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Abstract
Neural networks trained with stochastic gradient descent exhibit an inductive bias
towards simpler decision boundaries, typically converging to a narrow family of
functions, and often fail to capture more complex features. This phenomenon
raises concerns about the capacity of deep models to adequately learn and represent
real-world datasets. Traditional approaches such as explicit regularization, data
augmentation, architectural modifications, etc., have largely proven ineffective in
encouraging the models to learn diverse features. In this work, we investigate the
impact of pre-training models with noisy labels on the dynamics of SGD across
various architectures and datasets. We show that pretraining promotes learning
complex functions and diverse features in the presence of noise. Our experiments
demonstrate that pre-training with noisy labels encourages gradient descent to find
alternate minima that do not solely depend upon simple features, rather learns more
complex and broader set of features, without hurting performance.

1 Introduction
Overparameterized models trained using stochastic gradient descent tend to focus on only a small
fraction of the available features. Such behavior reduces the diversity of features that contribute
to the classification of data. This phenomenon has been discussed in the context of simplicity bias
[20, 17], where neural models solely rely on simpler, easy-to-learn, features. It is also studied in
relation to the intrinsic regularization properties of SGD that inherently favors lower-complexity
models [10]. Previous works have shown that models trained using SGD learn linear functions first,
and as training progresses they learn functions of increasing complexity [10]. This preference causes
many potentially useful features to remain unlearned and underutilized, resulting in models that have
inferior discriminative quality and rely on features that are coincidental rather than causal [2]. Such
models when faced with distributional shifts or adversarially perturbed data, are unable to generalize
to novel or altered environments.

Recent works have attributed this biased behavior to the intrinsic regularization properties of SGD that
naturally favors low-complexity solutions [10]. Models that exhibit poor generalization for minority
groups are shown to dedicate excess parameters to memorizing a small number of data points [19].
Complex features are often overshadowed by the amplification and replication of simpler features [1].
In real-world datasets, simplicity bias in neural networks is often defined as the propensity to learn
low-dimensional projections of inputs [14], where features such as shape and color (e.g., in MNIST or
CIFAR) define decision boundaries of varying complexity. Standard approaches like ensembling and
adversarial training fail to effectively address the limitations imposed by this bias [20]. There is an
increasing interest in understanding the factors that contribute to SGD’s bias toward simpler feature
sets, shortcut feature learning, as well as strategies to mitigate or exploit this tendency to improve
model’s performance. These include approaches that aim to reduce feature correlation [1, 24, 14, 23],
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Figure 1: (Top-left) First 4 dimensions of Slab-data. (Top-right) Decision boundary learned from
regular training. (Botton row) Two different decision boundaries learned after noisy pre-training. All
models achieve 100% training and test accuracy.

and use empirical risk minimization to learn more complex functions [9]. More advanced methods
that regularize the conditional mutual information of simpler models compel them to utilize a broader
range of features, which has been shown to enhance out-of-distribution generalization [24]. SGD
can also learn poorly generalizable functions when the models parameters are initialized by training
on random labels [13]. Similarly, the features selected across data points are shown to be strongly
correlated with neural feature matrix (NFM) [18, 3]. In the context of convolutional neural networks
(CNNs), filter covariance is shown to closely mimic the average gradient outer product concerning
input [3]. Despite these efforts, this bias remains a critical area of concern, necessitating further
exploration to develop more robust and OOD generalizable neural models.

Pretraining with noisy labels is known to alter the optimization trajectory and often change the local
minima to which SGD converges [4]. While adding noise is shown to help models generalize better,
it has a tendency to overfit in overparameterized models [5]. The effects of adding noise is shown to
be equivalent of employing a regularized loss function that depends on factors such as noise strength,
batch size, etc. [4, 8] Noisy labels have also been proposed for robust-loss-functions but they are often
insufficient to learn accurate models [26]. However, all these works do not explore the qualitative
nature of diverse features that models learn.

In this study, we investigate the learned decision-boundaries through the lens of feature diversity. We
particularly focus on the role of parameter initialization in shaping the set of features utilized for
classification. Our empirical analysis shows that:

• A simple pre-training phase by optimizing log-loss over perturbed noisy-labels can be
utilized to learn a more diverse family of functions by neural models. This is in contrast to
the usual convergence of models to a similar family of decision functions.

• Neural models are capable of leveraging a broader array of features that are likely to exhibit
greater generalization when faced with distribution shifts.

2 Effect of Noisy Pre-training on Learned Decision Functions
We study a two stage training procedure: First, we pre-train an overparameterized model on corrupted
labels (by randomly flipping the labels for a fraction of data points) called as noisy pre-training.
This pre-trained model is then optimised to minimize the training loss, which naturally leads to a
high training accuracy over the noisy-labels. Second, we utilize the pretrained model to once again
train over the original unmodified labels. In subsequent sections, we compare this two-stage method
with standard training without explicit regularization.

Consider a d-dimensional synthetic Multi-slab dataset D, whose first coordinate is a linear block
with instances for class-0 sampled from Uniform distribution in [−1, 0] and class-1 sampled from
Uniform distribution in [0, 1]. The remaining d − 1 coordinates have samples from two classes
distributed in k-well separated alternating regions 3 [20]. We consider a a 4-dimensional multi-slab
data with increasing complexity. Figure 1 illustrates the 4-dimensional multi-slab data. Here, an
overparameterized ReLU network can potentially use any feature to determine the class label. Note

3To eliminate any special association related to the ordering of features, we apply a random orthogonal
projection to the dataset, and use the projected features instead of the original feature set.
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that, Feature-1 requires a simple linear decision function, whereas Feature-2 requires a 3−piecewise
linear function. Standard training leads to decision functions that solely depend on feature-1 and
thus learn a linear function. While this is perfectly good for linearly separable data, this tendency
persists even in cases with slight feature overlap in classes along Feature-1, diminishing the model’s
generalizability. This observation aligns with the well-documented phenomenon of shortcut learning
[7, 15, 17] and the behavior of neural networks as max-margin classifiers [21, 6].

In case of noisy pretraining, this sole dependence on Feature-1 is lost, and dependence on other
feature increases as shown in the Figure 1. Randomized shuffle accuracy help understand the
dependence on other features. Table 1 shows the accuracy for randomly shuffling different features.
Noisy pre-training increases the shuffle accuracy for feature-1 from 50.3% to 64.2%, thus showing
the increased dependence of the decision functions on other features. This is also evident from
the reduced shuffle accuracy for feature-2 and feature-3 under noisy pre-training setting. The key
observations are that the decision boundary is no longer solely reliant on the first dimension, but now
incorporates information from multiple dimensions, and different noisy-datasets, D and D′, result in
distinct decision boundaries. This is unlike earlier instances where the model consistently converged
to the same decision boundary.

Significance of this observation: The benefits of moving beyond the simpler models typically
learned by SGD-based optimizers are evident for improved out-of-distribution generalization. Rather
than basing classification decisions on a single feature, the model begins to leverage a broader range
of features. Additionally, this result provides evidence that there are multiple local minima with
similar levels of accuracy across D, and that SGD is capable of converging to these diverse solutions,
rather than being confined to a single-simple decision boundary.

3 Experiments
In this section, we empirically demonstrate the impact of initializing parameters from noisy pretraining
over Dominoes [20] and Waterbirds data [16]. See Appendix A.1 for more datasets.

Datasets: MNIST-fMNIST dataset from Dominoes consists of collated images, where {0, 1} MNIST
digits are vertically stacked with {shirt, frock} Fashion-MNIST apparel. Here, MNIST block is the
easier feature to learn, whereas fMNIST is complex. WaterBirds dataset comprises of birds natively
found on land/water, with different backgrounds of land or water. An image of water-bird with water
in the background (similarly land-bird on land) is called in-group partition, whereas mismatch of
waterbird-on-land or landbird-on-water is referred to as out-group partition. Details in Appendix A.1.

Measuring feature dependence: To identify the feature(s) that the learned model is utilizing for
classification decision, we use: (1). Randomized shuffle accuracy: to selectively shuffle one among
MNIST (top) or fMNIST (bottom) part of the test images, and reevaluate the model. If its performance
is drastically reduced by shuffling a feature, it implies the dependence of model’s decision on the
corresponding feature. (2). Visualizing Gram matrix: We plot diagonal entries of Gram matrix
WT

1 W1 to observe changes in the first layer’s parameter W1. The brighter parts of WT
1 W1 denote

greater dependence on those corresponding pixels in the input image. Further, Appendix A.6 shows
eigenvector based visualization for Gram matrix.

Varying correlation between features & class labels: We control the predictive powers of features
by perturbing their correlation with true labels. For example: In Dominoes dataset D, we create
partially-correlated data D′ by collating images such that top MNIST-block is only 95% correlated
with classification labels (not 100% accurately predictive). This implies that if predictions were
solely on the basis of top-block, then the bayes-error will be 5%. The rationale of adding adversarial
correlation is to push the models to those regimes where no simple solution achieves perfect accuracy,
thus getting closer to real world scenarios.

Parameter Initialization Regime
Feature Shuffle Accuracy

Feature-1 Feature-2 Feature-3
Standard data-agnostic (like Xavier-glorot) 50.3 ±1.78 100 ±0.0 100 ±0.0

Pretraining model with 10% noisy labels 64.2 ±6.8 91.6 ±4.3 97.1 ±2.2

Table 1: Multi-Slab Data: Randomized feature shuffle accuracies, averaged over 10 runs. All models
are trained to achieve 100% training and test accuracy.

3



Data
Standard Training Noisy Pre-training

Train Acc. MNIST Rnd. F-MNIST Rnd. Train Acc. MNIST Rnd. F-MNIST Rnd.
D 99.9 ±0.0 52.5 ±0.33 98.3 ±0.05 99.7 ±0.07 53.6 ±1.56 88.6 ±0.76

D′ 98.5 ±0.07 93.1 ±0.33 56.5 ±0.42 99.9 ±0.06 81.2 ±1.02 57.2 ±1.50

Table 2: Dominoes MNIST-FMNIST (Rnd. short for Randomized) : Randomized shuffle accuracies,
averaged over 3 runs, with 100% (D) and 95% (D′) correlation of MNIST with the true labels. Each
for 3 and 4 layer fully connected networks. Noisy pre-training uses 10% corrupt labels.

Noisy Pre-training Helps Learn Complex Features: We observe that neural models usually learn
simple decision functions that are restricted to easy-to-learn features. Table1 shows that randomizing
feature-1 reduces the accuracy to 50%, proving absolute reliance on this feature only. Similarly,
Table2 shows randomizing top MNIST block reduces model accuracy to 52.5% and Table3 shows
better performance for in-group images. Conversely, the model does not deteriorate performance
upon randomizing other complex features in all datasets. However, when we initialize parameters
from noisy pretrained models, we see that not only over reliance of easy-features is reduced, the
model’s ignorance to other features is reduced. Table1 and 2 evince increase in randomized shuffling
accuracy and Table3 shows better out-group performance.

Noisy Pre-training Helps Learn Diverse Functions: With different label noise, we observe that the
decision boundaries learned are varying across each feature. Figure1 bottom-row shows two different
decision boundaries for varying noise during pretraining. Diverse models are helpful because they
tend to focus on different aspects of of high dimensional data. In practical scenarios, we can make
much more robust predictions by bagging these multiple decision boundaries to give aggregated class
prediction.

Impact of Label Smoothing: Please refer Appendix A.4.

With noisy-pretraining and label smoothing, the models learn to focus on multiple features in Multi-
slab and Dominoes data, and learn to classify images based on birds, rather than their backgrounds in
case of WaterBirds. Figure 2 and 3 shows increase in the brightness of pixels in the Gram-matrix that
confirms learning of diverse/complex features.
Why are diverse models better? Model diversity is evident in slab-data from Figure9. It is interesting
to note that each noisy pretraining leads to a different minina, and different family of function. The
predictions from diverse models, focusing on diverse features, can be ensembled to have more robust
predictions. Similar trends are also evident from high standard-deviation values in accuracy of models
with noisy pretraining in Table2 and 3. The theoretical validation of such ensemble’s superiority is
for further exploration.

Data
Standard Training Noisy Pre-training

Train Acc. In-group Out-group Train Acc. In-group Out-group
D 100 ±0.0 85.2 ±0.43 38.5 ±0.88 99.5 ±0.34 78.1 ±1.02 44.1 ±1.60

D′ 100 ±0.0 84.1 ±0.48 44.4 ±0.67 99.5 ±0.73 77.8 ±1.15 46.9 ±0.92

Table 3: WaterBirds Dataset: Test In-group and Out-group accuracies averaged over 10 runs on
waterbirds dataset, with 100% (D) and 95% (D′) correlation of background with the true labels. For
noisy pre-training, we corrupt 10% of labels.

4 Discussion and Conclusion
Overparameterized neural networks tend to learn decision functions based on a limited and simpler
set of features if they exist. Our experiments demonstrate that initializing the model parameters by
first training over noisy-labels can enable the model to overcome this constraint, and allow for the
learning of more diverse range of features. One possible explanation for this phenomenon is that
the neural model reaches a minima that is characterized by a complex decision boundary to fit the
noisy labels. The model, however, remains trapped in this minima and is unable to revert to a simpler
decision boundary despite the intrinsic regularization properties of SGD. This observation challenges
the commonly accepted opinion that SGD provides effective implicit regularization.
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Our experiments motivate further investigation into the nature of the role of initialization in guiding
SGD optimizers. Note that all the models, with or without noisy label pretraining, have similar
(high) accuracy on unseen data. Since each local minima that is reached during the noisy pre-training
leads to a distinct family of functions, it hints at interesting future works about characterizing loss-
landscape of ReLU networks. This is in contrast to the standard data-agnostic initializations, such
as Xavier-Glorot, that converge to similar decision boundaries. Our work connects feature subset
selection with the learning of diverse families of functions. Future works will explore any theoretical
relationships between these concepts and to quantify their interdependency.

Our observations challenge the prevalent view in the literature that neural networks are extremely
biased towards learning only simple features if they exist. We demonstrate that models can be guided
to learn more complex features through pre-training on noisy labels. As a corollary, we show that the
phenomenon of shortcut learning is not as extreme as previously thought and can be mitigated to
some extent. Our experiments further reveal that neural networks are capable of learning multiple,
higher-complexity features, and diverse families of functions.

Figure 2: MNIST-FMNIST dominoes data samples with visualizing first layer neural feature matrix
W⊤

1 W1, for (Left) Standard training, and (Right) Random pre-training respectively.

Figure 3: Samples from Waterbirds dataset. We visualize the diagonal of first layer neural feature
matrix W⊤

1 W1 for (Left) standard training and (Right) random pretraining.
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A Appendix

A.1 Dataset Description:

Slab Data: Figures 4 and 5 shows 4-dimensional dataset and noisy 4-dimensional multi-slab dataset.
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Figure 4: Noise augmented multi-slab dataset
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Figure 5: Noise augmented multi-slab dataset

Dominoes Data: We consider Dominoes binary classification datasets consisting of 3 independent
datasets, where the top half of the image contains MNIST digits [12] from classes 0, 1, and the
bottom half contains MNIST images from classes 7, 9 (MNIST-MNIST), Fashion-MNIST [27]
images from classes coat, dress (MNIST-Fashion) or CIFAR-10 [11] images from classes car, truck
(MNIST-CIFAR). In all Dominoes datasets, the top half of the image (MNIST 0-1 images) presents a
easy to learn feature; the bottom half of the image presents a harder-to-learn feature. The images
are made into gray-scale and scaled to appropriate size so that they can be collated top-bottom style.
Figure 6 shows the examples of dominoes dataset. In case of 100% correlation Note that each block,
top and bottom, is fully predictive of the class label in case of 100% correlation, while only harder to
learn feature is fully predictive of class label in case of 95% correlation.

Waterbirds Dataset: The waterbirds dataset is constructed by cropping birds from Caltech-UCSD
Birds-200-2011 (CUB) dataset [25] and taking backgrounds from the Places dataset [28] and placing
the birds from CUB dataset to backgrounds from Places dataset. Figure 7 shows sample instances
from waterbirds dataset. Table 4 describes the proportions of different groups in the waterbirds
dataset. The waterbirds on land and landbirds on water are known as out-group, while landbird on
land and waterbirds on water are known as the in-group.
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Figure 6: Samples from Dominoes Dataset, MNIST-FMNIST, MNIST-MNIST, and MNIST-CIFAR

Figure 7: Samples from Waterbirds dataset

Data Split Landbirds, Land Landbirds, Water Waterbirds, land Waterbirds, Water
Train D 3694 (77.04%) 0 0 1101 (22.96%)
Train D′ 3498 (72%) 184 (3.8%) 56 (1.2%) 1057 (22%)

Validation 467 (38.95%) 466 (39.95%) 133 (11.1%) 133(11.1%)
Test 2255 (38.92%) 2255(38.92%) 642 (11.1%) 642 (11.1%)

Table 4: WaterBirds data description: D and D′ with 100% and 95% correlation respectively [16]

A.2 Network Architectures

Slab Dataset: We use 2-layer multi-layer perceptron network with ReLU activation, the first layer
contains 100 hidden unit and second layer contains 200 hidden units. We use SGD with 0.1 learning
rate as optimizer.

Dominoes Dataset: For all dominoes dataset, “MNIST-FMNIST”, “MNIST-MNIST”, and “MNIST-
CIFAR”, datasets, we use 4-layer fully connected networks with 10 hidden units and ReLU activation.
We use SGD optimizer with learning rate 0.01.

WaterBirds Dataset: We use fully connected network, with 4 layers and ReLU activation having 20
hidden units. We use SGD optimizer with learning rate 0.05 .

A.3 Additional Results:
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WaterBird
Dataset

Standard Training Noisy Pre-training
Train Acc. In-group Out-group Train Acc. In-group Out-group

D 100 ±0.0 84.48 ±0.59 43.64 ±3.56 99.89 ±0.07 77.77 ±0.88 49.89 ±2.17

D′ 100 ±0.0 83.48 ±0.53 49.44 ±3.80 99.68 ±0.08 78.41 ±0.56 51.46 ±1.48

Table 5: WaterBirds Dataset: Test In-group and Out-group accuracies averaged over 10 runs on
waterbirds dataset, with 100% (D) and 95% (D′) correlation of background with the true labels. For
noisy pre-training, we corrupt 10% of labels. Label smoothing (LS) value is 0.1

MNIST
-MNIST

Hidden
Dim

Standard Training Noisy Pre-training
Train Acc. Top Shuffle Bottom Shuffle Train Acc. Top Shuffle Bottom Shuffle

D 10 100 50.89 99.75 99.82 53.20 98.31
50 100 50.15 99.71 100 49.94 99.50

D′ 10 98.81 88.98 59.81 99.82 90.81 56.99
50 99.20 90.74 58.19 99.92 92.63 57.76

Table 6: Dominoes MNIST-MNIST: Randomized shuffle accuracies, with 100% (D) and 95% (D′)
correlation of MNIST with the true labels. Top:MNIST, Bottom:MNIST. Each for 3 and 4 layer fully
connected networks. Noisy pre-training uses 10% corrupt labels.

MNIST
-CIFAR

Standard Training Noisy Pre-training
Train Acc. MNIST Shuffle CIFAR Shuffle Train Acc. MNIST Shuffle CIFAR Shuffle

D 100 50.88 99.79 99.66 51.44 99.58
D′ 100 54.62 87.14 96.22 53.48 92.30

Table 7: Dominoes MNIST-CIFAR: Randomized shuffle accuracies, with 100% (D) and 95% (D′)
correlation of MNIST with the true labels. Top:MNIST, Bottom:CIFAR. Noisy pre-training uses
10% corrupt labels.
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Figure 8: Visualizing the diagonal of first layer neural feature matrix W⊤
1 W1, where W1 is parameters

of first layer network of the learned network, (Top) MNIST-MNIST, and (Bottom) MNIST-CIFAR
Dominoes data samples with standard training and noisy pre-training respectively.
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A.3.1 4D Slab Data Decision Boundary plots for Different Random Seeds

In this section, we show that under standard training, the model converges to a similar family of
decision functions, which are easier to learn. This convergence does not happen under pretrained
noise based training, which allows model to learn diverse set of functions with reliance on harder to
learn features. Figure 9 and 10 demonstrates this finding using decision boundary plots for 4d slab
data described in Section 2.
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Figure 9: Diverse Decision boundary plots for different random initializations, Each subfigure
shows decision boundary across 4 dimension for pre-training with noisy random labels.
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Figure 10: Similar Decision boundary plots for different random initializations, Each subfigure
shows decision boundary across 4 dimension for training with correct label (without any pretraining).
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A.4 Impact of Label Smoothing

Label smoothing [22] is a regularization technique, which replaces the one-hot ground truth vectors,
with mixture of ground truth vectors and uniform distribution. In case of noisy pretraining, flip the
labels of a fraction of data samples, whereas in case of label smoothing, the ground truth labels are
mixture of one hot vector and uniform distribution, which act as a addition of noise to labels, thus
showing equivalent effect.

Data
LS

coeff.
Standard Training Noisy Pre-training

Train Acc. In-group Out-group Train Acc. In-group Out-group

D 0.0 100 ±0.0 85.2 ±0.43 38.5 ±0.88 99.5 ±0.34 78.1 ±1.02 44.1 ±1.60

0.2 100 ±0.0 84.4 ±0.42 43.5 ±3.62 99.8 ±0.11 77.3 ±0.75 51.1 ±2.17

D′ 0.0 100 ±0.0 84.1 ±0.48 44.4 ±0.67 99.5 ±0.73 77.8 ±1.15 46.9 ±0.92

0.2 100 ±0.0 83.4 ±0.49 49.1 ±3.63 99.5 ±0.11 78.5 ±0.28 52.2 ±1.29

Table 8: WaterBirds Dataset: Test In-group and Out-group accuracies averaged over 10 runs on
waterbirds dataset, with 100% (D) and 95% (D′) correlation of background with the true labels. For
noisy pre-training, we corrupt 10% of labels. Label smoothing (LS) varies between 0.0 and 0.2

Parameter Initialization Regime
Feature Shuffle Accuracy

Feature-1 Feature-2 Feature-3
Label Smoothing (0.2) for feature confidence 75.0 ±4.4 92.9 ±3.9 91.5 ±3.4

Table 9: Multi-Slab Data: Randomized feature shuffle accuracies, averaged over 10 runs. All models
are trained to achieve 100% training and test accuracy.

A.5 Varying Model Architecture

Data
Model
Layer

Standard Training Noisy Pre-training
Train Acc. Top Rnd. Bottom Rnd. Train Acc. Top Rnd. Bottom Rnd.

D 3 99.9 ±0.0 52.5 ±0.33 98.3 ±0.05 99.7 ±0.07 53.6 ±1.56 88.6 ±0.76

4 100 ±0.0 52.6 ±0.24 98.1 ±0.05 99.8 ±0.03 55.6 ±1.50 87.6 ±0.81

D′ 3 98.5 ±0.07 93.1 ±0.33 56.5 ±0.42 99.9 ±0.06 81.2 ±1.02 57.2 ±1.50

4 100 ±0.0 92.5 ±0.17 56.8 ±0.08 100 ±0.0 84.4 ±0.74 56.9 ±1.30

Table 10: Dominoes MNIST-FMNIST: Randomized shuffle accuracies, averaged over 3 runs, with
100% (D) and 95% (D′) correlation of MNIST with the true labels. MNIST:FMNIST. Each for 3 and
4 layer fully connected networks. Noisy pre-training uses 10% corrupt labels.
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A.6 Visualizing Feature Importance Using Top Eigenvectors

Diagonal Vector

(a) D standard training)

Diagonal Vector

(b) D′ noisy pre-training

Diagonal Vector

(c) D noisy pre-training

Figure 11: Visualizations for diagonal of the first layer neural feature matrix W⊤
1 W1. 100% (D) and

95% (D′) correlation of instances with the true labels

Top Eigen Vector

(a) D standard training

Top Eigen Vector

(b) D′ noisy pre-training

Top Eigen Vector

(c) D noisy pre-training

Figure 12: Visualizations for top eigenvector of the first layer neural feature matrix W⊤
1 W1. 100%

(D) and 95% (D′) correlation of instances with the true labels
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