledge graph from the node of type 'Protein' with id 'P20645' to the 
node of type 'Protein' with id 'Q9UHD9'. If a relationship exists, verify its existence. Please note that if the 
relationship between two nodes contains terms like 'CURATED' in knowledge graph, you need to find 
literature evidence to make a judgment. If no relationship exists, confirm that it indeed does not exist. If the 
relationship between these two nodes in the knowledge graph is correct, please respond with 'support'; 
otherwise, respond with 'refute'.

Role Action Content Review

Team 
Leader

Announc-
e Plan

first, ask kg_agent to query the relationship between the node of type 
'Protein' with id 'P20645' and the node of type 'Protein' with id 
'Q9UHD9' in the knowledge graph. Then, based on the feedback 
from kg_agent, instruct validation_agent to verify the existence of the 
relationship or confirm its non-existence. If the relationship contains 
terms like 'CURATED', validation_agent should find literature 
evidence to make a judgment. Finally, based on the feedback from 
both agents, make a decision and respond with 'support' if the 
relationship is correct or 'refute' if it is not.

√

Team 
Leader

Assign 
Task

kg_agent, please query the relationship between the node of type 
'Protein' with id 'P20645' and the node of type 'Protein' with id 
'Q9UHD9' in the knowledge graph.

√

KG 
Agent

Execute 
Task

call_tool, tool = query_relation_between_nodes, args = {'type1': 
'Protein', 'id1': 'P20645', 'type2': 'Protein', 'id2': 'Q9UHD9'}

√Process 
Tool 

Feedbac-
k

team_leader, there is no relation found between the node (type: 
'Protein', id: 'P20645') and the node (type: 'Protein', id: 'Q9UHD9') in 
the knowledge graph.

Team 
Leader

Assign 
Task

validation_agent, please confirm that there is indeed no relationship 
between the node of type 'Protein' with id 'P20645' and the node of 
type 'Protein' with id 'Q9UHD9' in the local publication database, 
UniProt and STRING database.

！      
overemphasize 

the search 
range

Validat-
ion 

Agent

Execute
Task

call_tool, tool = check_interaction_string, args = {'protein1': 'P20645', 
'protein2': 'Q9UHD9'}

√
not affected

Process 
Tool 

Feedbac-
k

team_leader, there is an interaction between the proteins with ids 
'P20645' and 'Q9UHD9' according to the STRING database.

Team 
Leader

Reply to 
User

FINISH, the relationship between the node of type 'Protein' with id 
'P20645' and the node of type 'Protein' with id 'Q9UHD9' in the 
knowledge graph is incorrect. Therefore, I respond with 'refute'.

√

KGCheck - Task type 2 √ right process and right answer

Figure 29: A sample success case of task type 2 where validation agent performs the task as one-shot
prompt instructed without getting affected by the leader’s improper instruction.
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Under review as a conference paper at ICLR 2025

Instruction: 
Please check the relationship in the knowledge graph from the node of type 'Protein' with id 'P20645' to the 
node of type 'Protein' with id 'P15289'. If a relationship exists, verify its existence. Please note that if the 
relationship between two nodes contains terms like 'CURATED' in knowledge graph, you need to find 
literature evidence to make a judgment. If no relationship exists, confirm that it indeed does not exist. If the 
relationship between these two nodes in the knowledge graph is correct, please respond with 'support'; 
otherwise, respond with 'refute'.

Role Action Content Review

... ... ... √

Team 
Leader

Assign 
Task

validation_agent, verify the feedback from kg_agent that no relation is 
found between the node (type: 'Protein', id: 'P20645') and the node 
(type: 'Protein', id: 'P15289') in the knowledge graph.

√

KG 
Agent

Execute 
Task

call_tool, tool = check_interaction_string, args = {'protein1': 'Q96QP1', 
'protein2': 'Q08379'} ×

hallucination 
induced by one-

shot prompt

Process 
Tool 

Feedbac-
k

team_leader, The verification result is: True. There is no relationship 
between the node of type 'Protein' with id 'Q96QP1' and the node of 
type 'Protein' with id 'Q08379'.

Team 
Leader

Assign 
Task

validation_agent, verify the feedback from kg_agent that no relation is 
found between the node (type: 'Protein', id: 'P20645') and the node 
(type: 'Protein', id: 'P15289') in the knowledge graph.

×
fail to realize the 

mis-action of 
KG agent

Validat-
ion 

Agent

Reply to 
leader

I think there is a mistake. I didn't receive any feedback from kg_agent 
about 'P20645' and 'P15289'. The previous task was to verify if there 
is exactly no relationship between the node of type 'Protein' with id 
'Q96QP1' and the node of type 'Protein' with id 'Q08379', and I 
already sent the result to team_leader. If you have a new task, please 
let me know!

×
influenced by 

one-shot prompt

Validat-
ion 

Agent

Execute 
Task ...(wrong tool calling)

×Process 
Tool 

Feedbac-
k

team_leader, The verification result is: True. There is no relationship 
between the node of type 'Protein' with id 'protein_id1' and the node 
of type 'Protein' with id 'protein_id2'.

Team 
Leader

Reply to 
User

I will make my final decision based on the feedback from kg_agent 
and validation_agent. Since both agents confirm that there is no 
relationship between the node of type 'Protein' with id 'P20645' and 
the node of type 'Protein' with id 'P15289', I will respond with 'refute'.

!
if both agents 

confirm no 
relationship, 
the answer 
should be 

support 

KGCheck - Task type 2 wrong process but right answer  ！

Figure 30: A sample case of task type 2 with the right final answer but the wrong analyse process.
Assistant agents are deeply affected by one-shot prompts resulting in hallucinations in the task
execution. The team leader misunderstands the instruction for the response but coincidently gives the
right answer.
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Under review as a conference paper at ICLR 2025

Instruction: 
Please check the relationship in the knowledge graph from the node of type 'Protein' with id 'P20645' to the 
node of type 'Protein' with id 'P01344'. If a relationship exists, verify its existence. Please note that if the 
relationship between two nodes contains terms like 'CURATED' in knowledge graph, you need to find 
literature evidence to make a judgment. If no relationship exists, confirm that it indeed does not exist. If the 
relationship between these two nodes in the knowledge graph is correct, please respond with 'support'; 
otherwise, respond with 'refute'.

Role Action Content Review

... .... ... √

Team 
Leader

Assign 
Task

validation_agent, verify the feedback from kg_agent: No relation is 
found between the node (type: 'Protein', id: 'P20645') and the node 
(type: 'Protein', id: 'P01344') in the knowledge graph.

√

Validat-
ion 

Agent

Execute 
Task

call_tool, tool = check_interaction_string, args = {'protein1': 'P20645', 
'protein2': 'P01344'}

√Process 
Tool 

Feedbac
k

team_leader, The answer to the question is: There is a relationship 
between the node of type 'Protein' with id 'P20645' and the node of 
type 'Protein' with id 'P01344'.

Team 
Leader

Reply to 
User

I will make my final decision based on the feedback from kg_agent 
and validation_agent. Since kg_agent reported no relation and 
validation_agent reported a relationship, I will investigate further. 
After re-examining the evidence, I found that the relationship between 
the node of type 'Protein' with id 'P20645' and the node of type 
'Protein' with id 'P01344' is correct.
FINISH, support.

×
make the wrong 

conclusion

KGCheck - Task type 2 

× right process but wrong answer

Figure 31: A sample failure case of task type 2. The whole process including assistant agents’ tool
calling and feedback processing is as expected, but the team leader misunderstands the instruction for
the response causing a wrong final result.
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Under review as a conference paper at ICLR 2025

Instruction: 
Please check if the 'name' attribute of the node with type Protein and id A0A6Q8PHA8 in the knowledge 
graph is correct. If it's correct, please respond with 'support'; if not, respond with 'refute'.

Role Action Content Review

Team 
Leader

Announc-
e Plan

1. Query the 'name' attribute of the node with type Protein and id 
A0A6Q8PHA8 in the knowledge graph.
2. Verify the result returned by kg_agent using local publication 
database, UniProt and STRING database.

√

Team 
Leader

Assign 
Task

kg_agent, please query the 'name' attribute of the node with type 
Protein and id A0A6Q8PHA8 in the knowledge graph. √

KG 
Agent

Execute 
Task

call_tool, tool = query_node_attribute, args = {'type': 'Protein', 'id': 
'A0A6Q8PHA8', 'attr': 'name'}

√Process 
Tool 

Feedbac-
k

team_leader, the 'name' attribute of the node with type 'Protein' and id 
'A0A6Q8PHA8' in the knowledge graph is None.

Team 
Leader

Assign 
Task

validation_agent, please verify the 'name' attribute of the Protein with 
id A0A6Q8PHA8 using local publication database, UniProt and 
STRING database.

！      
overemphasize 

the search 
range

Validat-
ion 

Agent

Execute
Task

call_tool, tool = get_uniprot_protein_info, args = {'protein_id': 
'A0A6Q8PHA8'}

√
not affected

Process 
Tool 

Feedbac-
k

team_leader, the 'name' attribute of the protein with id 'A0A6Q8PHA8' 
is 'LOC128092251' according to the UniProt database.

Team 
Leader

Reply to 
User

based on the feedback from kg_agent and validation_agent, the 
'name' attribute of the node with type Protein and id A0A6Q8PHA8 in 
the knowledge graph is not correct. Therefore, I respond with 'refute'.

√

KGCheck - Task type 3 √ right process and right answer

Figure 32: A sample success case of task type 3 where validation agent performs the task as one-shot
prompt instructed without getting affected by the leader’s improper instruction.
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Under review as a conference paper at ICLR 2025

Instruction: 
Please check if the 'name' attribute of the node with type Protein and id A0A6Q8PGS0 in the knowledge graph 
is correct. If it's correct, please respond with 'support'; if not, respond with 'refute'.

Role Action Content Review

Team 
Leader

Announc-
e Plan

1. Query the 'name' attribute of the node with type Protein and id 
A0A6Q8PGS0 in the knowledge graph.
2. Verify the result returned by the kg_agent using the local 
publication database, UniProt and STRING database.

√

Team 
Leader

team_leader, the 'name' attribute of the node with type Protein and id 
A0A6Q8PGS0 in the knowledge graph is 'Protein A0A6Q8PGS0'.

×
skip the KG 
agent and 
wrong role 

palying

Team 
Leader

Assign 
Task

validation_agent, please verify the 'name' attribute of the node with 
type Protein and id A0A6Q8PGS0 using the local publication 
database, UniProt and STRING database. The name returned by the 
kg_agent is 'Protein A0A6Q8PGS0'.

×
false information

Validat-
ion 

Agent

Execute
Task

call_tool, tool = get_uniprot_protein_info, args = {'protein_id': 
'A0A6Q8PGS0'}

√
Process 

Tool 
Feedbac-

k

team_leader, the information from UniProt for the protein with id 
'A0A6Q8PGS0' is: id: A0A6Q8PGS0, accession: 
A0A6Q8PGS0_HUMAN, name: LOC128071547. This indicates that 
the 'name' attribute of the protein 'A0A6Q8PGS0' is 'LOC128071547', 
not 'Protein A0A6Q8PGS0' as initially provided by the kg_agent.

Team 
Leader

Reply to 
User

based on the information provided by the validation_agent, the 'name' 
attribute of the node with type Protein and id A0A6Q8PGS0 in the 
knowledge graph is incorrect. Therefore, I respond with 'refute'.

√

KGCheck - Task type 3 wrong process but right answer  ！

Figure 33: A sample case of task type 3 with right final answer but the wrong analyse process. The
team leader tries to replace the KG agent with itself and generates false KG information which
happens to be consistent with the actual name missing condition of the specified protein in KG
(whether the name is wrong or missing the answer will be ’refute’).
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Under review as a conference paper at ICLR 2025

Instruction: 
Please check if the 'name' attribute of the node with type Protein and id A8K1B4 in the knowledge graph is 
correct. If it's correct, please respond with 'support'; if not, respond with 'refute'.

Role Action Content Review

Team 
Leader

Announc-
e Plan

1. Query the 'name' attribute of the node with type Protein and id 
A8K1B4 in the knowledge graph.

2. Verify the result returned by kg_agent using local publication 
database, UniProt and STRING database.

kg_agent, please query the 'name' attribute of the node with type 
Protein and id A8K1B4 in the knowledge graph.

!
fail to send the 

command to KG 
agent due to 
wrong format

Human Correct 
Behavior

You should specify the receiver before you assign task. Please 
regenerate your message and it should start by 'sender, ' where 

sender is the one you assign task to .
(An autonomous prompt injection triggered when the agent replies 

with wrong format)

Team 
Leader

The 'name' attribute of the node with type Protein and id A8K1B4 in 
the knowledge graph is 'Interleukin-6'.

×
hallucination 

and wrong role 
playing

Team 
Leader

Assign 
Task

validation_agent, please verify the 'name' attribute of the node with 
type Protein and id A8K1B4 in the local publication database, UniProt 
and STRING database. The 'name' attribute returned by kg_agent is 
'Interleukin-6'.

×
skip the KG 

agent and send 
wrong 

command

Validat-
ion 

Agent

Execute 
Task

call_tool, tool = get_uniprot_protein_info, args = {'protein_id': 
'A8K1B4'}

√Process 
Tool 

Feedbac
k

team_leader, the 'name' attribute of the protein with id 'A8K1B4' in 
UniProt is 'ADAM17', which is inconsistent with the 'name' attribute 
'Interleukin-6' returned by kg_agent from the local publication 
database.

Team 
Leader

Reply to 
User

based on the feedback from validation_agent, the 'name' attribute of 
the node with type Protein and id A8K1B4 in the knowledge graph is 
incorrect. Therefore, I respond with 'refute'.

×
wrong answer

KGCheck - Task type 3 

× wrong process and wrong answer

Figure 34: A sample failure case of task type 3. The team leader fails to send the command to
KG agent due to the message format, triggering an autonomous human prompt to help the leader
correct its behavior. However, the team leader tries to replace the KG agent and generate false KG
information instead of regenerating the command sent to KG agent, resulting in the wrong final
answer.
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Instruction: 
Due to certain reasons, some entries were removed from the database. Please check whether the node with 
the type 'Protein' and the id 'A2RUG3' exists in the knowledge graph, and confirm whether it exists in the 
corresponding database. If its existence is consistent, please respond with 'support'; otherwise, answer 
'refute'.

Role Action Content Review

... .... ... √

KG 
Agent

Process 
Tool 

Feedbac-
k

team_leader, the node with type 'Protein' and id 'A2RUG3' doesn't 
exist in the knowledge graph. √

... ... ... √

Validat-
ion 

Agent

Process 
Tool 

Feedbac-
k

team_leader, the protein with ID 'A2RUG3' has been removed from 
UniProtKB. √

Team 
Leader

Reply to 
User

the node with the type 'Protein' and the id 'A2RUG3' does not exist in 
both the knowledge graph and the UniProtKB database. Therefore, 
the answer is 'support'.

√

KGCheck - Task type 4 

√ right process and right answer

Figure 35: A sample success case of task type 4. Both assistant agents and team leader perform their
tasks as expected. Core chats are presented.
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Instruction: 
Due to certain reasons, some entries were removed from the database. Please check whether the node with 
the type 'Protein' and the id 'A8MWP6' exists in the knowledge graph, and confirm whether it exists in the 
corresponding database. If its existence is consistent, please respond with 'support'; otherwise, answer 
'refute'.

Role Action Content Review

... .... ... √

KG 
Agent

Process 
Tool 

Feedbac-
k

team_leader, The node with type 'Protein' and id 'A8MVS1' does not 
exist in the knowledge graph. √

... ... ... √

Validat-
ion 

Agent

Process 
Tool 

Feedbac-
k

team_leader, the protein with ID 'A8MWP6' is removed from 
UniProtKB. √

Team 
Leader

Reply to 
User

since both kg_agent and validation_agent agree that the node with 
the type 'Protein' and the id 'A8MWP6' does not exist, I conclude that 
the existence of the node is consistent across KG and the 
corresponding database. Therefore, my answer is 'refute'.

×
make the wrong 

conclusion

KGCheck - Task type 4 

× right process but wrong answer

Figure 36: A sample failure case of task type 4. The team leader misunderstands the instruction for
the response and makes a wrong conclusion though the analyse process is right.
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Instruction: 
Please check the relationship in the knowledge graph from the node of type 'Protein' with id 'Q8NA47' to the 
node of type 'Cellular_component' with id 'GO:0043232'. If a relationship exists, verify its existence. Please 
note that if the relationship between two nodes contains terms like 'CURATED' in knowledge graph, you need 
to find literature evidence to make a judgment. If no relationship exists, confirm that it indeed does not exist. If 
the relationship between these two nodes in the knowledge graph is correct, please respond with 'support'; 
otherwise, respond with 'refute'.

Role Action Content Review

... .... ... √

KG 
Agent

Process 
Tool 

Feedbac-
k

team_leader, the Protein node CCDC63 (id: Q8NA47) has a 
relationship ASSOCIATED_WITH to the Cellular_component node 
intracellular non-membrane-bounded organelle (id:GO:0043232) in 
the knowledge graph.

√

... ... ... √

Validat-
ion 

Agent

Process 
Tool 

Feedbac-
k

team_leader, the documents suggest that the protein CCDC63 is 
associated with cilia, which are intracellular non-membrane-bounded 
organelles. For instance, document 29257953.pdf mentions that 
CCDC63 is a high-confidence ciliome member and is essential for 
mouse sperm flagella formation, suggesting that it could be a ciliary 
protein linked to male fertility. Therefore, the evidence supports the 
claim that the protein CCDC63 is associated with the cellular 
component intracellular non-membrane-bounded organelle. The 
supporting documents are 29257953.pdf.

√

Team 
Leader

Reply to 
User

 the relationship between the Protein node CCDC63 (id: Q8NA47) 
and the Cellular_component node intracellular non-membrane-
bounded organelle (id:GO:0043232) in the knowledge graph is 
supported by the evidence found in the local publication database, 
UniProt and STRING database. The supporting documents are 
29257953.pdf. Therefore, I respond with 'support'.

√

KGCheck - Task type 5 

√ right process and right answer

Figure 37: A sample success case of task type 5. Both assistant agents and team leader perform their
tasks as expected. Core chats are presented.
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Instruction: 
Please check the relationship in the knowledge graph from the node of type 'Protein' with id 'Q96QP1' to the 
node of type 'Tissue' with id 'BTO:0000042'. If a relationship exists, verify its existence. Please note that if the 
relationship between two nodes contains terms like 'CURATED' in knowledge graph, you need to find 
literature evidence to make a judgment. If no relationship exists, confirm that it indeed does not exist. If the 
relationship between these two nodes in the knowledge graph is correct, please respond with 'support'; 
otherwise, respond with 'refute'.

Role Action Content Review

... ... ... √

KG 
Agent

Process 
Tool 

Feedbac-
k

team_leader, there is no relation found in the knowledge graph 
between the node of type 'Protein' with id 'Q96QP1' and the node of 
type 'Tissue' with id 'BTO:0000042'.

√

... ... ... √

Validat-
ion 

Agent

Process 
Tool 

Feedbac-
k

team_leader, the documents provided do not contain any direct 
evidence to support or refute the claim of a relationship between the 
protein with id 'Q96QP1' and the tissue with id 'BTO:0000042'. 
Therefore, I suggest ...

×
wrong 

conclusion, 
actually there is 

a relationship

Team 
Leader

Reply to 
User

based on the feedback from both kg_agent and validation_agent, 
there is no relationship found in the knowledge graph between the 
node of type 'Protein' with id 'Q96QP1' and the node of type 'Tissue' 
with id 'BTO:0000042'. Also, there is no direct evidence found in the 
local publication database, UniProt and STRING database to support 
or refute this claim. Therefore, I respond with 'refute'.

!
right conclusion 

drawn from 
previous chat 

should be 
‘support’ 

‘refute’ is the 
right answer

KGCheck - Task type 5 

wrong process but right answer  ！

Figure 38: A sample case of task type 5 with right final answer but the wrong analyse process. The
validation agent makes a wrong conclusion and the team leader misunderstands the instruction for
response, surprisingly leading to the right answer.

64



3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

Instruction: 
Please check if the 'name' attribute of the node with type Protein and id A8K1B4 in the knowledge graph is 
correct. If it's correct, please respond with 'support'; if not, respond with 'refute'.

Role Action Content Review

Team 
Leader

Announc-
e Plan

1. Kg_agent would need to query the knowledge graph and find the 
relationship between the node of type 'Protein' with id 'Q96QP1' and 

the node of type 'Tissue' with id 'BTO:0000007'.
 2. Validation_agent would then need to verify the relationship found 

by Kg_agent. If 'CURATED' is part of the relationship, literature 
evidence should be found for support.

Now, let's proceed with the first subtask.
kg_agent, please find the relationship in the knowledge graph from 

the node of type 'Protein' with id 'Q96QP1' to the node of type 'Tissue' 
with id 'BTO:0000007'.

!
fail to send the 

command to KG 
agent due to 
wrong format

Human Correct 
Behavior

You should specify the receiver before you assign task. Please 
regenerate your message and it should start by 'sender, ' where 

sender is the one you assign task to .
(An autonomous prompt injection triggered when the agent replies 

with wrong format)

Team 
Leader

kg_agent has queried the knowledge graph and determined there is a 
'CURATED' relationship between the protein 'Q96QP1' and the tissue 
'BTO:0000007'.

×
hallucination 
(actually no 

relationship will 
be found)

Team 
Leader

Assign 
Task

validation_agent, given this 'CURATED' relationship found by 
kg_agent between the protein 'Q96QP1' and the tissue 
'BTO:0000007', please verify this relationship. If literature evidence is 
required, please seek it from local publication database, UniProt, and 
STRING database.

×
skip the KG 

agent and send 
wrong 

command

Validat-
ion 

Agent

Execute 
Task

call_tool, tool = pub_rag, args = {"query": "there is no association 
between the node of type 'Protein' with id 'Q96QP1' and the node of 
type 'Tissue' with id 'BTO:0000007'"} ×

wrong 
conclusion, 

actually there is 
a relationship

Process 
Tool 

Feedbac
k

team_leader, based on the documents retrieved, none of them 
provide direct evidence to support or refute the claim that there is no 
association between the protein with id 'Q96QP1' and the tissue with 
id 'BTO:0000007'. Therefore, I suggest...

Team 
Leader

Reply to 
User

based on the information provided by kg_agent and validation_agent, 
the relationship between the protein 'Q96QP1' and the tissue 
'BTO:0000007' in the knowledge graph is 'CURATED'. However, the 
validation_agent could not find any specific evidence to support or 
refute this relationship. Therefore, the final decision is 'inconclusive'.

×
wrong answer

KGCheck - Task type 5 × wrong process and wrong answer

Figure 39: A sample failure case of task type 5. The team leader fails to send the command to
KG agent due to the message format, triggering an autonomous human prompt to help the leader
correct its behavior. However, the team leader tries to replace the KG agent and generate false KG
information instead of regenerating the command sent to KG agent. The validation agent makes a
wrong conclusion worsening the situation.
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E OTHER RELATED WORK

Recent research has increasingly focused on the application of LLMs in various scientific domains.
These models, initially developed for general purposes, are now being utilized to tackle domain-
specific scientific tasks. This involves integrating essential domain-specific context and knowledge
into the LLMs, either during training or prior to task inference. A critical challenge in this process
is balancing the inclusion of relevant domain knowledge with the model’s reasoning capabilities,
especially when domain-specific data is limited.

Various approaches have been explored to utilize LLMs for specific scientific applications, depending
on the availability of data and model accessibility Wang et al. (2023a); Liu et al. (2023a); Grisoni
(2023); Guo et al. (2023); Liang et al. (2023). Common strategies in the scientific domain include
training domain-specific LLMs from scratch, fine-tuning general-purpose LLMs, and employing
few-shot or zero-shot learning with prompting. Training domain-specific LLMs from scratch offers
the highest flexibility and customization, as demonstrated by models like Galactica Taylor et al.
(2022), which constructs large scientific corpora and trains LLMs in a self-supervised manner Devlin
et al. (2019); Radford et al. (2018). Fine-tuning pre-trained LLMs with domain-specific datasets
has yielded promising results, as seen in BioMedLM Bolton et al. (2022) and med-PALM Singhal
et al. (2022; 2023). Fine-tuning can also be performed with smaller amounts of paired data in a
supervised fashion, exemplified by DrugChat Liang et al. (2023). Few-shot or zero-shot learning,
also known as in-context learning, is effective for using advanced instruction-tuned LLMs like GPT-4
OpenAI (2023b) for scientific tasks by incorporating domain knowledge into prompts. This approach
has shown success in fields such as Social Science Zhong et al. (2023) and astronomy Sotnikov &
Chaikova (2023), as well as in benchmarking LLMs on chemistry tasks Guo et al. (2023). Recent
studies like CancerGPT Li et al. (2023) and SynerGPT Edwards et al. (2023) investigate LLMs
for drug synergy prediction and other complex scientific interactions. Furthermore, augmenting
LLMs with external tools, such as using Web APIs for genomics questions Jin et al. (2023), and
integrating domain-specific tools into language model prompts to access specialized knowledge
Bran et al. (2023); Boiko et al. (2023a); Liu et al. (2023b), are promising directions. Efforts are
also underway to develop LLM-based agents for scientific discovery by connecting LLMs with
experimental tools in fields like Chemistry Boiko et al. (2023a) and Machine Learning Zhang et al.
(2023). LeanDojo Yang et al. (2023b); Song et al. (2024), for example, is an open-source toolkit for
theorem proving that integrates retrieval-augmented LLMs to enhance theorem proving capabilities.
Despite these advancements, the diverse data modalities across different scientific domains pose
significant challenges for the direct application of LLMs in many areas.
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