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Abstract
Many applications in machine learning involve
data represented as probability distributions. The
emergence of such data requires radically novel
techniques to design tractable gradient flows on
probability distributions over this type of (infinite-
dimensional) objects. For instance, being able to
flow labeled datasets is a core task for applica-
tions ranging from domain adaptation to transfer
learning or dataset distillation. In this setting, we
propose to represent each class by the associated
conditional distribution of features, and to model
the dataset as a mixture distribution supported on
these classes (which are themselves probability
distributions), meaning that labeled datasets can
be seen as probability distributions over proba-
bility distributions. We endow this space with a
metric structure from optimal transport, namely
the Wasserstein over Wasserstein (WoW) distance,
derive a differential structure on this space, and
define WoW gradient flows. The latter enables to
design dynamics over this space that decrease a
given objective functional. We apply our frame-
work to transfer learning and dataset distillation
tasks, leveraging our gradient flow construction
as well as novel tractable functionals that take
the form of Maximum Mean Discrepancies with
Sliced-Wasserstein based kernels between proba-
bility distributions.

1. Introduction
Probability measures provide a powerful way to represent
many data types. For instance, they allow to naturally repre-
sent documents (Kusner et al., 2015), genes (Bellazzi et al.,
2021), point clouds (Qi et al., 2017; Geuter et al., 2025),
images (Sodini et al., 2025), or single-cell data (Persad et al.,
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2023; Haviv et al., 2024b). Remarkably, it has been shown
that one can embed any finite dataset with little or no distor-
tion (Andoni et al., 2018; Kratsios et al., 2023) in the Wasser-
stein space, i.e., the space of probability distributions (e.g.,
over a Euclidean space) equipped with the Wasserstein-2 dis-
tance from Optimal Transport (OT). This has motivated the
use of this space to embed many types of data ranging from
words (Vilnis & McCallum, 2015) to knowledge graphs
(He et al., 2015; Wang et al., 2022), graphs (Bojchevski &
Günnemann, 2018; Petric Maretic et al., 2019), or neuro-
science data (Bonet et al., 2023). Therefore, it is essential to
develop tools to work on the space of probability measures
over probability measures, also known as random measures.
In particular, they provide a natural way to represent labeled
datasets as mixtures (Alvarez-Melis & Fusi, 2020).

A natural distance on this space is the Wasserstein over
Wasserstein distance (WoW) (Nguyen, 2016; Catalano
& Lavenant, 2024), also known as the Hierarchical OT
distance, which lifts the Wasserstein distance between prob-
ability distributions as a ground cost, to define a Wasserstein
distance between random measures. The latter has been used
for generative modeling applications (Dukler et al., 2019),
domain adaptation tasks (El Hamri et al., 2022), comparing
documents (Yurochkin et al., 2019) or multilevel clustering
(Ho et al., 2017). It has also been used to compare Gaussian
mixtures (Chen et al., 2018; Delon & Desolneux, 2020;
Wilson et al., 2024) or generic mixtures (Dusson et al., 2023;
Chen & Zhang, 2024). However, its poor sample complexity
has motivated the development of alternative distance mea-
sures, such as those based on Integral Probability Metrics
(Catalano & Lavenant, 2024). Nonetheless, this space pos-
sesses a rich Riemannian structure, enabling the definition
of concepts like geodesics. This has been leveraged recently
by Haviv et al. (2024a) to perform generative modeling over
the space of probability distributions with Flow Matchings.

While this space naturally supports a range of machine learn-
ing tasks, optimization methods tailored to it have received
limited attention. Yet, this is important for multiple ap-
plications, including variational inference with a Gaussian
mixture family (Lambert et al., 2022; Huix et al., 2024),
computing barycenters (Delon & Desolneux, 2020), or flow-
ing datasets (Alvarez-Melis & Fusi, 2021), e.g., for domain
adaptation, transfer learning (Alvarez-Melis & Fusi, 2021;
Hua et al., 2023) or dataset distillation (Wang et al., 2018).
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In this paper, we propose to leverage the Riemannian struc-
ture of random measures equipped with the WoW distance,
by defining and simulating gradient flows, i.e., paths of ran-
dom measures that follow the steepest descent of a given
objective functional.

Related works. An elegant and popular way to perform
optimization over probability distributions (over a manifold)
is to leverage the Riemannian structure of the Wasserstein
space (Otto, 2001), and to use Wasserstein gradient flows
(Ambrosio et al., 2008; Santambrogio, 2017). Several time
discretizations of these flows have been studied (Jordan
et al., 1998; Salim et al., 2020; Bonet et al., 2024), and
they have been applied to simulate the flow dynamics of
multiple objectives such as the Kullback-Leibler divergence
(Wibisono, 2018; Salim et al., 2020; Diao et al., 2023), the
Maximum Mean Discrepancy (MMD) (Arbel et al., 2019;
Altekrüger et al., 2023; Hertrich et al., 2024a;b) and variants
thereof (Glaser et al., 2021; Chen et al., 2024; Neumayer
et al., 2024; Chazal et al., 2024) or the Sliced-Wasserstein
distance (Liutkus et al., 2019; Du et al., 2023; Bonet et al.,
2025). Yet, all these works focus on the case where the prob-
ability distributions are defined over a finite-dimensional
manifold, e.g. Rd. In practice, simulating these flows
often boils down to simulating a particle system in Rd.
Hence, these works do not address probability distributions
defined on infinite-dimensional spaces, such as the space
of probability measures, which is the focus of this work.

The closest works to ours are the ones of Alvarez-Melis &
Fusi (2021) and Hua et al. (2023). These papers cast labeled
datasets as measures over a product space of the features
and the conditional distributions (i.e., the distributions of
the features of a given class). However, they circumvent the
issue of designing gradient flows on this space by modeling
the conditional probabilities as Gaussian distributions, hence
parametrized by a mean and covariance, which are finite-
dimensional objects. While this enables them to leverage
standard Wasserstein gradient flows, this Gaussian modeling
of mixture components is a strong assumption that may not
capture the true shape of many labeled datasets in practice.

Contributions. In this work, we introduce a principled
framework for optimizing functionals over the space of
probability measures on probability measures, leveraging
the Riemannian structure of this space to develop Wasser-
stein over Wasserstein (WoW) gradient flows. We provide
a theoretical construction of the flows, and then a practical
implementation through time discretization using a forward
Euler scheme. We also propose a novel functional objective,
that writes as an MMD with kernel between distributions
based on the Sliced-Wasserstein distance, and whose gradi-
ent flow simulation is tractable. We then apply this scheme
to flow datasets viewed as random measures; specifically, as

mixtures of probability distributions corresponding to the
class-conditional distributions. We focus on image datasets,
and show that the flow enables structured transitions of
classes toward other classes, with applications to transfer
learning and dataset distillation.

Notations. For a Riemannian manifold M, d : M ×
M → R+ is its geodesic distance. For x ∈ M, we denote
by TxM the tangent space at x, and by ∥ · ∥x the Rieman-
nian metric. We define by TM = {(x, v), x ∈ M and v ∈
TxM} the tangent bundle. We define for (x, v) ∈ TM
the projections πM(x, v) = x and πv(x, v) = v. exp :
TM → M is the exponential map. For x ∈ M, if
expx : TxM → M is invertible, we note logx its inverse.
∇ and div refer to the Riemannian gradient and divergence
on M. For a metric space (X, d), P2(X) denotes the space
of probability distributions on X with second finite mo-
ments, i.e., P2(X) = {µ ∈ P(X),

∫
d(x, o)2dµ(x) <∞}

with o ∈ X some arbitrary origin. For any µ ∈ P2(M),
L2(µ, TM) is the set of functions v : M → TM
such that

∫
∥v(x)∥2xdµ(x) < ∞. For a measurable map

T : M → M, we note by T#µ the pushforward measure.
Id denotes the identity map on M. P2,ac(M) ⊂ P2(M) is
the space of measures absolutely continuous w.r.t. the vol-
ume measure on M. For µ, ν ∈ P(X), we denote µ≪ ν if
µ is absolutely continuous w.r.t. ν. Π(µ, ν) = {γ ∈ P(X×
X), π1

#γ = µ, π2
#γ = ν} with πi : (x1, x2) 7→ xi, is the

set of couplings, and Πo(µ, ν) the set of optimal couplings.

2. Background
We begin by introducing some background on Optimal
Transport (OT) and on Wasserstein Gradient Flows. For the-
oretical purposes, we provide background on the geometry
of (P2(M),W2) with M a Riemannian manifold, as in the
next section, we will rely on results which hold on compact
Riemannian manifolds (without boundary). Nonetheless,
the applications will be done for M = Rd. The reader may
refer to Appendix A for more details.

Optimal Transport. The Wasserstein distance between
µ, ν ∈ P2(M) is defined as

W2
2(µ, ν) = inf

γ̃∈Π(µ,ν)

∫
d(x, y)2 dγ̃(x, y). (1)

The metric space (P2(M),W2) has a Riemannian
structure (Otto, 2001; Erbar, 2010). In particular, if
the log map is well defined µ-almost everywhere (a.e.),
(constant-speed) geodesics between µ, ν are defined as
µt =

(
expπ1 ◦(t logπ1 ◦π2)

)
#
γ̃ with γ̃ ∈ Πo(µ, ν) an op-

timal coupling. If µ ∈ P2,ac(M), there is a map T, namely
the OT map, such that T#µ = ν and γ̃ = (Id,T)#µ by
McCann’s theorem for a wide range of manifolds (McCann,
2001; Figalli, 2007). In particular, T = expId ◦(−∇φµ,ν)
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with φµ,ν a Kantorovich potential between µ and ν,
and geodesics become µt = expId ◦(−t∇φµ,ν)#µ. At
any µ ∈ P2,ac(M), we can define a tangent space

TµP2(M) = {∇φ, φ ∈ C∞
c (M)}

L2(µ,TM)
with

C∞
c (M) the space of smooth compactly supported

functions on M (Erbar, 2010; Gigli, 2011). This is
a Hilbert space endowed with the L2(µ, TM) inner
product. The exponential map on P2(M) is then defined as
expµ(v) = (expId ◦v)#µ for µ ∈ P2(M), v ∈ TµP2(M).
For instance, when M = Rd with d(x, y)2 = ∥x−y∥22, then
expx(y) = x+ y and logx(y) = y − x for all x, y ∈ Rd.

Let P2(TM) := {γ ∈ P(TM),
∫
(d(x, o)2 +

∥v∥2x)dγ(x, v) <∞} where o ∈ M is any reference point.
Following (Gigli, 2011), we define for every µ, ν ∈ P2(M),

exp−1
µ (ν) :=

{
γ ∈ P2(TM), πM

# γ = µ, exp# γ = ν,∫
∥v∥2xdγ(x, v) = W2

2(µ, ν)
}

(2)

the set of plans γ ∈ P2(TM) such that (πM, exp)#γ is
an OT plan between µ and ν. This allows one to avoid
using the logarithm map, which might not be well defined
everywhere, e.g. being multivalued. This space carries more
information than the set of optimal couplings as it precises
which geodesic was chosen to move the mass, as µt =(
expπM ◦(tπv)

)
#
γ are constant speed geodesics between

µ and ν (Gigli, 2011, Theorem 1.11). On P2(Rd), this trans-
lates as exp−1

µ (ν) = {(π1, π2 − π1)#γ̃, γ̃ ∈ Πo(µ, ν)}
(Gigli, 2004; Hertrich et al., 2024a). We show in the next
proposition, whose proof can be found in Appendix C.1, that
we can build a surjective map from exp−1

µ (ν) to Πo(µ, ν).

Proposition 2.1. Let µ, ν ∈ P2(M). A surjective map from
exp−1

µ (ν) to Πo(µ, ν) is given by γ 7→ (πM, exp)#γ. In
particular, exp−1

µ (ν) is not empty, and if γ ∈ exp−1
µ (ν),

then d
(
x, expx(v)

)
= ∥v∥x for γ-a.e. (x, v) ∈ TM.

Additionally, if M is compact and connected, and µ ∈
P2,ac(M), then there exists a unique γ ∈ exp−1

µ (ν), of the
form γ = (Id,−∇φµ,ν)#µ.

Wasserstein Gradient Flows. Let F : P2(M) → R be
a lower semi-continuous functional. We briefly introduce
the differential structure on (P2(M),W2), i.e., probabil-
ity measures on manifolds, inspired by (Erbar, 2010) and
(Lanzetti et al., 2025).

Let µ ∈ P2(M). We say that ∇W2
F(µ) ∈ L2(µ, TM) is

a Wasserstein gradient of F at µ if for any ν ∈ P2(M) and
any γ ∈ exp−1

µ (ν), we have the Taylor expansion

F(ν) = F(µ) +

∫
⟨∇W2F(µ)(x), v⟩x dγ(x, v)

+ o
(
W2(µ, ν)

)
. (3)

If such a gradient exists, then we say that F is Wasser-
stein differentiable at µ. There is a unique gradient be-
longing to TµP2(M) and we restrict to this gradient. In-
formally, the Wasserstein gradient of F can be computed
as ∇W2

F(µ) = ∇ δF
δµ (µ), with δF

δµ (µ) the first variation
defined, when it exists, as the unique function (up to an
additive constant) such that, for χ satisfying

∫
dχ = 0,

d
dtF(µ + tχ)

∣∣
t=0

=
∫
δF
δµ (µ) dχ (Ambrosio et al., 2008,

Lemma 10.4.1). Examples of differentiable functionals in-
clude potential energies V(µ) =

∫
V dµ and interaction en-

ergies W(µ) =
∫∫

W (x, y)dµ(x)dµ(y) for V : M → R
and W : M×M → R twice differentiable with bounded
Hessian, for which ∇W2

V(µ) = ∇V and ∇W2
W(µ)(x) =∫ (

∇1W (x, y)+∇2W (y, x)
)
dµ(y). Moreover, if the func-

tional F : P2(Rd) → R has a closed-form over dis-
crete measures, i.e., there exists F : (Rd)n → R such
that F

(
1
n

∑n
i=1 δxi

)
= F (x1, . . . , xn), then we can use

backpropagation on F and find the Wasserstein gradi-
ent of F using the relation ∇W2

F( 1n
∑n
i=1 δxi

)(xi) =
n∇iF (x1, . . . , xn) (see Proposition A.9).

A Wasserstein gradient flow of a differentiable functional
F is a curve t 7→ µt which is a (weak) solution of the
continuity equation ∂tµt = div

(
µt∇W2F(µt)

)
. A possi-

ble discretization is the Riemannian Wasserstein gradient
descent (Bonnabel, 2013; Bonet et al., 2025), defined as
µk+1 = expId

(
− τ∇W2

F(µk)
)
#
µk. For discrete distri-

butions µk = 1
n

∑n
i=1 δxk

i
, it translates as, for all k ≥ 0,

i ∈ {1, . . . , n}, xk+1
i = expxk

i

(
− τ∇W2F(µk)(x

k
i )
)
. For

M = Rd, this is simply xk+1
i = xki − τ∇W2F(µk)(x

k
i ),

which corresponds to Wasserstein gradient descent.

3. Wasserstein over Wasserstein Space
We introduce in this section the Wasserstein over Wasser-
stein space (P2

(
P2(M)

)
,WW2

), i.e., the space of
probability distributions over probability distributions
P2

(
P2(M)

)
, endowed with the OT distance with the

squared Wasserstein distance on P2(M) as groundcost.
We first state some properties of this distance, and then
introduce a differential structure on this space which will be
used in the next sections to develop suitable optimization
methods. In the following, M is a compact and connected
manifold. The proofs can be found in Appendix C.

3.1. OT Distance and Riemannian Structure

The WoW distance is defined as the OT problem with the
squared Wasserstein distance on P2(M) as groundcost, i.e.,
for P,Q ∈ P2

(
P2(M)

)
,

WW2
(P,Q)2 = inf

Γ∈Π(P,Q)

∫
W2

2(µ, ν) dΓ(µ, ν). (4)

This defines a distance (Nguyen, 2016). Analogously to
P2(M) and Brenier-McCann’s theorem, it has been shown
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that there exists an OT map from P to Q under absolute
continuity of P with respect to a suitable reference measure
P0 ∈ P2

(
P2(M)

)
(Emami & Pass, 2025), which has no

atom and satisfies an integration by part formula (Schiavo,
2020). We refer to Appendix B for more details.

Now, let us denote for any γ ∈ P2(TM), the projections
ϕM(γ) = πM

# γ, ϕexp(γ) = exp# γ and ϕv(γ) = πv
#γ.

For any P,Q ∈ P2

(
P2(M)

)
, let us also define

exp−1
P (Q) :=

{
Γ ∈ P2

(
P2(TM)

)
, ϕM# Γ = P, ϕexp# Γ = Q,∫∫

∥v∥2xdγ(x, v)dΓ(γ) = W2
W2

(P,Q)
}
. (5)

Relying on Proposition 2.1, we can define for any P,Q ∈
P2

(
P2(M)

)
a surjective map from exp−1

P (Q) to Πo(P,Q).

Proposition 3.1. Let P,Q ∈ P2

(
P2(M)

)
. Then, Γ 7→

(ϕM, ϕexp)#Γ is a surjective map from exp−1
P (Q) to

Πo(P,Q). In particular, exp−1
P (Q) is not empty and if

Γ ∈ exp−1
P (Q), γ ∈ exp−1

πM
# γ

(exp# γ) for Γ-a.e. γ.

Additionally, if P ≪ P0, there exists a unique Γ ∈
exp−1

P (Q), of the form (µ 7→ (Id,−∇φµ,T(µ))#µ)#P with
T the unique transport map from P to Q and φµ,T(µ) a
Kantorovich potential between µ,T(µ) ∈ P2(M).

The proof of Proposition 3.1 can be found in Appendix C.2.
The previous construction enables us to formalize the Rie-
mannian structure of (P2

(
P2(M)

)
,WW2), without having

to define a notion of logarithm map on P2(M), which might
be ill-defined when the OT plan is not unique. Between
P,Q ∈ P2

(
P2(M)

)
, we can define for Γ ∈ exp−1

P (Q)
a geodesic t 7→ Pt = expϕM ◦(tϕv)#Γ, which satisfies
for all s, t ∈ [0, 1], WW2(Ps,Pt) = |t − s|WW2(P,Q),
see Appendix B. For P ≪ P0, using Proposition 3.1,
the curve simplifies as Pt = expId ◦(−t∇φId,T)#P.
Moreover, for M = Rd, this reads as Pt =

(
µ 7→

(Id− t∇φµ,T(µ))#µ
)
#

P.

3.2. Differential Structure

We now provide a differential structure to
(P2

(
P2(M)

)
,WW2), following the one of (Ambro-

sio et al., 2008; Erbar, 2010; Lanzetti et al., 2025) for
(P2(M),W2). In this section, let F : P2

(
P2(M)

)
→ R be

a lower semi-continuous functional. We define formally the
Hilbert space L2(P, TP2(M)) of functions from P2(M)
to TP2(M) in Appendix B.1. First, we define the notions
of (extended) sub- and super-differential.
Definition 3.2. ξ ∈ L2(P, TP2(M)) belongs to the sub-
differential ∂−F(P) of F at P if for all Q ∈ P2

(
P2(M)

)
,

F(Q) ≥ F(P)+sup
Γ

∫∫
⟨ξ(πM

# γ)(x), v⟩x dγ(x, v)dΓ(γ)

+ o
(
WW2

(P,Q)
)
, (6)

where the Γ in the sup are selected in exp−1
P (Q). Simi-

larly, ξ ∈ L2(P, TP2(M)) belongs to the super-differential
∂+F(P) of F at P if −ξ ∈ ∂−(−F)(P).

If the functional admits a sub- and super-differential, which
coincide, we can define a gradient.
Definition 3.3. F is Wasserstein differentiable at P ∈
P2

(
P2(M)

)
if ∂+F(P) ∩ ∂−F(P) ̸= ∅. In this case, we

say that ξ ∈ ∂−F(P) ∩ ∂+F(P) is a WoW gradient of F at
P, and it satisfies for any Q ∈ P2

(
P2(M)

)
, Γ ∈ exp−1

P (Q),

F(Q) = F(P) +
∫∫

⟨ξ(πM
# γ)(x), v⟩x dγ(x, v)dΓ(γ)

+ o
(
WW2

(P,Q)
)
. (7)

In the following, we note ∇WW2
F(P) such a gradient.

We can also define a notion of strong sub- and super-
differential, as well as gradient, by allowing the coupling Γ
to be non-optimal, in contrast with the previous definitions.
Definition 3.4. ξ ∈ L2(P, TP2(M)) is a strong subd-
ifferential of F at P if for all Q ∈ P2(P2(M)), for all
Γ ∈ P2

(
P2(TM)

)
s.t. ϕM# Γ = P, ϕexp# Γ = Q,

F(Q) ≥ F(P) +
∫∫

⟨ξ(πM
# γ)(x), v⟩x dγ(x, v)dΓ(γ)

+ o

(√∫∫
∥v∥2xdγ(x, v)dΓ(γ)

)
. (8)

Strong superdifferentials and gradients are defined similarly.

The latter definition is particularly useful when perturbing a
measure along a non-optimal direction, as in the case of the
forward Euler schemes we will compute in the next section.

We now turn to examples of functional on P2

(
P2(M)

)
that take the form of free energies. Given F : P2(M) → R,
we define a potential energy V : P2

(
P2(M)

)
→ R

as V(P) =
∫
F(µ)dP(µ). Analogously to classical

Wasserstein gradients, its WoW gradient is obtained
as ∇WW2

V(P)(µ) = ∇W2
F(µ). Given a kernel

W : P2(Rd) × P2(Rd) → R, we define interaction
energies as W(P) =

∫∫
W(µ, ν) dP(µ)dP(ν), and

their WoW gradients are obtained as ∇WW2
W(P)(µ) =∫ (

∇W2,1W(µ, ν) + ∇W2,2W(ν, µ)
)
dP(ν). We refer to

Appendix B.4 for more details.

Let us now define cylinder functions, which provide a class
of Wasserstein differentiable functionals (von Renesse &
Sturm, 2009; Schiavo, 2020; Fornasier et al., 2023).
Definition 3.5. A functional F : P2(M) → R is a cylinder
if there exists k ≥ 0, F ∈ C∞

c (Rk) and V1, . . . , Vk ∈
C∞
c (M) such that, for all µ ∈ P2(M),

F(µ) = F

(∫
V1dµ, . . . ,

∫
Vkdµ

)
. (9)
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In this case, we note F ∈ Cyl
(
P2(M)

)
. Similarly,

for I an interval, we note F ∈ Cyl
(
I × P2(M)

)
, if

F(t, µ) = F
(
t,
∫
V1dµ, . . . ,

∫
Vkdµ

)
for every t ∈ I and

µ ∈ P2(M), this time for some F ∈ C∞
c (I × Rk).

Using the chain rule, any F ∈ Cyl
(
P2(M)

)
is Wasserstein

differentiable and for all µ ∈ P2(M),

∇W2
F(µ) =

k∑
i=1

∂

∂xi
F

(∫
V1dµ, · · · ,

∫
Vkdµ

)
∇Vi.

(10)

This provides the main building block for defining a tangent
space, in which we will show that WoW gradients reside.

Definition 3.6. The tangent space at P ∈ P2

(
P2(M)

)
is

TPP2

(
P2(M)

)
= {∇W2φ, φ ∈ Cyl

(
P2(M)

)
} (11)

where the closure is taken in the space L2(P, TP2(M)).

We now justify the definition of this tangent space. We
show the existence of velocity fields (vt)t belonging to
the latter, associated to any absolutely continuous curves
(Pt)t, such that the pair (vt,Pt)t satisfy a continuity
equation. We recall that a curve (Pt)t∈[0,1] is abso-
lutely continuous if there exists g ∈ L1([0, 1]) such that
WW2(Ps,Pt) ≤

∫ t
s
g(u)du, and its metric derivative

is |P′|(t) = limh→0
1
hWW2

(Pt+h,Pt), which exists a.e.
(Ambrosio et al., 2008, Th. 1.1.2).

Proposition 3.7. Let (Pt)t∈I be an absolutely continuous
curve on P2

(
P2(M)

)
. Then, for a.e. t ∈ I , there ex-

ists vt ∈ TPt
P2

(
P2(M)

)
such that ∥vt∥L2(Pt,TP2(M)) ≤

|P′|(t) and for all φ ∈ Cyl(I × P2(M)),∫∫ (
∂tφt(µ) + ⟨∇W2φt(µ), vt(µ)⟩L2(µ)

)
dPt(µ)dt = 0.

(12)

The proof of Proposition 3.7 is deferred to Appendix C.3.
We leave the investigation of the converse implication to fu-
ture work, i.e. that satisfying the (weak) continuity equation
(12) implies absolute continuity of the curve (Pt)t. We then
have the following properties, which show that elements of
the tangent space are strong gradients and are unique. Their
proofs are deferred to Appendix C.4 and Appendix C.5.

Proposition 3.8. Let ξ ∈ ∂−F(P) ∩ TPP2

(
P2(M)

)
. Then

ξ is a strong subdifferential of F at P.

Proposition 3.9. There is at most one element in ∂−F(P)∩
∂+F(P) ∩ TPP2

(
P2(M)

)
.

As L2(P, TP2(M)) and the tangent space are Hilbert
spaces, one can always decompose a WoW gradient with
a part in TPP2

(
P2(M)

)
and another part orthogonal to it.

We show in Appendix C.5 that under technical assumptions,

this orthogonal part has a null contribution in the Taylor
expansion given in (7). Thus, in this case, we can restrict
ourselves to the unique WoW gradient belonging to the
tangent space, in particular to write optimization schemes.

4. WoW Gradient Flows
In this section, we aim at minimizing F : P2

(
P2(Rd)

)
→ R

some functional. We first show the existence of the WoW
gradient flow of this functional as the limit of the JKO
scheme (Jordan et al., 1998) for F convex along generalized
geodesics (Ambrosio et al., 2008). Then, building on the
differentiable structure of the space introduced earlier, we
propose a forward (explicit) scheme that is computationally
more efficient in practice than the implicit JKO scheme, and
tractable for relevant functionals.

4.1. Optimization Schemes on P2

(
P2(Rd)

)
JKO Scheme. Let P0 ∈ P2

(
P2,ac(Rd)

)
. The JKO sheme

of F is defined, for all k ≥ 0 and τ > 0, as

Pk+1 ∈ argmin
P∈P2(Pac(Rd))

1

2τ
WW2

(P,Pk)
2 + F(P). (13)

Its Wasserstein gradient flow is defined as the limit when
τ → 0. Leveraging (Ambrosio et al., 2008, Theorem
4.0.4), we show in the next Proposition the existence of
the flow for functionals F that are λ-convex along gen-
eralized geodesics Pt =

((
(1 − t)Tπ

2

π1 + tTπ
3

π1

)
#
π1
)
#
Γ

between Q,O ∈ P2

(
P2(Rd)

)
, where Γ ∈ Π(P,Q,O)

satisfies π1,2
# Γ ∈ Πo(P,Q), π

1,3
# Γ ∈ Πo(P,O) with

π1,2 : (x, y, z) 7→ (x, y), π1,3 : (x, y, z) 7→ (x, z) and
P ∈ P2

(
P2,ac(Rd)

)
. Since P ∈ P2

(
P2,ac(Rd)

)
, there

is always an OT map starting from µ ∼ P towards any
ν ∈ P2(Rd), which we write Tνµ.

Proposition 4.1. Let λ ≥ 0. Let F : P2

(
P2(Rd)

)
→ R be

proper, coercive, lower-semi continuous and λ-convex along
generalized geodesics, i.e., satisfying for all t ∈ [0, 1],

F(Pt) ≤ (1−t)F(P0)+tF(P1)−
λt(1− t)

2
W2

W2
(P0,P1),

(14)
for Pt =

((
(1 − t)Tπ

2

π1 + tTπ
3

π1

)
#
π1
)
#
Γ, Γ ∈ Π(P,Q,O)

that satisfies π1,2
# Γ ∈ Πo(P,Q), π

1,3
# Γ ∈ Πo(P,O) and

P ∈ P2

(
P2,ac(Rd)

)
. Then, the gradient flow of F exists and

is unique.

The proof of Proposition 4.1 can be found in Appendix C.6.
Examples of λ-convex F on P2(P2(Rd)) include potential
energies for any F λ-convex along generalized geodesics on
P2(Rd), and interaction energies for λ = 0 and W jointly
convex along generalized geodesics, see Appendix B.5.
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Forward Scheme. Given the existence of the WoW gradi-
ent of F, as established in the previous section, we propose
an alternative to the implicit JKO scheme: a forward scheme,
commonly referred to as Wasserstein gradient descent, de-
fined as follows

∀k ≥ 0, Pk+1 = expPk

(
− τ∇WW2

F(Pk)
)
. (15)

At the “distribution particle” level in P2(M), this means
that for each distribution µk ∼ Pk, we update it as

µk+1 = expµk

(
− τ∇WW2

F(Pk)(µk)
)
. (16)

In practice, we will mostly focus on distributions of the form
P = 1

C

∑C
c=1 δµc with µc = 1

n

∑n
i=1 δxc

i
, which notably

include labeled datasets (assuming for simplicity now that
all classes c = 1, . . . , C contain n examples). Thus, we
apply to each particle in M = Rd the update

xci,k+1 = expxc
i,k

(
− τ∇WW2

F(Pk)(µ
c
k)(x

c
i,k)
)

= xci,k − τ∇WW2
F(Pk)(µ

c
k)(x

c
i,k).

(17)

We see that there are two levels of interactions for each
particle in M: one “intra-class” through the dependence
in the distribution µc and one “inter-class” between the
distributions µc ∼ P through the dependence in Pk in the
gradient. Thus, we expect to observe an interaction between
particles of each distribution µc, but also between each
distribution µc.

4.2. Examples of Discrepancies

Classical functionals in the study of Wasserstein gradient
flows are obtained as linear combinations of potential en-
ergies, interaction energies and internal energies (Santam-
brogio, 2015). We focus here on potential energies and
interaction energies. We leave the study of internal ener-
gies on this space for future works. We refer to e.g. (von
Renesse & Sturm, 2009; Sturm, 2024) for discussions of
entropy functionals on this space.

A classical discrepancy to compare probability distributions,
which can be written as a sum of a potential energy and
an interaction energy, is the Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012). Given a positive definite
kernel K : P2(Rd) × P2(Rd) → R, P,Q ∈ P2

(
P2(Rd)

)
,

let F(P) = 1
2MMD2(P,Q) be defined as

F(P) =
1

2

∫∫
K(µ, ν) d(P − Q)(µ)d(P − Q)(ν)

= V(P) + W(P) + cst,

(18)

where V(P) =
∫
V(µ)dP(µ), V(µ) = −

∫
K(µ, ν)dQ(ν),

W(P) = 1
2

∫∫
K(µ, ν) dP(µ)dP(ν) and the constant only

depends on Q that is fixed. For K, we will use kernels based

on the Sliced-Wasserstein (SW) (Rabin et al., 2012; Bonneel
et al., 2015), defined between µ, ν ∈ P2(Rd) as

SW2
2(µ, ν) =

∫
Sd−1

W2
2(P

θ
#µ, P

θ
#ν) dσ(θ), (19)

with Sd−1 = {θ ∈ Rd, ∥θ∥2 = 1} the sphere, P θ(x) =
⟨x, θ⟩ the coordinate of the projection of x ∈ Rd on the
line θR for θ ∈ Sd−1, and σ the uniform measure on Sd−1.
For instance, positive definite kernels include the Gaussian
SW kernel K(µ, ν) = e−SW2

2(µ,ν)/h (Kolouri et al., 2016;
Carriere et al., 2017; Meunier et al., 2022). We also exper-
iment with the Riesz SW kernel K(µ, ν) = −SW2(µ, ν)
in analogy with the Riesz kernel (sometimes referred to as
negative distance kernel), k(x, y) = −∥x−y∥2 on Rd×Rd,
which is not positive definite, but which has demonstrated
very good results in practice (Hertrich et al., 2024b) and
does not require tuning a bandwidth h.

WoW gradient of the MMD. Given ν ∈ P2(Rd), if
Kν : µ 7→ K(µ, ν) is a Wasserstein differentiable func-
tional, then F is differentiable, and its WoW gradient at
P ∈ P2

(
P2(Rd)

)
is of the form, for all µ ∈ P2(Rd),

∇WW2
F(P)(µ) =

∫
∇W2

Kν(µ) d(P − Q)(ν). (20)

For the Gaussian SW kernel K(µ, ν) = e−
1
2hSW2

2(µ,ν), de-
noting F(µ) = 1

2SW
2
2(µ, ν), its gradient can be obtained

by the chain rule as

∇W2Kν(µ) = − 1

h
e−

1
2hSW2

2(µ,ν)∇W2F(µ), (21)

where ∇W2
F(µ) =

∫
Sd−1 ψ

′
θ(⟨x, θ⟩)θ dσ(θ) with ψθ the

Kantorovich potential between P θ#µ and P θ#ν (Bonnotte,
2013, Proposition 5.1.7). In practice, the Sliced-Wasserstein
distance, involving an integral over the sphere, is approxi-
mated through Monte Carlo. Moreover, for discrete mea-
sures P = 1

C

∑C
c=1 δµc,n and Q = 1

C

∑C
c=1 δνc,n with

µc,n = 1
n

∑n
i=1 δxc

i
and νc,n = 1

n

∑n
i=1 δyci , we use au-

todifferentiation over x := (xci )i,c of F (x) = F(P), and
rescale the Euclidean gradient of F by n × C to obtain
the WoW gradient ∇WW2

F(P)(µc,n)(xci ) = nC∇i,cF (x).
This is analogous to the Wasserstein gradient case, and
coincides with the WoW gradient for functionals with a
closed-form over discrete measures (see Proposition B.7).

5. Applications
In this section, we minimize the MMD on P2

(
P2(Rd)

)
to

solve various tasks1. We represent labeled datasets with
C classes as distributions P = 1

C

∑C
c=1 δµc,n , where each

1Code available at https://github.com/clbonet/
Flowing_Datasets_with_WoW_Gradient_Flows.
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Figure 1: Minimization of F(P) = 1
2MMD2(P,Q) with Q a mixture of 3 rings, and with kernels either the Gaussian SW

kernel with bandwidth h = 0.05 or Riesz SW kernel, for a learning rate of τ = 0.1. We observe that they first form a ring
for each distribution, and then each ring converges to a target ring.

µc,n = 1
n

∑n
i=1 δxc

i
is the distribution of samples belonging

to class c. We emphasize that we are the first to represent
labeled datasets this way. We first verify on synthetic data
and datasets of images that minimizing such distance allows
to transport classes between the source and target. Then, we
leverage this property on a dataset distillation and a transfer
learning task. We focus here on learning target distributions
of the form Q = 1

C

∑C
k=1 δνc,n where νc,n = 1

n

∑n
i=1 δyci

are empirical distributions, each νc,n has the same number
of particles n and the number of class C is supposed to be
known. Similarly as (Hertrich et al., 2024b), we add a mo-
mentum to accelerate the scheme for image-based datasets.
We refer to Appendix D for more details about the experi-
ments, as well as additional experiments using other kernels
and an ablation study for the number of projections to ap-
proximate SW. Related works (Alvarez-Melis & Fusi, 2021;
Hua et al., 2023) are described in detail in Appendix E.

Synthetic Data. We illustrate on Figure 1 the evolu-
tion of particles when minimizing the MMD with kernels
K(µ, ν) = e−SW2

2(µ,ν)/(2h) and K(µ, ν) = −SW2(µ, ν),
for a target being the three-ring dataset. Each ring repre-
sents a distribution νc,n with n = 80, and the target is thus
a mixture of three Dirac, i.e., Q = 1

3

∑3
c=1 δνc,n . We learn

a distribution P of the same form, with the same number of
particles for each distribution. We observe for both kernels
that the particles of each distribution µc,n (i.e., the different
point clouds) form a ring early in the gradient flow dynam-
ics, and then move in a structured manner towards the target.
This illustrates the two level of interactions at the intra and
inter distributions levels. In Appendix D.2, we add compar-
isons with other hyperparameters and other kernels. Overall,
the kernelK(µ, ν) = −SW2(µ, ν) is the simplest to use, as
it does not require tuning a bandwidth, and converges well in
general. Thus, in the following experiments, we restrict our-
selves to this kernel, and name the resulting loss MMDSW.

Domain Adaptation. We now focus on the case where
both the source P0 and the target Q are distributions of im-

Figure 2: Samples along the flow from MNIST to FMNIST
(Left), KMNIST (Middle) and USPS (Right).

ages with C classes. Thus, we have P0 = 1
C

∑C
c=1 δµc,n

and Q = 1
C

∑C
c=1 δνc,n , and νc,n, µc,n represent the em-

pirical distribution of images belonging to the class c. We
consider the *NIST datasets, i.e., MNIST (LeCun & Cortes,
2010), Fashion-MNIST (FMNIST) (Wang et al., 2018), KM-
NIST (Clanuwat et al., 2018) and USPS (Hull, 1994). These
datasets all have C = 10 classes and are of size 28 × 28
(except for USPS which is upscaled to 28 × 28). We also
consider CIFAR10 (Krizhevsky et al., 2009) and SVHN
(Netzer et al., 2011) which are of size 32 × 32 × 3. We
first show in Figure 2 examples of trajectories starting from
MNIST to the other *NIST datasets (with step size τ = 0.05,
momentum m = 0.9 and n = 200). We see that samples
from MNIST are sent to samples of the target dataset, i.e.
that the flow converges well. We also observe that images
from each class are mapped one-to-one to images within the
same class (see Figure 11 in the Appendix), without overlap
or collapse across classes.

To verify this quantitatively, we perform a domain adapta-
tion task as in (Alvarez-Melis & Fusi, 2021, Section 7.3).
Here, we first train a classifier on 5000 samples of MNIST
with n = 500 images by class. Then, we flow the other

7
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Table 1: Accuracy of the classifier on synthetic datasets. We compare Distribution Matching (DM) with the MMD with
Riesz SW kernel on MNIST and Fashion MNIST, using p ∈ {1, 10, 50} synthetic images by class.

Dataset p ψθ = Aω = Id ψθ = Id Aw = Id Aw + ψθ Baselines
DM MMDSW DM MMDSW DM MMDSW DM MMDSW Random Full data

MNIST
1 61.1±6.5 66.5±5.5 - 66.8±5.3 87.8±0.6 60.3±3.4 87.7±0.5 60.9±3.3 55.8±2.0

10 88.2±2.8 93.2±0.7 88.7±3.3 93.8±0.7 97.0±0.1 96.4±0.2 97.0±0.1 96.4±0.3 92.2±1.1 99.4
50 95.9±0.9 97.0±0.2 95.3±1.4 97.5±0.1 98.4±0.1 98.4±0.1 98.4±0.1 98.4±0.1 97.6±0.2

FMNIST
1 54.4±3.2 60.0±4.1 - 60.6±3.6 58.7±0.4 60.9±2.6 58.7±0.5 60.8±2.2 49.0±7.5

10 74.6±1.0 76.7±1.0 74.7±0.8 76.6±1.1 81.2±2.3 78.0±0.9 82.5±0.3 78.9±1.2 75.3±0.7 92.4
50 81.3±0.5 84.2±0.1 81.4±1.0 85.0±0.2 87.6±0.2 87.6±0.2 87.5±0.1 87.6±0.2 83.2±0.2

0 5 104 105 1.5 105 2 105 2.5 105

Iterations
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90
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100
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cu

ra
cy

FMNIST to MNIST

MMDSW
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SVHN to CIFAR10

Figure 3: Accuracy of the pretrained classifiers along the
flow from FMNIST (Left) and SVHN (Right) towards
MNIST and CIFAR10.

datasets to MNIST (with τ = 0.1 and momentumm = 0.9),
and measure the accuracy of the pretrained classifier on the
flowed dataset. Note that while we use the class labels of the
flowed dataset to perform the gradient flow dynamics, we
do not know a priori which class in the flowed dataset cor-
responds to which class in MNIST, yet it is needed for the
evaluation of domain adaptation. To perform this alignment,
we solve an OT problem with W2

2 as groundcost between
P and Q (i.e., the WoW OT problem) with P the distribu-
tions obtained at the end of the flow dynamic and Q the
ones of the target dataset. Since these distributions have a
finite support of the same size (C), solving this OT problem
provides such an alignment: we can associate a prediction
of the pretrained model to an image and a “true class” of
the flowed dataset. We also perform this experiment with
a pretrained neural network on CIFAR10, flowing SVHN
toward CIFAR10, with n = 100 samples by class, step size
τ = 0.1 and momentum m = 0.9.

On Figure 3, we report the accuracy of the pretrained clas-
sifier on the data flowed starting from FMNIST towards
MNIST and from SVHN towards CIFAR10, over the iter-
ations (averaged over 3 flows started at different splits of
the source data). We also report the value from (Alvarez-
Melis & Fusi, 2021) using OTDD on the MNIST dataset.
We observe that the classifier converges to 100% accuracy
for a sufficient number of iterations. This demonstrates
that the flow is able to perfectly match one class from the
source dataset with a class of the target dataset, on which
the classifier has been trained.

We note that in a realistic setting of unsupervised domain
adaptation, we would not have access to the labels of the

source dataset (Courty et al., 2016). Thus, to flow the data as
we did just earlier, we would need first to find pseudo-labels
on the source datasets, e.g. with clustering (Alvarez-Melis
& Fusi, 2021; El Hamri et al., 2022). However, this is not
the goal of the paper.

Dataset Distillation. Dataset distillation or condensation
(Wang et al., 2018) seeks to produce a compact synthetic
dataset derived from a large training set, such that training
a neural network on the synthetic data yields performance
close to that obtained with the full dataset. Zhao & Bilen
(2023) proposed to learn the synthetic dataset by performing
Distribution Matching, i.e., denoting νc the distribution of
each class c of the target dataset, they minimize

F
(
(µc)c

)
= Eθ,ω

[
C∑
c=1

MMD2
k

(
ψθ#Aω

#µ
c, ψθ#Aω

#ν
c)

]
,

(22)
with k the linear kernel k(x, y) = ⟨x, y⟩, Aω : Rd → Rd

a random data augmentation (e.g. rotation, cropping, see
(Zhao & Bilen, 2021)) and ψθ : Rd → Rd

′
with d′ ≪ d a

randomly initialized neural network used to embed the data.

Let Q = 1
C

∑C
c=1 δνc be the target dataset, ϕθ,ω(µ) =

ψθ#Aω
#µ and P = 1

C

∑C
c=1 δµc . Note that ϕθ,ω# P =

1
C

∑C
c=1 δψθ

#Aω
#µ

c . We propose to minimize

F̃(P) = Eθ,ω
[
MMD2

K(ϕθ,ω# P, ϕθ,ω# Q)
]
, (23)

with Riesz SW kernel K between distributions. We com-
pare on Table 1 the accuracy of a classifier on a test set
of MNIST and FMNIST, trained on the synthetic dataset
with p ∈ {1, 10, 50} samples by class, either generated with
MMD with Riesz SW kernel (MMDSW) or with Distribu-
tion Matching (DM), in 4 scenarios: in the ambient space
with (ψθ = Id) and without augmentation (ψθ = Aω = Id),
and with an embedding with (Aω + ψθ) and without an
augmentation (Aω = Id). We solve it with a stochastic gra-
dient descent, sampling one augmentation and embedding at
each step, for 20K iterations and initializing the samples on
true data. The results are averaged over 3 synthetic datasets
obtained initializing the flow at different samples, and 5
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Table 2: Accuracy of classifier on augmented datasets for
k ∈ {1, 10, 10, 100}. M refers to MNIST, F to Fashion
MNIST, K to KMNIST and U to USPS.

Dataset k Train on Q MMDSW OTDD (Hua et al., 2023)

M to F

1 26.0±5.3 40.5±4.7 30.5±4.2 36.4±3.3

5 38.5±6.7 61.5±4.6 59.7±1.8 62.7±1.1

10 53.9±7.9 65.4±1.5 64.0±1.4 66.2±1.0

100 71.1±1.5 74.7±0.8 - 73.5±0.7

M to K

1 18.4±3.1 20.9±2.0 18.8±2.1 19.4±1.9

5 25.9±4.0 37.4±2.2 31.3±1.4 39.0±1.0

10 30.9±4.6 44.7±1.8 34.1±0.9 44.1±1.2

100 60.1±1.1 66.8±0.8 66.3±0.9 62.4±1.2

M to U

1 32.4±7.9 37.4±6.1 39.5±7.9 35.0±5.6

5 51.4±9.8 73.0±1.0 73.3±1.4 69.6±1.3

10 60.3±10.1 77.2±1.2 72.7±2.7 75.6±1.2

100 87.5±0.7 89.7±0.4 - 88.1±0.6

training of the classifier. On a Nvidia v100 GPU, the flow
implemented in Jax (Bradbury et al., 2018) runs in around
10 minutes with the embedding and in 30 seconds without
it. The baseline “random” refers to the classifier trained on
data sampled randomly from the original training set, and
“full data” to the classifier trained on the full training set. We
observe on Table 1 that MMDSW consistently outperforms
DM when flowing in the ambient space, and is competitive
when adding an embedding. This indicates that adding inter-
actions between classes appears to improve the results, possi-
bly by distributing the samples more effectively and mitigat-
ing the presence of ambiguous samples near class borders.

Transfer Learning. We now focus on the task of k-shot
learning. In this setting, we are interested in training a
classifier for datasets which have k samples by class, where
k is typically small. Following (Alvarez-Melis & Fusi,
2021; Hua et al., 2023), we propose to augment the dataset
by generating new synthetic samples for each class. To
do this, we will flow a larger source dataset, with possibly
different classes, towards the small target dataset, and
then concatenate the synthetic and true samples to train
the classifier on it. More precisely, let Q = 1

C

∑C
c=1 δνc,k

the target dataset, with νc,k = 1
k

∑k
i=1 δyci an empirical

distribution with k samples, representing the distribution
of the class c. Let P0 = 1

C

∑C
c=1 δµc,n be a source dataset,

with µc,n = 1
n

∑n
i=1 δxc

i
and n = 200. Then, the goal is to

flow P0 towards Q by minimizing F(P) = 1
2MMD2(P,Q)

with kernel K(µ, ν) = −SW2(µ, ν). We expect to
augment each class c of Q with n samples. Then, we train a
classifier with a LeNet5 architecture on the dataset obtained
as Q̂ = 1

C

∑C
c=1 δηc,n+k with ηc,n+k = 1

n+k

∑n+k
i=1 δzci

where zci = xci for i ≤ n and zci = yci−n for i > n.
We report the results for MNIST as P0 and FMNIST,
KMNIST and USPS as Q on Table 2 for k ∈ {1, 5, 10, 100},
compared with the baseline where we train directly on
Q, and the baselines where we trained on the synthetic

Table 3: Runtime in seconds for the transfer learning experi-
ment from MNIST to Fashion MNIST.

Dataset k-shot MMDSW OTDD (Hua et al., 2023)

M to F

1 13.95± 1.37 294.53± 5.21 131.77± 2
5 14.12± 0.30 1130.89± 108 132.98± 1.1

10 14.30± 0.29 2294.13± 48 134.35± 0.75
100 47.75± 0.27 - 164.19± 0.6

data obtained by minimizing OTDD (Alvarez-Melis &
Fusi, 2021) or the MMD with product kernel as in (Hua
et al., 2023). The results are averaged over 5 training of
the networks, and 3 outputs of the flows. Both methods
have been reimplemented and we add more details in
Appendix D.6. We observe that all three methods improve
upon the baseline, with a slight advantage for MMDSW.

Complexity. Given P = 1
C

∑C
c=1 δµc,n and Q =

1
C

∑C
c=1 δνc,n with µc,n and νc,n discrete distributions with

n samples each, the MMD with a Sliced-Wasserstein based
kernel requires to compute C2 Sliced-Wasserstein distances,
which has a total complexity of O

(
C2Ln(log n+ d)

)
using

L projections to approximate SW. We report on Table 3
the runtimes for the transfer learning experiment, averaged
over 3 outputs of the flows and trained for 5K epochs for
each method. MMDSW is much faster than both OTDD
and the MMD with product kernel, at least with our imple-
mentations in jax detailed in Appendix D.6. Both OTDD
and the method of Hua et al. (2023) are implemented us-
ing a dimension reduction technique in 2D and a Gaussian
approximation to embed the conditional distributions.

6. Conclusion
This work provides the first theoretical framework and prac-
tical implementation of gradient flows of a suitable MMD
objective over the space of random measures, endowed with
the Wasserstein over Wasserstein distance. On the theoret-
ical side, we provided a rigorous differential structure on
that space and showed that these flows are well-posed. On
the numerical side, our results demonstrate that this novel
approach provides meaningful dynamics for interpolating
between random measures. There are many possible
extensions of our study. For instance, it would be interesting
to investigate the minimization of alternative functionals
over the space of random measures, e.g., MMD with other
kernels (Bachoc et al., 2023; Kachaiev & Recanatesi, 2024),
integral probability metrics (Müller, 1997; Catalano &
Lavenant, 2024) or f-divergences (Csiszár, 1967). Future
work could also address the theoretical treatment of
non-compact manifolds or derive a continuity equation for
Wasserstein over Wasserstein (WoW) gradient flows. Then,
another topic of future research would be to provide quan-
titative guarantees on the convergence of these schemes.
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Bojchevski, A. and Günnemann, S. Deep Gaussian Em-
bedding of Graphs: Unsupervised Inductive Learning
via Ranking. In International Conference on Learning
Representations, 2018. (Cited on p. 1)
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Rabin, J., Peyré, G., Delon, J., and Bernot, M. Wasserstein
Barycenter and its Application to Texture Mixing. In
Scale Space and Variational Methods in Computer Vision:
Third International Conference, SSVM 2011, Ein-Gedi,
Israel, May 29–June 2, 2011, Revised Selected Papers 3,
pp. 435–446. Springer, 2012. (Cited on p. 6, 44)

Rønning, O., Nalisnick, E., Ley, C., Smyth, P., and Hamel-
ryck, T. ELBOing Stein: Variational Bayes with Stein
Mixture Inference. In The Thirteenth International Con-
ference on Learning Representations, 2025. (Cited on p.
57)

Rudin, W. Real and Complex Analysis. McGraw-Hill Sci-
ence/Engineering/Math, 1986. ISBN 0070542341. (Cited
on p. 17)

Salim, A., Korba, A., and Luise, G. The Wasserstein Proxi-
mal Gradient Algorithm. Advances in Neural Information
Processing Systems, 33:12356–12366, 2020. (Cited on p.
2)

Santambrogio, F. Optimal Transport for Applied Mathe-
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A. Background on Optimal Transport
A.1. Optimal Transport on P2(M)

Let M be a Riemannian manifold, and denote by d : M×M → R+ the associated geodesic distance. We recall that for
any µ, ν ∈ P2(M), the Wasserstein distance is defined as

W2
2(µ, ν) = inf

γ̃∈Π(µ,ν)

∫
d(x, y)2 dγ̃(x, y). (24)

Let φ : M → R. For a cost c : M×M → R, we recall that its c-transform is defined as φc(y) = infx∈M c(x, y)− φ(x).
φ is said to be c-concave if there exists ϕ : M → R such that φ = ϕc. Here, we focus on c(x, y) = 1

2d(x, y)
2. Then, the

Wasserstein distance can be written through its dual (see e.g. (Villani et al., 2009, Theorem 5.10)) as

W2
2(µ, ν) = sup

f∈L1(µ)

∫
fdµ+

∫
f cdν, (25)

with L1(µ) = {f : M → R,
∫
|f |dµ < ∞}. The optimal f is called the Kantorovich potential, is noted φµ,ν , and is a

c-concave map.

We now recall McCann’s theorem, which provides a sufficient condition for the existence of an OT map provided that µ
is absolutely continuous with respect to the volume measure. We state the result for a connected compact Riemannian
manifold. But, note that this result was then extended to other manifolds, see e.g. (Figalli, 2007, Proposition 3.1) for a
similar result on complete Riemannian manifolds.

Theorem A.1 (Theorem 9 in (McCann, 2001)). Let M be a connected compact Riemannian manifold. Let µ ∈ P2,ac(M)
and ν ∈ P2(M). Then, the optimal coupling γ̃ ∈ Π(µ, ν) is unique and of the form γ̃ = (Id,T)#µ with T(x) =
expx

(
−∇φµ,ν(x)

)
for all x ∈ M, where φµ,ν is a Kantorovich potential for the pair µ, ν.

For any x ∈ M, recall that the exponential map exp : TM → M maps tangent vectors v ∈ TxM back to the manifold at
the point reached at time t = 1 by the geodesic starting at x with initial velocity v. Moreover, when it is well defined, its
inverse is the logarithm map logx : M → M, which satisfies, for any x ∈ M, y = expx(v) where v ∈ TxM, logx(y) = v.
However, the exponential map is not always invertible. For instance, on the sphere Sd−1, there are an infinite number of
geodesics, and thus of directions v ∈ TxM, between x ∈ M and its antipodal point −x (see Figure 4). Therefore, the
logarithm map logx(−x) is multivalued.

Let µ, ν ∈ P2(M). When the exponential map is invertible at µ-almost every x ∈ M, then a (constant-speed) geodesic
between µ and ν can be defined for all t ∈ [0, 1] as µt = expπ1 ◦(t logπ1 ◦π2)#γ̃ where γ̃ ∈ Πo(µ, ν), i.e. it satisfies
W2(µs, µt) = |t − s|W2(µ, ν) for all s, t ∈ [0, 1]. However, the exponential map might not always be invertible, as
described in the last paragraph. One way to circumvent this problem is to consider the space

exp−1
µ (ν) = {γ ∈ P2(TM), πM

# γ = µ, exp# γ = ν,

∫
∥v∥2x dγ(x, v) = W2

2(µ, ν)}. (26)

This space carries more information than the set of optimal couplings as it precises which geodesic was chosen to move the
mass from µ to ν (Gigli, 2011). Indeed, regarding the previous example on the sphere, for x ∈ Sd−1, µ = δx and ν = δ−x,
and any v ∈ TxM such that −x = expx(v), we have δ(x,v) ∈ exp−1

µ (ν), while the optimal coupling would simply be given
by the map T (x) = −x. Moreover, it allows to define geodesics as t 7→ µt = expπM ◦(tπv)#γ for any γ ∈ exp−1

µ (ν)
(Gigli, 2011, Theorem 1.11). By Proposition 2.1, if µ ∈ P2,ac(M), then there exists a unique γ ∈ exp−1

µ (ν), which is of
the form γ = (Id,−∇φµ,ν)#µ. In this case, the geodesic between µ and ν is of the form µt = expId ◦(−t∇φµ,ν)#µ.

A.2. Wasserstein Gradient Flows on P2(M)

We provide in this Section some background on Wasserstein gradient flows on P2(M), with M a Riemannian manifold
with geodesic distance d. This presentations follows the one from (Lanzetti et al., 2025) on P2(Rd), adapted to P2(M)
using results of (Erbar, 2010).

Differential Structure. First, we recall sub- and super differentiability on this space.
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Figure 4: On the sphere, there are an infinite number of geodesics between x and −x (here 3 are represented). Thus, the
logarithm map would be multivalued.

Definition A.2 (Wasserstein sub- and super-differentiability). Let F : P2(M) → R a lower semi-continuous functional. A
map ξ : M → TM ∈ L2(µ, TM) belongs to the subdifferential ∂−F(µ) of F at µ if for all ν ∈ P2(M),

F(ν) ≥ F(µ) + sup
γ∈exp−1

µ (ν)

∫
⟨ξ(x), v⟩x dγ(x, v) + o

(
W2(µ, ν)

)
. (27)

Similarly, ξ ∈ L2(µ, TM) belongs to the superdifferential ∂+F(µ) of F at µ if −ξ ∈ ∂−(−F)(µ).

Similarly as on P2(Rd) (Bonnet, 2019; Lanzetti et al., 2025), we say that a functional is Wasserstein differentiable if it
admits sub- and super-differentials which coincide.
Definition A.3 (Wasserstein differentiability). A functional F : P2(M) → R is Wasserstein differentiable at µ ∈ P2(M)
if ∂−F(µ) ∩ ∂+F(µ) ̸= ∅. In this case, we say that ∇W2

F(µ) ∈ ∂−F(µ) ∩ ∂+F(µ) is a Wasserstein gradient of F at µ,
and it satisfies for any ν ∈ P2(M), γ ∈ exp−1

µ (ν),

F(ν) = F(µ) +

∫
⟨∇W2

F(µ)(x), v⟩x dγ(x, v) + o
(
W2(µ, ν)

)
. (28)

If µ ∈ P2,ac(M), then by Proposition 2.1, γ ∈ exp−1
µ (ν) is unique and of the form γ = (Id,−∇φµ,ν)#µ. Thus, in that

case, (28) translates as

F(ν) = F(µ) +

∫
⟨∇W2

F(µ)(x),−∇φµ,ν(x)⟩x dµ(x) + o
(
W2(µ, ν)

)
, (29)

which coincides with (Erbar, 2010, Definition 3.1) (for the subdifferential, and up to a sign as they use c-convex maps, and
we use φµ,ν a c-concave map).

If we take t 7→ µt = (expπM ◦(tπv))#γ, for γ ∈ exp−1
µ (ν), a geodesic between µ, ν, then necessarily (πM, tπv)#γ ∈

exp−1
µ (µt) (Gigli, 2011, Theorem 1.11), and thus

F(µt) = F(µ) + t

∫
⟨∇W2

F(µ)(x), v⟩x dγ(x, v) + o
(
W2(µ, µt)

)
, (30)

which implies d
dtF(µt)

∣∣
t=0

=
∫
⟨∇W2

F(µ)(x), v⟩x dγ(x, v).

A priori, the Wasserstein gradient is not unique. Nevertheless, we can always restrict ourselves to a unique gradient
belonging to a tangent space whenever it is an Hilbert space. This is the case for µ absolutely continuous (Gigli, 2011,
Corollary 6.6). So, we now focus on P2,ac(M) ⊂ P2(M). In this case, the tangent space can be defined as TµP2(M) =

{∇φ, φ ∈ C∞
c (M)}

L2(µ,TM)
. This is a closed linear subspace of L2(µ, TM) and we can uniquely decompose any

ξ ∈ L2(µ, TM) as ξ = ϕ + ψ with ϕ ∈ TµP2(M) and ψ ∈ TµP2(M)⊥ (Rudin, 1986, Theorem 4.11). Since
µ ∈ P2,ac(M), then by Proposition 2.1, the optimal γ is equal to (Id,−∇φµ,ν)#µ with φµ,ν a Kantorovich potential
between µ and ν. In this case, it can be shown that∫

⟨ψ(x), v⟩x dγ(x, v) =
∫

⟨ψ(x),−∇φµ,ν(x)⟩x dµ(x) = 0, (31)
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since ∇φµ,ν ∈ TµP2(M) (Erbar, 2010, Lemma 2.6). Thus the only part of the gradient that matters is ϕ, and we can show
that it is unique.

Proposition A.4. Let F : P2(M) → R. Its gradient at µ ∈ P2,ac(M), if it is exists, is the unique element of TµP2(M) ∩
∂+F(µ) ∩ ∂−F(µ).

Proof. See Appendix C.7.

Another interesting property of gradients belonging to the tangent space is that they are actually strong differentials, meaning
that they satisfy the Taylor expansion along any coupling, i.e., for any ν ∈ P2(M) and γ ∈ P2(TM) such that πM

# γ = µ
and exp# γ = ν, ∇W2F(µ) ∈ TµP2(M) satisfies

F(ν) = F(µ) +

∫
⟨∇W2

F(µ)(x), v⟩x dγ(x, v) + o

(√∫
∥v∥2x dγ(x, v)

)
. (32)

Erbar (2010, Lemma 3.2) showed this property for couplings obtained through maps. We extend it for any coupling in
the next Proposition. First, for µ ∈ P2(M) fixed, we define P2(TM)µ := {γ ∈ P2(TM) |πM

# γ = µ}. For every
γ ∈ P2(TM)µ, we define ∥γ∥2µ :=

∫
∥v∥2xdγ(x, v), and we further define its barycentric projection to be the unique vector

field B(γ) ∈ L2(µ, TM) such that for every ξ ∈ L2(µ, TM),∫
⟨ξ(x), v⟩dγ(x, v) =

∫
⟨ξ(x),B(γ)(x)⟩dµ(x) = ⟨ξ,B(γ)⟩L2(µ), (33)

(see (Gigli, 2011, Chapter 6)). Note that the barycentric projection satisfies ∥B(γ)∥L2(µ) ≤ ∥γ∥µ.

Proposition A.5. Let ξ ∈ ∂−F(µ) ∩ TµP2(M). Then ξ is an (extended) strong subdifferential of F at µ, i.e. for every
γ ∈ P2(TM)µ,

F(exp# γ) ≥ F(µ) +

∫
⟨ξ(x), v⟩dγ(x, v) + o(∥γ∥µ). (34)

By symmetry of the arguments, it also holds for superdifferentials and gradients.

Proof. See Appendix C.8.

We now derive the Wasserstein gradients of well known functionals such as potential energies and interaction energies.

Proposition A.6. Let V : M → R be twice differentiable with Hessian bounded in operator norm by L for all x ∈ M,
i.e. ∥HessMV (x)∥ = maxv∈TxM,∥v∥x=1 ∥HessMV (x)[v]∥x ≤ L, and V : µ 7→

∫
V dµ. Then V is differentiable with

gradient ∇W2
V(µ) = ∇MV for any µ ∈ P2(M).

Proof. See Appendix C.9.

Proposition A.7. Let W : M×M → R be twice differentiable with Hessian for both arguments bounded in operator
norm, and W : µ 7→

∫∫
W (x, y)dµ(x)dµ(y). Then W is differentiable with gradient ∇W2

W(µ)(x) =
∫ (

∇1W (x, y) +

∇2W (y, x)
)
dµ(y) for any µ ∈ P2(M), x ∈ M.

Proof. See Appendix C.10.

We also introduce the notion of Hessian on the Wasserstein space, which will be useful to derive smoothness assumptions
for the WoW gradients to be well defined.

Definition A.8. Let F : P2(M) → R. Let µ ∈ P2(M). The Wasserstein Hessian of F at γ ∈ exp−1
µ (ν) for some

ν ∈ P2(M), is a map HFγ : TM → TM verifying d2

dt2F(µt)
∣∣
t=0

=
∫
⟨HFγ(x, v), v⟩x dγ(x, v) for a constant-speed

geodesic µt =
(
expπM ◦(tπv)

)
#
γ with γ ∈ exp−1

µ (ν).
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Wasserstein Gradient Flows. A Wasserstein gradient flow of F : P2(M) → R is defined as a curve t 7→ µt on an
interval I , which is a weak solution of the continuity equation

∂tµt = div
(
µt∇W2

F(µt)
)
, (35)

i.e., which satisfies for any φ ∈ C∞
c (I ×M),∫

I

∫
M

(
∂tφt(x)− ⟨∇Mφt(x),∇W2

F(µt)(x)⟩x
)
dµt(x)dt = 0. (36)

Usually, such equation needs to be approximated by a scheme discretized in time. A common way to do it is through the
Jordan-Kinderlehrer-Otto (JKO) scheme introduced in (Jordan et al., 1998), which is of the form

∀k ≥ 0, µk+1 ∈ argmin
µ∈P2(M)

W2
2(µ, µk)

2τ
+ F(µ). (37)

Under suitable conditions, this scheme converges towards the Wasserstein gradient flow of F (Ambrosio et al., 2008; Erbar,
2010). However, this scheme is generally costly to compute, as it requires to solve an optimization problem at each iteration.
In practice, it is more convenient to rely on an explicit discretization, which can be seen as a Riemannian Wasserstein
gradient descent (Bonnabel, 2013; Bonet et al., 2025), which is of the form

∀k ≥ 0, µk+1 = expµk

(
− τ∇W2

F(µk)
)
. (38)

We note that this scheme can be obtained by linearizing the objective in (37). Indeed, if µk ∈ P2,ac(M), (37) can be written
as {

Tk+1 = argminT∈L2(µk,TM)
1
2τ

∫
∥T(x)∥2x dµk(x) + F

(
(exp ◦T)#µk

)
µk+1 = (exp ◦Tk+1)#µk.

(39)

Using the coupling γ = (Id, exp ◦T)#µk ∈ Π(µk, (exp ◦T)#µk) and that ∇W2F(µk) is a strong differential, then we
have that

F
(
(exp ◦T)#µk

)
= F(µk) +

∫
⟨∇W2

F(µk)(x),T(x)⟩x dµk(x) + o

(√∫
∥T(x)∥2x dµk(x)

)
. (40)

Plugging this linearization in (39), we obtain

Tk+1 ∈ argmin
T∈L2(µk,TM)

1

2τ
∥T∥2L2(µk,TM) + ⟨∇W2F(µk),T⟩L2(µk,TM). (41)

Taking the first order condition, we recover (38) as Tk+1 = −τ∇W2
F(µk).

Wasserstein Gradient Descent. In practice, we usually work with particles, i.e. we start at µ0 = 1
n

∑n
i=1 δxi,0 , and

update each particle at each iteration k ≥ 0 as

∀i ∈ {1, . . . , n}, xi,k+1 = expxi,k

(
− τ∇W2

F(µk)(xi,k)
)

(42)

for µk = 1
n

∑n
i=1 δxi,k

. In particular, for M = Rd, the scheme is obtained as

∀i ∈ {1, . . . , n}, xi,k+1 = xi,k − τ∇W2
F(µk)(xi,k). (43)

Moreover, if the functional F : P2(Rd) → R has a closed-form over discrete measures, i.e., there exists F : (Rd)n → R such
that F

(
1
n

∑n
i=1 δxi

)
= F (x1, . . . , xn), then we can use backpropagation on F and use that ∇W2

F( 1n
∑n
i=1 δxi,k

)(xi,k) =
n∇iF (x1, . . . , xn).

Proposition A.9. Let F : P2(Rd) → R a Wasserstein differentiable functional, and F : (Rd)n → R such that for any
x = (x1, . . . , xn) /∈ ∆n := {x ∈ (Rd)n | ∃i ̸= j, xi = xj} and µn = 1

n

∑n
i=1 δxi , F(µn) = F (x1, . . . , xn). Then, for all

i ∈ {1, . . . , n},
∇W2

F(µn)(xi) = n∇iF (x1, . . . , xn). (44)

Proof. See Appendix C.11.
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B. Wasserstein over Wasserstein Space
B.1. Function Spaces on P2(M)

In this section we fix P ∈ P2(P2(M)). Recall that we define the tangent space to P2(M) at µ by

TµP2(M) := {∇φ, φ ∈ C∞
c (M)}

L2(µ,TM)
for every µ ∈ P2(M). We also define the larger tangent space

TDerP2(M) by TDer
µ P2(M) := Γ(M, TM)

L2(µ,TM)
where Γ(M, TM) is the space of smooth vector fields on M, i.e.

smooth maps from M to TM. Our goal is to rigorously define the space L2(P, TP2(M)) and to show that it is indeed a
Hilbert space.

Let B ⊆ M open, then the map µ ∈ P2(M) 7→ µ(B) is Borel, indeed, it is lower semicontinuous by (Ambrosio et al.,
2008, Equation (5.1.16)). Thus, the map µ ∈ X 7→ µ ∈ P2(Y ) with X = P2(M) and Y = M is a Borel map (in the sense
of measure-valued maps), and the formula

P̃(f) =
∫
P2(M)

∫
M
f(µ, x)dµ(x)dP(µ) (45)

defines a probability measure P̃ on P2(M)×M (we follow the same reasoning as in (Ambrosio et al., 2008, Section 5.3)).

We then define L2(P, TM) to be the quotient of the space of measurable functions f : P2(M) × M → TM, such
that f(µ, x) ∈ TxM for every (µ, x) ∈ P2(M) × M, by the equivalence relation corresponding to equality P̃-almost
everywhere, and we equip it with the norm ∥ · ∥L2(P) defined by

∥f∥2L2(P) :=

∫
P2(M)

∥f(µ)∥2L2(µ)dP(µ) (46)

(we view f ∈ L2(P, TM) interchangeably as a function with signatures P2(M) × M → TM and
P2(M) → (M → TM), hence the notation f(µ)). It is a Hilbert space: indeed, if M is an open set U ⊆ Rn,
then since TU = U × Rn, L2(P, TU) is a Hilbert space as it is the direct sum of n copies of the Hilbert space L2(P̃), and
in the general case, we can show that L2(P, TM) is complete by showing that Cauchy sequences converge, by using local
charts and a partition of unity of M to fall back on the case where M is an open of Rn.

We can now define L2(P, TP2(M)) as the space of functions f ∈ L2(P, TM) such that f(µ) ∈ TµP2(M) for P-ae
µ. It is closed in L2(P, TM) and is therefore a Hilbert space. Indeed, if {fn}∞n=1 ⊆ L2(P, TP2(M)) converges to
f ∈ L2(P, TM),

lim
n→∞

∫
∥fn(µ)− f(µ)∥2L2(µ)dP(µ) = 0. (47)

This implies that, up to extracting a subsequence, we have ∥fn(µ)− f(µ)∥L2(µ) → 0 for P-ae µ2. But since the TµP2(M)
are Hilbert spaces, this implies that f(µ) ∈ TµP2(M) for P-ae µ, and f indeed belongs to L2(P, TP2(M)). We define
similarly L2(P, TDerP2(M)) and show that it is a Hilbert space. This latter space TDerP2(M) is useful in that it allows us
to define a notion of differential for W2-Lipschitz functions on P2(M), as we will see in the next subsection.

B.2. Lipschitz Functions and Rademacher Property

For every smooth vector field w ∈ Γ(M, TM), let (ψw,t)t∈R be its flow on M, that is, the diffeomorphic flow solution of{
∀(t, x) ∈ R ×M, d

dtψ
w,t(x) = w

(
ψw,t(x)

)
ψ0 = Id,

(48)

2We recall the argument. For every ε > 0, we have P[∥f(µ) − fn(µ)∥L2(µ) ≥ ε] → 0 as P[∥f(µ) − fn(µ)∥L2(µ) ≥ ε] ≤
1
ε2

∫
∥f(µ) − fn(µ)∥2L2(µ)dP(µ). So, up to extracting a subsequence, we may assume that for every n, P[∥f(µ) − fn(µ)∥L2(µ) ≥

n−1] ≤ 1
n2 . Then, we can check that the set A =

⋂
N

⋃
n≥N{∥f(µ) − fn(µ)∥L2(µ) ≥ n−1} has null P-measure and that for any

µ /∈ A, fn(µ) → f(µ) in L2(µ).
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and denote Ψw,t the map P2(M) 7→ P2(M) induced by the pushforward by ψw,t.

The following definition is taken from (Emami & Pass, 2025, Definition 9).

Definition B.1. (Emami and Pass, 2024) We say that a measure P0 ∈ P2

(
P2(M)

)
satisfies the Rademacher property

if for every W2-Lipschitz function U : P2(M) 7→ R, there exists DP0
U ∈ L2(P0, T

DerP2(TM)) such that for every
w ∈ Γ(M, TM),

lim
t→0

U
(
Ψw,t(·)

)
− U(·)

t
= ⟨DP0

U(·), w⟩L2(·) in L2(P0). (49)

Thus, every time we have a reference measure P0 ∈ P2

(
P2(M)

)
satisfying the Rademacher property, we can define

for every W2-Lipschitz function U a measurable section DP0U of TDerP2(M) that acts as a “differential” of sorts, for
perturbations given by smooth vector fields on M.

B.3. Wasserstein Geometry of P2(P2(M))

We recall that the WoW distance between P,Q ∈ P2

(
P2(M)

)
is defined as

WW2(P,Q)
2 = inf

Γ∈Π(P,Q)

∫
W2

2(µ, ν) dΓ(µ, ν). (50)

A natural question is to find the conditions under which this problem admits an OT map. Emami & Pass (2025) showed it is
the case for M a compact connected Riemannian manifold, for absolutely continuous measures w.r.t a reference measure P0

satisfying the following assumption:

Assumption B.2.

• P0 has no atoms

• P0 satisfies the following integration by parts formula: for any F ,G ∈ Cyl
(
P2(M)

)
, and any smooth vector field

w ∈ Γ(M, TM), there exists a measurable map µ 7→ ∇∗
wG(µ) ∈ TDer

µ P2(M) such that∫
P2(M)

⟨∇W2
F(µ), w⟩L2(µ) · G(µ) dP0(µ) =

∫
P2(M)

F(µ) · ∇∗
wG(µ) dP0(µ). (51)

• P0 is quasi-invariant with respect to the action of the flows generated by smooth vector fields, i.e. for any smooth
vector field w ∈ Γ(M, TM), P0 and Pt,w0 := Ψw,t# P0 are mutually absolutely continuous for every t ∈ R, and the
Radon-Nikodym derivative

Rwr =
dPt,w0 ⊗ dr

dP0 ⊗ dr
, r ∈ R (52)

satisfies, for P0-a.e. µ, L1 − essinfr∈(s,t) R
w
r (µ) > 0 for all s, t ∈ R with s ≤ t.

These assumptions were first proposed by Schiavo (2020), and we refer to (Schiavo, 2020) for examples of measures
satisfying them. By (Schiavo, 2020, Theorem 2.10), any P0 satisfying Assumption B.2 also satisfies the Rademacher
property, which Emami & Pass (2025) leveraged to show the existence of an OT map. In all the following, we fix a
reference measure P0 ∈ P2

(
P2(M)

)
satisfying Assumption B.2, and when there is no ambiguity, the “differentials” of

a W2-Lipschitz function U will be denoted DU . Moreover, by (Schiavo, 2020, Theorem 2.10 (2)), if U ∈ Cyl
(
P2(M)

)
,

then its differential coincides with the usual Wasserstein gradient, i.e., DU = ∇W2
U .

Theorem B.3 (Theorem 13 in (Emami & Pass, 2025)). Let P ∈ P2

(
P2,ac(M)

)
such that P ≪ P0 and Q ∈ P2

(
P2(M)

)
.

Then, there is a unique optimal plan Γ, which is of the form Γ = (Id,T)#P with T : P2(M) → P2(M) satisfying
T#P = Q. Moreover, T is of the form T(µ) = exp

(
−DP0U(µ)

)
#
µ, where U is a ( 12W

2
2-concave) Kantorovich potential

for P,Q. In fact, for P-a.e. µ, DP0U(µ) = ∇φµ,T(µ), where φµ,T(µ) is a ( 12d
2-concave) Kantorovich potential for µ,T(µ).

Note that the last two statements on the form of T are not part of the statement of the theorem in (Emami & Pass, 2025), but
can be found in its proof.
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Geodesics on P2

(
P2(M)

)
. We recall that a constant-speed geodesic between P,Q ∈ P2

(
P2(M)

)
is a curve t 7→ Pt

defined on [0, 1], which satisfies P0 = P, P1 = Q and for all s, t ∈ [0, 1], WW2(Ps,Pt) = |t − s|WW2(P,Q) (see e.g.
(Santambrogio, 2015, Box 5.2)).

As we work on manifolds, we introduce similarly as on P2(M) a generalized inverse of the exponential map, which allows
to characterize geodesics even when the optimal coupling is not unique. The multivalued inverse of the exponential map
between P,Q ∈ P2

(
P2(M)

)
is then

exp−1
P (Q) =

{
Γ ∈ P2

(
P2(TM)

)
, ϕM# Γ = P, ϕexp# Γ = Q,

∫∫
∥v∥2x dγ(x, v)dΓ(γ) = WW2

(P,Q)2
}
, (53)

where for any γ ∈ P2(TM), ϕM(γ) = πM
# γ and ϕexp(γ) = exp# γ.

Proposition B.4. Let Γ ∈ exp−1
P (Q). Then the curve t 7→ Pt = expϕM ◦(tϕv)#Γ defines a geodesic between P and Q.

Proof. See Appendix C.12.

B.4. Differentiability on P2

(
P2(M)

)
We recall that by Section 3.2, if F is Wasserstein differentiable at P, then the WoW gradient ∇WW2

F(P) satisfies for any
Γ ∈ exp−1

P (Q),

F(Q) = F(P) +
∫∫

⟨∇WW2
F(P)(πM

# γ)(x), v⟩x dγ(x, v)dΓ(γ) + o
(
WW2

(P,Q)
)
. (54)

Using this formula, we now derive the gradient of potential and interaction energies.
Proposition B.5. Let M be a compact and connected Riemannian manifold, F : P2(M) → R a twice
Wasserstein differentiable functional with Hessian bounded in operator norm for all γ ∈ P2(TM), i.e.
sup(x,v)∈supp(γ), ∥v∥x=1 ∥HFγ(x, v)∥x ≤ L, and F(P) =

∫
F(µ) dP(µ) for P ∈ P2

(
P2(M)

)
. Then, F is Wasser-

stein differentiable, and its gradient is ∇WW2
F(P) = ∇W2

F .

Proof. See Appendix C.13.

Proposition B.6. Let M be a compact and connected Riemannian manifold, W : P2(M) × P2(M) → R be
Wasserstein differentiable with respect to each of its argument and with bounded Hessian in operator norm for all
γ ∈ P2(TM) as in Proposition B.5. Let P ∈ P2

(
P2(M)

)
and F(P) =

∫∫
W(µ, ν) dP(µ)dP(ν). Then, ∇WW2

F(P)(µ) =∫ (
∇W2,1W(µ, ν) +∇W2,2W(ν, µ)

)
dP(ν).

Proof. See Appendix C.14.

Relation with first variation. The gradients of the potential and interaction energies derived in the last two propositions
are computed by showing that they satisfy the definition of the WoW gradients thanks to coupling arguments. Similarly
to the case on P2(M), we expect that they can also be computed as the gradient of the first variation, which is a much
simpler way to compute Wasserstein gradient of generic functionals. Let F : Pac

(
P2(M)

)
→ R. Then the first variation

δF
δP (P) : P2(M) → R at P is defined as the unique function (up to a constant) satisfying

lim
ε→0

F(P + εχ)− F(P)
ε

=

∫
δF
δP

(P) dχ, (55)

where
∫
dχ = 0 and P + εχ ∈ Pac

(
P2(M)

)
for ε small. Then, we expect that the WoW gradient of F can be computed as

∇WW2
F(P) = ∇W2

δF
δP

(P). (56)

We leave for future work to show formally this formula. Nonetheless, we verify that it holds for potential and interaction
energies. Indeed, for V(P) =

∫
F(µ) dP(µ), we have δV

δP (P) = F since

V(P + εχ) =

∫
F(µ)dP(µ) + ε

∫
F(µ)dχ(µ), (57)
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and thus the WoW gradient derived in Proposition B.5 coincides well with ∇W2

δV
δP (P). Similarly, for W(P) =∫∫

W(µ, ν) dP(µ)dP(ν),

W(P + tχ)− W(P)
t

=
1

t

(
W(P) + t

∫∫
W(µ, ν) dP(µ)dχ(ν) + t

∫∫
W(µ, ν) dχ(µ)dP(ν)

+t2
∫∫

W(µ, ν) dχ(µ)dχ(ν)− W(P)

)
−−−→
t→0

∫ (∫
W(µ, ν) dP(µ) +

∫
W(ν, µ) dP(µ)

)
dχ(ν).

(58)

Thus, the first variation is δW
δP (P)(ν) =

∫
W(µ, ν) dP(µ) +

∫
W(ν, µ) dP(µ), and its Wasserstein gradient coincides well

with the WoW gradient derived in Proposition B.6.

Relation with Euclidean gradient. We provide now the analog of Proposition A.9 for WoW gradients, which we use in
practice to compute them.

We fix here a number of classes C > 0 and a number of samples n > 0, and we consider the class of (fully) discrete
measures of P2(P2(Rd)) defined by

Px :=
1

C

C∑
c=1

δµxc , x ∈ (Rd)C×n, µxc :=
1

n

n∑
i=1

δxc
i
, xc ∈ (Rd)n. (59)

We also define the space

X := {x ∈ (Rd)C×n | ∀c, xc /∈ ∆n and ∀c ̸= c′, µxc ̸= µxc′}. (60)

where ∆n := {x ∈ (Rd)n | ∃i ̸= j, xi = xj} is the generalized diagonal of (Rd)n. Informally, X is the space of vectors x
such that the empirical measures µxc in the support of Px are all distinct, and are each supported on n distinct points of Rd.

Proposition B.7. Let F : P2(P2(Rd)) 7→ R a functional, and F : (Rd)C×n 7→ R such that for every x ∈ X , F(Px) = F (x).
If F is Wasserstein differentiable at Px and F is differentiable at x for some x ∈ X , then for every c ∈ {1, . . . , C} and
i ∈ {1, . . . , n},

∇WW2
F(Px)(µxc)(xci ) = Cn∇c,iF (x). (61)

Proof. See Appendix C.15.

B.5. Convexity on P2

(
P2(M)

)
In this section, we focus on P2

(
P2,ac(Rd)

)
, and we show the convexity along generalized geodesics of potential energies

and interaction energies. Hence, Proposition 4.1 can be applied to these functionals.

We recall that on P2(Rd), a generalized geodesic between µ, ν ∈ P2(Rd) is of the form t 7→ µt =
(
(1− t)π1,2 + tπ1,3

)
#
γ

with γ ∈ Π(η, µ, ν) such that π1,2
# γ ∈ Πo(η, µ) and π1,3

# γ ∈ Πo(η, ν). Then a functional F : P2(Rd) → R λ-convex along
this curve satisfies for all t ∈ [0, 1],

F(µt) ≤ (1− t)F(µ) + tF(ν)− λt(1− t)

2
W2

2(µ, ν). (62)

When η ∈ P2,ac(Rd), by Brenier’s theorem, there are OT maps Tµη between η and µ and Tνη between η and ν, and the
generalized geodesic translates as µt =

(
(1− t)Tµη + tTνη

)
#
η.

We define similarly a generalized geodesic between Q,O ∈ P2

(
P2,ac(Rd)

)
as t 7→ Pt =

((
(1− t)Tπ

2

π1 + tTπ
3

π1

)
#
π1
)
#
Γ

where Γ ∈ Π(P,Q,O), π1,2
# Γ ∈ Πo(P,Q) and π1,3

# Γ ∈ Πo(P,O). We provide sufficient conditions for potential and
interaction energies to be λ-convex along generalized geodesics in P2

(
P2,ac(Rd)

)
.

Proposition B.8. Let λ ≥ 0 and F : P2(Rd) → R be λ-convex along generalized geodesics of P2(Rd). Then, the potential
energy F(P) =

∫
F(µ)dP(µ) is λ-convex along generalized geodesics on P2

(
P2,ac(Rd)

)
.
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Proof. See Appendix C.16.

Proposition B.9. Let W : P2(Rd) × P2(Rd) → R be joint convex along generalized geodesics of P2(Rd). Then, the
interaction energy W(P) = 1

2

∫∫
W(µ, ν) dP(µ)dP(ν) is convex along generalized geodesics on P2

(
P2,ac(Rd)

)
.

Proof. See Appendix C.17.

We can also show that F : Q 7→ 1
2WW2

(Q,P)2 is 1-convex along particular generalized geodesics, which have as anchor
point P.

Proposition B.10. Let P,Q,O ∈ P2

(
P2,ac(Rd)

)
. Define the generalized geodesic t 7→ Pt =

((
(1− t)Tπ2

π1 + tTπ
3

π1

)
#
π1
)
#
Γ

where Γ ∈ Π(P,Q,O), π1,2
# Γ ∈ Πo(P,Q) and π1,3

# Γ ∈ Πo(P,O). Then F : Q 7→ 1
2WW2(Q,P)

2 is 1-convex along this
generalized geodesic, i.e., it satisfies for all t ∈ [0, 1],

F(Pt) ≤ (1− t)F(Q) + tF(O)− t(1− t)

2
WW2

(Q,O)2. (63)

Proof. See Appendix C.18.

In particular, Proposition B.10 is the main result allowing to show Proposition 4.1, which can be applied for λ-convex
potential energies with λ ≥ 0 (or more generally, for any λ ∈ R such that 1

τ +λ ≥ 0, see (Ambrosio et al., 2008, Assumption
4.0.1 and Theorem 4.0.4)), and for convex interaction energies.

C. Proofs
C.1. Proof of Proposition 2.1

In the forthcoming proofs, we will make use of the following selection theorem, whose statement can be found in (Villani
et al., 2009, Chapter 5, Bibliographical notes) :

Theorem C.1. If f : A 7→ B is a Borel surjective map between Polish spaces (i.e. separable complete metric spaces), such
that all the fibers f−1(y), y ∈ B are compact, then f admits a Borel right-inverse.

This allows us to prove

Lemma C.2. There exists a measurable selection s : M2 7→ TM of the map

f :

{
A = {(x, v) ∈ TM, d

(
x, expx(v)

)
= ∥v∥x} → M×M

(x, v) 7→
(
x, expx(v)

)
.

(64)

Proof. First, A ⊆ TM is a Polish space, as a closed subset of TM which is Polish. Second, for every (x, y) ∈ M2, the
fiber f−1(x, y) is compact. Indeed, if we let {(xn, vn)}∞n=1 ⊆ f−1(x, y), then we have for every n, xn = x, y = expx(vn)
and ∥vn∥x = d(x, y), so by compactness of the spheres in the tangent space TxM, up to extracting a subsequence there
exists v ∈ TxM such that vn → v, and by continuity y = expx(v) so that (x, v) ∈ f−1(x, y). We can thus apply
Theorem C.1 to f to deduce the existence of s.

Now, we can prove Proposition 2.1. If γ ∈ exp−1
µ (ν), we have (πM, exp)#γ ∈ Π(µ, ν) by definition of exp−1

µ (ν).
Furthermore ∫

M2

d(x, y)2d(πM, exp)#γ(x, y) =

∫
TM

d(x, expx(v))
2dγ(x, v) (65)

≤
∫
TM

∥v∥2xdγ(x, v) = W2
2(µ, ν), (66)

so this transport plan is optimal. In particular the inequality is an equality, and we find that d(x, expx(v)) = ∥v∥x for
γ-a.e. (x, v). The map is thus well defined. To show that it is surjective, take γ ∈ Πo(µ, ν), and set γ̃ := s(π1, π2)#γ,
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where s : M2 7→ TM is the selection map defined in Lemma C.2. Then γ̃ ∈ exp−1
µ (ν). Indeed, by construction,

(πM, exp)#γ̃ = γ ∈ Π(µ, ν), and also

W2
2(µ, ν) =

∫
M2

d(x, y)2dγ(x, y) =

∫
TM

d(x, expx(v))
2dγ̃(x, v) =

∫
TM

∥v∥2xdγ̃(x, v). (67)

This proves the surjectivity of the map.

Now, assume that µ is absolutely continuous, and that M is compact and connected. Let γ ∈ exp−1
µ (ν) and γ̃ :=

(πM, exp)#γ ∈ Πo(µ, ν). By Theorem A.1, γ̃ is of the form (Id, T )#µ where T is the unique optimal transport map from
µ to ν. Furthermore T itself is of the form T (x) = expx(−∇φ(x)) where φ is a c-concave function M → R (in fact a
Kantorovich potential for the pair µ, ν). Furthermore, we have, for µ-a.e. x ∈ M, T (x) belongs to

∂cφ(x) := {y ∈ M, φ(x) + φc(y) =
1

2
d(x, y)2}. (68)

This implies, by (Gigli, 2011, Theorem 1.8), that for µ-a.e. x ∈ M, exp−1
x (T (x)) ⊆ −∂+φ(x), where ∂+φ(x) is the

superdifferential of φ. However, since M is compact, φ is Lipschitz and is thus differentiable almost everywhere, so that
∂+φ(x) = {∇φ(x)} almost everywhere (in particular this holds µ-a.e. as µ is absolutely continuous). From this, we
conclude that for γ-a.e. (x, v), we have T (x) = expx(v) with exp−1

x (T (x)) = {−∇φ(x)}, so that v = −∇φ(x). Thus,
we have proved that

γ = (Id,−∇φ)#µ. (69)

This finishes the proof.

C.2. Proof of Proposition 3.1

We first state and prove another selection result:

Lemma C.3. There exists a measurable selection s : P2(M)2 7→ P2(TM) of the map

f : A =

{
{γ ∈ P2(TM)|γ ∈ exp−1

πM
# γ

(exp# γ)} → P2(M)× P2(M)

γ 7→ (πM
# γ, exp# γ).

(70)

Proof. We first prove that A ⊆ P2(TM) is a Polish space. All we need to do is to prove that it is closed : indeed, since
TM is a connected Riemannian manifold (with the Sasaki metric), (P2(TM),W2) is a Polish space. (See (Ambrosio
et al., 2008, Proposition 7.1.5). Similarly P2(M) is a Polish space.) Note first that if γ ∈ A, it is supported on the
compact set K = {(x, v) ∈ TM, ∥v∥x ≤ diam(M)} ⊆ TM, as ∥v∥x = d(x, expx(v)) γ-almost everywhere. Let
{γn}∞n=1 ⊆ A converging to γ ∈ P2(TM) in the W2 metric. Then γ is also supported on K, and for every n, since
γn ∈ exp−1

πM
# γn

(exp# γn), we have ∫
∥v∥2xdγn(x, v) = W2

2(π
M
# γn, exp# γn). (71)

Letting n→ ∞, we find ∫
∥v∥2xdγ(x, v) = W2

2(π
M
# γ, exp# γ). (72)

Indeed, W2(γn, γ) → 0 implies weak convergence of γn to γ, and thus of πM
# γn and exp# γn to respectively πM

# γ and
exp# γ, and since M is compact, weak convergence on P2(M) is the same as W2 convergence, which in turn implies the
convergence of the right-hand side. The left-hand side converges similarly in virtue of the weak convergence of γn to γ
(recall that they are supported on the compact set K on which the function (x, v) → ∥v∥2x is bounded). Therefore, (72)
implies that γ ∈ exp−1

πM
# γ

(exp# γ), so that γ ∈ A, and A is thus closed in P2(TM), and a Polish space.

Now, we prove that the fibers of f are compact. Let µ, ν ∈ P2(M) and {γn}∞n=1 ⊆ f−1(µ, ν). Since they are supported
on K, and P(K) is compact by compactness of K, there exists γ ∈ P(K) ⊆ P2(TM) such that, up to extracting a
subsequence, γn converges to γ, both weakly and in the W2 metric. We then check as above that γ ∈ A, with πM

# γ = µ
and exp# γ = ν. This proves that the fibers of f are compact. Now, the existence of s follows again from Theorem C.1.
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The proof of Proposition 3.1 is pretty much similar to the previous one. If Γ ∈ exp−1
P (Q), we have (ϕM, ϕexp)#Γ ∈ Π(P,Q)

by definition of exp−1
P (Q). Furthermore,∫

P2(M)2
W2

2(µ, ν)d(ϕ
M, ϕexp)#Γ(µ, ν) =

∫
P2(TM)

W2
2(π

M
# γ, exp# γ)dΓ(γ) (73)

≤
∫
P2(TM)

∫
M2

d(x, y)2d(πM, exp)#γ(x, y)dΓ(γ) (74)

≤
∫
P2(TM)

∫
TM

d(x, expx(v))
2dγ(x, v)dΓ(γ) (75)

≤
∫
P2(TM)

∫
TM

∥v∥2xdγ(x, v)dΓ(γ) = WW2
(P,Q)2, (76)

so this transport plan is optimal. In particular all the inequalities are equalities, and we find that for Γ-a.e. γ,
W2

2(π
M
# γ, exp# γ) =

∫
∥v∥2xdγ(x, v) hence γ ∈ exp−1

πM
# γ

(exp# γ). The map is thus well defined. To show that it

is surjective, take Γ ∈ Πo(P,Q), and set Γ̃ := s(π1, π2)#Γ, where s : P2(M)2 7→ P2(TM) is the selection map defined
in Lemma C.3. Then Γ̃ ∈ exp−1

P (Q) as, by construction, (ϕM, ϕexp)#Γ̃ = Γ ∈ Π(P,Q), and also

WW2
(P,Q)2 =

∫
P2(M)2

W2
2(µ, ν)dΓ(µ, ν) (77)

=

∫
P2(TM)

W2
2(π

M
# γ, exp# γ)dΓ̃(γ) (78)

=

∫
P2(TM)

∫
TM

∥v∥2xdγ(x, v)dΓ̃(γ). (79)

This proves the surjectivity of the map.

Now, assume that P is absolutely continuous with respect to P0, and that M is compact and connected. Let Γ ∈ exp−1
P (Q)

and Γ̃ := (ϕM, ϕexp)#Γ ∈ Πo(P,Q). By (Emami & Pass, 2025, Theorem 13), Γ̃ is of the form (Id, T )#P where T is
the unique optimal transport map from P to Q. Furthermore, for Γ-a.e. γ, we have γ ∈ exp−1

µγ
(νγ), with µγ := πM

# γ,
and νγ := exp# γ. Since Γ̃ = (Id, T )#P and P is concentrated on absolutely continuous measures (as P ≪ P0),
we also have that for Γ-a.e. γ, µγ is absolutely continuous and νγ = T (µγ). Thus, by Proposition 2.1, we have
γ = (Id,−∇φµγ ,T (µγ))#µγ =

(
µ→ (Id,−∇φµ,T (µ))

)
◦ ϕM(γ) for Γ-a.e. γ. Therefore, we have proved that

Γ =
(
µ→ (Id,−∇φµ,T (µ))

)
#
ϕM# Γ =

(
µ→ (Id,−∇φµ,T (µ))#µ

)
#

P. (80)

This finishes the proof.
Remark C.4. As a side note, there exists a more explicit expression for the unique Γ ∈ exp−1

P (Q). Let indeed U : P2(M) 7→
R be a Kantorovich potential for P,Q (i.e. a 1

2W
2
2-concave function solving the dual problem). Then, by the same reasoning

as in the proof of (Emami & Pass, 2025, Theorem 13), for P-almost every µ ∈ P2(M), we have ∇φµ,T (µ) = DU(µ).
Thus, we have

Γ =
(
µ→ (Id,−DU(µ))#µ

)
#

P. (81)

C.3. Proof of Proposition 3.7

The proof is inspired from (Erbar, 2010, Proposition 2.5) and (Ambrosio et al., 2008, Theorem 8.3.1).

First, fix φ ∈ Cyl
(
P2(M)

)
, such that φ(µ) := F

(∫
V1dµ, . . . ,

∫
Vmdµ

)
with F ∈ C∞

c (Rm) and V1, . . . , Vm ∈ C∞
c (M).

Let us define H : P2(M)× P2(M) → R as

H(µ, ν) :=

{
|φ(µ)−φ(ν)|
W2(µ,ν)

if µ ̸= ν

∥∇W2φ(µ)∥L2(µ) if µ = ν.
(82)

We show in Lemma C.5 that H is upper semicontinuous. We want to prove that t → Pt(φ) =
∫
φdPt is absolutely
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continuous and bound its metric derivative. For every s, t ∈ I , let Γs,t ∈ Πo(Ps,Pt). Then

1

|h|
|Ps+h(φ)− Ps(φ)| ≤

1

|h|

∫
P(M)2

|φ(µ)− φ(ν)| dΓs+h,s(µ, ν)

≤ 1

|h|

∫
P(M)2

W2(µ, ν)H(µ, ν) dΓs+h,s(µ, ν)

≤ WW2
(Ps+h,Ps)
|h|

√∫
P(M)2

H2(µ, ν) dΓs+h,s(µ, ν).

(83)

Now, we have Γs+h,s ⇀ (Id, Id)#Ps when h→ 0, so, since H is upper semicontinuous, by (Ambrosio et al., 2008, Lemma
5.1.7), we have

lim sup
h→0

∫
P(M)2

H2(µ, ν) dΓs+h,s(µ, ν) ≤
∫
P(M)

H2(µ, µ) dPs(µ) =
∫
P(M)

∥∇W2φ(µ)∥2L2(µ) dPs(µ), (84)

and thus s 7→ Ps(φ) is absolutely continuous, with metric derivative bounded from above by

|P′|(s)∥∇W2
φ∥L2(Ps,TP2(P2(M))). (85)

Let now φ ∈ Cyl
(
I × P2(M)

)
, Q = I × P2(M), and λ =

∫
I
dPtdt. Then, for any interval J ⊆ I such that

spt(φ) ⊆ J × P2(M), ∣∣∣∣∫
Q

∂tφ dλ

∣∣∣∣ = ∣∣∣∣ lim
h→0+

∫
Q

φ(t, µ)− φ(t− h, µ)

h
dλ(t, µ)

∣∣∣∣
≤ lim sup

h→0+

∣∣∣∣∫
J

Pt(φt)− Pt+h(φt)
h

dt

∣∣∣∣
≤
∫
J

lim sup
h→0+

|Pt(φt)− Pt+h(φt)|
|h|

dt

≤
∫
J

|P′|(t)∥∇W2φt∥L2(Pt) dt

≤

√∫
J

|P′|2(t) dt

√∫
J

∥∇W2φt∥2L2(Pt)
dt.

(86)

From this, we infer that the linear form

L(∇W2φ) := −
∫
Q

∂tφ dλ (87)

is well-defined and Lipschitz continuous. In particular, there exists v ∈ {∇W2φ, φ ∈ Cyl
(
I × P2(M)

)
}
L2(λ,TP2(M))

such that for every φ ∈ Cyl
(
I × P2(M)

)
,

L(∇W2φ) = ⟨v,∇W2φ⟩L2(λ) =

∫
I

∫
P2(M)

⟨vt(µ),∇W2φ(µ)⟩L2(µ) dPt(µ)dt, (88)

and we have the continuity equation.

Moreover, for a.e. t ∈ I , vt ∈ {∇W2
φ, φ ∈ Cyl

(
I × P2(M)

)
}
L2(Pt,TP2(M))

, and for every interval J ⊆ I , there exists a
sequence (∇W2

φn)n supported in J × P2(M) such that ∇W2
φn → vt1J . For all n,

L(∇W2
φn) ≤

(∫
J

|P′|(t)2 dt
) 1

2
(∫

J

∥∇W2
φn∥2L2(Pt,TP2(M)) dt

) 1
2

(89)

and letting n→ ∞, we find∫
J

∥vt∥2L2(Pt,TP2(M)) dt ≤
(∫

J

|P′|(t)2 dt
) 1

2
(∫

J

∥vt∥2L2(Pt,TP2(M)) dt

) 1
2

∫
J

∥vt∥2L2(Pt,TP2(M)) dt ≤
∫
J

|P′|(t)2 dt.
(90)
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We thus conclude that for a.e. t ∈ I ,

∥vt∥L2(Pt,TP2(M)) ≤ |P′|(t). (91)

We now show that H is upper semicontinuous.

Lemma C.5. Let φ ∈ Cyl
(
P2(M)

)
. The function H : P2(M)× P2(M) → R defined as

H(µ, ν) :=

{
|φ(µ)−φ(ν)|
W2(µ,ν)

if µ ̸= ν

∥∇W2
φ(µ)∥L2(µ) if µ = ν,

(92)

is upper semicontinuous.

Proof. We want to show that the function H : P2(M)× P2(M) → R defined by

H(µ, ν) :=

{
|φ(µ)−φ(ν)|
W2(µ,ν)

if µ ̸= ν

∥∇W2φ(µ)∥L2(µ) if µ = ν
(93)

is upper semicontinuous. Let µ, ν ∈ P2(M), and let (µt)t∈[0,1] be the constant speed geodesic from µ to ν with velocity
field vt ∈ L2(µt). Then, we have

φ(ν)− φ(µ) =

∫ 1

0

d

dt
φ(µt) dt (94)

=

∫ 1

0

d

dt
F

(∫
V1dµt, . . . ,

∫
Vmdµt

)
dt (95)

=

∫ 1

0

m∑
i=1

∂F

∂xi

(∫
V1dµt, . . . ,

∫
Vmdµt

)
d

dt

∫
Vidµt dt (96)

=

∫ 1

0

m∑
i=1

∂F

∂xi

(∫
V1dµt, . . . ,

∫
Vmdµt

)∫
⟨∇Vi, vt⟩ dµtdt (97)

=

∫ 1

0

⟨∇W2
φ(µt), vt⟩L2(µt)dt (98)

≤

√∫ 1

0

∥vt∥2L2(µt)
dt

√∫ 1

0

∥∇W2φ(µt)∥2L2(µt)
dt (99)

≤ W2(µ, ν)

√∫ 1

0

∥∇W2
φ(µt)∥2L2(µt)

dt. (100)

Hence,

H(µ, ν) ≤

√∫ 1

0

∥∇W2
φ(µt)∥2L2(µt)

dt <∞ (101)

as the right-hand side is finite because the F, Vi have compact support. Note that this inequality is also true when µ = ν as
µt = µ for every t.

Furthermore, notice that the map f : µ 7→ ∥∇W2
φ(µ)∥2L2(µ) is continuous. Indeed, we can check that we have

f(µ) =

∫
G

(∫
V1dµ, . . . ,

∫
Vmdµ, x

)
dµ(x) (102)
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for some Lipschitz function G with Lipschitz constant L, so that if µn ⇀ µ, we have

|f(µn)− f(µ)| =
∣∣∣∣∫ G

(∫
V1dµ

n, . . . ,

∫
Vmdµn, x

)
dµn(x)−

∫
G

(∫
V1dµ, . . . ,

∫
Vmdµ, x

)
dµ(x)

∣∣∣∣ (103)

≤
∣∣∣∣∫ G

(∫
V1dµ

n, . . . ,

∫
Vmdµn, x

)
dµn(x)−

∫
G

(∫
V1dµ, . . . ,

∫
Vmdµ, x

)
dµn(x)

∣∣∣∣ (104)

+

∣∣∣∣∫ G

(∫
V1dµ, . . . ,

∫
Vmdµ, x

)
dµn(x)−

∫
G

(∫
V1dµ, . . . ,

∫
Vmdµ, x

)
dµ(x)

∣∣∣∣ (105)

≤ L

m∑
i=1

∣∣∣∣∫ Vi d(µ
n − µ)

∣∣∣∣+ ∣∣∣∣∫ G

(∫
V1dµ, . . . ,

∫
Vmdµ, x

)
d(µn − µ) (x)

∣∣∣∣→ 0. (106)

Now, if µn ⇀ µ and νn ⇀ µ, then µnt ⇀ µ for every t (indeed W2(µ
n
t , µ) ≤ W2(µ

n
t , µ

n)+W2(µ
n, µ) = tW2(ν

n, µn)+
W2(µ

n, µ) → 0), and thus by what precedes ∥∇W2
φ(µnt )∥2L2(µt)

7→ ∥∇W2
φ(µ)∥2L2(µ) for every t. Therefore, by (101),

we deduce
lim sup

n
H(µn, νn) ≤ ∥∇W2φ(µ)∥L2(µ) = H(µ, µ). (107)

This proves the upper semicontinuity of H .

C.4. Proof of Proposition 3.8

Let P ∈ P2

(
P2(M)

)
, and define P2

(
P2(TM)

)
P
:= {Γ ∈ P2

(
P2(TM)

)
, ϕM# Γ = P}. Fix Γ ∈ P2

(
P2(TM)

)
P

, we
define

∥Γ∥2P :=

∫∫
∥v∥2xdγ(x, v)dΓ(γ). (108)

By the disintegration theorem (see for example (Ambrosio et al., 2008, Theorem 5.3.1)), there exists a P-a.e. unique family
of probability measures (Γµ)µ∈P2(M) such that Γµ is supported on P2(TM)µ and, for every measurable test function
f : P2(TM) 7→ R+, ∫

f(γ)dΓ(γ) =
∫∫

f(γ)dΓµ(γ)dP(µ). (109)

We can use this family of measures to define the barycentric projection of Γ:
Definition C.6. The barycentric projection of Γ is the vector field B(Γ) ∈ L2(P, TM) defined by

B(Γ)(µ) :=
∫

B(γ)dΓµ(γ) ∈ L2(µ, TM). (110)

Note that we work here in the spaceL2(P, TM), which is defined in Appendix B.1. It is a larger space thanL2(P, TP2(M)),
with which it should not be confused. The barycentric projection satisfies the following properties:
Proposition C.7. For every ξ ∈ L2(P, TM), it holds∫∫

⟨ξ(πM
# γ)(x), v⟩xdγ(x, v)Γ(γ) =

∫
⟨ξ(µ),B(Γ)(µ)⟩L2(µ)dP(µ) = ⟨ξ,B(Γ)⟩L2(P). (111)

Furthermore ∥B(Γ)∥L2(P) ≤ ∥Γ∥P.

Proof. For every ξ ∈ L2(P, TM), we have∫∫
⟨ξ(πM

# γ)(x), v⟩xdγ(x, v)Γ(γ) =
∫∫∫

⟨ξ(πM
# γ)(x), v⟩xdγ(x, v)dΓµ(γ)dP(µ) (112)

=

∫∫∫
⟨ξ(µ)(x), v⟩xdγ(x, v)dΓµ(γ)dP(µ) (113)

=

∫∫
⟨ξ(µ),B(γ)⟩L2(µ)dΓµ(γ)dP(µ) (114)

=

∫
⟨ξ(µ),B(Γ)(µ)⟩L2(µ)dP(µ) = ⟨ξ,B(Γ)⟩L2(P). (115)
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Furthermore,

∥B(Γ)∥2L2(P) =

∫∫ ∥∥∥∥∫ B(γ)(x)dΓµ(γ)

∥∥∥∥2
x

dµ(x)dP(µ) (116)

≤
∫∫∫

∥B(γ)(x)∥2xdΓµ(γ)dµ(x)dP(µ) (117)

≤
∫∫

∥B(γ)∥2L2(µ)dΓµ(γ)dP(µ) (118)

≤
∫∫∫

∥v∥2xdγ(x, v)dΓµ(γ)dP(µ) (119)

≤
∫∫

∥v∥2xdγ(x, v)dΓ(γ) = ∥Γ∥2P, (120)

where we used ∥B(γ)∥2L2(µ) ≤ ∥γ∥2µ =
∫
∥v∥2xdγ(x, v) to obtain the fourth line.

We now show Proposition 3.8.

Assume by contradiction that ξ is not a strong subdifferential of F at P. Then, there exists δ > 0 and a sequence
{Γn}∞n=1 ⊆ P2

(
P2(TM)

)
P

such that εn := ∥Γn∥P −−−−→
n→∞

0, and, for every n,

F(Pn)− F(P)−
∫∫

⟨ξ(πM
# γ), v⟩xdγ(x, v)dΓn(γ) ≤ −δεn (121)

with Pn := ϕexp# Γn. Now, for every n, fix Υn ∈ exp−1
P (Pn). Since ξ ∈ ∂−F(P), there exists N > 0 such that for every

n > N ,

F(Pn)− F(P) ≥
∫∫

⟨ξ(πM
# γ)(x), v⟩xdγ(x, v)dΥn(γ)−

δ

2
WW2

(Pn,P). (122)

Denoting Ψn := B(Γn) and Φn := B(Υn), we have, combining (121) and (122), that

⟨ξ,Ψn⟩L2(P) − δεn ≥ ⟨ξ,Φn⟩L2(P) −
δ

2
WW2

(Pn,P). (123)

Furthermore, we have WW2(Pn,P) ≤ εn, since

WW2
(Pn,P)

2 ≤
∫

W2
2(π

M
# γ, exp# γ)dΓn(γ) (124)

≤
∫∫

d2(x, expx(v))dγ(x, v)dΓn(γ) (125)

≤
∫∫

∥v∥2xdγ(x, v)dΓn(γ) = ∥Γn∥2P = ε2n. (126)

Thus, we find for every n > N

⟨ξ,Φn −Ψn⟩L2(P) ≤ −δ
2
εn. (127)

Now, since ∥Ψn∥L2(P) ≤ ∥Γn∥P = εn and (by optimality of Υn) ∥Φn∥L2(P) ≤ ∥Υn∥P = WW2
(Pn,P) ≤ εn for every

n, it ensues that, up to extracting a subsequence, there exists Ψ,Φ ∈ L2(P, TM)) towards which ε−1
n Ψn and ε−1

n Φn
respectively converge weakly in L2(P, TM). Therefore, dividing (127) by εn and passing to the limit, we find

⟨ξ,Φ−Ψ⟩L2(P) ≤ −δ
2
. (128)

Now, fix F ∈ Cyl
(
P2(M)

)
. By applying Lemma C.8 to Γn and Υn, we find∫

FdPn =

∫
FdP + ⟨∇W2

F ,Φn⟩L2(P) +O(ε2n), (129)∫
FdPn =

∫
FdP + ⟨∇W2F ,Ψn⟩L2(P) +O(ε2n). (130)
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Subtracting these two equations, dividing by εn and passing to the limit, we thus find

⟨∇W2
F ,Φ−Ψ⟩L2(P) = 0, (131)

and this holds for any F ∈ Cyl
(
P2(M)

)
. However, by assumption, ξ ∈ TPP2

(
P2(M)

)
, and we recall that

TPP2

(
P2(M)

)
= {∇W2

F ,F ∈ Cyl
(
P2(M)

)
}
L2(P,TP2(P2(M)))

. (132)

This implies immediately that ⟨ξ,Φ−Ψ⟩L2(P) = 0, which contradicts (128).

Lemma C.8. Let F ∈ Cyl
(
P2(M)

)
, then, for every P ∈ P2

(
P2(M)

)
and Γ ∈ P2

(
P2(TM)

)
P

,∣∣∣∣∫ F d
(
ϕexp# Γ

)
−
∫

FdP −
∫∫

⟨∇W2F(πM
# γ)(x), v⟩xdγ(x, v)dΓ(γ)

∣∣∣∣ ≤ C∥Γ∥2P (133)

for some constant C depending only on F .

Proof. Let F ∈ C∞
c (Rm) and V1, . . . , Vm ∈ C∞

c (M) be such that

F(µ) = F

(∫
V1dµ, . . . ,

∫
Vmdµ

)
, µ ∈ P2(M). (134)

Since F is compactly supported, there exists C > 0 which only depends on F such that for every x, h ∈ Rm,

|F (x+ h)− F (x)− ⟨∇F (x), h⟩| ≤ C∥h∥2. (135)

Fix γ ∈ P2(TM), and let µ := πM
# γ and ν := exp# γ. Since the Vi are compactly supported, we know by Lemma C.12

that there exists some constant L > 0, which depends only on the Vi, such that for every i,∣∣∣∣∫ Vidν −
∫
Vidµ−

∫
⟨∇Vi(x), v⟩dγ(x, v)

∣∣∣∣ ≤ L∥γ∥2µ. (136)

Now, we have∣∣∣∣F(ν)−F(µ)−
∫
⟨∇W2

F(µ)(x), v⟩xdγ(x, v)
∣∣∣∣ (137)

=

∣∣∣∣∣F(ν)−F(µ)−
m∑
i=1

∂F

∂xi

∫
⟨∇Vi(x), v⟩xdγ(x, v)

∣∣∣∣∣ (138)

≤

∣∣∣∣∣F(ν)−F(µ)−
m∑
i=1

∂F

∂xi

(∫
Vidν −

∫
Vidµ

)∣∣∣∣∣ (139)

+

∣∣∣∣∣
m∑
i=1

∂F

∂xi

(∫
Vidν −

∫
Vidµ−

∫
⟨∇Vi(x), v⟩xdγ(x, v)

)∣∣∣∣∣ (140)

≤ C

m∑
i=1

∣∣∣∣∫ Vidν −
∫
Vidµ

∣∣∣∣2 + C

m∑
i=1

∣∣∣∣∫ Vidν −
∫
Vidµ−

∫
⟨∇Vi(x), v⟩dγ(x, v)

∣∣∣∣ (141)

≤ C

m∑
i=1

∣∣∣∣∫ Vidν −
∫
Vidµ

∣∣∣∣2 + C∥γ∥2µ (142)

≤ C

m∑
i=1

∣∣∣∣∫ Vidν −
∫
Vidµ−

∫
⟨∇Vi(x), v⟩dγ(x, v)

∣∣∣∣2 + ∣∣∣∣∫ ⟨∇Vi(x), v⟩dγ(x, v)
∣∣∣∣2 + C∥γ∥2µ (143)

≤ C∥γ∥4µ + C∥γ∥2µ, (144)

where we used (135) in the fifth line, with xi =
∫
Vidµ and hi =

∫
Vidν −

∫
Vidµ, we used (136) in the sixth and eighth

lines, and we used the Cauchy-Schwarz inequality in the eight line. Throughout the derivation, C denotes a constant that
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may change between lines but which only depends on F and the Vi. In particular, there exists a constant C which only
depends on F and the Vi such that for every γ ∈ P2(TM) with µ = πM

# γ and ∥γ∥µ ≤ diam(M),∣∣∣∣F(exp# γ)−F(µ)−
∫

⟨∇W2
F(µ)(x), v⟩xdγ(x, v)

∣∣∣∣ ≤ C∥γ∥2µ. (145)

Now, if γ ∈ P2(TM) is such that ∥γ∥µ > diam(M) with µ := πM
# γ, let ν := exp# γ and η ∈ exp−1

µ (ν). Since
∥η∥µ = W2(µ, ν) ≤ diam(M), this implies∣∣∣∣F(ν)−F(µ)−

∫
⟨∇W2

F(µ)(x), v⟩xdγ(x, v)
∣∣∣∣ ≤ ∣∣∣∣F(ν)−F(µ)−

∫
⟨∇W2

F(µ)(x), v⟩xdη(x, v)
∣∣∣∣ (146)

+

∣∣∣∣∫ ⟨∇W2
F(µ)(x), v⟩x d(η − γ) (x, v)

∣∣∣∣ (147)

≤ C∥η∥2µ + |⟨∇W2
F(µ),B(η)− B(γ)⟩L2(µ)| (148)

≤ C∥η∥2µ + C(∥B(η)∥L2(µ) + ∥B(γ)∥L2(µ)) (149)

≤ C(∥η∥2µ + ∥η∥µ + ∥γ∥µ) (150)

≤ C(∥γ∥2µ + ∥γ∥µ) (151)

≤ C∥γ∥2µ, (152)

where we used (145) in the third line, and we obtain the fourth line using the Cauchy-Schwarz inequality and the fact that
supµ∈P2(M) ∥∇W2F(µ)∥L2(µ) < +∞ (since the F and Vi are compactly supported). Again the C’s denote a constant
depending only on F and the Vi (and diam(M)). Thus, we have shown that there exists a constant C depending only on F
such that for every γ ∈ P2(TM),∣∣∣∣F(exp# γ)−F(πM

# γ)−
∫

⟨∇W2
F(πM

# γ)(x), v⟩xdγ(x, v)
∣∣∣∣ ≤ C∥γ∥2µ. (153)

Hence for every Γ ∈ P2

(
P2(TM)

)
, noting P := ϕM# Γ and Q := ϕexp# Γ,∣∣∣∣∫ FdQ −
∫

FdP −
∫∫

⟨∇W2
F(πM

# γ)(x), v⟩xdγ(x, v)dΓ(γ)

∣∣∣∣ (154)

=

∣∣∣∣∫ F(exp# γ)−F(πM
# γ)− ⟨∇W2

F(πM
# γ)(x), v⟩xdγ(x, v)dΓ(γ)

∣∣∣∣ (155)

≤ C

∫
∥γ∥2πM

# γdΓ(γ) = C∥Γ∥2P. (156)

This finishes the proof.

C.5. Proof of Proposition 3.9, and existence of gradients in the tangent space

First, we prove Proposition 3.9. Let ξ1, ξ2 ∈ ∂−F(P) ∩ ∂+F(P) ∩ TPP2

(
P2(M)

)
. Using Proposition 3.8, we know that

they are also strong gradients of F at P. Therefore, letting ξ = ξ1 − ξ2, for every Ψ ∈ L2(P, TP2(M)), we have∫
⟨ξ(µ),Ψ(µ)⟩L2(µ)dP(µ) = o(∥Ψ∥L2(P)). (157)

that is, ⟨ξ,Ψ⟩L2(P) = o(∥Ψ∥L2(P)). Considering Ψ = εξ, we obtain ε∥ξ∥2L2(P) = o(ε) that is ∥ξ∥2L2(P) = o(1), and this
implies ξ = ξ1 − ξ2 = 0, and this finishes the proof.

Now, a natural question is to ask whether there is a gradient in TPP2

(
P2(M)

)
whenever there exists a gradient ξ ∈

∂−F(P) ∩ ∂+F(P). While a complete answer to this question is out of the scope of this article, a partial answer can be
provided using results laid out in (Schiavo, 2020). First, we consider the following assumption:

Assumption C.9. (Smooth transport property, (Schiavo, 2020, Assumption 2.9)) We say that M satisfies the smooth
transport property if, whenever µ, ν ∈ P2(M) are absolutely continuous with smooth nowhere vanishing densities, then
there exists a smooth optimal transport map T : M 7→ M from µ to ν (in the sense of Theorem A.1).
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This is a relatively restrictive assumption on M. By (Schiavo, 2020, Theorem 5.9), it holds whenever M satisfies the strong
Ma-Trudinger-Wang condition MTW(K) for some K > 0 (we refer to (Schiavo, 2020, Section 5.2) for further details).
Under this assumption, we can prove the following result on the existence of a gradient in the tangent space:

Proposition C.10. Assume that M satisfies Assumption C.9, and that P satisfies Assumption B.2. Then, if F admits
a WoW gradient at P (i.e. ∂−F(P) ∩ ∂+F(P) is not empty), then it admits a WoW gradient in TPP2

(
P2(M)

)
(i.e.,

∂−F(P) ∩ ∂+F(P) ∩ TPP2

(
P2(M)

)
is not empty).

Proof. All we need to do is to prove that for every ξ ∈ TPP2

(
P2(M)

)⊥
, Q ∈ P2

(
P2(M)

)
and Γ ∈ exp−1

P (Q),∫∫
⟨ξ(πM

# γ)(x), v⟩xdγ(x, v)dΓ(γ) = 0. (158)

Indeed, this ensures that if ξ ∈ ∂−F(P) ∩ ∂+F(P) is a WoW gradient of F at P, then its orthogonal projection on
TPP2

(
P2(M)

)
is also a WoW gradient.

We thus fix ξ ∈ TPP2

(
P2(M)

)⊥
, Q ∈ P2

(
P2(M)

)
and Γ ∈ exp−1

P (Q). Since P satisfies Assumption B.2, by Remark C.4,
Γ is of the form (µ 7→ (Id,−DPU)#µ)#P where U is a Kantorovich potential for the pair P,Q. However, since M satisfies
Assumption C.9, and U is W2-Lipschitz (by (Emami & Pass, 2025, Lemma 12)), (Schiavo, 2020, Theorem 2.10(3)) implies
that DPU ∈ TPP2

(
P2(M)

)
(as a limit in L2(P, TP2(M)) of functions of the form ∇W2

F , F ∈ Cyl
(
P2(M)

)
), so that∫∫

⟨ξ(πM
# γ)(x), v⟩xdγ(x, v)dΓ(γ) = −

∫
⟨ξ(µ), DPU(µ)⟩L2(µ)dP(µ) = 0. (159)

This finishes the proof.

Note that for this proposition to hold, P must not simply be absolutely continuous w.r.t P0, but must itself satisfy Assump-
tion B.2. According to (Schiavo, 2020, Proposition 5.2), this is the case whenever, for instance, P = φ2P0 where φ is a
strictly positive W2-Lipschitz function on P2(M).

C.6. Proof of Proposition 4.1

We aim at applying (Ambrosio et al., 2008, Theorem 4.0.4). Since by hypothesis, F is λ-convex along the curve Pt =((
(1− t)Tπ

2

π1 + tTπ
3

π1

)
#
π1
)
#
Γ for Γ ∈ Π(P,Q,O) and P ∈ P2

(
P2,ac(Rd)

)
, we need to show that G : Q 7→ 1

2WW2
(Q,P)2

is 1-convex along Pt (see e.g. (Ambrosio et al., 2008, Lemma 9.2.7)). This is well the case by Proposition B.10.

Now, let Pk ∈ P2

(
P2,ac(Rd)

)
and J(P) = 1

2τWW2
(P,Pk)2 + F(P) the functional solved at each step of the JKO scheme.

Then, we have

J(Pt) =
1

2τ
WW2

(Pt,Pk)
2 + F(Pt)

=
1

τ
G(P) + F(P)

≤ 1

τ

(
(1− t)G(Q) + tG(O)− t(1− t)

2
WW2

(Q,O)2
)

+ (1− t)F(Q) + tF(O)− λt(1− t)

2
WW2(Q,O)

2

= (1− t)J(Q) + tJ(O)− λτ + 1

2τ
t(1− t)WW2

(Q,O)2.

(160)

Thus, we conclude that J satisfies well (Ambrosio et al., 2008, Assumption (4.0.1)), and then apply (Ambrosio et al., 2008,
Theorem 4.0.4).

C.7. Proof of Proposition A.4

Let ξ, ξ′ ∈ TµP2(M) ∩ ∂+F(µ) ∩ ∂−F(µ). By density, for any ε > 0, there exist φε, φ′
ε ∈ C∞

c (M) such that
∥ξ −∇φε∥L2(µ,TM) ≤ ε

2 and ∥ξ′ −∇φ′∥L2(µ,TM) ≤ ε
2 .

We rely on the following Lemma, which provides an OT map for any ψ ∈ C∞
c (M) for s small enough.
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Lemma C.11. Let µ ∈ P2(M) and ψ ∈ C∞
c (M). Then, there exists s̄ such that x 7→ expx(s∇ψ(x)) is an OT map

between µ and
(
exp ◦(s∇ψ)

)
#
µ for all s ∈]− s̄, s̄[.

Proof. Suppose ψ ̸= 0. Let ε > 0 and s̄ = ε
maxx ∥∇2ψ(x)∥ . It exists as ψ is supported on a compact. Then, for any

s ∈ (−s̄, s̄), ∥s∇2ψ∥ ≤ s̄∥∇2ψ∥ ≤ ε. Then, by (Villani et al., 2009, Theorem 13.5), sψ is d2/2 convex, and by McCann’s
theorem, exp(s∇ψ) is an OT map.

By Lemma C.11, there exists s > 0 such that γ = (Id, s∇φε)#µ ∈ exp−1
µ (ν) and γ′ = (Id, s∇φ′

ε)#µ ∈ exp−1
µ (ν′) with

ν =
(
exp ◦(s∇φε)

)
#
µ and ν′ =

(
exp ◦(s∇φ′

ε)
)
#
µ. Thus, we have using the definitions of sub-differentials that{

F(ν) ≥ F(µ) + s
∫
⟨ξ(x),∇φε(x)⟩x dµ(x) + o(s)

F(ν′) ≥ F(µ) + s
∫
⟨ξ′(x),∇φ′

ε(x)⟩x dµ(x) + o(s).
(161)

Likewise, by the definition of the super-differentials, we have{
F(ν′) ≤ F(µ) + s

∫
⟨ξ(x),∇φ′

ε(x)⟩x dµ(x) + o(s)

F(ν) ≤ F(µ) + s
∫
⟨ξ′(x),∇φε(x)⟩x dµ(x) + o(s).

(162)

Dividing by s > 0 and rearranging the terms, we have
F(ν)−F(µ)

s ≥ ⟨ξ,∇φε⟩L2(µ,TM) + o(1)
F(ν′)−F(µ)

s ≥ ⟨ξ′,∇φ′
ε⟩L2(µ,TM) + o(1)

F(µ)−F(ν′)
s ≥ ⟨−ξ,∇φ′

ε⟩L2(µ,TM) + o(1)
F(µ)−F(ν)

s ≥ ⟨−ξ′,∇φε⟩L2(µ,TM) + o(1).

(163)

Summing them, we get,

0 ≥ ⟨ξ − ξ′,∇φε⟩L2(µ,TM) + ⟨ξ′ − ξ,∇φ′
ε⟩L2(µ,TM) + o(1) = ⟨ξ − ξ′,∇φε −∇φ′

ε⟩L2(µ,TM) + o(1). (164)

Then, we have

∥ξ − ξ′∥L2(µ,TM) ≤
√
∥ξ − ξ′∥2L2(µ,TM) − 2⟨ξ − ξ′,∇φε −∇φ′

ε⟩L2(µ,TM) + ∥∇φε −∇φ′
ε∥2L2(µ,TM)

= ∥ξ − ξ′ − (∇φε −∇φ′
ε)∥L2(µ,TM)

≤ ∥ξ −∇φε∥L2(µ,TM) + ∥ξ′ −∇φ′
ε∥L2(µ,TM)

≤ ε.

(165)

Taking the limit ε→ 0, we conclude that ξ = ξ′.

C.8. Proof of Proposition A.5

We assume by contradiction that ξ is not an extended strong subdifferential. Then there exists a sequence {γn}∞n=1 ⊆
P2(TM)µ and δ > 0 such that εn := ∥γn∥µ → 0 and for every n, denoting µn := exp# γn,

F(µn)−F(µ)−
∫

⟨ξ(x), v⟩xdγn(x, v) ≤ −δεn. (166)

Now, let ηn ∈ exp−1
µ (µn). Since ξ is a subdifferential, there exists N such that for every n > N ,

F(µn)−F(µ)−
∫

⟨ξ(x), v⟩xdηn(x, v) ≥ −δ
2
W2(µ, µn). (167)

Since, by optimality of ηn, we have ∥ηn∥µ = W2(µ, µn) ≤ ∥γn∥µ = εn, combining these inequalities, we find∫
⟨ξ(x), v⟩xdηn(x, v)−

∫
⟨ξ(x), v⟩xdγn(x, v) ≤ −δ

2
εn (168)
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that is

⟨ξ,Φn −Ψn⟩L2(µ) ≤ −δ
2
εn (169)

for every n > N , where we have defined Ψn := B(γn) and Φn := B(ηn). Since we have ∥Ψn∥L2(µ) ≤ ∥γn∥µ = εn and
likewise ∥Φn∥L2(µ) ≤ ∥ηn∥µ ≤ εn, up to extracting a subsequence we can assume that there exists Ψ,Φ ∈ L2(µ, TM)
towards which ε−1

n Ψn and ε−1
n Φn respectively converge weakly in L2(µ, TM). Thus, dividing (169) by εn and passing to

the limit, we find

⟨ξ,Φ−Ψ⟩L2(µ) ≤ −δ
2
. (170)

Now, fix some φ ∈ C∞
c (M). By Lemma C.12, we have∫

φdµn =

∫
φdµ+

∫
⟨∇φ(x), v⟩xdηn(x, v) +O(∥ηn∥2µ) (171)

=

∫
φdµ+ ⟨∇φ,Φn⟩L2(µ) +O(ε2n), (172)

and similarly ∫
φdµn =

∫
φdµ+ ⟨∇φ,Ψn⟩L2(µ) +O(ε2n). (173)

Subtracting these two equations, dividing by εn and passing to the limit, we find

⟨∇φ,Φ−Ψ⟩L2(µ) = 0 (174)

and this holds for any φ ∈ C∞
c (M). However, by assumption, ξ ∈ TµP2(M) = {∇φ,φ ∈ C∞

c (M)}
L2(µ,TM)

. This
implies immediately that ⟨ξ,Φ−Ψ⟩L2(µ) = 0, which contradicts (170).

Lemma C.12. Let φ ∈ C∞
c (M), then, for every µ ∈ P2(M) and γ ∈ P2(TM)µ,∣∣∣∣∫ φd

(
exp# γ

)
−
∫
φdµ−

∫
⟨∇φ(x), v⟩xdγ(x, v)

∣∣∣∣ ≤ 1

2
L∥γ∥2µ (175)

where L := max(x,v)∈TM,∥v∥x=1 ∥HessM φ(x)[v]∥ <∞.

Proof. Let (x, v) ∈ TM. Applying (Boumal, 2023, Exercise 5.40) to the geodesic given by c(t) = expx(tv), it ensues that
there exists t ∈ (0, 1) such that

φ(expx(v)) = φ(x) + ⟨∇φ(x), v⟩x +
1

2
⟨Hessφ(c(t))[c′(t)], c′(t)⟩c(t) (176)

so that, since ∥c′(t)∥c(t) = ∥v∥x,

|φ(expx(v))− φ(x)− ⟨∇φ(x), v⟩x| ≤
1

2
L∥v∥2x. (177)

This immediately implies∣∣∣∣∫ φd
(
exp# γ

)
−
∫
φdµ−

∫
⟨∇φ(x), v⟩dγ(x, v)

∣∣∣∣ = ∣∣∣∣∫ φ(expx(v))− φ(x)− ⟨∇φ(x), v⟩dγ(x, v)
∣∣∣∣ (178)

≤ 1

2
L

∫
∥v∥2xdγ(x, v) =

1

2
L∥γ∥2µ. (179)
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C.9. Proof of Proposition A.6

Let ν, µ ∈ P2(M), and γ ∈ exp−1
µ (ν). For any x ∈ M, v ∈ TxM, let us note cx,v(t) = expx(tv) the geodesic starting

from x with direction v. By (Boumal, 2023, Exercise 5.40), we have that there exists t ∈ [0, 1] such that

V
(
expx(v)

)
= V (x) + ⟨∇MV (x), v⟩x +

1

2
⟨HessV

(
cx,v(t)

)
[c′x,v(t)], c

′
x,v(t)⟩cx,v(t). (180)

Then,

V(ν)− V(µ) =
∫ (

V (expx(v))− V (x)
)
dγ(x, v)

=

∫
⟨∇MV (x), v⟩x +

1

2
⟨HessV

(
cx,v(t)

)
[c′x,v(t)], c

′
x,v(t)⟩cx,v(t) dγ(x, v)

=

∫
⟨∇MV (x), v⟩x dγ(x, v) +

1

2

∫
⟨HessV

(
cx,v(t)

)
[c′x,v(t)], c

′
x,v(t)⟩cx,v(t) dγ(x, v).

(181)

Moreover, using that V has bounded Hessian and that geodesics are constant speed and thus satisfy ∥c′x,v(t)∥cx,v(t) =
∥c′x,v(0)∥cx,v(0) = ∥v∥x (Lee, 2006, Lemma 5.5), we have that the last term is bounded by W2

2(µ, ν) as∣∣∣∣∫ ⟨HessV
(
cx,v(t)

)
[c′x,v(t)], c

′
x,v(t)⟩cx,v(t) dγ(x, v)

∣∣∣∣ ≤ L

∫
∥c′x,v(t)∥2cx,v(t)

dγ(x, v)

= L

∫
∥v∥2x dγ(x, v) = LW2

2(µ, ν).

(182)

Thus, we conclude

V(ν) = V(µ) +
∫
⟨∇MV (x), v⟩x dγ(x, v) + o

(
W2(µ, ν)

)
. (183)

Now, let us verify that ∇MV ∈ L2(µ). We denote by PTx→y the parallel transport between TxM and TyM along the
geodesic between x and y (see (Boumal, 2023, Definition 10.35) for the definition). By (Boumal, 2023, Corollary 10.48, 3.),
V having its Hessian bounded in operator norm by L is equivalent with having for all x, y ∈ M, for all (x, v) ∈ TM,

∥∇MV (x)− PTexpx(v)→x∇MV
(
expx(v)

)
∥x ≤ L∥v∥x. (184)

Thus, let µ ∈ P2(M), o some origin, and γ ∈ exp−1
µ (δo). Then, we have by using sequentially the definition of γ,

∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2, (184), that for any (x, v) ∈ supp(γ), expx(v) = o and PTo→x is an isometry (Boumal, 2023,
Proposition 10.36), and γ ∈ P2(TM),

∥∇MV ∥2L2(µ) =

∫
∥∇MV (x)∥2x dµ(x)

=

∫
∥∇MV (x)∥2x dγ(x, v)

≤ 2

∫
∥∇MV (x)− PTexpx(v)→x∇MV

(
expx(v)

)
∥2x dγ(x, v)

+ 2

∫
∥PTexpx(v)→x∇MV

(
expx(v)

)
∥2x dγ(x, v)

≤ 2

∫
L∥v∥2x dγ(x, v) + 2∥∇MV (o)∥2o

< +∞.

(185)

Therefore, we can conclude that ∇W2V(µ) = ∇MV by Definition A.3.
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C.10. Proof of Proposition A.7

Let ν, µ ∈ P2(M), and γ ∈ exp−1
µ (ν). First, we recall that the product space M × M is a Riemannian manifold

with tangent space TM × TM. For any (x, v), (x′, v′) ∈ TM and note cx(t) = expx(tv), cx′,v′(t) = expx′(tv′) and
cx,x′,v,v′(t) = (cx,v(t), cx′,v′(t)) the geodesics starting at (x, x′) with direction (v, v′). Then, by (Boumal, 2023, Exercise
5.40), there exists t ∈]0, 1[ such that

W
(
expx(v), expx′(v′)

)
=W (x, x′) + ⟨∇1W (x, x′), v⟩x + ⟨∇2W (x, x′), v′⟩x′

+
1

2
⟨HessW (cx,v(t), cx′,v′(t))[c

′
x,v(t), c

′
x′,v′(t)], [c

′
x,v(t), c

′
x′,v′(t)]⟩cx,x′,v,v′ (t).

(186)

Moreover, by the same argument as (182) in Proposition A.6, we have

∣∣∣∣∫∫ ⟨HessW (cx,v,x′,v′(t))[c
′
x,v(t), c

′
x′,v′(t)], [c

′
x,v(t), c

′
x′,v′(t)]⟩cx,x′,v,v′ (t) dγ(x, v)dγ(x

′, v′)

∣∣∣∣ ≤ 2LW2
2(µ, ν). (187)

Then, we have

W(ν)−W(µ) =

∫∫
W (y, y′) dν(y)dν(y′)−

∫∫
W (x, x′) dµ(x)dµ(x′)

=

∫∫ (
W (expx(v), expx′(v′))−W (x, x′)

)
dγ(x, v)dγ(x′, v′)

=

∫ (
⟨∇1W (x, x′), v⟩x + ⟨∇2W (x, x′), v′⟩x′

+
1

2
⟨HessW (cx,v(t), cx′,v′(t))[c

′
x,v(t), cx′,v′(t)], [c

′
x,v(t), cx′,v′(t

′)]⟩cx,x′,v,v′ (t)

)
dγ(x, v)dγ(x′, v′)

=

∫
⟨
∫

∇1W (x, x′)dµ(x′), v⟩x dγ(x, v) +
∫

⟨
∫

∇2W (x, x′)dµ(x), v′⟩x′ dγ(x′, v′) + o
(
W2(µ, ν)

)
=

∫ 〈∫ (
∇1W (x, x′) +∇2W (x′, x)

)
dµ(x′), v

〉
x

dγ(x, v) + o
(
W2(µ, ν)

)
.

(188)
Now, let ∇W2W(µ) =

∫ (
∇1W (·, x) +∇2(x, ·)

)
dµ(x). Using that by Jensen’s inequality,

∥∇W2
W∥2L2(µ) =

∫ ∥∥∥∥∫ (∇1W (x, x′) +∇2W (x′, x)
)
dµ(x′)

∥∥∥∥2
x

dµ(x)

≤ 2

∫∫ (
∥∇1W (x, x′)∥2x + ∥∇2W (x, x′)∥2x′

)
dµ(x)dµ(x′),

(189)

and a similar reasoning of (185), we find that ∇W2
W ∈ L2(µ), and we can conclude that ∇W2

W is a Wasserstein gradient
by Definition A.3.

C.11. Proof of Proposition A.9

Let ν ∈ P2(Rd) and µn = 1
n

∑n
i=1 δxi . Since F is Wasserstein differentiable, the Wasserstein gradient ∇W2F(µn) satisfies

for any coupling γ ∈ Π(µn, ν) (Lanzetti et al., 2025, Proposition 2.12),

F(ν) = F(µn) +

∫
⟨∇W2F(µn)(x), y − x⟩ dγ(x, y) + o

(√∫
∥x− y∥22 dγ(x, y)

)
. (190)
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Let h1, . . . , hn ∈ Rd, νn = 1
n

∑n
i=1 δxi+hi

and γn = 1
n

∑n
i=1 δ(xi,xi+hi) ∈ Π(µn, νn). Then, since F (x1, . . . , xn) =

F(µn) and F (x1 + h1, . . . , xn + hn) = F(νn), we get

F (x1 + h1, . . . , xn + hn) = F(νn)

= F(µn) +

∫
⟨∇W2F(µn)(x), y − x⟩ dγn(x, y) + o

(√∫
∥x− y∥22 dγn(x, y)

)

= F(µn) +
1

n

n∑
i=1

⟨∇W2F(µn)(xi), hi⟩+ o

√√√√ n∑
i=1

∥hi∥22


= F (x1, . . . , xn) +

n∑
i=1

〈 1
n
∇W2F(µn)(xi), hi

〉
+ o

√√√√ n∑
i=1

∥hi∥22

 .

(191)

Thus, by definition of the gradient of F , we deduce that ∇iF (x1, . . . , xn) =
1
n∇W2

F(µn)(xi).

C.12. Proof of Proposition B.4

Let Γ ∈ exp−1
P (Q). Let s, t ∈ [0, 1], and ϕs(γ) = (expπM ◦(sπv))#γ for γ ∈ P2(TM). Then, (ϕs, ϕt)#Γ ∈ Π(Ps,Pt).

Therefore,

WW2
(Ps,Pt)

2 ≤
∫

W2
2

(
ϕs(γ), ϕt(γ)

)
dΓ(γ). (192)

Moreover, since for Γ-a.e. γ,
(
expπM ◦(sπv), expπM ◦(tπv)

)
#
γ ∈ Π(ϕs(γ), ϕt(γ)), we have the following inequality:

WW2
(Ps,Pt)

2 ≤
∫

W2
2

(
ϕs(γ), ϕt(γ)

)
dΓ(γ)

≤
∫∫

d
(
expx(sv), expx(tv)

)2
dγ(x, v)dΓ(γ)

= |t− s|2
∫∫

∥v∥2x dγ(x, v)dΓ(γ)

= |t− s|2WW2
(P,Q)2,

(193)

where we used that Γ ∈ exp−1
P (Q) and that d

(
expx(tv), expx(sv)

)
= |t− s|∥v∥x.

For the other inequality, we have for any 0 ≤ s < t ≤ 1, using the triangle inequality and the previous inequality,

WW2
(P,Q) ≤ WW2

(P,Ps) +WW2
(Ps,Pt) +WW2

(Pt,Q)

≤ sWW2
(P,Q) +WW2

(Ps,Pt) + (1− t)WW2
(P,Q).

(194)

This is equivalent with
(t− s)WW2(P,Q) ≤ WW2(Ps,Pt). (195)

Thus, we can conclude that WW2(Ps,Pt) = |t− s|WW2(P,Q) and thus t 7→ Pt is a constant-speed geodesic between P
and Q.

C.13. Proof of Proposition B.5

We first state a lemma showing a relation between γ ∈ exp−1
µ (ν) and a specifically constructed γt ∈ exp−1

µγ(t)
(ν), with

t 7→ µγ(t) a geodesic between µ and ν.

Lemma C.13. Let µ, ν ∈ P2(M), γ ∈ exp−1
µ (ν) and the geodesic between µ and ν defined for all t ∈ [0, 1] as

µγ(t) =
(
expπM ◦(tπv)

)
#
γ. Let γt =

(
expπM ◦(tπv), (1 − t)PTπM→expπM ◦(tπv) ◦ πv

)
#
γ. Then, γt ∈ exp−1

µγ(t)
(ν),

and, for every s ∈ [0, 1], µγt(s) =
(
expπM ◦(sπv)

)
#
γt = µγ(t+ (1− t)s).
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Proof. First, we verify the equality µγt(s) = µγ(t+ s(1− t)). Fix s ∈ [0, 1] and let h : M → R be a bounded measurable
map. Then, ∫

h(y) d(µγt(s)) (y) =

∫
h
(
expxt

(svt)
)
dγt(xt, vt)

=

∫
h
(
expexpx(tv)

(
s(1− t)PTx→expx(tv)

(v)
))

dγ(x, v).

(196)

Fixing (x, v) ∈ TM, let c(t) = expx(tv), t ∈ [0, 1] be the unique geodesic starting from x with ċ(0) = v. Then, we have
PTx→c(t)(v) = ċ(t) by the properties of the parallel transport3. Furthermore, by definition of the exponential map, for
every u ∈ [0, 1],

expexpx(tv)

(
uPTx→expx(tv)

(v)
)
= expc(t)

(
uċ(t)

)
= c2(u) (197)

where c2 is the unique geodesic such that c2(0) = c(t) and ċ2(0) = ċ(t). By uniqueness of the geodesics, we thus have
c2(u) = c(t+ u) = expx((t+ u)v) for every 0 ≤ u ≤ 1− t. From this, we obtain∫

h(y) d(µγt(s)) (y) =

∫
h
(
expexpx(tv)

(
s(1− t)PTx→expx(tv)

(v)
))

dγ(x, v)

=

∫
h
(
expx((t+ s(1− t))v)

)
dγ(x, v)

=

∫
h(y) d(µγ(t+ s(1− t))) (y),

(198)

and thus we have proved µγt(s) = µγ(t + (1 − s)t). In particular, we have πM
# γt = µγt(0) = µγ(t), and exp# γt =

µγt(1) = µγ(1) = exp# γ = ν, so γt has the correct marginals. Moreover, it is optimal as∫
∥vt∥2xt

dγt(xt, vt) =

∫
∥(1− t)PTx→expx(tv)

(v)∥2expx(tv)
dγ(x, v)

= (1− t)2
∫

∥v∥2x dγ(x, v) = (1− t)2W2
2(µ, ν) = W2

2(µγ(t), ν),

(199)

where we used in the last line that γ ∈ exp−1
µ (ν) and µγ is a geodesic such that µγ(0) = µ and µγ(1) = ν, and in particular,

W2
2(µγ(t), ν) = W2

2

(
µγ(t), µγ(1)

)
= (1− t)2W2

2

(
µγ(0), µγ(1)

)
.

Now, we state a second lemma providing a Taylor remainder theorem on P2(M).

Lemma C.14. Let F : P2(M) → R a twice Wasserstein differentiable functional, µ, ν ∈ P2(M) and γ ∈ exp−1
µ (ν), and

note µγ : [0, 1] → M the geodesic between µ and ν defined as µγ(t) =
(
expπM ◦(tπv)

)
#
γ, and γt ∈ exp−1

µγ(t)
(ν) given

by Lemma C.13. Then, there exists t ∈]0, 1[ such that

F(ν) = F(µ) +

∫
⟨∇W2

F(µ)(x), v⟩x dγ(x, v) +
1

2(1− t)2

∫
⟨HFγt(xt, vt), vt⟩xt

dγt(xt, vt). (200)

Proof. First, let us note that

F
(
µγ(1)

)
−F

(
µγ(0)

)
=

∫ 1

0

d

dt
F
(
µγ(t)

)
dt

=
d

dt
F
(
µγ(t)

)∣∣
t=0

+

∫ 1

0

(
d

dt
F
(
µγ(t)

)
− d

dt
F
(
µγ(t)

)∣∣
t=0

)
dt

=
d

dt
F
(
µγ(t)

)∣∣
t=0

+

∫ 1

0

∫ t

0

d2

ds2
F
(
µγ(s)

)
dsdt

=
d

dt
F
(
µγ(t)

)∣∣
t=0

+

∫ 1

0

(1− s)
d2

ds2
F
(
µγ(s)

)
ds.

(201)

3Recall that a vector field X along a smooth curve c is said to be parallel if DtX = 0, where Dt is the covariant derivative along
c, and that for every s, t, the parallel transport operator PTc(t)→c(s) sends every v ∈ Tc(t)M to X(s) where X is the unique parallel
vector field along c such that X(t) = v. Then, since the condition for c to be a geodesic is that Dtċ = 0, if c is a geodesic, we have
PTc(t)→c(s)ċ(t) = ċ(s) for every s, t.
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For the first term, we get by the chain rule (see (30)) d
dtF

(
µγ(t)

)∣∣
t=0

=
∫
⟨∇W2

F(µ)(x), v⟩x dγ(x, v).

For the second term, using the mean value theorem (since s 7→ d2

ds2F
(
µγ(s)

)
is continuous, and 1− s ≥ 0 for all s ∈ [0, 1]),

there exists t ∈]0, 1[ such that∫ 1

0

(1− s)
d2

ds2
F
(
µγ(s)

)
ds =

d2

dt2
F
(
µγ(t)

) ∫ 1

0

(1− s)ds =
1

2

d2

dt2
F
(
µγ(t)

)
. (202)

Since, by Lemma C.13, we have µγt(s) = µγ(t+ s(1− t)) for every s ∈ [0, 1], we have by Definition A.8∫
⟨HFγt(xt, vt), vt⟩xt

dγt(xt, vt) =
d2

ds2
F(µγt(s))

∣∣
s=0

(203)

=
d2

ds2
F(µγ(t+ (1− t)s))

∣∣
s=0

(204)

= (1− t)2
d2

ds2
F(µγ(s))

∣∣
s=t

. (205)

This finishes the proof.

Let P,Q ∈ P2

(
P2(M)

)
. Let F : P2(M) → R a Wasserstein differentiable functional, F(P) =

∫
F(µ) dP(µ) and

Γ ∈ exp−1
P (Q). Let γ in the support of Γ, then we know that (Γ-almost surely), γ ∈ exp−1

µ (ν) where µ = πM
# γ and

ν = exp# γ. In particular, by Lemma C.14, there exists some t ∈]0, 1[ and γt ∈ exp−1
µγ(t)

(ν) such that

F(ν) = F(µ) +

∫
⟨∇W2

F(µ)(x), v⟩x dγ(x, v) +
1

2(1− t)2

∫
⟨HFγt(xt, vt), vt⟩xt

dγt(xt, vt), (206)

so that, by the assumption on the Hessian of F ,

∣∣∣∣F(ν)−F(µ)−
∫
⟨∇W2

F(µ)(x), v⟩x dγ(x, v)
∣∣∣∣ ≤ 1

2(1− t)2

∫
|⟨HFγt(xt, vt), vt⟩xt

| dγt(xt, vt) (207)

≤ 1

2(1− t)2
L

∫
∥vt∥2xt

dγt(xt, xt) (208)

≤ 1

2(1− t)2
LW2

2(µγ(t), ν) =
1

2
LW2

2(µ, ν) (209)

≤ L

2

∫
∥v∥2x dγ(x, v). (210)

From this, we deduce that∣∣∣∣F(Q)− F(P)−
∫∫

⟨∇W2F(πM
# γ)(x), v⟩xdγ(x, v)dΓ(γ)

∣∣∣∣ (211)

=

∣∣∣∣∫ (F(exp# γ)−F(πM
# γ)−

∫
⟨∇W2

F(πM
# γ)(x), v⟩xdγ(x, v)

)
dΓ(γ)

∣∣∣∣ (212)

≤ L

2

∫∫
∥v∥2xdγ(x, v)dΓ(γ) =

L

2
WW2

(P,Q)2. (213)

Thus, we can conclude that

F(Q) = F(P) +
∫∫

⟨∇W2F(πM
# γ)(x), v⟩x dγ(x, v)dΓ(γ) + o

(
WW2(P,Q)

)
. (214)

Moreover, as we assumed M compact, ∇W2
F(µ) is bounded for any µ and thus

∫
∥∇W2

F(µ)∥2L2(µ) dP(µ) < +∞.
Therefore, by Definition 3.3, ∇WW2

F(P) = ∇W2F ∈ L2(P).
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C.14. Proof of Proposition B.6

Let P,Q ∈ P2

(
P2(M)

)
. Let W : P2(M) × P2(M) → R a Wasserstein differentiable functional, W(P) =∫∫

W(µ, ν) dP(µ)dP(ν) and Γ ∈ exp−1
P (Q). Let γ and γ′ be in the support of Γ, then γ ∈ exp−1

µ (ν) and γ′ ∈ exp−1
µ′ (ν′)

where µ = πM
# γ, µ′ = πM

# γ′ and ν = exp# γ, ν′ = exp# γ
′. For notation simplicity, we write ∇1 and ∇2 instead of

∇W2,1 and ∇W2,2. By the remainder Taylor theorem (Lemma C.14) applied on the product space P2(M)× P2(M), we
get that there exists t ∈]0, 1[ such that

W(ν, ν′) = W(µ, µ′)+

∫
⟨∇1W(µ, µ′)(x), v⟩x dγ(x, v)+

∫
⟨∇2W(µ, µ′)(x), v⟩x dγ′((x, v)+

1

2

d2

dt2
W
(
µγ(t), µγ′(t)

)
.

(215)
The last term is a Hessian term, which can be written as d2

dt2W
(
µγ(t), µγ′(t)

)
=

1
(1−t)2

∫
⟨HWγt,γ′

t
[(xt, vt), (x

′
t, v

′
t)], (vt, v

′
t)⟩(xt,x′

t)
dγt(xt, vt)dγ

′
t(x

′
t, v

′
t), where we define HWγ,γ′ : TM × TM →

TM× TM the Hessian operator at (γ, γ′) similarly as in Definition A.8. By the assumption on the Hessian, we thus have∣∣∣∣W(ν, ν′)−W(µ, µ′)−
∫
⟨∇1W(µ, µ′)(x), v⟩x dγ(x, v)−

∫
⟨∇2W(µ, µ′)(x′), v′⟩x′ dγ′(x′, v′)

∣∣∣∣
≤ 1

2(1− t)2

∫
|⟨HWγt,γ′

t
[(xt, vt), (x

′
t, v

′
t)], (vt, v

′
t)⟩(xt,x′

t)
| dγt(xt, vt)dγ′t(x′t, v′t)

≤ 1

2(1− t)2
L

(∫
∥vt∥2xt

dγt(xt, vt) +

∫
∥v′t∥2x′

t
dγ′t(x

′
t, v

′
t)

)
=

L

2(1− t)2
(
W2

2(µγ(t), ν) +W2
2(µ

′
γ(t), ν)

)
=
L

2

(∫
∥v∥2x dγ(x, v) +

∫
∥v′∥2x′ dγ′(x′, v′)

)
.

(216)

Then, let us bound∣∣∣∣W(P)− W(Q)−
∫∫ 〈∫ (

∇1W
(
ϕM(γ), η

)
(x) +∇2W

(
η, ϕM(γ)

))
dP(η), v

〉
x

dγ(x, v)dΓ(γ)

∣∣∣∣
≤
∣∣∣∣∫∫ (W(ϕexp(γ), ϕexp(γ′))−W

(
ϕM(γ), ϕM(γ′)

))
dΓ(γ)dΓ(γ′)

−
∫∫∫

⟨∇1W
(
ϕM(γ), η

)
(x), v⟩xdP(η)dγ(x, v)dΓ(γ)

−
∫∫∫

⟨∇2W
(
η, ϕM(γ′)

)
(x′), v′⟩x′ dP(η)dγ′(x′, v′)dΓ(γ′)

∣∣∣∣
=

∣∣∣∣∫∫ (W(ϕexp(γ), ϕexp(γ′))−W
(
ϕM(γ), ϕM(γ′)

))
dΓ(γ)dΓ(γ′)

−
∫∫∫∫

⟨∇1W
(
ϕM(γ), ϕM(γ′)

)
(x), v⟩x + ⟨∇2W

(
ϕM(γ), ϕM(γ′)

)
(x′), v′⟩x′ dγ(x, v)dγ′(x′, v′)dΓ(γ)dΓ(γ′)

∣∣∣∣
≤
∫∫ ∣∣∣W(ϕexp(γ), ϕexp(γ′))−W

(
ϕM(γ), ϕM(γ′)

)
−
∫
⟨∇1W

(
ϕM(γ), ϕM(γ′)

)
(x), v⟩x dγ(x, v)−

∫
⟨∇2W

(
ϕM(γ), ϕM(γ′)

)
(x′), v′⟩x′ dγ(x′, v′)

∣∣∣∣ dΓ(γ)dΓ(γ′)

≤ L

2

(∫∫
∥v∥2x dγ(x, v)dΓ(γ) +

∫∫
∥v′∥2x dγ′(x′, v′)dΓ(γ′)

)
by (216)

= LW2
W2

(P,Q) since Γ ∈ exp−1
P (Q).

(217)

This allows to conclude by Definition 3.3 that

∇WW2
W(P)(µ) =

∫ (
∇1W(µ, ν) +∇2W(ν, µ)

)
dP(ν). (218)
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C.15. Proof of Proposition B.7

We note P := Px and µc = µxc for every c. Let h ∈ (Rd)C×n, for every t ∈ R, we define Pt := Px+th, and for every
c, µct := µxc+thc , so that Pt = 1

C

∑C
c=1 δµc

t
. We also consider the transport plan γct = 1

n

∑n
i=1 δ(xc

i ,th
c
i )

(which satisfies

πRd

# γct = µc and exp# γt = µct ), and the plan Γt = 1
C

∑C
c=1 δγc

t
(which satisfies ϕRd

# Γ = P and ϕexp# Γ = Pt).

It is not difficult to see that for t small enough, for every c, γct is actually optimal between µc and µct (that is, γct ∈ exp−1
µc (µct)),

and therefore

W2
2(µ

c, µct) =

∫
∥v∥2dγct (x, v) =

t2

n

n∑
i=1

∥hci∥2. (219)

Moreover, it is also the case that for t small enough, Γt ∈ exp−1
P (Pt). Indeed, since for every c, c′, W2

2(µ
c, µc

′

t ) −−−→
t→0

W2
2(µ

c, µc
′
) which is zero if and only if c = c′, it ensues that for t small enough, for every c,

W2
2(µ

c, µct) = min
c′

W2
2(µ

c, µc
′

t ). (220)

Thus, for any Γ ∈ Π(P,Pt), represented by the matrix (Γc,c′)c,c′=1,...,C , we have

∫
W2

2(µ, ν)dΓ(µ, ν) =

C∑
c,c′=1

W2
2(µ

c, µc
′

t )Γc,c′ (221)

≥
C∑

c,c′=1

W2
2(µ

c, µct)Γc,c′ (222)

=
1

C

C∑
c=1

W2
2(µ

c, µct) (223)

=
t2

Cn

C∑
c=1

n∑
i=1

∥hci∥2 =

∫∫
∥v∥2dγ(x, v)dΓt(γ), (224)

so that, by taking the minimum over Γ, we find
∫∫

∥v∥2dγ(x, v)dΓt(γ) ≤ WW2(P,Pt)
2. Since the reverse inequality

always hold, we find that

WW2(P,Pt)
2 =

∫∫
∥v∥2dγ(x, v)dΓt(γ) =

t2

Cn

C∑
c=1

n∑
i=1

∥hci∥2, (225)

and we conclude that Γt is optimal, with WW2(P,Pt) = O(t). Plugging Γt into the definition of the WoW gradient, we
find that

F(Pt) = F(P) +
∫∫

⟨∇WW2
F(P)(µ)(x), x⟩dγ(x, v)dΓt(x, v) + o(t), (226)

that is (since x+ th ∈ X for t small enough),

F (x+ th) = F (x) +
1

nC

C∑
c=1

n∑
i=1

⟨∇WW2
F(P)(µc)(xci ), h

c
i ⟩+ o(t). (227)

From the definition of the gradient, we deduce that for every c, i,

∇WW2
F(P)(µc)(xci ) = Cn∇c,iF (x). (228)

This finishes the proof.
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C.16. Proof of Proposition B.8

Let Pt =
((
(1− t)Tπ

2

π1 + tTπ
3

π1

)
#
π1
)
#
Γ where Γ ∈ Π(P,Q,O), π1,2

# Γ ∈ Πo(P,Q) a,d π1,3
# Γ ∈ Πo(P,O). Then, we have

V(Pt) =
∫

F
((
(1− t)Tµη + tTνη

)
#
η
)
dΓ(η, µ, ν)

=

∫
F(µt) dΓ(η, µ, ν) for µt = expη

(
(1− t)Tµη + tTνη

)
=
(
(1− t)Tµη + tTνη

)
#
η

≤ (1− t)

∫
F(µ) dQ(µ) + t

∫
F(ν) dO(ν)− λt(1− t)

2

∫
W2

2(µ, ν) dΓ(η, µ, ν)

≤ (1− t)V(Q) + tV(O)− λt(1− t)

2
WW2(Q,O)

2,

(229)

where we used in the last two lines that F is λ-convex along t 7→ µt, and WW2
(Q,O)2 ≤

∫
W2

2(µ, ν) dΓ(η, µ, ν).

C.17. Proof of Proposition B.9

Let Pt =
((
(1− t)Tπ

2

π1 + tTπ
3

π1

)
#
π1
)
#
Γ where Γ ∈ Π(P,Q,O), π1,2

# Γ ∈ Πo(P,Q) a,d π1,3
# Γ ∈ Πo(P,O). Then, we have

W(Pt) =
1

2

∫∫
W
((
(1− t)Tµη + tTνη

)
#
η,
(
(1− t)Tµ

′

η′ + tTν
′

η′
)
#
η′
)
dΓ(η, µ, ν)dΓ(η′, µ′, ν′)

≤ (1− t)
1

2

∫∫
W(µ, µ′)dQ(µ)dQ(µ′) + t

1

2

∫∫
W(ν, ν′) dO(ν)dO(ν′)

= (1− t)W(Q) + tW(O).

(230)

C.18. Proof of Proposition B.10

Let P,Q,O ∈ P2

(
P2,ac(Rd)

)
. Define the generalized geodesic t 7→ Pt =

((
(1 − t)Tπ

2

π1 + tTπ
3

π1

)
#
π1
)
#
Γ where Γ ∈

Π(P,Q,O), π1,2
# Γ ∈ Πo(P,Q) and π1,3

# Γ ∈ Πo(P,O). Let us show that F : Q 7→ 1
2WW2

(Q,P)2 is convex along this curve.

To do this, first note that Γ̃ =
(
π1, ((1− t)Tπ

2

π1 + tTπ
3

π1)#π
1
)
#
Γ ∈ Π(P,Pt). Then, we have

F(Pt) =
1

2
WW2

(Pt,P)
2

≤ 1

2

∫
W2

2

(
µ, ((1− t)Tνµ + tTηµ)#µ

)
dΓ(µ, ν, η).

(231)

Note that T = (1 − t)Tπ
2

π1 + tTπ
3

π1 is an OT map by Brenier’s theorem since it is the gradient of a convex function (as
a nonnegative weighted sum of convex functions). Thus, for Γ-almost every (µ, ν, η), W2

2

(
µ, ((1− t)Tνµ + tTηµ)#µ

)
=

∥(1− t)Tνµ + tTηµ − Id∥2L2(µ). Then, applying the parallelogram identity on the Hilbert space L2(µ), we get

F(Pt) ≤
1

2

∫
∥(1− t)Tνµ + tTηµ − Id∥2L2(µ) dΓ(µ, ν, η)

=
1

2

∫
∥(1− t)(Tνµ − Id) + t(Tηµ − Id)∥2L2(µ) dΓ(µ, ν, η)

=
(1− t)

2

∫
∥Tνµ − Id∥2L2(µ) dΓ(µ, ν, η) +

t

2

∫
∥Tηµ − Id∥2L2(µ) dΓ(µ, ν, η)

− t(1− t)

2

∫
∥Tνµ − Tηµ∥2L2(µ) dΓ(µ, ν, η)

=
(1− t)

2
WW2

(P,Q)2 +
t

2
WW2

(P,O)2 − t(1− t)

2

∫
∥Tνµ − Tηµ∥2L2(µ) dΓ(µ, ν, η)

= (1− t)F(Q) + tF(O)− t(1− t)

2

∫
∥Tνµ − Tηµ∥2L2(µ) dΓ(µ, ν, η).

(232)
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Finally, since (Tνµ,T
η
µ)#µ ∈ Π(ν, η), we also have W2

2(ν, η) ≤ ∥Tηµ − Tνµ∥2L2(µ). Thus, we have∫
∥Tνµ − Tηµ∥2L2(µ) dΓ(µ, ν, η) ≥

∫
W2

2(ν, η) dΓ(µ, ν, η) ≥ WW2
(Q,O)2, (233)

where we applied that π2,3
# Γ ∈ Π(Q,O) for the last inequality. Plugging this result in (232), we get

F(Pt) ≤ (1− t)F(Q) + tF(O)− t(1− t)

2
WW2(Q,O)

2. (234)

D. Additional Details and Experiments
D.1. Minimization of the MMD

We want to minimize F(P) = 1
2MMD2(P,Q) for P,Q ∈ P2

(
P2(Rd)

)
and a kernel K : P2(Rd) × P2(Rd) → R.

Recall that F(P) = V(P) + W(P) + cst with V(P) =
∫
V(µ) dP(µ) and V(µ) = −

∫
K(µ, ν) dQ(ν), and W(P) =

1
2

∫∫
K(µ, ν) dP(µ)dP(ν). If Kν(µ) = K(µ, ν) is a differentiable functional, then the gradient of F is given for all

P ∈ P2

(
P2(Rd)

)
, µ ∈ P2(Rd) by

∇WW2
F(P)(µ) = ∇WW2

V(P)(µ) +∇WW2
W(P)(µ)

= ∇W2V(µ) + (∇W2W ∗ P)(µ)

= −
∫

∇W2Kν(µ) dQ(ν) +
∫

∇W2Kν(µ) dP(ν).

(235)

We can choose different kernels, giving different discrepancies. We compare here different kernels based on the Sliced-
Wasserstein distance (Rabin et al., 2012). Let p ≥ 1. We recall that the Sliced-Wasserstein distance is defined between
µ, ν ∈ P2(Rd) as

SWp
p(µ, ν) =

∫
Sd−1

Wp
2(P

θ
#µ, P

θ
#ν) dσ(θ), (236)

where Sd−1 = {θ ∈ Rd, ∥θ∥2 = 1} is the sphere, P θ(x) = ⟨θ, x⟩ and σ is the uniform measure on the sphere. The
Sliced-Wasserstein distance allows defining a Gaussian positive definite kernel K(µ, ν) = e−

1
2SW

2
2(µ,ν)/h (Kolouri et al.,

2016; Carriere et al., 2017) and a Laplace positive definite kernel K(µ, ν) = e−SW1(µ,ν)/h (Meunier et al., 2022). We also
propose in practice to use the Riesz SW kernel K(µ, ν) = −SW2(µ, ν)

r for r ∈ (0, 2) and inverse multiquadric kernel
(IMQ) K(µ, ν) = 1√

c+SW2
2(µ,ν)

. Note however that the Riesz SW kernel is not positive definite (but conditionally positive

definite), and that showing that the IMQ kernel is positive definite is an open question.

The Wasserstein gradient of the Sliced-Wasserstein distance F(µ) = 1
2SW

2
2(µ, ν) can be computed as (Bonnotte, 2013,

Proposition 5.1.7)

∇W2F(µ) =

∫
Sd−1

ψ′
θ(⟨x, θ⟩)θ dσ(θ), (237)

with ψθ the Kantorovich potential between P θ#µ and P θ#ν, and thus ψ′
θ(u) = u− F−1

P θ
#ν

(
FP θ

#µ
(u)
)

for all u ∈ R. For the

Gaussian kernel, by the chain rule, we have ∇W2Kν(µ) = − 1
he

− 1
2SW

2
2(µ,ν)/h∇W2F(µ).

In practice, the integral w.r.t. σ is approximated using a Monte-Carlo approximation, i.e., we draw θ1, . . . , θL ∼ σ L
independent directions, and approximate the Sliced-Wasserstein distance and its gradient as

ŜW
2

2(µ, ν) =
1

L

L∑
ℓ=1

W2
2(P

θℓ
# µ, P θℓ# ν), ∇̂W2

F(µ) =
1

L

L∑
ℓ=1

ψ′
θℓ
(⟨x, θℓ⟩)θℓ. (238)

The Wasserstein gradient can also be computed using backpropagation as shown in Proposition A.9.
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Figure 5: Gradient flow of MMD with SW Gaussian kernel K(µ, ν) = e−SW2
2(µ,ν)/(2h).
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Figure 6: Gradient flow of MMD with SW Laplace kernel K(µ, ν) = e−SW1(µ,ν)/h.
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Figure 7: Gradient flow of MMD with SW IMQ kernel K(µ, ν) = (c+ SW2
2(µ, ν))
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Figure 8: Gradient flow of MMD with SW Riesz kernel K(µ, ν) = −SW2(µ, ν)
r.
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Figure 9: Gradient flow of MMD with Riesz kernel k(x, y) = −∥x− y∥2.

Figure 10: Ablation of the number of projections L for the approximation of the Sliced-Wasserstein distance (with the SW
Riesz kernel and r = 1).
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Figure 11: Images along the trajectory of the flow from MNIST to Fashion MNIST. We see that images belonging to the
same class in the source dataset are flowed towards images from the same class in the target dataset.

D.2. Ablation of Hyperparameters on Rings

Additionally to Figure 1, we compare in the following figures trajectories of the minimization of the MMD with various
kernels and with different hyperparameters. To recall the setting here, the target is a mixture of rings (Glaser et al., 2021),
and each ring is seen through an empirical distribution ν̂c,n = 1

n

∑n
i=1 δyci . Thus, the target is a mixture of three Dirac:

Q = 1
3δν̂1 + 1

3δν̂2 + 1
3δν̂3 . Each distribution ν̂c contains n = 80 samples. We learn a distribution P = 1

3δµ1 + 1
3δµ2 + 1

3δµ3 ,
modeling each µc as µc = 1

n

∑n
i=1 δxc

i
. In practice, the distributions Q and P are seen as tensors of size (3, 80, 2).

To compute the gradients of the MMD, we use L = 500 projections, and τ = 0.1 as learning rate. We plot on Figure 5
results with the Gaussian SW kernelK(µ, ν) = e−SW2

2(µ,ν)/(2h), on Figure 6 results with the Laplace SW kernelK(µ, ν) =

e−SW1(µ,ν)/h, on Figure 7 results with the IMQ kernel K(µ, ν) = (c + SW2
2(µ, ν))

− 1
2 and on Figure 8 results with the

Riesz SW kernel K(µ, ν) = −SW2(µ, ν)
r. We also add on Figure 9 a comparison with the flow of the MMD with Riesz

kernel k(x, y) = −∥x− y∥2 as in (Hertrich et al., 2024b), where the structure of the rings is not taken into account.

On Figure 10, we report an ablation of the the trajectories with different number of projections for the SW Riesz kernel.
More precisely, we show the results for L ∈ {1, 5, 10, 100, 500}. This demonstrates that for low dimensional problems such
as 2d rings, L = 100 projections already provides good results. However, the scheme is more sensitive to the number of
projections in higher dimension as we show on Figure 14.

D.3. Domain Adaptation

We first add on Figure 11 more samples of the flows of the MMD with K(µ, ν) = −SW2(µ, ν) between MNIST and
FashionMNIST. In this experiment, we recall that the flow starts from P0 = 1

C

∑C
c=1 δµc,n , where µc,n is the uniform

empirical distribution of samples belonging to the class c ∈ {1, . . . 10} of MNIST, and targets Q = 1
C

∑C
c=1 δνc,n . We used

n = 200 samples for each class of the datasets. The Sliced-Wasserstein distance is approximated with L = 500 projections.
To speed up the flow, similarly as (Hertrich et al., 2024b), we add a momentum m ∈ [0, 1), i.e., at each iteration k ≥ 0, the
update for each particle i ∈ {1, . . . , n} in class c ∈ {1, . . . , C} is of the form{

vi,k+1 = ∇WW2
F(Pk)(µ

c,n
k )(xci,k) +mvi,k

xci,k+1 = xci,k − τvi,k+1,
(239)

with vi,0 = 0. We choose a step size of τ = 0.05 and m = 0.9.

Complementary to Figure 2, we see on Figure 11 that images from a same class are flowed towards images from a same
class in the target dataset. To verify this intuition, we applied a domain adaptation experiment which we describe now.
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Figure 12: Samples of trajectories starting from Gaussian noise towards MNIST (Left) and CIFAR10 (Right).

Figure 13: Samples of trajectories starting from Gaussian noise towards MNIST with momentum m = 0.9 (Left) and no
momentum (Right). We run the flow for 100K steps, and plot samples every 6667 steps.

We first train a classifier on the training set of the MNIST dataset (using n = 500 samples by class). The classifier is the
CNN used in the examples of the equinox library4 (Kidger & Garcia, 2021). It is trained for 5000 steps with the AdamW
optimizer (Loshchilov & Hutter, 2019) and a batch size of 64. After the training, it has an accuracy of 96% on the test set,
and of 100% on the training set.

Then, we flow the dataset FMNIST towards MNIST by minimizing the MMD with kernel K(µ, ν) = −SW2(µ, ν). We run
the scheme for 500K steps with a step size of τ = 0.1 and a momentum of m = 0.9. To match the labels of the flowed
dataset with the labels of MNIST, we solve an OT problem between P the flowed dataset and Q the target dataset with the
squared 2-Wasserstein distance as groundcost, i.e. with P = 1

C

∑C
c=1 δµc,n and Q = 1

C

∑C
c=1 δνc,n , we solve the problem

min
Γ∈Π(P,Q)

⟨
(
W2

2(µ
k,n, νℓ,n)

)
1≤k,ℓ≤C ,Γ⟩F (240)

using the Python Optimal Transport library (Flamary et al., 2021).

We plot on Figure 3 the accuracy of the pretrained classifier along the flow starting from FMNIST. We observe that the
accuracy converges to 100% for a sufficient number of iterations. Thus, it shows that the classes of the sources datasets
are perfectly flowed towards classes of the target dataset, on which the pretrained neural network is trained, and thus has
perfect accuracy.

On Figure 3, we also replicate this experiment from SVHN to CIFAR10 which are composed of 32× 32× 3 dimensional
images. The neural network used is the same convolutional network used in Appendix D.5, and is pretrained on CIFAR10
during 5000 steps with the AdamW optimizer and a batch size of 64. We use here n = 100 samples by class, and run the
scheme for 500K steps with a step size of τ = 0.1 and m = 0.9. We also observe that the accuracy converges to 100%,
indicating that it also works in moderately high dimensions.

D.4. Generative Modeling

In this experiment, we generate samples from different datasets starting from Gaussian noise.

We show on Figure 12 trajectories starting from Gaussian noise towards MNIST and CIFAR10. For both datasets, we use a

4https://docs.kidger.site/equinox/examples/mnist/
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(a) L = 10 (b) L = 50

(c) L = 100 (d) L = 200

(e) L = 300 (f) L = 500

(g) L = 1000 (h) L = 2000

Figure 14: Ablation over the number of projections for generative modeling on MNIST.
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0 1 2 3 4 5 6 7 8 9

(a) ψθ = Id

0 1 2 3 4 5 6 7 8 9

(b) Aω + ψθ

Top Trouser Pull Dress Coat Sandal Shirt Sneaker Bag Ankle

(c) ψθ = Id

Top Trouser Pull Dress Coat Sandal Shirt Sneaker Bag Ankle

(d) Aω + ψθ

Figure 15: Synthetic data for the dataset distillation task on MNIST (Left) and FMNIST (Right) with or without embedding.

momentum of m = 0.9 and a step size of τ = 1. For MNIST, we run the flow for 18K steps, and plot samples every 1200
step, while for CIFAR10, we run it for 150K steps and plot samples every 10K step. We used n = 200 samples for each
class for MNIST and n = 50 for CIFAR10. We also compare trajectories on Figure 13 with using a momentum m = 0.9 or
no momentum for MNIST, running the flow for 100K steps and showing samples every 6667 step.

In Figure 14, we present an ablation study over the number of projections used to approximate the Sliced-Wasserstein
distance on the MNIST dataset (with the same setting with momentum, i.e. m = 0.9, τ = 1 for 18K steps). We observe that
to generate sufficiently clear images, we need at least 300 projections. This may be because a higher number of projections
provides a better approximation of the gradients.

D.5. Dataset Distillation

In this task, we aim at generating a new dataset allowing to approximate a target distribution Q = 1
C

∑
c=1 δνc,n with a

distribution P = 1
C

∑C
c=1 δµc,p for p≪ n, in order to be able to train more efficiently neural networks on it. In Table 1, we

take Q as the MNIST and Fashion MNIST dataset, with n = 5000 samples by class, andC = 10 classes, and report the results
for p ∈ {1, 10, 50}. We report the accuracy of a ConvNet trained on the synthetic dataset and evaluated on a test set, averaged
over 5 trainings of the neural network, and 3 synthetic datasets. We use a similar architecture as (Zhao & Bilen, 2023), i.e.
the ConvNet includes three repeated convolutional blocks, and each block involves a 128-kernel convolution layer, instance
normalization layer, ReLU activation function and average pooling. This forms the backbone part of the network, and the full
classifier is followed by a linear layer. For the initial distribution P0 = 1

C

∑C
c=1 δµc,p , each µc,p is chosen as a random subset

of the samples of νc,n. The results reported in the column “Random” correspond to the ConvNet trained on the initial data.

Zhao & Bilen (2023) proposed to solve the problem by minimizing

F
(
(µc)c

)
=

C∑
c=1

Eθ,ω

[∥∥∥∥∫ ψθ
(
Aω(x)

)
d(µc − νc)(x)

∥∥∥∥2
]
= Eθ,ω

[
C∑
c=1

MMD2
k

(
ψθ#Aω

#µ
c, ψθ#Aω

#ν
c)

]
, (241)

with linear kernel k(x, y) = ⟨x, y⟩, where Aω : Rd → Rd is some data augmentation and ψθ : Rd → Rd
′

with d′ ≪ d is a
randomly initialized neural network used to embed the data. This loss does not take into account the interaction between
the classes and just learn any set of synthetic samples for each class. In this work, we propose to take into account the
interaction between the classes, and thus minimize

F̃(P) =
1

2
Eθ,ω

[
MMD2

K(ϕθ,ω# P, ϕθ,ω# Q)
]
, (242)

with K(µ, ν) = −SW2(µ, ν).

In practice, for ψθ, we use the backbone part of the ConvNet, and for Aω, we follow the same strategy as (Zhao & Bilen,
2021) (i.e. we sample one augmentation among color jittering, cropping, cutout, scaling and a rotation for MNIST, and also
add flipping for Fashion MNIST). We optimize (241) by stochastic gradient descent over the particles, sampling one random
network and one random augmentation at each step. We trained it for 20K iterations, a learning rate of τ = 1 and a momentum
of m = 0.9. In practice, we observed numerical instabilities when optimizing in the ambient space with augmentations.
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Figure 16: Examples of images output by flows for the transfer learning task with k = 10 for Fashion MNIST (Left),
KMNIST (Middle) and USPS (Right).

To optimize (242), we also performed a stochastic gradient descent, sampling one random neural network and one random
augmentation at each step. We used also 20K iterations, a learning rate of τ = 1 and a momentum m = 0.9. Then, we
assign the classes using an OT matching as explained in Appendix D.3. We add on Figure 15 samples learned with this
loss, with and without embedding. We observe that images are slightly clearer when using an embedding. To compute the
gradient of F̃ in practice, we use autodifferentiation.

D.6. Transfer Learning

We describe the details for the experiment of transfer learning. We recall that the target dataset is of the form Q =
1
C

∑C
c=1 δνc,k with νc,k a uniform empirical distribution of k samples of the class c. In Table 2, the targets datasets

are Fashion-MNIST, KMNIST and USPS. Thus, C = 10, and we choose k ∈ {1, 5, 10, 100}. For the source dataset
P = 1

C

∑C
c=1 δµc,n , we used the MNIST dataset with n = 200 samples in each class.

We augment the target dataset by flowing the samples of MNIST on the target. For MMDSW, we minimize F(P) =
1
2MMD2

K(P,Q) with kernel K(µ, ν) = −SW2(µ, ν), by running the forward scheme for 5K steps for k ∈ {1, 5, 10} and
20K steps for k = 100, with step size τ = 1 and momentum m = 0.9. Finally, we align the labels using an OT matching
between the flowed samples P and the target Q, as for the dataset distillation experiment.

We compare it with training directly on the small dataset, and with two other methods. The first one, called OTDD (Alvarez-
Melis & Fusi, 2020), represents the dataset as a probability distribution on Rd ×P2(Rd), where the labels are embedded
in P2(Rd) by considering the conditional distribution, i.e., a feature-label pair (x, c) is represented as (x, µc). Then, they
compare datasets using Optimal Transport with cost d

(
(x, c), (x′, c′)

)2
= ∥x− x′∥22 +W2

2(µ
c, µc

′
). The flow of OTDD

then minimizes the OT distance with this cost, i.e., the objective is F(µ) = 1
2OTDD(µ, ν) for µ, ν ∈ P2(Rd × P2(Rd)),

with
OTDD(µ, ν) = inf

γ∈Π(µ,ν)

∫ (
∥x− x′∥22 +W2

2(µ
c, µc

′
)
)
dγ
(
(x, c), (x, c′)

)
. (243)

For big datasets, the conditional distributions µc can be approximated by Gaussian distributions. Alvarez-Melis & Fusi
(2021) proposed several schemes to optimize this loss using Wasserstein gradient flows. We did not manage to replicate
their results with their code. Thus, we reimplemented it with some differences. First, similarly as (Hua et al., 2023), we used
an embedding in dimension 2 of the data to approximate the conditional distributions with Gaussian distributions. Thus, we
model the datasets as distributions over Rd × R2 × S++

2 (R), with S++
2 (R) the space of symmetric positive definite matrices.

This helps avoiding memory issues and scaling to higher dimensional datasets as it reduces a lot the dimension of the samples
to flow. For this embedding, we used a Principal Component Analysis (but note that we could use other embedding methods
such as TSNE (Hua et al., 2023) or Multidimensional Scaling (Liu et al., 2025)). In practice, we approximate OTDD using
an entropic regularization, which we compute using the Sinkhorn algorithm (Cuturi, 2013) and ott-jax (Cuturi et al.,
2022). We optimize it using AdamW with a learning rate of τ = 1e−3 and run it for 5K iterations for k ∈ {1, 5, 10, 100}.
To get the labels, we use an OT matching as in (Hua et al., 2023), which we solve using POT (Flamary et al., 2021). More
precisely, for each class c ∈ {1, . . . , C} of the target distribution, we can compute a mean m̄c and a covariance Σ̄c, and a
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weight ωc = nc

n with n the number of samples in the target dataset, and nc the number of samples belonging to class c.
After flowing n samples, we have tuples (xi,mi,Σi)

n
i=1 and we want to associate to each sample a class. To do this, they

propose to solve the discrete OT problem between Q =
∑C
c=1 ωcδN (m̄c,Σ̄c) and P = 1

n

∑n
i=1 δN (mi,Σi):

min
P∈Π(P,Q)

n∑
i=1

C∑
c=1

PicW
2
2

(
N (mi,Σi),N (mc,Σc)

)
, (244)

and then use as distribution µn = 1
n

∑n
i=1 δ(xi,yi) with yi =

∑C
c=1 c1{P∗

ic=max P∗
i }.

The second baseline we use is the one proposed in (Hua et al., 2023). In this work, they first observe that the Gaussian
approximation for high dimensional datasets might not scale well in memory. Thus, they propose to use an embedding in a
lower dimension space of the conditional distributions, before doing the Gaussian approximation. The datasets are then
represented as probability distributions on Rd × Rp × S++

p (R) with p ≪ d. Instead of using an OT cost to compare the
datasets, they used the MMD with a kernel obtained as a product of Gaussian kernel. Then, they applied a Wasserstein
gradient flow of the MMD (Arbel et al., 2019) to minimize it, with a Bures-Wasserstein gradient descent step (Altschuler
et al., 2021) for the symmetric positive definite covariance matrix. We note that in contrast with our proposed MMD, it
requires many hyperparameters to tune (3 bandwidth of Gaussian kernels and noise to add to make the flow converge). We
reimplemented it in jax (Bradbury et al., 2018), used p = 2 and a Principal Component Analysis (using scikit-learn
(Pedregosa et al., 2011)) for the lifting of the conditional distribution (instead of TSNE in (Hua et al., 2023)). The Gaussian
of each class is then obtained by computing the mean and variance of each class. We used as bandwidth h = 100 for the
feature part, h = 50 for the mean part and h = 1000 for the covariance part. We ran the flow for 20K steps with a step size
of τ = 10, and momentum m = 0.9. To get the final labels, we solved (244) as explained in the last paragraph.

In Table 2, we report the accuracy obtained by training a LeNet-5 neural network for 50 epochs with a AdamW optimizer
and a learning rate of 3 · 10−4. Moreover, we average the results for 5 trainings of the neural network, and 3 outputs of the
flows. We add on Figure 16 examples of images returned at the end of the flow of the MMD with K(µ, ν) = −SW2(µ, ν).

D.7. Handling Different Number of Distributions between the Source and Target

Let P = 1
N

∑N
k=1 δµk,n and Q = 1

M

∑M
k=1 δνk,n with M < N . In this situation, the flow might not converge well towards

the target distribution since they have a different number of Dirac. This is illustrated on Figure 17, where the target is
composed of M = 3 rings νk,n, and the source is initialized with N = 4 distributions, and we minimize the MMD with a
Gaussian SW kernel K(µ, ν) = e−SW2

2(µ,ν)/h
2

. We see that the flow does not converge to 3 rings, as it cannot split the
mass because the Wasserstein gradient descent allow only changing the position of particles.

This problem could be solved by different solutions. For instance, one could use a Wasserstein-Fisher-Rao gradient flow
instead of a Wasserstein gradient flow (Gallouët & Monsaingeon, 2017). This flow can be approximated e.g. by using Birth
death Langevin algorithms (Lu et al., 2019; 2023) where the Langevin step approximates the Wasserstein gradient flow part,
and the Birth death part approximates the Fisher-Rao gradient flow part. The birth death consists at killing and duplicating ran-
domly particles at each step. Another solution to approximate the Fisher-Rao flow is to change the weights (Yan et al., 2024).

We propose to perform the Wasserstein gradient flow, but allowing to change the weights of the particles, which is not
possible for the Wasserstein gradient descent. Ideally, one would want to solve directly the JKO scheme{

γk+1 = argminγ∈P2(Rd×Rd), π1
#γ=µk

∫
∥x− y∥22 dγ(x, y) + τF(π2

#γ)

µk+1 = π2
#γk+1.

(245)

However, if we do not fix the support, it is not possible to directly solve this problem, except if we use neural networks.
Note that (245) can be seen as a semi-relaxed unbalanced optimal transport problem, where the first marginal is fixed. This
has been leveraged to solve the JKO scheme e.g. in (Choi et al., 2024).

We propose instead to alternate between a Wasserstein gradient descent step, which allows moving the particles without
changing the weights, and a backward step for which we optimize over the coupling while fixing its support, which allows
then to change the weights.

For simplicity, let us describe the procedure more precisely on P(Rd). Let ν ∈ P2(Rd) be a target distribution, and suppose
at step k, µk =

∑n
i=1 α

k
i δxi with αki ≥ 0,

∑n
i=1 α

k
i = 1. Let D be a divergence we want to minimize w.r.t. ν, i.e. we want
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Iter 0
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Figure 17: MMD with Gaussian SW kernel and 4 distributions flowed towards 3 rings. The flow does not converge to the 3
rings.

to minimize F(µ) = D(µ, ν). Then, our update is
µk+ 1

2
=
(
Id− τ∇W2F(µk)

)
#
µk

γk+1 = argminγ∈P(Rd×Rd),supp(γ)⊂supp(µ
k+1

2
)×supp(µ

k+1
2
), π1

#γ=µk+1
2

1
2

∫
∥x− y∥22 dγ(x, y) + τD(π2

#γ, ν)

µk+1 = π2
#γk+1.

(246)
The first step is a regular forward step, which moves the position of the particles. The second step learns a coupling
γ ∈ P2(Rd × Rd) which satisfies π1

#γ = µk+ 1
2

, and such that π2
#γ is supported on the same set of particles. This step can

be seen as solving a semi-relaxed Unbalanced Optimal Transport problem if the support for both distributions is the same.
Suppose that γ =

∑n
i,j=1 Pijδ(xi,xj), and note C ∈ Rn×n the matrix distance. Then, the second step can be rewritten as

min
P∈Rn×n

+ ,⟨P,1{n×n}⟩=1,P1n=α
⟨C,P ⟩+ τD

(
n∑
i=1

[PT1n]iδxi , ν

)
. (247)

For D(µ, ν) = KL(µ||ν), this can be solved using the Sinkhorn algorithm for the semi-relaxed UOT problem, i.e. with
φ1 = ι{1} (Séjourné et al., 2023). For D = MMD2, one can use different algorithms to solve it such as a Projected
Mirror Descent or an Accelerated Gradient Descent (Manupriya et al., 2024). Here, we propose to use the half step of the
Mirror Sinkhorn algorithm (Ballu & Berthet, 2023), which performs first a Mirror Descent step with Bregman potential
ϕ(P ) = ⟨P, logP ⟩ (for which Pk+1 = ∇ϕ∗(∇ϕ(Pk)− τ∇f(Pk)) = Pk⊙e−τ∇f(Pk)), and then perform a (Sinkhorn-like)
projection on the constraint, i.e., noting

f(P ) = ⟨C,P ⟩+ τMMD2

(
n∑
i=1

[PT1n]iδxi
, ν

)
(248)

the objective, the algorithm becomes {
P ′
k+1 = Pk ⊙ e−τ∇f(Pk)

Pk+1 = diag
(
α⊘ (P ′

k+11n)
)
P ′
k+1.

(249)

We show on Figure 18 the results on the rings experiment. We observe that the weight of the 4th ring is set to 0, and thus
that the scheme converges to the target.
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Iter 0
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Figure 18: MMD with Gaussian SW kernel and 4 distributions flowed towards 3 rings using the proposed algorithm. The
flow converges to the 3 rings by setting the weights of one of the ring to 0.

E. Related Works
E.1. Optimal Transport Distance for Datasets

Alvarez-Melis & Fusi (2020) first proposed to compare datasets with a dedicated discrepancy, which takes into account
features and labels. They proposed to do it by representing datasets as uniform empirical distributions over Rd ×P2(Rd),
embedding the labels in P2(Rd) by considering the conditional distributions, i.e., a feature-label pair (x, c) is represented as
(x, µc) with µc the distribution of samples belonging to the class c. They proposed to compare datasets using an optimal
transport distance with cost d

(
(x, c), (x′, c′)

)2
= ∥x − x′∥22 + W2

2(µ
c, µc

′
). To summarize, they consider as distance

between µ, ν ∈ P2(Rd × P2(Rd)),

OTDD(µ, ν) = inf
γ∈Π(µ,ν)

∫ (
∥x− x′∥22 +W2

2(µ
c, νc

′
)
)
dγ
(
(x, c), (x, c′)

)
. (250)

In practice, Alvarez-Melis & Fusi (2020) approximated the conditional distributions µc by Gaussians to be able to compute
the Wasserstein distance in closed-form, which leads to a complexity of O

(
Cnd2 + C2d3 + n3C3 log(nC)

)
as it requires

to estimate C means and covariance matrices from n samples, to compute C2 Bures-Wasserstein distances, and an OT
problem between Cn samples. The final OT problem can be approximated using an entropic regularization, which reduces
the complexity to O

(
Cnd2 + C2d3 + ε−2n2C2 log(nC)

)
(Dvurechensky et al., 2018).

Liu et al. (2025) instead embedded the labels in Rd using a Multidimensional Scaling, and further approximated the resulting
squared Wasserstein distance with a Wasserstein embedding. Bonet et al. (2025) proposed to embed the labels in a hyperbolic
space, and used a Sliced-Wasserstein distance to compare distributions on the product space Rd × H. Nguyen & Ho (2024)
used a similar embedding, and a hierarchical hybrid Sliced-Wasserstein distance. More recently, Nguyen et al. (2025)
introduced a sliced optimal transport dataset distance using a dedicated projection from Rd × P2(Rd) to R.

Concerning the task of flowing datasets, Alvarez-Melis & Fusi (2021); Hua et al. (2023) both modeled conditional
distributions as Gaussian, and solved flows on Rd×Rp×S++

p (R). More precisely, Alvarez-Melis & Fusi (2021) minimized
OTDD on Rd × Rd × S++

d (R), while Hua et al. (2023) minimized an MMD over Rd × R2 × S++
2 (R) with a product of

Gaussian kernels, and using an embedding on R2 for the conditional distributions. In contrast to these works, we encode the
labels directly into the discrepancy by using a MMD on the space of probability distributions with a suitable kernel.

Alvarez-Melis & Fusi (2021) proposed several ways of minimizing F(µ) = OTDD(µ, ν) for µ = 1
n

∑n
i=1 δ(xi,µci ). Let

us note µk = 1
n

∑n
i=1 δ(xi,k,µ

ci
k ) the dataset at step k, and assume ci ∈ {1, . . . , C}. For small datasets for which the

Wasserstein distance between conditional distributions can be computed efficiently, they just proposed to flow the samples,
i.e. computing xi,k+1 = xi,k − τ∇xi

OTDD(µk, ν) and updating the conditional distributions at each step. When using the
Gaussian approximation, they proposed to update the mean and covariance at each step (feature driven), or to do a gradient
descent step for the C means and covariances (joint-driven-fixed-label). They also considered the joint-driven-variable-
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label, where they decoupled at time 0 the Gaussian, and flowed one mean mi and covariance Σi by Gaussian, i.e., for all
i ∈ {1, . . . , n} and k ≥ 0, 

xi,k+1 = xi,k − τ∇xiOTDD(µk, ν)

mi,k+1 = mi,k − τ∇mi
OTDD(µk, ν)

Σi,k+1 = Σi,k − τ∇Σi
OTDD(µk, ν).

(251)

This however requires to cluster the pairs (mi,Σi) to recover labels.

Hua et al. (2023) observed that the embedding of the conditional distribution as Gaussian can be very costly in practice for
high-dimensional datasets. Thus, they first proposed to embed the features in R2 using TSNE, in order to embed the labels as
Gaussian in R2, and therefore represented the datasets as empirical distributions over Rd×R2×S++

2 (R). Then, they proposed
to minimize the MMD on this space with kernel k

(
(x,m,Σ), (x′,m′,Σ′)

)
= e−∥x−x′∥2

2/hxe−∥m−m′∥2
2/hme−∥Σ−Σ′∥2

2/hΣ .
For µ, ν ∈ P2

(
Rd × R2 × S++

2 (R)
)
, let F(µ) = 1

2MMD2(µ, ν) =
∫
V dµ + 1

2

∫∫
k(x, y) dµ(x)dµ(y), with V (x) =

−
∫
k(x, y)dν(x). Its Wasserstein gradient is then for all (x,m,Σ),

∇W2
F(µ)

(
(x,m,Σ)

)
= ∇V

(
(x,m,Σ)

)
+

∫
∇1k

(
(x,m,Σ), (x′,m′,Σ′)

)
dµ
(
(x′,m′,Σ′)

)
∈ Rd×R2×S2(R). (252)

Using the Bures-Wasserstein geometry for the covariance part, their updates are given by
xi,k+1 = xi,k − τ [∇W2F(µk)

(
(xi,k,mi,k,Σi,k)

)
]1

mi,k+1 = mi,k − τ [∇W2F(µk)
(
(xi,k,mi,k,Σi,k)

)
]2

Σi,k+1 = expΣi,k

(
− τ [∇W2

F(µk)
(
(xi,k,mi,k,Σi,k)

)
]3
)
,

(253)

with expΣ(S) = (Id + S)Σ(Id + S) for Σ ∈ S++
d (R), S ∈ Sd(R) the exponential map on the Bures-Wasserstein space,

see e.g. (Altschuler et al., 2021, Appendix A.1).

E.2. Variational Inference with Mixture of Gaussians

Lambert et al. (2022) considered to do Variational Inference with a family of Gaussian mixtures. Let’s note BW(Rd) ⊂
P2(Rd) the Bures-Wasserstein space, i.e., the space of Gaussian distributions endowed with the Wasserstein distance.
Observing that there is an identification between BW(Rd) and Rd×S++

d (R) (Chen et al., 2018; Delon & Desolneux, 2020),
this amounts at solving the problem, for π ∈ P2,ac(Rd),

min
µ∈P2(Rd×S++

d (R))
KL

(∫
pθdµ(θ)||π

)
, (254)

where pθ = N (·;m,Σ) for θ = (m,Σ) ∈ Rd × S++
d (R). Equivalently, it can be framed as an optimization problem over

P2(BW(Rd)), by solving

min
P∈P2(BW(Rd))

KL

(∫
µ dP(µ)||π

)
. (255)

Note that the KL here is the usual Kullback-Leibler divergence, defined between µ, ν ∈ P2,ac(Rd) as

KL(µ||ν) =
∫

log

(
pµ(x)

pν(x)

)
dµ(x), (256)

where we note pµ and pν the densities of µ and ν w.r.t the Lebesgue measure.

They address the problem by solving an ODE on the means and covariances, which characterizes the trajectory of the
gradient flow in (P2(BW(Rd)),WBW2

). Alternatively, they propose to solve the JKO scheme between particles by solving
for all k ≥ 0,

(θ
(1)
k+1, . . . , θ

(n)
k+1) = argmin

θ(1),...,θ(n)

F

(
1

n

n∑
i=1

δN (m(i),Σ(i))

)
+

1

τ
W2

W2

(
1

n

n∑
i=1

δN (m(i),Σ(i)),
1

n

n∑
i=1

δN (m
(i)
k ,Σ

(i)
k )

)
. (257)

We now derive the gradient of this functional using our framework, and make the connections with the formula derived in
(Lambert et al., 2022, Appendix F).
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Computation of the gradient. Let P ∈ P2

(
P2(Rd)

)
and ξ ∈ TPP2

(
P2(Rd)

)
. We want to do the Taylor expansion of

F(expP(tξ)) = F
(
(µ 7→ (Id + tξ(µ))#µ)#P

)
:

F
(
expP(tξ)

)
= KL

(∫
µ d
(
expP(tξ)

)
(µ)||π

)
= KL

(∫
(Id + tξ(µ))#µ dP(µ)||π

)
=

∫∫
log

(∫
p(Id+tξ(ν))#ν(x) dP(ν)

pπ(x)

)
p(Id+tξ(µ))#µ(x) dP(µ)dx.

(258)

By a Taylor expansion, we can write for all x ∈ Rd,

p(Id+tξ(µ))#µ(x) = pµ(x) + t∂tp(Id+tξ(µ))#µ(x) + o(t) = pµ(x)− tdiv
(
pµ(x)ξ(µ)(x)

)
+ o(t), (259)

where we used (Villani, 2003, Theorem 5.34) for ∂tp(Id+tξ(µ))#µ = −tdiv
(
pµξ(µ)

)
. Plugging this in (258), we get

F
(
expP(tξ)

)
=

∫∫
log

(∫
pν(x)dP(ν)− t

∫
div
(
pν(x)ξ(ν)(x)

)
dP(ν) + o(t)

pπ(x)

)
p(Id+tξ(µ))#µ(x) dP(µ)dx

=

∫∫ (
log

(∫
pν(x)dP(ν)

)
− t

∫
div
(
pν(x)ξ(ν)(x)

)
dP(ν)∫

pν(x)dP(ν)
+ o(t)

− log pπ(x)
)
p(Id+tξ(µ))#µ(x) dP(µ)dx

=

∫∫ (
log

(∫
pν(x)dP(ν)
pπ(x)

)
− t

∫
div
(
pν(x)ξ(ν)(x)

)
dP(ν)∫

pν(x)dP(ν)
+ o(t)

)
p(Id+tξ(µ))#µ(x) dP(µ)dx.

(260)
Performing the Taylor expansion of the second density, we get

F
(
expP(tξ)

)
=

∫∫ (
log

(∫
pν(x)dP(ν)
pπ(x)

)
− t

∫
div
(
pν(x)ξ(ν)(x)

)
dP(ν)∫

pν(x)dP(ν)
+ o(t)

)
(pµ(x)− tdiv

(
pµ(x)ξ(µ)(x)

)
+ o(t)) dP(µ)dx

= F(P)− t

∫∫
log

(∫
pν(x)dP(ν)
pπ(x)

)
· div

(
pµ(x)ξ(µ)(x)

)
dxdP(µ)

− t

∫ ∫
div
(
pν(x)ξ(ν)(x)

)
dP(ν)∫

pν(x)dP(ν)

∫
pµ(x)dP(µ)dx+ o(t)

= F(P) + t

∫∫ 〈
∇ log

(∫
pν(x)dP(ν)
pπ(x)

)
, ξ(µ)(x)

〉
dµ(x)dP(µ) + o(t).

(261)

We used in the last line the integration by part formula, and
∫
div
(
pν(x)ξ(ν)(x)

)
dx = 0. We can conclude that

∇WW2
F(P)(µ) = ∇VP, where VP(x) = log

( ∫
pν(x)dP(ν)

)
− log pπ(x).

Computation with 1st variation. We now verify that we would recover the same result by computing the first variation,
as conjectured in Appendix B.4.

Let π ∈ P2,ac(Rd), π ∝ e−V with V : Rd → R a potential. Denote Fπ : P2,ac(Rd) → R, Fπ(µ) = KL(µ||π) for all
µ ∈ P2,ac(Rd), and for all P ∈ P2

(
Pac(Rd)

)
,

F(P) = KL

(∫
µ dP(µ)

∣∣∣∣∣∣π) = Fπ
(∫

µ dP(µ)

)
. (262)

We will now derive the 1st variation of F. First, recall that δFπ

δµ (µ) = 1 + logµ− log π = 1 + logµ+ V . Thus, we have,
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noting µ̃ =
∫
µ dP(µ), pµ̃(x) =

∫
pµ(x) dP(µ) and χ̃ =

∫
µ dχ(µ),

dF
dt

(P + tχ)
∣∣
t=0

=
dFπ
dt

(∫
µ dP(µ) + t

∫
µ dχ(µ)

) ∣∣∣
t=0

=
dFπ
dt

(µ̃+ tχ̃)
∣∣
t=0

=

∫
δFπ
δµ

(µ̃)(x) dχ̃(x) by definition of the 1st variation of Fπ

=

∫ (
1 + log pµ̃(x)− log pπ(x)

)
dχ̃(x)

=

∫
Rd

(
1 + log

(∫
pµ(x) dP(µ)

)
− log pπ(x)

) ∫
P2(Rd)

pµ(x) dχ(µ)dx

=

∫
P2(Rd)

∫
Rd

(
1 + log

(∫
pν(x) dP(ν)

)
− log pπ(x)

)
dµ(x) dχ(µ).

(263)

Therefore, the first variation of F at P is,

∀µ ∈ P2(R
d),

δF
δP

(P)(µ) =
∫

Rd

(
1 + log

(∫
pν(x) dP(ν)

)
− log pπ(x)

)
dµ(x). (264)

We note that this coincides with the formula of the 1st variation provided in (Lambert et al., 2022, Appendix F) (in the
particular case of mixture of Gaussian).

Now, noting VP(x) = 1 + log
(∫
pν(x) dP(ν)

)
− log pπ(x), the first variation is a potential energy δF

δP (P)(µ) =
∫
VP dµ.

Thus, the gradient of F at P ∈ P2

(
P2(Rd)

)
is obtained by the conjecture in Appendix B.4 as, for all µ ∈ P2(Rd) x ∈ Rd,

∇WW2
F(P)(µ)(x) = ∇W2

δF
δP

(P)(µ)(x) = ∇VP(x). (265)

This is well the same formula obtained by computing the Taylor expansion.

If we want to compute the gradient on P2

(
BW(Rd)

)
, we can take the Bures-Wasserstein gradient of the first variation instead

of the Wasserstein gradient. Since it is a potential energy, by (Diao et al., 2023, Lemma 3.1), for any P ∈ P2

(
BW(Rd)

)
and

µ ∈ BW(Rd), x ∈ Rd,

∇WBW
F(P)(µ)(x) = ∇BW

δF
δP

(P)(µ)(x) =
∫

∇VP dµ+

(∫
∇2VP dµ

)
(x−mµ), (266)

with mµ =
∫
xdµ(x). Since the tangent space of the Bures-Wasserstein space is of the form TµBW(Rd) = {x 7→

m + S(x −mµ), m ∈ Rd, S ∈ Sd(R)} (see e.g. (Diao et al., 2023, Appendix A)), then we can identify the mean and
covariance part of the gradient as (

∫
∇VP dµ,

∫
∇2VP dµ), which coincides well with the formula derived in (Lambert

et al., 2022, Appendix F).

Lambert et al. (2022) experimented with F in practice by evolving Gaussian particles. Note however that they observed that,
even though the KL divergence is (geodesically) convex in P2(Rd) for V convex, F is not convex in P2

(
BW(Rd)

)
as the

negative entropy is not.

Also related, Huix et al. (2024) considered optimizing the KL over mixtures of Gaussian, but with fixed covariance observing
that the objective can be seen as the KL between a mollified distribution and the target. They minimized it using Wasserstein
gradient flows over the means of each mixture. Moreover, their scheme in that case can be seen as a particular case of the
one of (Lambert et al., 2022), as described in (Huix et al., 2024, Appendix B).

Also to solve Variational Inference problems, Lim & Johansen (2024) considered the family qθ,µ =
∫
kθ(·|z)dµ(z) with

parametric kernels kθ satisfying
∫
kθ(x|z)dx = 1 for all z ∈ Rdz . They solved this problem by minimizing the KL

divergence with a regularizer, using a gradient flow over Rdθ ×P2(Rdz ). Rønning et al. (2025) considered a mixture family
of the form q(x|µm) = 1

m

∑m
ℓ=1 k(x|zℓ) with µm = 1

m

∑m
ℓ=1 δzℓ , and minimized an ELBO using the Stein Variational

Gradient Descent.
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