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Abstract

This study explores the impact of translationese
on multilingual machine translation (MT). Us-
ing a newly curated directed "one-way" parallel
corpora from Global Voices (MSGV), featuring
original texts in diverse languages and explicit
anotation of actual translation directions, we
evaluated the NLLB and TOWER models on
MT tasks between English and five other lan-
guages. Our results reveal that translationese
inputs are easier to translate into English but not
out of English. Additionally, machine transla-
tions of translationese are lexically richer than
those of original texts when translating into En-
glish. These findings suggest that multilingual
MT systems experience different translationese
effects compared to dedicated bilingual sys-
tems, underscoring the need for diverse test
beds in MT evaluations. We contribute our
dataset to enhance future research.

1 Introduction

Multilingual machine translation (MT) models and
large language models (LLMs) have displayed
great potential in enhancing global communication
across language barriers by scaling MT to many
language pairs through transfer learning (John-
son et al., 2017; Arivazhagan et al., 2019; Team
et al., 2022) and leveraging multilingual models
pre-trained on vast amounts of monolingual data
(Alves et al., 2024). For example, mT5 (Xue et al.,
2021) is a multilingual variant of T5 model pre-
trained on a Common Crawl-based dataset cover-
ing 101 languages. Llama 3 (Meta Al, 2024) is
an open source LLM with enhanced performance,
energy efficiency, and robust safety measures for
versatile NLP applications.

However, massively multilingual systems are
typically evaluated on the FLORES test bed, cre-
ated by translation from English into 101 other
languages (Goyal et al., 2021). While this enables
valuable controlled evaluations across many lan-
guage pairs, MT from any source language other

than English is evaluated on so called “transla-
tionese” — inputs that are translations — which is
easier to translate by dedicated bilingual MT sys-
tems (Toral et al., 2018; Graham et al., 2020).

At the same time, properties of the output text
might not be captured by quality ratings alone.
For instance, English grammatical structures have
been found to influence the fluency of multilin-
gual models in lower resource languages (Papadim-
itriou et al., 2023). Furthermore, translated lan-
guage presents distinct features than original texts
whether they are written by humans (Volansky
et al., 2015) or bilingual machine translation (Van-
massenhove et al., 2021), and that distinguishing
original from translated text benefits multilingual
MT (Riley et al., 2020).

In this paper, we ask how multilingual MT sys-
tems are affected by translationese effects, both in
terms of evaluation results and the nature of their
outputs. We construct a directed translation eval-
uation corpus! from the Global Voices® website,
featuring original texts in diverse languages and
explicit labeling of translation direction. For exam-
ple, the Spanish — English corpus in the corpora
includes original texts written in Spanish and their
corresponding English translations. Unlike FLO-
RES, our test sets are directed "one-way" datasets.
For instance, "Spanish — English" and "English
— Spanish" are two distinct datasets with distinct
contents. We use the corpus to test two hypotheses
with the NLLB (Team et al., 2022) and TOWER
(Alves et al., 2024) MT systems, on translation
between English and five other languages:

H1 Translationese inputs are easier to translate by
multilingual MT systems.

H2 The lexical diversity of MT translationese is
impacted by translationese inputs.

'The dataset will be released upon publication.
Zhttps://globalvoices.org/



Our findings suggest that translationese impacts
massively multilingual MT and LLMs differently
than dedicated bilingual systems.

2 Background

Translated text has been shown to have distinct lin-
guistic features from texts originally written in the
same language (Toury, 1979; Baker, 2019). Com-
putational analysis has identified the translationese
patterns found in parallel corpora (Volansky et al.,
2015) and has made it possible to detect translation
direction in parallel text with high accuracy (Ba-
roni and Bernardini, 2006; Kurokawa et al., 2009;
Lembersky et al., 2011; Koppel and Ordan, 2011).
The differences between original (O) and trans-
lationese (T) texts impact the evaluation of ma-
chine translation systems. Suppose a MT system
is given a translation task X — Y. If the paral-
lel test set has original texts in language X and
translated texts from X to Y, we say the trans-
lation is in actual direction (O (original) — T
(translated)). By contrast, if the parallel test set has
original texts in language Y and translated texts
from Y to X, we say the translation is in reverse
direction (T (translated) — O (original)). Stud-
ies comparing the translation quality obtained with
the same system on test sets created in the actual
vs. reverse direction have found that MT systems
produce better translations in the reverse direction,
suggesting that translationese is easier to translate
(Toral et al., 2018; Zhang and Toral, 2019; Graham
et al., 2020; Laubli et al., 2020). Toral et al. (2018)
observed this effect on MT between Chinese and
English. Zhang and Toral (2019) revealed that the
use of translationese in test sets can result in in-
flated scores for MT systems through experiments
on 17 translation directions, while Graham et al.
(2020) studied WMT systems on news translation
tasks between English and 9 other languages.
Hence, it is generally recommended to evaluate
MT tasks on the actual translation direction (O —
T'). However, recent results suggest that actual and
reverse test sets capture complementary aspects
of translation quality (Freitag et al., 2019), and a
causal analysis on Europarl data (Ni et al., 2022)
suggests that the inflation of MT scores on the
reverse translation direction at test time depends on
whether the training and test data directions match.
However, these studies are all based on dedicated
statistical or neural systems, often trained for a spe-
cific language pair and translation direction. This

paper asks whether massively multilingual MT sys-
tems and LLM-based MT are impacted by transla-
tionese effects. To address this question, we present
a "directed" multilingual parallel corpus, including
diverse source languages and explicit labeling of
actual translation direction, and use it to evaluate
recent multilingual MT systems on O — 1" and
T — O directions.

3 A Directed Parallel Corpora for MT
Evaluation

We present Multilingual Source Global Voices
(MSGYV), a directed parallel corpora for MT Eval-
uation featuring diverse source languages and ex-
plicit labeling of actual translation direction.

Data collection. We draw original texts and their
translations from Global Voices, a multilingual plat-
form that features voices from diverse communi-
ties and translates these stories into multiple lan-
guages. Global Voices provides local perspectives
to a global audience, ensuring that the translation
direction and MT task align with the intention of
writers, who want their articles shared in other lan-
guages. Articles are translated by volunteers from
the Lingua community? through a process ensuring
quality control. We initially collected articles from
2016 across all languages before curating a directed
parallel corpus for all language pairs between En-
glish and one of the following five languages: ES,
PT, FR, AR and BN, in both directions.

Sentence alignment and filtering. After crawl-
ing document-level aligned original texts and their
translations, we segment documents into sentences
using NLTK (Bird and Loper, 2004), and run the
Vecalign (Thompson and Koehn, 2019, 2020) sen-
tence aligner using LASER embeddings (Artetxe
and Schwenk, 2019) to align sentences between the
original and translated documents. We further filter
out the resulting sentence pairs using a set of rules
based on language identification tools, LASER sim-
ilarity scores, and regular expressions.

Test Sets We constructed 10 test sets by sampling
n = 500 of data points from the most recently
published articles from each of the 10 following
parallel corpus: English v.s. (Spanish, Portuguese,
French, Arabic, Bengali) in both directions. We se-
lect these languages as they are among the highest
resource languages with translations on the Global
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Voices website, while being spoken by large pop-
ulations across the globe, and presenting diverse
typological properties. For instance, Bengali fol-
lows a subject-object-verb order, while English,
French, Portuguese and Spanish follow a subject-
verb-object oder, and Arabic exhibits both.

Details of the entire data selection and prepara-
tion process can be found in Appendix A.

4 Experimental Setup

MT Models. We consider two models in our ex-
periment: (1) NLLB 3.3B (Team et al., 2022), a
dedicated MT model trained to translate between
any pair of more than 200 languages, including low-
resource ones, and (2) TowerInstruct-7B (Alves
et al., 2024), a multilingual LLM instruction-tuned
for translation related tasks. It was fine-tuned on
a wide range of languages. For example, high-
quality samples for all language pairs were sam-
pled from OPUS (Tiedemann, 2012), where 744
languages are available in total, and included in the
fine-tuning set for Towerlnstruct-7B.

Metrics. We evaluate translation quality using
(1) COMET (Rei et al., 2020), a state-of-the-art
reference-based metric trained to mimic direct as-
sessment scores from human judges, and (2) the
NLTK implementation of the chrF metric (Popovié,
2015; Bird and Loper, 2004), a character n-gram
F-score which has proven to robustly correlate with
human judgments in many languages.

5 Results

Each system translates from X — Y (where one of
X and Y is English, and the other is selected from
ES, PT, FR, AR, and BN) in actual (O — T') and
reverse (1" — O) directions. We first discuss the
impact of translationese data on evaluation (Sec-
tion 5.1), before analyzing the properties of MT
translationese in multilingual systems (Section 5.2)

5.1 Impact of Translating Translationese

The COMET and chrF for all models and evalua-
tion settings are plotted in Figure 1. We reported
both metrics as they follow similar trends.

When translating into English, both models ex-
hibit a statistically significant advantage in the re-
verse T' — O direction compared to the O — T
direction. The paired t-test was used to evaluate
the significance of these differences, with p-values

“Raw scores can be found in Appendix Table 3.

less than 0.05 indicating strong evidence against
the null hypothesis. For NLLB, the " — O direc-
tion significantly outperforms the O — T direction
across both evaluation metrics in all 5 comparisons
(p < 0.05). Similarly, for TOWER, the T" — O
direction significantly outperforms the O — T' di-
rection in 4 out of 5 comparisons (p < 0.05). This
is consistent with translationese effects observed in
prior work with older MT models.

However, this trend surprisingly does not hold
when translating out of English. For NLLB, "O —
T" beats "I' — O" on both metrics for 4 out of
5 times (p < 0.05), while it is 3 out of 5 times
for TOWER (p < 0.05), suggesting that translat-
ing original English text is easier than translating
English translationese. We hypothesize that the
make-up of the training data of these multilingual
systems eliminates the expected translationese ef-
fect for English, in line with Ni et al. (2022)’s
finding that the inflation of scores in the reverse
direction is influenced by the direction of the train-
ing data with bilingual Transformer models. While
the complete make-up of their (pre-)training data is
unknown, Tower/LLaMA-2 have been exposed to
vast amounts of original monolingual English text,
while NLLB training data included a seed corpus
curated by translating English sources into other
languages (Team et al., 2022), and the majority
of the parallel text can be assumed to have one
English side.

In summary, our results suggest that hypothesis
H1 holds true only for translation into English, but
not for translation out of English when utilizing
multilingual MT or LLM systems.

5.2 Linguistic Diversity of Translationese

We turn to assessing the linguistic diversity of ma-
chine translationese, compared to that of our vari-
ous human-written test sets. Following Vanmassen-
hove et al. (2021), to measure the repetitiveness of
vocabulary, we use Yule’s I (Yule, 1944)

N i?-Vi—N
N2

where IV is the total number of words in the text. V;
is the number of vocabulary items (types) that occur
exactly ¢ times in the text. Figure 2 summarizes the
Yule’s I scores.”

>We also measured the Shannon Entropy (Shannon, 2001)
of word surface forms given lemma to measure grammatical

diversity as manifested in morphology, but did not find any
patterns of grammatical diversity with the languages and trans-
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Figure 1: MT evaluation results for NLLB-3.3B and TowerInstruct-7B on 10 translation directions in both O — T’

and T' — O settings.
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Figure 2: Yule’s I score of source and translation refer-
ences for difference language pairs and Yule’s I score of
MT outputs on 10 translation directions in both O — T'
and 7" — O settings for NLLB-3.3B and TowerInstruct-
7B.

For English, original texts always have a higher
Yule’s I score than translated text, which indicates
that original texts are lexically richer than transla-
tions, as expected. However, this may not hold true
for non-English languages. Similar to MT evalu-
ation, linguistic diversity of MT outputs displays
different trends when translating into and out of En-
glish. When translating into English, the 7' — O
outputs yield a higher Yule’s I score than the cor-
responding O — T evaluation 5 out of 5 times
for NLLB, and 4 out of 5 times for TOWER, sug-
gesting that machine translations of human trans-
lationese are more lexically diverse than machine
translations of original text. When translating out
of English, it is quite the opposite, with O — T
outputs yielding a higher Yule’s I score than the
corresponding 7" — O evaluation 4 out of 5 times

lation directions studied. All scores for the human-written
data and MT outputs can be found in Appendix Tables 4 and
5 respectively.

for NLLB, and 5 out of 5 times for TOWER.

In sum, these results suggest that H2 holds: the
lexical diversity of MT translationese is impacted
by translationese inputs.

6 Conclusion

We curated a multilingual parallel corpora from
Global Voices, which explicitly labels the trans-
lation direction. Using test sets extracted
from the corpora, we evaluated NLLB-3.3B and
Towerlnstruct-7B on 10 translation directions in
both actual O — T and reverse T' — O settings.
We found that 7" — O evaluation inflates M T per-
formance when translating into English, while op-
posite trend can be observed when translating out
of English. Additionally, we measured the linguis-
tic diversity of source, target references and the MT
outputs. We found that English original texts are
lexically richer than translationese, and that eval-
uation in the reverse 7' — O inflates the lexical
diversity of MT outputs compared to the actual
direction when translating into English.

These results show that massively multilingual
MT and LLMs do not suffer from the exact same
translationese effects as dedicated bilingual sys-
tems. Translationese is easier to translate for these
systems when it is in non-English languages, sug-
gesting that the FLORES test bed artificially ampli-
fies MT quality for translation out of non-English
languages. Lexical diversity analysis suggests that
machine translating translationese gives artificially
more diverse outputs when translating into English.

These findings motivate the use of more diverse
test beds when evaluating multilingual machine
translation, including text originally written in non-
English languages. To that end, we release the test
sets used in this paper along with all the parallel
data extracted from Global Voices with translation
direction annotation.



7 Limitations

Despite the findings, this study has several limita-
tions that should be considered.

First, the number of languages involved in the ex-
periment is limited. Besides English, only five lan-
guages are included: Spanish, Portuguese, French,
Arabic and Bengali. This restriction may affect the
generalizability of the results to a broader range of
languages present in global translation.

Second, the translation direction in this study
always involves English. It is unknown whether
the trends observed in this study still hold for trans-
lation between non-English languages. The lim-
itations mentioned above are largely due to the
lack of non-English data, particularly original texts.
For example, Malagasy is a linguistically distinct,
low-resource language that we were interested in
including in our experiment at first due to its high
availability on the Global Voices website. How-
ever, we ultimately had to drop it because nearly all
the Malagasy texts available are translations, not
original texts. The discrepancy in data availability
among different languages is still significant, even
on a multilingual citizen media website like Global
Voices.

Third, the number of models evaluated in this
study is relatively small, as only two models, NLLB
and TOWER, were included. This limitation can
impact the comprehensiveness of the findings. Fu-
ture research may explore whether these trends are
applicable to a broader range of models.
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A Corpus construction

A.1 Data Collection

Using Scrapy®, we crawled the HTML files of over
100k source articles and their corresponding trans-
lations from Global Voices’, spanning the years
from 2004 to 2024. We then parsed the HTML
files and extracted the main content into plain text.
We discarded articles published before 2016, keep-
ing only those from 2016 onwards for the following
reasons: (1) Recent articles are preferred over older
ones. (2) Articles from 2016 onwards display re-
duced English-dominance. (3) Articles from 2016
onwards includes more diverse languages. Table 1
gives an overview of data statistics before 2016
and from 2016 onwards to illustrate these points.
Figure 3 shows the language distribution in source
articles from 2016 to 2024. Figure 4 shows the
language distribution in all (source and translation)
articles from 2016 to 2024. While a significant
percentage of translation articles are written in non-
English, non-English source articles still remain
relatively low-resource compared to the vast num-
ber of English source articles.

Before 2016 2016 and later

% of non-English
articles (source)
% of non-English articles
(source+translation)
# of languages
in articles (source)
# of languages
in articles 44 50
(source+translation)
% of articles in top
5 high-resource
languages (source)
% of articles in top 5
high-resource languages
(source+translation)

0.28% 11.92%

10.77% 81.17%

11 15

99.98% 99.17%

96.80% 62.46%

Table 1: Statistics of data before 2016 and from 2016
onwards, respectively.

A.2 Sentence Alignment.

After initial data collection, we first tokenized each
article into individual sentences using the NLTK
(Bird and Loper, 2004) package. Then, we used
LASER embedding (Artetxe and Schwenk, 2019),

®https://scrapy.org/

"Unless otherwise stated, all content created by Global
Voices is published under a Creative Commons Attribution-
Only license. This means that anyone, anywhere has the right
to share — copy and redistribute the material in any medium
or format.
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Figure 3: Language Distribution of Source Articles from
2016 to 2024.

a language-agnostic embedding framework, to en-
code multilingual sentences into shared-space vec-
tors. After this, we proceeded to apply Vecalign
(Thompson and Koehn, 2019, 2020) to evaluate
the similarity among multilingual sentence embed-
dings. Sentences with analogous meanings are
aligned together due to their closeness in the vector
space. In the end, we curated a directed paral-
lel corpus for all language pairs between English
and one of the following five languages: Spanish,
Portuguese, French, Arabic and Bengali, in both
direction. We explicitly retained the temporal infor-
mation by associating the publishing date of each
article with each of its constituent sentences after
segmenting the article.



Language Distribution (Source+Translation, 2016~2024)
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Figure 4: Language Distribution of All Articles
(Source+Translation) from 2016 to 2024.

A.3 Data Filtering and Quality Assurance.

We filtered out noisy samples to ensure high data
quality. First, for each Source — Translation par-
allel corpus, we used the langdetect® package to
to detect and filter out language-text mismatches.
Second, we used python regex’ to filter out texts
containing unwanted patterns, including emojis,
certain special symbols, etc. Third, we applied
LASER embedding (Artetxe and Schwenk, 2019)
to encode each pair of aligned sentences and com-
pute the cosine similarity between them. Data
points with low cosine similarities are filtered out.
Empirically we found out that 0.85 is a good thresh-
old to ensure both enough amount of data and good
data quality. Fourth, if needed, other heuristics like
texts length, or manual processing may be involved.
After data filtering, Table 2 presents the amount
of data in the parallel corpus between English
and each of the next five high-resource languages
(’Spanish’, "Portuguese’, *French’, ’Arabic’, ’Ben-
gali’) in source texts in both translation directions
when the threshold of LASER cosine similarity is
set to 0.85, i.e. all samples with LASER cosine
similarity below 0.85 are not included (the thresh-
old was set to 0.63 for Bengali — English, due to
limited data and a lower cosine similarity distribu-
tion; extensive manual processing was involved to
ensure data quality).

8https://github.com/Mimino666/langdetect?tab=readme-
ov-file

*https://docs.python.org/3/library/re.html,
https://github.com/mrabarnett/mrab-regex

Source — Translation # of Sentences

English — Spanish 239,709
Spanish — English 8,438
English — Portuguese 37,733
Portuguese — English 3,344
English — French 92,583
French — English 2,047
English — Arabic 25,314

Arabic — English 773
English — Bengali 4,615
Bengali — English 500

Table 2: Number of sentences in the refined parallel
corpus between English and each of the next five high-
resource languages in both translation directions when
the threshold of LASER cosine similarity is set to 0.85
(for Bengali — English, the threshold was set to 0.63;
extensive manual processing was involved to ensure
data quality).

A.4 Test Sets Sampling

For better data quality, we mostly sample data
points from a subset of the parallel corpus where
a LASER cosine similarity threshold must be met.
The thresholds are 0.98, 0.95, 0.97, 0.95, 0.98, 0.94,
0.95, 0.85 and 0.86 for EN — ES, ES — EN, EN
— PT, PT — EN, EN — FR, FR — EN, EN — AR,
AR — EN and EN — BN, respectively. We want
the threshold to be as high as possible for better
quality, but ensure that there is enough amount of
data points left. Due to a preference of more recent
data, we select the most recent 500 samples from
all the X — English. We recorded the time range
of selected samples from X — English and ran-
domly selected 500 samples in with corresponding
English — X corpus within the same time range.
This had never been a problem, as English — X
always has a much larger size than X — English
given the same language X . Hence, when passing
in a time frame where X — English contains 500
samples, the corresponding English — X always
has a pool containing more than 500 data points to
sample from under this time frame.



B MT Evaluation Results

NLLB-3.3B
. .. COMET (1) chrF (1)

Translation Direction 0—-T T— 0T p_value 0—-T T —jO p_value
English — Spanish 0.921+0.041 0.914+0.042 7.305e-05 0.869+0.083 0.795+0.106 2.974e-32
Spanish — English 0.892+0.053 0.91+0.042 3.307e-09 0.821+£0.107 0.843+0.109 1.388e-03

English — Portuguese  0.918+0.047 0.914+0.045 1.126e-01 0.845+0.099 0.7694+0.119 1.323e-26

Portuguese — English  0.89+0.049  0.908+0.042 2.211e-10 0.798+0.113 0.836+0.099 1.834e-08
English — French 0.912+0.059 0.896+0.052 1.314e-05 0.859+0.123 0.74+0.114 3.271e-50
French — English 0.88+£0.054 0.909+0.051 4.438e-17 0.717+£0.118 0.852+0.105 3.264e-69
English — Arabic 0.895+0.066 0.8574+0.059 2.607e-21 0.698+0.145 0.497+0.132 2.651e-93
Arabic — English 0.818+0.071 0.888+0.047 4.690e-66 0.576+0.144 0.767+0.109 6.413e-99
English — Bengali 0.882+0.046 0.865+0.072 1.143e-05 0.624+0.116 0.431+0.157 9.395e-89
Bengali — English 0.84+0.074 0.886+0.041 3.982e-32 0.489+0.169 0.696+0.107 1.584e-95

TowerlInstruct-7B
. o COMET (1) chrF (1)

Translation Direction 0O—-T T— OT p_value 0O—-T T —jO p_value
English — Spanish 0.918+0.041 0.908+0.046 1.887¢-04 0.841+0.099 0.781+0.11  1.259e-18
Spanish — English 0.896+0.047 0.914+0.04 4.570e-10 0.832+0.097 0.856+0.095 7.627e-05

English — Portuguese  0.915+£0.04 0.916+0.037 7.319e-01  0.81£0.099  0.763£0.11  1.993e-12

Portuguese — English  0.8964+0.043 0.912+0.037 3.614e-10 0.809+0.102 0.84+0.095 8.012e-07
English — French 0.914+0.052 0.898+0.052 8.452¢-07 0.838+0.11 0.736+0.112 1.041e-43
French — English 0.883+0.054 0.9124+0.053 7.294e-18 0.735+0.11 0.859+0.114 1.563e-59
English — Arabic 0.545+0.147 0.5214+0.113 3.956e-03 0.315+£0.129  0.279+0.1  8.347e-07
Arabic — English 0.768+0.082 0.834+0.068 9.003e-41  0.54+0.125  0.636+0.124 9.245e-59
English — Bengali 0.4774+0.117 0.503+0.125 7.921e-04  0.06+0.085 0.066+0.1  3.363e-01
Bengali — English 0.664+0.116 0.6524+0.122 1.243e-01 0.316+£0.117  0.341+0.1  3.232¢-04

inboth O — T and T' — O settings. Both scores are reported in 0 ~ 1 scale.

Table 3: COMET Score and chrF Score of NLLB-3.3B and TowerInstruct-7B evaluated on 10 translation directions



C Linguistic Diversity

. Yule’s I (1) Shannon Entropy (1)

Language Pair Source Translation Source Translation
. _ English  11.107 7.955 0.09 0.101
English, Spanish g ish  8.444 9.023 0.142 0.128
Enolich. Portusucse _ ENEHSH 12755 8.522 0.096 0.101
glish, rortug Portuguese  14.071  15.651  0.131 0.138
. English  13.862 8.83 0.081 0.077
English, French French  12.357 14.299 0.118 0.118
. . English  10.198 6.966 0.111 0.127
English, Arabic Arabic 72282  60.095 0.367 0.332

. . English  12.701 10.094 0.09 0.1

English, Bengali - p o oali 149768 94.325 0.234 0.254

Table 4: . Linguistic diversity of source references and target references for each language pair. Within block
language pair (X, Y) or (Y, X), grid (X, Source) denotes the linguistic diversity of the source side of test set
X — Y, while (X, Translation) denotes the linguistic diversity of the target side of test set Y — X. Yule’s I scores
by 10,000 for ease of readability. Shannon Entropy is reported in 0 ~ 1 scale.

Yule’s I (1) Shannon Entropy (1)
Translation Direction NLLB TOWER NLLB TOWER
o-T T—-0 0—--T T—-0 O—-T T—-0 O—-T T—O0

English — Spanish 7.92 7.314 8105  7.533 0.13 0.145  0.129  0.148
Spanish — English 7.243  10.716 7.294 10416 0.099  0.088  0.103  0.093

English — Portuguese 14.071 12.711 13.634 12.667 0.135  0.128 0.134 0.132
Portuguese — English ~ 7.455 11.381 7.214 11988 0.097  0.096  0.098  0.095

English — French 13.735 11.066 13.769 11344  0.12 0.12 0.12 0.121
French — English 7.388  12.046 7.192 12491 0.075 0.081 0.077 0.08

English — Arabic 46.284  43.1 32.854 29.717 0.331 0.352 0.29 0.35
Arabic — English 4.537 8.345 2.824 4.95 0.126  0.115 0.12 0.11

English — Bengali 71.073 99916 27.181 19.07 0.23 0214  0.123 0.124
Bengali — English 8.46 10.214  3.297 1.655 0.095 0.09 0.059  0.053

Table 5: Yule’s I Score and Shannon Entropy of the MT outputs of NLLB-3.3B and Towerlnstruct-7B evaluated on
10 translation directions in both O — T and 7' — O settings. For ease of readability and comparison, we multiplied
Yule’s I scores by 10,000. Shannon Entropy is reported in O ~ 1 scale. (For English — Bengali translation,
Towerlnstruct-7B output texts that are not in Bengali frequently. Therefore, the diversity of English — Bengali MT
outputs by Towerlnstruct-7B was calculated only based on outputs in Bengali, i.e. after all the non-Bengali MT
outputs were removed.)
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