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Abstract
This study explores the impact of translationese001
on multilingual machine translation (MT). Us-002
ing a newly curated directed "one-way" parallel003
corpora from Global Voices (MSGV), featuring004
original texts in diverse languages and explicit005
anotation of actual translation directions, we006
evaluated the NLLB and TOWER models on007
MT tasks between English and five other lan-008
guages. Our results reveal that translationese009
inputs are easier to translate into English but not010
out of English. Additionally, machine transla-011
tions of translationese are lexically richer than012
those of original texts when translating into En-013
glish. These findings suggest that multilingual014
MT systems experience different translationese015
effects compared to dedicated bilingual sys-016
tems, underscoring the need for diverse test017
beds in MT evaluations. We contribute our018
dataset to enhance future research.019

1 Introduction020

Multilingual machine translation (MT) models and021

large language models (LLMs) have displayed022

great potential in enhancing global communication023

across language barriers by scaling MT to many024

language pairs through transfer learning (John-025

son et al., 2017; Arivazhagan et al., 2019; Team026

et al., 2022) and leveraging multilingual models027

pre-trained on vast amounts of monolingual data028

(Alves et al., 2024). For example, mT5 (Xue et al.,029

2021) is a multilingual variant of T5 model pre-030

trained on a Common Crawl-based dataset cover-031

ing 101 languages. Llama 3 (Meta AI, 2024) is032

an open source LLM with enhanced performance,033

energy efficiency, and robust safety measures for034

versatile NLP applications.035

However, massively multilingual systems are036

typically evaluated on the FLORES test bed, cre-037

ated by translation from English into 101 other038

languages (Goyal et al., 2021). While this enables039

valuable controlled evaluations across many lan-040

guage pairs, MT from any source language other041

than English is evaluated on so called “transla- 042

tionese” – inputs that are translations – which is 043

easier to translate by dedicated bilingual MT sys- 044

tems (Toral et al., 2018; Graham et al., 2020). 045

At the same time, properties of the output text 046

might not be captured by quality ratings alone. 047

For instance, English grammatical structures have 048

been found to influence the fluency of multilin- 049

gual models in lower resource languages (Papadim- 050

itriou et al., 2023). Furthermore, translated lan- 051

guage presents distinct features than original texts 052

whether they are written by humans (Volansky 053

et al., 2015) or bilingual machine translation (Van- 054

massenhove et al., 2021), and that distinguishing 055

original from translated text benefits multilingual 056

MT (Riley et al., 2020). 057

In this paper, we ask how multilingual MT sys- 058

tems are affected by translationese effects, both in 059

terms of evaluation results and the nature of their 060

outputs. We construct a directed translation eval- 061

uation corpus1 from the Global Voices2 website, 062

featuring original texts in diverse languages and 063

explicit labeling of translation direction. For exam- 064

ple, the Spanish → English corpus in the corpora 065

includes original texts written in Spanish and their 066

corresponding English translations. Unlike FLO- 067

RES, our test sets are directed "one-way" datasets. 068

For instance, "Spanish → English" and "English 069

→ Spanish" are two distinct datasets with distinct 070

contents. We use the corpus to test two hypotheses 071

with the NLLB (Team et al., 2022) and TOWER 072

(Alves et al., 2024) MT systems, on translation 073

between English and five other languages: 074

H1 Translationese inputs are easier to translate by 075

multilingual MT systems. 076

H2 The lexical diversity of MT translationese is 077

impacted by translationese inputs. 078

1The dataset will be released upon publication.
2https://globalvoices.org/
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Our findings suggest that translationese impacts079

massively multilingual MT and LLMs differently080

than dedicated bilingual systems.081

2 Background082

Translated text has been shown to have distinct lin-083

guistic features from texts originally written in the084

same language (Toury, 1979; Baker, 2019). Com-085

putational analysis has identified the translationese086

patterns found in parallel corpora (Volansky et al.,087

2015) and has made it possible to detect translation088

direction in parallel text with high accuracy (Ba-089

roni and Bernardini, 2006; Kurokawa et al., 2009;090

Lembersky et al., 2011; Koppel and Ordan, 2011).091

The differences between original (O) and trans-092

lationese (T) texts impact the evaluation of ma-093

chine translation systems. Suppose a MT system094

is given a translation task X → Y . If the paral-095

lel test set has original texts in language X and096

translated texts from X to Y , we say the trans-097

lation is in actual direction (O (original) → T098

(translated)). By contrast, if the parallel test set has099

original texts in language Y and translated texts100

from Y to X , we say the translation is in reverse101

direction (T (translated) → O (original)). Stud-102

ies comparing the translation quality obtained with103

the same system on test sets created in the actual104

vs. reverse direction have found that MT systems105

produce better translations in the reverse direction,106

suggesting that translationese is easier to translate107

(Toral et al., 2018; Zhang and Toral, 2019; Graham108

et al., 2020; Läubli et al., 2020). Toral et al. (2018)109

observed this effect on MT between Chinese and110

English. Zhang and Toral (2019) revealed that the111

use of translationese in test sets can result in in-112

flated scores for MT systems through experiments113

on 17 translation directions, while Graham et al.114

(2020) studied WMT systems on news translation115

tasks between English and 9 other languages.116

Hence, it is generally recommended to evaluate117

MT tasks on the actual translation direction (O →118

T ). However, recent results suggest that actual and119

reverse test sets capture complementary aspects120

of translation quality (Freitag et al., 2019), and a121

causal analysis on Europarl data (Ni et al., 2022)122

suggests that the inflation of MT scores on the123

reverse translation direction at test time depends on124

whether the training and test data directions match.125

However, these studies are all based on dedicated126

statistical or neural systems, often trained for a spe-127

cific language pair and translation direction. This128

paper asks whether massively multilingual MT sys- 129

tems and LLM-based MT are impacted by transla- 130

tionese effects. To address this question, we present 131

a "directed" multilingual parallel corpus, including 132

diverse source languages and explicit labeling of 133

actual translation direction, and use it to evaluate 134

recent multilingual MT systems on O → T and 135

T → O directions. 136

3 A Directed Parallel Corpora for MT 137

Evaluation 138

We present Multilingual Source Global Voices 139

(MSGV), a directed parallel corpora for MT Eval- 140

uation featuring diverse source languages and ex- 141

plicit labeling of actual translation direction. 142

Data collection. We draw original texts and their 143

translations from Global Voices, a multilingual plat- 144

form that features voices from diverse communi- 145

ties and translates these stories into multiple lan- 146

guages. Global Voices provides local perspectives 147

to a global audience, ensuring that the translation 148

direction and MT task align with the intention of 149

writers, who want their articles shared in other lan- 150

guages. Articles are translated by volunteers from 151

the Lingua community3 through a process ensuring 152

quality control. We initially collected articles from 153

2016 across all languages before curating a directed 154

parallel corpus for all language pairs between En- 155

glish and one of the following five languages: ES, 156

PT, FR, AR and BN, in both directions. 157

Sentence alignment and filtering. After crawl- 158

ing document-level aligned original texts and their 159

translations, we segment documents into sentences 160

using NLTK (Bird and Loper, 2004), and run the 161

Vecalign (Thompson and Koehn, 2019, 2020) sen- 162

tence aligner using LASER embeddings (Artetxe 163

and Schwenk, 2019) to align sentences between the 164

original and translated documents. We further filter 165

out the resulting sentence pairs using a set of rules 166

based on language identification tools, LASER sim- 167

ilarity scores, and regular expressions. 168

Test Sets We constructed 10 test sets by sampling 169

n = 500 of data points from the most recently 170

published articles from each of the 10 following 171

parallel corpus: English v.s. (Spanish, Portuguese, 172

French, Arabic, Bengali) in both directions. We se- 173

lect these languages as they are among the highest 174

resource languages with translations on the Global 175

3https://globalvoices.org/lingua/
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Voices website, while being spoken by large pop-176

ulations across the globe, and presenting diverse177

typological properties. For instance, Bengali fol-178

lows a subject-object-verb order, while English,179

French, Portuguese and Spanish follow a subject-180

verb-object oder, and Arabic exhibits both.181

Details of the entire data selection and prepara-182

tion process can be found in Appendix A.183

4 Experimental Setup184

MT Models. We consider two models in our ex-185

periment: (1) NLLB 3.3B (Team et al., 2022), a186

dedicated MT model trained to translate between187

any pair of more than 200 languages, including low-188

resource ones, and (2) TowerInstruct-7B (Alves189

et al., 2024), a multilingual LLM instruction-tuned190

for translation related tasks. It was fine-tuned on191

a wide range of languages. For example, high-192

quality samples for all language pairs were sam-193

pled from OPUS (Tiedemann, 2012), where 744194

languages are available in total, and included in the195

fine-tuning set for TowerInstruct-7B.196

Metrics. We evaluate translation quality using197

(1) COMET (Rei et al., 2020), a state-of-the-art198

reference-based metric trained to mimic direct as-199

sessment scores from human judges, and (2) the200

NLTK implementation of the chrF metric (Popović,201

2015; Bird and Loper, 2004), a character n-gram202

F-score which has proven to robustly correlate with203

human judgments in many languages.204

5 Results205

Each system translates from X → Y (where one of206

X and Y is English, and the other is selected from207

ES, PT, FR, AR, and BN) in actual (O → T ) and208

reverse (T → O) directions. We first discuss the209

impact of translationese data on evaluation (Sec-210

tion 5.1), before analyzing the properties of MT211

translationese in multilingual systems (Section 5.2)212

5.1 Impact of Translating Translationese213

The COMET and chrF for all models and evalua-214

tion settings are plotted in Figure 1.4 We reported215

both metrics as they follow similar trends.216

When translating into English, both models ex-217

hibit a statistically significant advantage in the re-218

verse T → O direction compared to the O → T219

direction. The paired t-test was used to evaluate220

the significance of these differences, with p-values221

4Raw scores can be found in Appendix Table 3.

less than 0.05 indicating strong evidence against 222

the null hypothesis. For NLLB, the T → O direc- 223

tion significantly outperforms the O → T direction 224

across both evaluation metrics in all 5 comparisons 225

(p < 0.05). Similarly, for TOWER, the T → O 226

direction significantly outperforms the O → T di- 227

rection in 4 out of 5 comparisons (p < 0.05). This 228

is consistent with translationese effects observed in 229

prior work with older MT models. 230

However, this trend surprisingly does not hold 231

when translating out of English. For NLLB, "O → 232

T " beats "T → O" on both metrics for 4 out of 233

5 times (p < 0.05), while it is 3 out of 5 times 234

for TOWER (p < 0.05), suggesting that translat- 235

ing original English text is easier than translating 236

English translationese. We hypothesize that the 237

make-up of the training data of these multilingual 238

systems eliminates the expected translationese ef- 239

fect for English, in line with Ni et al. (2022)’s 240

finding that the inflation of scores in the reverse 241

direction is influenced by the direction of the train- 242

ing data with bilingual Transformer models. While 243

the complete make-up of their (pre-)training data is 244

unknown, Tower/LLaMA-2 have been exposed to 245

vast amounts of original monolingual English text, 246

while NLLB training data included a seed corpus 247

curated by translating English sources into other 248

languages (Team et al., 2022), and the majority 249

of the parallel text can be assumed to have one 250

English side. 251

In summary, our results suggest that hypothesis 252

H1 holds true only for translation into English, but 253

not for translation out of English when utilizing 254

multilingual MT or LLM systems. 255

5.2 Linguistic Diversity of Translationese 256

We turn to assessing the linguistic diversity of ma-
chine translationese, compared to that of our vari-
ous human-written test sets. Following Vanmassen-
hove et al. (2021), to measure the repetitiveness of
vocabulary, we use Yule’s I (Yule, 1944)

I =

∑N
i=1 i

2 · Vi −N

N2

where N is the total number of words in the text. Vi 257

is the number of vocabulary items (types) that occur 258

exactly i times in the text. Figure 2 summarizes the 259

Yule’s I scores.5 260

5We also measured the Shannon Entropy (Shannon, 2001)
of word surface forms given lemma to measure grammatical
diversity as manifested in morphology, but did not find any
patterns of grammatical diversity with the languages and trans-
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Figure 1: MT evaluation results for NLLB-3.3B and TowerInstruct-7B on 10 translation directions in both O → T
and T → O settings.

Figure 2: Yule’s I score of source and translation refer-
ences for difference language pairs and Yule’s I score of
MT outputs on 10 translation directions in both O → T
and T → O settings for NLLB-3.3B and TowerInstruct-
7B.

For English, original texts always have a higher261

Yule’s I score than translated text, which indicates262

that original texts are lexically richer than transla-263

tions, as expected. However, this may not hold true264

for non-English languages. Similar to MT evalu-265

ation, linguistic diversity of MT outputs displays266

different trends when translating into and out of En-267

glish. When translating into English, the T → O268

outputs yield a higher Yule’s I score than the cor-269

responding O → T evaluation 5 out of 5 times270

for NLLB, and 4 out of 5 times for TOWER, sug-271

gesting that machine translations of human trans-272

lationese are more lexically diverse than machine273

translations of original text. When translating out274

of English, it is quite the opposite, with O → T275

outputs yielding a higher Yule’s I score than the276

corresponding T → O evaluation 4 out of 5 times277

lation directions studied. All scores for the human-written
data and MT outputs can be found in Appendix Tables 4 and
5 respectively.

for NLLB, and 5 out of 5 times for TOWER. 278

In sum, these results suggest that H2 holds: the 279

lexical diversity of MT translationese is impacted 280

by translationese inputs. 281

6 Conclusion 282

We curated a multilingual parallel corpora from 283

Global Voices, which explicitly labels the trans- 284

lation direction. Using test sets extracted 285

from the corpora, we evaluated NLLB-3.3B and 286

TowerInstruct-7B on 10 translation directions in 287

both actual O → T and reverse T → O settings. 288

We found that T → O evaluation inflates MT per- 289

formance when translating into English, while op- 290

posite trend can be observed when translating out 291

of English. Additionally, we measured the linguis- 292

tic diversity of source, target references and the MT 293

outputs. We found that English original texts are 294

lexically richer than translationese, and that eval- 295

uation in the reverse T → O inflates the lexical 296

diversity of MT outputs compared to the actual 297

direction when translating into English. 298

These results show that massively multilingual 299

MT and LLMs do not suffer from the exact same 300

translationese effects as dedicated bilingual sys- 301

tems. Translationese is easier to translate for these 302

systems when it is in non-English languages, sug- 303

gesting that the FLORES test bed artificially ampli- 304

fies MT quality for translation out of non-English 305

languages. Lexical diversity analysis suggests that 306

machine translating translationese gives artificially 307

more diverse outputs when translating into English. 308

These findings motivate the use of more diverse 309

test beds when evaluating multilingual machine 310

translation, including text originally written in non- 311

English languages. To that end, we release the test 312

sets used in this paper along with all the parallel 313

data extracted from Global Voices with translation 314

direction annotation. 315
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7 Limitations316

Despite the findings, this study has several limita-317

tions that should be considered.318

First, the number of languages involved in the ex-319

periment is limited. Besides English, only five lan-320

guages are included: Spanish, Portuguese, French,321

Arabic and Bengali. This restriction may affect the322

generalizability of the results to a broader range of323

languages present in global translation.324

Second, the translation direction in this study325

always involves English. It is unknown whether326

the trends observed in this study still hold for trans-327

lation between non-English languages. The lim-328

itations mentioned above are largely due to the329

lack of non-English data, particularly original texts.330

For example, Malagasy is a linguistically distinct,331

low-resource language that we were interested in332

including in our experiment at first due to its high333

availability on the Global Voices website. How-334

ever, we ultimately had to drop it because nearly all335

the Malagasy texts available are translations, not336

original texts. The discrepancy in data availability337

among different languages is still significant, even338

on a multilingual citizen media website like Global339

Voices.340

Third, the number of models evaluated in this341

study is relatively small, as only two models, NLLB342

and TOWER, were included. This limitation can343

impact the comprehensiveness of the findings. Fu-344

ture research may explore whether these trends are345

applicable to a broader range of models.346
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A Corpus construction529

A.1 Data Collection530

Using Scrapy6, we crawled the HTML files of over531

100k source articles and their corresponding trans-532

lations from Global Voices7, spanning the years533

from 2004 to 2024. We then parsed the HTML534

files and extracted the main content into plain text.535

We discarded articles published before 2016, keep-536

ing only those from 2016 onwards for the following537

reasons: (1) Recent articles are preferred over older538

ones. (2) Articles from 2016 onwards display re-539

duced English-dominance. (3) Articles from 2016540

onwards includes more diverse languages. Table 1541

gives an overview of data statistics before 2016542

and from 2016 onwards to illustrate these points.543

Figure 3 shows the language distribution in source544

articles from 2016 to 2024. Figure 4 shows the545

language distribution in all (source and translation)546

articles from 2016 to 2024. While a significant547

percentage of translation articles are written in non-548

English, non-English source articles still remain549

relatively low-resource compared to the vast num-550

ber of English source articles.551

Before 2016 2016 and later
% of non-English

0.28% 11.92%
articles (source)

% of non-English articles
10.77% 81.17%

(source+translation)
# of languages

11 15
in articles (source)

# of languages
44 50in articles

(source+translation)
% of articles in top

99.98% 99.17%5 high-resource
languages (source)

% of articles in top 5
96.80% 62.46%high-resource languages

(source+translation)

Table 1: Statistics of data before 2016 and from 2016
onwards, respectively.

A.2 Sentence Alignment.552

After initial data collection, we first tokenized each553

article into individual sentences using the NLTK554

(Bird and Loper, 2004) package. Then, we used555

LASER embedding (Artetxe and Schwenk, 2019),556

6https://scrapy.org/
7Unless otherwise stated, all content created by Global

Voices is published under a Creative Commons Attribution-
Only license. This means that anyone, anywhere has the right
to share — copy and redistribute the material in any medium
or format.

Figure 3: Language Distribution of Source Articles from
2016 to 2024.

a language-agnostic embedding framework, to en- 557

code multilingual sentences into shared-space vec- 558

tors. After this, we proceeded to apply Vecalign 559

(Thompson and Koehn, 2019, 2020) to evaluate 560

the similarity among multilingual sentence embed- 561

dings. Sentences with analogous meanings are 562

aligned together due to their closeness in the vector 563

space. In the end, we curated a directed paral- 564

lel corpus for all language pairs between English 565

and one of the following five languages: Spanish, 566

Portuguese, French, Arabic and Bengali, in both 567

direction. We explicitly retained the temporal infor- 568

mation by associating the publishing date of each 569

article with each of its constituent sentences after 570

segmenting the article. 571
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Figure 4: Language Distribution of All Articles
(Source+Translation) from 2016 to 2024.

A.3 Data Filtering and Quality Assurance.572

We filtered out noisy samples to ensure high data573

quality. First, for each Source → Translation par-574

allel corpus, we used the langdetect8 package to575

to detect and filter out language-text mismatches.576

Second, we used python regex9 to filter out texts577

containing unwanted patterns, including emojis,578

certain special symbols, etc. Third, we applied579

LASER embedding (Artetxe and Schwenk, 2019)580

to encode each pair of aligned sentences and com-581

pute the cosine similarity between them. Data582

points with low cosine similarities are filtered out.583

Empirically we found out that 0.85 is a good thresh-584

old to ensure both enough amount of data and good585

data quality. Fourth, if needed, other heuristics like586

texts length, or manual processing may be involved.587

After data filtering, Table 2 presents the amount588

of data in the parallel corpus between English589

and each of the next five high-resource languages590

(’Spanish’, ’Portuguese’, ’French’, ’Arabic’, ’Ben-591

gali’) in source texts in both translation directions592

when the threshold of LASER cosine similarity is593

set to 0.85, i.e. all samples with LASER cosine594

similarity below 0.85 are not included (the thresh-595

old was set to 0.63 for Bengali → English, due to596

limited data and a lower cosine similarity distribu-597

tion; extensive manual processing was involved to598

ensure data quality).599

8https://github.com/Mimino666/langdetect?tab=readme-
ov-file

9https://docs.python.org/3/library/re.html,
https://github.com/mrabarnett/mrab-regex

Source → Translation # of Sentences
English → Spanish 239,709
Spanish → English 8,438

English → Portuguese 37,733
Portuguese → English 3,344

English → French 92,583
French → English 2,047
English → Arabic 25,314
Arabic → English 773
English → Bengali 4,615
Bengali → English 500

Table 2: Number of sentences in the refined parallel
corpus between English and each of the next five high-
resource languages in both translation directions when
the threshold of LASER cosine similarity is set to 0.85
(for Bengali → English, the threshold was set to 0.63;
extensive manual processing was involved to ensure
data quality).

A.4 Test Sets Sampling 600

For better data quality, we mostly sample data 601

points from a subset of the parallel corpus where 602

a LASER cosine similarity threshold must be met. 603

The thresholds are 0.98, 0.95, 0.97, 0.95, 0.98, 0.94, 604

0.95, 0.85 and 0.86 for EN → ES, ES → EN, EN 605

→ PT, PT → EN, EN → FR, FR → EN, EN → AR, 606

AR → EN and EN → BN, respectively. We want 607

the threshold to be as high as possible for better 608

quality, but ensure that there is enough amount of 609

data points left. Due to a preference of more recent 610

data, we select the most recent 500 samples from 611

all the X → English. We recorded the time range 612

of selected samples from X → English and ran- 613

domly selected 500 samples in with corresponding 614

English → X corpus within the same time range. 615

This had never been a problem, as English → X 616

always has a much larger size than X → English 617

given the same language X . Hence, when passing 618

in a time frame where X → English contains 500 619

samples, the corresponding English → X always 620

has a pool containing more than 500 data points to 621

sample from under this time frame. 622
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B MT Evaluation Results 623

NLLB-3.3B

Translation Direction COMET (↑) chrF (↑)
O → T T → O p_value O → T T → O p_value

English → Spanish 0.921±0.041 0.91±0.042 7.305e-05 0.869±0.083 0.795±0.106 2.974e-32
Spanish → English 0.892±0.053 0.91±0.042 3.307e-09 0.821±0.107 0.843±0.109 1.388e-03

English → Portuguese 0.918±0.047 0.914±0.045 1.126e-01 0.845±0.099 0.769±0.119 1.323e-26
Portuguese → English 0.89±0.049 0.908±0.042 2.211e-10 0.798±0.113 0.836±0.099 1.834e-08

English → French 0.912±0.059 0.896±0.052 1.314e-05 0.859±0.123 0.74±0.114 3.271e-50
French → English 0.88±0.054 0.909±0.051 4.438e-17 0.717±0.118 0.852±0.105 3.264e-69
English → Arabic 0.895±0.066 0.857±0.059 2.607e-21 0.698±0.145 0.497±0.132 2.651e-93
Arabic → English 0.818±0.071 0.888±0.047 4.690e-66 0.576±0.144 0.767±0.109 6.413e-99
English → Bengali 0.882±0.046 0.865±0.072 1.143e-05 0.624±0.116 0.431±0.157 9.395e-89
Bengali → English 0.84±0.074 0.886±0.041 3.982e-32 0.489±0.169 0.696±0.107 1.584e-95

TowerInstruct-7B

Translation Direction COMET (↑) chrF (↑)
O → T T → O p_value O → T T → O p_value

English → Spanish 0.918±0.041 0.908±0.046 1.887e-04 0.841±0.099 0.781±0.11 1.259e-18
Spanish → English 0.896±0.047 0.914±0.04 4.570e-10 0.832±0.097 0.856±0.095 7.627e-05

English → Portuguese 0.915±0.04 0.916±0.037 7.319e-01 0.81±0.099 0.763±0.11 1.993e-12
Portuguese → English 0.896±0.043 0.912±0.037 3.614e-10 0.809±0.102 0.84±0.095 8.012e-07

English → French 0.914±0.052 0.898±0.052 8.452e-07 0.838±0.11 0.736±0.112 1.041e-43
French → English 0.883±0.054 0.912±0.053 7.294e-18 0.735±0.11 0.859±0.114 1.563e-59
English → Arabic 0.545±0.147 0.521±0.113 3.956e-03 0.315±0.129 0.279±0.1 8.347e-07
Arabic → English 0.768±0.082 0.834±0.068 9.003e-41 0.5±0.125 0.636±0.124 9.245e-59
English → Bengali 0.477±0.117 0.503±0.125 7.921e-04 0.06±0.085 0.066±0.1 3.363e-01
Bengali → English 0.664±0.116 0.652±0.122 1.243e-01 0.316±0.117 0.341±0.1 3.232e-04

Table 3: COMET Score and chrF Score of NLLB-3.3B and TowerInstruct-7B evaluated on 10 translation directions
in both O → T and T → O settings. Both scores are reported in 0 ∼ 1 scale.
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C Linguistic Diversity624

Language Pair Yule’s I (↑) Shannon Entropy (↑)
Source Translation Source Translation

English, Spanish
English 11.107 7.955 0.09 0.101
Spanish 8.444 9.023 0.142 0.128

English, Portuguese
English 12.755 8.522 0.096 0.101

Portuguese 14.071 15.651 0.131 0.138

English, French
English 13.862 8.83 0.081 0.077
French 12.357 14.299 0.118 0.118

English, Arabic
English 10.198 6.966 0.111 0.127
Arabic 72.282 60.095 0.367 0.332

English, Bengali
English 12.701 10.094 0.09 0.1
Bengali 149.768 94.325 0.234 0.254

Table 4: . Linguistic diversity of source references and target references for each language pair. Within block
language pair (X , Y ) or (Y , X), grid (X , Source) denotes the linguistic diversity of the source side of test set
X → Y , while (X , Translation) denotes the linguistic diversity of the target side of test set Y → X . Yule’s I scores
by 10,000 for ease of readability. Shannon Entropy is reported in 0 ∼ 1 scale.

Translation Direction
Yule’s I (↑) Shannon Entropy (↑)

NLLB TOWER NLLB TOWER
O → T T → O O → T T → O O → T T → O O → T T → O

English → Spanish 7.92 7.314 8.105 7.533 0.13 0.145 0.129 0.148
Spanish → English 7.243 10.716 7.294 10.416 0.099 0.088 0.103 0.093

English → Portuguese 14.071 12.711 13.634 12.667 0.135 0.128 0.134 0.132
Portuguese → English 7.455 11.381 7.214 11.988 0.097 0.096 0.098 0.095

English → French 13.735 11.066 13.769 11.344 0.12 0.12 0.12 0.121
French → English 7.388 12.046 7.192 12.491 0.075 0.081 0.077 0.08
English → Arabic 46.284 43.1 32.854 29.717 0.331 0.352 0.29 0.35
Arabic → English 4.537 8.345 2.824 4.95 0.126 0.115 0.12 0.11
English → Bengali 71.073 99.916 27.181 19.07 0.23 0.214 0.123 0.124
Bengali → English 8.46 10.214 3.297 1.655 0.095 0.09 0.059 0.053

Table 5: Yule’s I Score and Shannon Entropy of the MT outputs of NLLB-3.3B and TowerInstruct-7B evaluated on
10 translation directions in both O → T and T → O settings. For ease of readability and comparison, we multiplied
Yule’s I scores by 10,000. Shannon Entropy is reported in 0 ∼ 1 scale. (For English → Bengali translation,
TowerInstruct-7B output texts that are not in Bengali frequently. Therefore, the diversity of English → Bengali MT
outputs by TowerInstruct-7B was calculated only based on outputs in Bengali, i.e. after all the non-Bengali MT
outputs were removed.)
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