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ABSTRACT

Despite the significant progress made in practical applications of aligned language
models (LMs), they tend to be overconfident in output answers compared to the
corresponding pre-trained LMs. In this work, we systematically evaluate the im-
pact of the alignment process on logit-based uncertainty calibration of LMs un-
der the multiple-choice setting. We first conduct a thoughtful empirical study on
how aligned LMs differ in calibration from their pre-trained counterparts. Exper-
imental results reveal that there are two distinct uncertainties in LMs under the
multiple-choice setting, which are responsible for the answer decision and the for-
mat preference of the LMs, respectively. Then, we investigate the role of these two
types of uncertainty on aligned LM’s calibration through fine-tuning in synthetic
alignment schemes and conclude that one reason for aligned LMs’ overconfidence
is the alteration of their answer uncertainty. We hope our findings could provide
insights into the design of more reliable alignment processes for LMs.

1 INTRODUCTION

Aligning pre-trained language models (LMs) with human feedback, e.g., ChatGPT (Ouyang et al.,
2022), LLaMA (Touvron et al., 2023b), and Vicuna (Chiang et al., 2023), has achieved remarkable
success in a broad spectrum of real-world application scenarios. However, recent works show that
the aligned LMs tend to be more overconfident in their answers compared to the pre-trained LMs
and result in poor calibration (Kadavath et al., 2022; OpenAI, 2023; Tian et al., 2023; Zhao et al.,
2023), which makes it challenging to distinguish truthful and hallucinated answers of the models.
As a result, this issue hinders the deployment of aligned LMs in safety-critical domains.

Uncertainty calibration (Murphy, 1973; Murphy & Winkler, 1977; DeGroot & Fienberg, 1983), as an
important metric for reliable deep learning systems (Guo et al., 2017), measures the consistency of
the posterior probability (or predictive confidence) that the model gives about the output with the true
correctness likelihood. For example, when a well-calibrated model gives predictions each with 0.8
confidence, then 80% of predictions should be correct, i.e., the model knows what it knows. For LMs,
calibrated confidence can serve as an auxiliary to assist human users in identifying and rectifying
undesired behaviors such as hallucinations and establishing trust in the LM-based applications.

One plausible way to evaluate LMs’ calibration is quantifying their confidence through the logit-
based likelihood over the output tokens. With the established background that advanced large pre-
trained LMs are well-calibrated while aligned LMs are poorly calibrated due to overconfidence
in logit-based evaluation (Kadavath et al., 2022; OpenAI, 2023), previous works mainly focus on
alternative approaches to elicit LMs’ confidence (Kuhn et al., 2023; Tian et al., 2023; Lin et al.,
2023) or the correlations between calibrations and other metrics (Liang et al., 2023). Nevertheless,
how the alignment process deteriorates LMs’ calibration remains unexplored.
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In light of this, we first conduct a thoughtful empirical study to examine how pre-trained and aligned
LMs differ in calibration under the multiple-choice setting, and our main findings are: 1). in-context
learning plays an important role in pre-trained LMs’ calibration by demonstrating the response’s
format while keeping LM’s confidence in their answer; 2). aligned LMs are inherently overcon-
fident with altered predictive distribution on both answer decision and response format under the
multiple-choice setting.

The following are multiple 
choice questions (with
answers) about machine 
learning. 

_ refers to a model that can
neither model the training 
data nor generalize to new 
data. 
(A). good fitting
(B). overfitting 
(C). underfitting
(D). all of the above 
Answer: (

Task 
Descrip�on
(Op�onal)

Ques�on 
Body

Mul�ple-
Choice

Ques�on

Candidate 
Responses

Choice 
Le�ers

Target Genera�on Posi�on forFormat Iden�fier

Figure 1: An example MCQ prompt
for MMLU (0-shot).

To further investigate how aligned LMs’ calibration distorts,
we formulate two types of uncertainty related to LMs’ cal-
ibration, namely answer uncertainty and format uncertainty,
which correspond to making decisions among candidates and
formatting LMs’ responses, respectively. By analyzing the
impact of alignment on the two types of uncertainty with syn-
thetic fine-tuning schemes, we conclude that one reason for
the miscalibration of aligned LMs is that current alignment
processes cannot distinguish these two types of uncertainty,
and the shifted answer uncertainty leads to overconfidence.

2 HOW PRE-TRAINED AND ALIGNED LMS DIFFER IN CALIBRATION
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Figure 2: The accuracy, ECE, and average predictive confidence of ZSL and ICL with choice format
“A’ and “(A)” on MMLU. We also report the average confidence of the predicted choice, sum of
the choice letter’s probabilities for choice format “A” and the probability of the format identifier for
choice format “(A)”.

Task Definition Let us consider a class of tasks whose sample consists of an instruction (or ques-
tion) x and a set of candidate responses yc ∈ Y . To estimate p(yc|x) through an auto-regressive
LM pθ(xt|x<t), we can format the sample (x,Y) into a multiple-choice question (MCQ). More
precisely, we create the MCQ x̃ that concatenates the task description, question body, and all candi-
date responses using a mapping x̃ = f(x,Y) and assign a choice letter ỹc for each candidate yc, as
illustrated in Fig. 1. To perform uncertainty calibration, we can estimate pθ(yc|x) using the prob-
ability of the choice letter pθ(ỹc|x̃) calculated from the token logits given by the LM at the target
generation position. For aligned LMs, we consider two common paradigms – supervised fine-tuning
(SFT) and learning from pairwise feedback (LPF).

Evaluation Setup In this work, we adopt expected calibration error (ECE) with 10 equal-sized
bins to measure LM’s calibration. We evaluate the LM with both zero-shot learning (ZSL) and five-
shot in-context learning (ICL). All data are adapted to MCQs, as shown in Fig. 1. We employ two
choice formats: “A” and “(A)”, where we refer to “(” as a format identifier that serves as a hint
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for the LM, guiding it to answer MCQs directly with one of the choice letters. The detailed setup is
available in Appendix B.1.

First, we examine how pre-trained and aligned LMs differ in their ECE, confidence, and other rel-
evant probabilities in ZSL and ICL settings with a typical MCQ task MMLU (Hendrycks et al.,
2021). (Comprehensive results are available in Appendix C)

For pre-trained LMs, as shown in Fig. 2b and Fig. 2c we observe that they are underconfident in
the ZSL setting with the choice format “A”, yielding high ECE. Meanwhile, Fig. 2d shows that the
sum of probabilities for all choice letters is widely low, revealing that pre-trained LMs tend not to
start responses with choice letters for MCQs. We refer to this phenomenon as the format preference,
leading to low predictive confidence of pre-trained LMs in the ZSL setting. Upon examining the ICL
setting, as shown in Fig. 2d, pre-trained LMs can alter their format preference based on in-context
examples. Notably, the result predictive confidence produced by ICL is well-calibrated out-of-the-
box, as depicted by the clear decrease of ECE between ZSL and ICL in Fig. 2b.

For the choice format “(A)”, the effect of ICL in altering the LMs’ format preference is reflected in
the probability of the format identifier “(”. As shown in Fig. 2d & 2h, the probability of the format
identifier under “(A)” and the sum of choice letters’ probabilities under “A” exhibit a similar trend
from ZSL to ICL. Such phenomenon suggests that the format identifier “separates” a part of LMs’
format preference from the choice letters. Consequentially, the probabilities of the LMs over the
choice letters could more accurately reflect their confidence in candidate answers. As compared in
Fig. 2b & 2f and Fig. 2c & 2g, the difference in the ECE and confidence between ZSL and ICL is
evidently narrowed under the choice format “(A)”. Along with the results for choice format “A”
in the previous paragraph, we conclude that in-context learning calibrates pre-trained LMs by both
changing LMs’ format preference and maintaining LMs’ confidence in their answer prediction.

In contrast to the pre-trained LMs, the aligned LMs are overconfident in both ZSL and ICL settings
across all choice formats. Additionally, they prefer to directly output the choice letter to answer
MCQs, i.e., aligned LMs have different format preferences compared to pre-trained LMs. How-
ever, unlike pre-trained LMs, ICL can only change aligned LMs’ format preference while having a
marginal effect on their calibration in this setting which suggests that the alignment process destroys
the well-calibrated predictive distributions of pre-trained LMs and cannot be restored by ICL. Based
on these findings, we also propose a sample-efficient post-hoc calibration technique in Appendix E.

3 HOW ALIGNMENT PROCESS IMPACTS LMS’ UNCERTAINTY CALIBRATION

3.1 THE TWO UNCERTAINTIES OF LMS IN MULTIPLE-CHOICE QUESTIONS

Inspired by the empirical observations in §2, we propose to decompose LMs’ uncertainty in MCQs
into two parts: 1). Answer uncertainty: the uncertainty about choosing an answer among all candi-
dates; 2). Format uncertainty: the uncertainty about the response format for answering a question in
general, e.g., start the response with a choice decision or other texts like “Let’s think step by step”
for answering MCQs. Formally, let F be a discrete random variable representing the LM’s prefer-
ence for structuring its response y among all possible formats F given an instruction x. Suppose
each instruction-response pair (x,y) corresponds to an unique format F , i.e., either p(F |x,y) = 1
or p(F |x,y) = 0. Then, similar to the decomposition of the model uncertainty and data uncer-
tainty (Gal, 2016; Kendall & Gal, 2017; Malinin & Gales, 2018), we could decompose the LM’s
predictive probability pθ(y|x) as (detail in Appendix D):

pθ(y|x) = pθ(y|x, F )︸ ︷︷ ︸
Answer

pθ(F |x)︸ ︷︷ ︸
Format

(1)

Here the format uncertainty pθ(F |x) for a question x is induced by: pθ(F |x) =
∑

y∈YF
pθ(y|x),

where YF = {y|pθ(F |x,y) = 1}, i.e., all responses y that correspond to the same format F . We
have the following two hypotheses under this formulation based on empirical observations:
Hypothesis 3.1. For MCQs, the answer uncertainty pPT

θ (ỹc|x̃, FMC) of pre-trained LMs under the
format FMC is well-calibrated, where FMC denotes the format that directly makes a choice decision.
Hypothesis 3.2. The altered answer uncertainty during alignment leads to the miscalibration of
aligned LMs.
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We first discuss empirical evidence supporting Hypothesis 3.1. In practice, for answering general
MCQs such as MMLU, once the in-context examples provide enough signals for FMC via the for-
mat of SK , the LM’s prediction under ICL would be largely independent of the content of SK (Min
et al., 2022), which suggests that pPT

θ (ỹc|x̃, SK) would be a good approximator of the LM’s answer
uncertainty pPT

θ (ỹc|x̃, FMC) when SK conforms to the format FMC. We also include an extended
empirical study to demonstrate this point in Appendix C.5. Meanwhile, as shown in §2 and Fig. 2,
pre-trained LMs’ predictive confidence pPT

θ (ỹc|x̃, SK) under ICL or given format identifier is gen-
erally calibrated, indicating pre-trained LMs’ answer uncertainty pPT

θ (ỹc|x̃, FMC) is calibrated.

3.2 COMMON ALIGNMENT PROCESSES CONFLATE THE TWO UNCERTAINTIES OF LMS
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Figure 3: ZSL results of different alignment stages on MMLU validation set.

In the subsequent analysis, our objective is to demonstrate evidence that supports Hypothesis 3.2.
In this section, we examine the effect of common alignment stages on LMs’ two uncertainties in
MCQs. Specifically, we choose two sets of full-process (i.e., both SFT and LPF) alignment LMs,
Alpaca-Farm (Dubois et al., 2023), which aligns pre-trained Llama-1 7B with SFT and PPO (Schul-
man et al., 2017), and Zephyr (Tunstall et al., 2023), which aligns pre-trained Mistral 7B (Jiang
et al., 2023) with SFT and DPO (Rafailov et al., 2023). We track the same four metrics in §2
at different stages of alignment under choice format “(A)”. We perform the evaluation using the
officially released checkpoints of aligned LMs in the HuggingFace1. For Alpaca-Farm (Dubois
et al., 2023), we adopt the alpaca-farm-sft10k and alpaca-farm-ppo-human for SFT
and PPO version of Llama-1 7B. We use Mistral-7B-v0.1, mistral-7b-sft-beta, and
zephyr-7b-beta for the pre-trained, SFT, and DPO version of Mistral 7B (Jiang et al., 2023;
Tunstall et al., 2023). All LMs are aligned with free-form QA datasets labeled with preference,
where the Alpaca-Farm generates the data using self-instruct (Wang et al., 2023), and the Zephyr
pipeline adopts the UltraChat (Ding et al., 2023) dataset.

As shown in Fig. 3, aligning pre-trained LMs on human-preference dialog data with SFT and LPF
impacts both LM’s answer uncertainty (indicated by confidence) and format uncertainty (est. with
the probability of the format identifier) in MCQs. For aligning Llama-1 with the Alpaca-Farm
pipeline, the LM’s confidence keeps increasing during the whole alignment process, whereas for
aligning from Mistral to Zephyr, the LM’s confidence remains unchanged during SFT and sharply
increases when performing DPO. Meanwhile, the format uncertainty of the LMs has varying degrees
of change at all stages of alignment. Interestingly, the SFT version of Mistral is the only aligned LM
that preserves the calibration of the pre-trained LMs on MCQs. These results highlight that the two
uncertainties of LMs in MCQs undergo uncontrolled changes during alignment, i.e., common align-
ment processes conflate the two uncertainties of LMs. Crucially, the observations in Fig. 2 and Fig. 3
together show that, although the alignment processes do not involve much domain knowledge re-
quired for MMLU, aligning pre-trained LMs with preference data results in a monotonic increasing
pattern in LM’s confidence in this task regardless of the changes in accuracy or format uncertainty,
which suggests current alignment processes will likely lead to overall overconfidence in MCQs.

3.3 HOW UNCERTAINTY CONFLATION DURING ALIGNMENT IMPACTS LMS’ CALIBRATION

Intuitively, the mixed effect of alignment on LMs’ uncertainties in MCQs may stem from the
choice of examples in SFT and the way of reward modeling in LPF, where the LMs are opti-
mized towards both correct answers and human-preferred formats simultaneously. To better under-

1https://huggingface.co/
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stand how aligned LMs become miscalibrated, we design a series of synthetic alignment schemes
where the pre-trained LM performs controlled optimization of answer uncertainty and format un-
certainty on a synthetic MCQ task. In specific, we experiment with three variants for SFT and
DPO (Rafailov et al., 2023), respectively: 1). SFT-Format: calculate loss on the format identi-
fier, i.e., optimize pθ(FMC|x̃) only; 2). SFT-Choice: calculate loss on the choice letters, i.e., op-
timize pθ(ỹc|x̃, FMC) only; 3). SFT-Mixed: calculate loss on both kinds of tokens, i.e. optimize
pθ(FMC|x̃) & pθ(ỹc|x̃, FMC); 4). DPO-Format: the preference pair (yw,yl) has same choice but
different format; 5). DPO-Choice: the preference pair (yw,yl) has same format but different choice;
6). DPO-Mixed: the preference pair (yw,yl) has different choices and formats.

Which of the following options 
corresponds to “Foo”?
(A). “Foo”
(B). “Bar”
(C). “Baz”
(D). “Qux”

Answer:

Figure 4: An example of the
synthetic MCQ.

For the synthetic MCQ task, we adopt the one used in Lieberum
et al. (2023), where the LM must pick one choice corresponding to
a particular English word specified in the question from four can-
didates, as shown in Fig. 4. We set the preferred format in DPO
to directly output the choice letter, e.g., “(A)”, and set the unde-
sired format to “It’s (A)”. We choose Llama-1 7B as our base
pre-trained LM since we observe that it only achieves 70% zero-
shot accuracy on this synthetic task, ensuring the alignment process
is non-degenerate. Since the synthetic MCQ data has limited scale and diversity, we opt to use
LoRA (Hu et al., 2022) to avoid overfitting. The detailed training setup is presented in Appendix B.2.
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Figure 5: Results of all synthetic alignment schemes for Llama-1 7B on MMLU validation set.

Fig. 5 illustrates the result on MMLU after aligning the pre-trained LM with the synthetic schemes.
Both SFT-Format and DPO-Format have close accuracy, ECE, and confidence to the pre-trained LM
in the ICL setting while increasing the model’s likelihood on the format identifier. In comparison,
the Choice and Mixed schemes exhibit overconfidence in the evaluation task, among which the
DPO-Choice scheme causes the most severe overconfident tendency on MMLU. We also present
the accuracy on the synthetic task of these schemes in Appendix C.6.

These results provide empirical evidence for validating Hypothesis 3.2, i.e., the typically observed
overconfidence and miscalibration of aligned LMs in MCQs primarily arise from alterations in
answer uncertainty during the alignment process. The synthetic alignment schemes show that even
updating the answer uncertainty of LMs on such a simple task can lead to overconfidence in other
multiple-choice tasks. Arguably, updating the answer uncertainty of LMs during alignment could
also boost the accuracy of the overall performance for MCQs, as shown in Fig. 5a. However, such
benefit becomes marginal for strong pre-trained LMs, such as Mistral (in Fig. 3) and Llama-2 70B
(in Fig. 2). Thus, in order to preserve the calibration of the tasks not covered during the alignment,
we need to design the alignment process elaborately, and our analysis suggests that focusing on the
format uncertainty might be a potential direction.

4 CONCLUSIONS

In this work, we complement the line of study on logit-based uncertainty calibration of LMs by delv-
ing into the differences in the calibration of pre-trained and aligned LMs in ZSL and ICL settings
with MCQs. Upon investigating the impact of alignment processes on LMs’ uncertainties, we con-
clude that the current alignment process affects LM’s calibration in MCQs by altering the model’s
well-calibrated answer uncertainty. We hope our research could contribute to building more reliable
alignment processes and LM-based systems.
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A PROMPT EXAMPLES

We present the example ZSL prompt with the chioce format “(A)” for each task. The general format
we use for multiple-choice questions is drawn from the OpenAI Evals2. For task description and the
way we organize the question body with the original text data, we mainly refer to HELM (Liang
et al., 2023), PromptSource (Bach et al., 2022), and the examples in Wei et al. (2023). We try our
best to avoid presenting any harmful or offensive content that does exist in these datasets.

A.1 MMLU

The following are multiple choice questions (with answers) about machine
learning.

_ refers to a model that can neither model the training data nor
generalize to new data.
(A). good fitting
(B). overfitting
(C). underfitting
(D). all of the above
Answer: (

A.2 HELLASWAG

The following are multiple choice questions (with answers) about
commensense reasoning.

How does this sentence end?
Sentence: A man hoses of the hood of his car. The person kneels next to
his car and shows cleaning products. the man
(A). runs a machine over the car.
(B). finishes cleaning the car and puts it away.
(C). takes a hose off of his car.
(D). shakes up the product before applying it to a sponge.
Answer: (

A.3 TRUTHFULQA

Where does it never ever stop snowing?
(A). It is always snowing at the North Pole.
(B). It is always snowing at the South Pole.
(C). It is always snowing on Mount Rainier.
(D). There is no place where it never stops snowing.
Answer: (

A.4 OPENBOOKQA

Frilled sharks and angler fish live far beneath the surface of the ocean,
which is why they are known as
(A). Deep sea animals
(B). fish
(C). Long Sea Fish
(D). Far Sea Animals
Answer: (

2https://github.com/openai/evals

9



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

A.5 LOGIQA

In the planning of a new district in a township, it was decided to build
a special community in the southeast, northwest, centered on the citizen
park. These four communities are designated as cultural area, leisure
area, commercial area and administrative service area. It is known that
the administrative service area is southwest of the cultural area, and
the cultural area is southeast of the leisure area.
Based on the above statement, which of the following can be derived?
(A). Civic Park is north of the administrative service area.
(B). The leisure area is southwest of the cultural area.
(C). The cultural district is in the northeast of the business district.
(D). The business district is southeast of the leisure area.
Answer: (

A.6 CIVIL COMMENTS

Comment: The amount may have gone down, but the quality (micro brews) has
gone way up.
Question: The above comment is:
(A). non-toxic.
(B). toxic.
Answer: (

A.7 IMDB

This movie is an all-time favorite of mine. I’m sorry that IMDb is not
more positive about it. I hope that doesn’t keep those who have not
experienced it from watching it.<br /><br />I’ve always loved this movie.
I watch it about once a year and am always pleased anew with the film and
especially the stellar performances by entire cast.<br /><br />I’ve
always wondered whether Jean Stapleton actually did the ending dance with
Travolta???? If anyone knows this piece of trivia, please leave a comment
.<br /><br />Thanks and ENJOY!
Question: The sentiment of the review above is:
(A). negative.
(B). positive.
Answer: (

B EXPERIMENT SETUPS

In this section, we make some additional notes about the experimental setups in §2 and §3.2.

B.1 SETUP FOR THE EVALUATION OF CALIBRATION AND CONFIDENCE

Model and Dataset. We utilize the Huggingface Transformers (Wolf et al., 2020) library to prepare
and process all LMs and datasets. All LMs are loaded from officially released checkpoints. We
choose Llama (Touvron et al., 2023a;b) family ranging from 7B to 70B as our pre-trained LMs and
use Vicuna (Chiang et al., 2023) and Llama-2-Chat as the aligned version for Llama and Llama-
2, respectively. We choose seven tasks with diverse coverages, including commonsense knowl-
edge reasoning (HellaSWAG (Zellers et al., 2019), OpenbookQA (Mihaylov et al., 2018), Truth-
fulQA (Lin et al., 2022)), logical reasoning (LogiQA (Liu et al., 2020)), specialized expertise across
various subjects (MMLU (Hendrycks et al., 2021)), toxic detection (CivilComments (Borkan et al.,
2019)), and sentiment classification (IMDB (Maas et al., 2011)).

Prompt Selection for ICL. For ICL, we use five in-context examples by default. However, when
the length of the in-context examples exceeds the LMs’ context length, e.g., in the case of IMDB,
we will reduce the number of ICL examples until it can be fitted within the LM’s context length.
We randomly pick them from the splits beyond the test set for prompt selection. For some datasets
with only the test split (e.g., TruthfulQA), we manually divided a small portion (e.g., a set of 10
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examples) of it as the development split for ICL. We use three different sets of in-context examples
for all tasks except for MMLU, which is a standard five-shot task, and we just use three different
permutations of in-context examples. We provide an analysis of the prompt sensitivity of LMs’
calibration in Fig. 7 and Appendix C.3.

Evaluation Protocol. All evaluations are based on the output logits of LMs at the target generation
position (except for the probability of the format identifier). We take the choice letter with the
highest probability among all choices as the prediction of the LM and utilize its probability over the
whole token space as the LM’s predictive confidence.

Metrics. We first provide a brief context for how to measure the LM’s uncertainty calibration. De-
note the LM’s prediction as ŷ = argmaxỹc

pθ(ỹc|x̃) and the ground truth as y ∈ {ỹ1, . . . , ỹ|Y|},
uncertainty calibration examines the consistency between the model’s correctness 1ŷ=y and confi-
dence p̂ = maxỹc pθ(ỹc|x̃) in population level. A prefect calibrated model holds E[1ŷ=y|p̂] = p̂ and
thus have zero expected calibraion error (ECE), i.e., E[p̂− E[1ŷ=y|p̂]] = 0. To evaluate calibration
with ECE in practice with N finite samples, we could first group the model’s confidence into M
bins. Denote Bm as the indices of samples in the mth bin, then the ECE can be estimated by the
weighted average of the difference between confidence and accuracy in each bin:

acc(Bm) = 1
|Bm|

∑
i∈Bm

1ŷi=yi
,

conf(Bm) = 1
|Bm|

∑
i∈Bm

p̂i,

ECEM =
∑M

m=1
|Bm|
N |acc(Bm)− conf(Bm)|.

(2)

We adopt 10 equal-sized bins to estimate ECE, denoted as ECE10, and use accuracy and ECE10 as
our main metrics for evaluating LM’s performance. We also track the LM’s predictive confidence
at the target generation position and the probability of the format identifier (if available) to better
understand the LM’s behavior.

B.2 SETUP FOR THE SYNTHETIC ALIGNMENT SCHEMES

For all synthetic alignment fine-tuning experiments in §3.2, we utilize LoRA (Hu et al., 2022) to
confine the number of tunable parameters to avoid overfitting. In both SFT and PPO experiments,
we set the LoRA rank, α, and dropout rate to 8, 16, and 0.05, respectively. We set the learning rate
to 2e-5 with cosine schedule and set the batch size to 1.

C FULL EXPERIMENTAL RESULTS

C.1 RECAP ON CALIBRATION OF PRE-TRAINED AND ALIGNED LMS
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Figure 6: Averaged out-of-the-box calibration results across all datasets and choice formats.

Fig. 6 shows the accuracy and ECE averaged across all tasks and choice formats for all LMs. For pre-
trained LMs, we have a similar observation with previous work (Kadavath et al., 2022), namely that
pre-trained LMs are most calibrated with large model capacity and few-shot examples. Furthermore,
we find a huge gap in the ECE of pre-trained LMs between the ZSL and ICL settings, especially for
large models, which suggests that ICL plays a key role in pre-trained LMs’ calibration.
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In comparison, it is prominent that all aligned LMs have higher ECE than their corresponding pre-
trained models, regardless of model size. Besides, the accuracy and ECE of aligned LMs do not
vary significantly between ZSL and ICL settings compared to the pre-trained models. Interestingly,
as the size of the model increases, the gap in accuracy between pre-trained and aligned LMs shrinks
or even reverses, while the difference in calibration remains significant.

C.2 FULL RESULTS OF CALIBRATION EVALUATION

We present the result for all LMs and tasks with the evaluation protocol in §2 and Appendix B.1.
By examining the results in Fig. 7 and Table. 1, we could see that pre-trained LMs exhibit a clear
tendency to decrease ECE from ZSL to ICL while the calibration of aligned LMs changes little or
further deteriorates. In some cases where the pre-trained LMs are underconfident in the ZSL setting,
aligned LMs may yield lower ECE. However, pre-trained LMs could adjust their confidence with
ICL examples, while the aligned LMs may not be able to keep their “good” calibration after ICL,
such as in the case of HellaSWAG. Among all these tasks, the largest pre-trained LM, Llama-2-
70B, is the most consistent with Hypothesis 3.1, indicating that larger pre-trained LMs have more
calibrated answer uncertainty in MCQs.

C.3 PROMPT SENSITIVITY ANALYSIS

We use three different sets of in-context examples to check whether the LMs’ calibration is sensitive
to the in-context examples. As shown in Fig. 7, the prompt sensitivity of LM’s calibration varies
across tasks. Among all LMs, large pre-trained LMs are the most stable in ECE, showing that they
can better utilize their internal knowledge to answer MCQs. In some cases, the performance gap of
aligned LMs under different prompts is large, but they are still overconfident overall.
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Figure 7: Complete calibration evaluation results of all datasets.
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Task: MMLU Choice Format: A Choice Format: (A)

Size Model Accuracy ECE Avg. Conf.
Sum of

Accuracy ECE Avg. Conf.
Prob. of

Choice Letter’s Probs. Format Identifier

7B

Llama-1 7B
ZSL 32.16 12.05 20.11 62.60 31.67 2.11 31.19 36.57

ICL 34.46 ± 0.26 2.68 ± 0.36 32.43 ± 0.20 98.26 ± 0.02 33.16 ± 0.16 5.17 ± 0.30 34.95 ± 0.26 99.30 ± 0.04

Vicuna-v1.3 7B
ZSL 46.32 12.89 59.20 97.64 46.19 15.40 61.59 53.71

ICL 47.04 ± 0.13 13.33 ± 0.25 60.37 ± 0.30 99.52 ± 0.00 46.80 ± 0.10 17.13 ± 0.07 63.91 ± 0.18 99.74 ± 0.00

Llama-2 7B
ZSL 41.71 16.90 24.81 66.27 44.06 7.26 36.80 47.39

ICL 46.00 ± 0.20 4.24 ± 0.27 50.23 ± 0.12 99.42 ± 0.01 46.50 ± 0.18 2.80 ± 0.28 49.30 ± 0.17 99.85 ± 0.00

Llama-2-Chat 7B
ZSL 46.48 27.86 74.34 96.65 47.36 31.92 79.28 93.27

ICL 47.51 ± 0.09 29.16 ± 0.16 76.65 ± 0.28 99.75 ± 0.01 47.79 ± 0.11 29.86 ± 0.70 77.64 ± 0.75 99.98 ± 0.00

13B

Llama-1 13B
ZSL 44.05 15.59 28.46 71.12 45.35 6.24 39.57 44.26

ICL 46.09 ± 0.18 2.98 ± 0.14 48.63 ± 0.00 98.85 ± 0.07 45.98 ± 0.11 2.66 ± 0.10 48.28 ± 0.05 99.67 ± 0.01

Vicuna-v1.3 13B
ZSL 50.74 13.82 64.56 97.44 51.59 15.78 67.35 67.96

ICL 51.68 ± 0.09 19.23 ± 0.38 70.90 ± 0.28 99.60 ± 0.01 51.00 ± 0.12 17.33 ± 0.21 68.33 ± 0.11 99.81 ± 0.01

Llama-2 13B
ZSL 52.40 15.14 37.26 70.10 52.14 1.36 53.35 28.89

ICL 54.57 ± 0.21 2.36 ± 0.30 56.93 ± 0.10 98.69 ± 0.03 54.45 ± 0.17 4.61 ± 0.19 59.06 ± 0.09 99.62 ± 0.02

Llama-2-Chat 13B
ZSL 53.11 20.52 73.63 93.70 53.04 26.89 79.93 54.48

ICL 53.20 ± 0.16 21.85 ± 0.53 75.05 ± 0.37 99.59 ± 0.02 53.43 ± 0.11 24.67 ± 0.42 78.10 ± 0.33 99.35 ± 0.02

30B

Llama-1 30B
ZSL 54.50 15.17 39.33 75.55 55.16 2.99 53.18 34.81

ICL 57.40 ± 0.25 1.34 ± 0.25 58.10 ± 0.22 99.07 ± 0.02 57.43 ± 0.44 2.05 ± 0.45 59.35 ± 0.21 99.60 ± 0.03

Vicuna-v1.3 33B
ZSL 57.14 12.94 70.03 94.14 58.04 16.23 74.27 81.90

ICL 58.46 ± 0.15 17.36 ± 0.40 75.59 ± 0.52 98.42 ± 0.03 59.07 ± 0.36 16.92 ± 0.35 75.93 ± 0.59 99.80 ± 0.00

70B

Llama-2 70B
ZSL 65.65 11.53 54.12 78.61 65.65 2.63 67.15 40.44

ICL 69.09 ± 0.21 1.00 ± 0.09 69.74 ± 0.16 99.22 ± 0.02 69.53 ± 0.34 1.18 ± 0.23 70.08 ± 0.14 99.59 ± 0.01

Llama-2-Chat 70B
ZSL 61.03 18.01 79.02 97.53 61.69 18.95 80.61 45.79

ICL 62.33 ± 0.40 15.61 ± 0.52 77.93 ± 0.17 99.55 ± 0.01 62.37 ± 0.11 18.05 ± 0.33 80.41 ± 0.23 99.73 ± 0.01

(a) Full results for MMLU

Task: LogiQA Choice Format: A Choice Format: (A)

Size Model Accuracy ECE Avg. Conf.
Sum of

Accuracy ECE Avg. Conf.
Prob. of

Choice Letter’s Probs. Format Identifier

7B

Llama-1 7B
ZSL 27.34 8.88 18.46 60.50 29.19 2.55 26.72 32.35

ICL 22.12 ± 1.11 10.27 ± 3.00 31.96 ± 2.11 96.06 ± 0.31 26.47 ± 0.26 3.02 ± 0.30 29.30 ± 0.44 98.82 ± 0.12

Vicuna-v1.3 7B
ZSL 31.03 8.58 39.53 96.76 33.03 11.21 42.78 69.48

ICL 29.75 ± 0.91 13.75 ± 1.00 43.41 ± 0.21 99.15 ± 0.10 30.26 ± 0.88 19.18 ± 0.75 49.31 ± 0.36 99.16 ± 0.19

Llama-2 7B
ZSL 31.18 14.36 16.93 52.59 32.26 4.52 28.60 38.03

ICL 28.06 ± 0.95 4.02 ± 1.06 31.31 ± 0.46 98.85 ± 0.12 28.62 ± 2.58 4.21 ± 2.18 31.78 ± 0.24 99.45 ± 0.07

Llama-2-Chat 7B
ZSL 32.87 32.41 65.28 90.51 35.48 36.95 72.43 92.27

ICL 34.05 ± 0.51 28.02 ± 0.82 62.07 ± 0.94 99.53 ± 0.07 35.33 ± 0.43 32.07 ± 0.71 67.35 ± 0.93 99.92 ± 0.03

13B

Llama-1 13B
ZSL 28.73 8.72 20.13 63.37 28.73 2.57 28.53 28.88

ICL 30.98 ± 0.69 6.01 ± 1.38 36.09 ± 0.77 97.34 ± 0.37 32.92 ± 1.12 3.14 ± 0.75 33.72 ± 0.64 99.11 ± 0.14

Vicuna-v1.3 13B
ZSL 33.18 9.61 42.79 94.85 32.87 15.13 48.00 60.17

ICL 34.56 ± 0.33 19.80 ± 2.03 54.25 ± 1.92 97.83 ± 0.17 34.20 ± 0.72 17.12 ± 2.57 51.32 ± 2.03 99.56 ± 0.07

Llama-2 13B
ZSL 33.79 13.75 20.04 58.32 35.94 2.91 33.26 40.84

ICL 36.87 ± 1.00 4.02 ± 0.69 38.43 ± 0.70 97.59 ± 0.12 35.54 ± 1.33 6.54 ± 2.11 40.86 ± 1.72 99.25 ± 0.07

Llama-2-Chat 13B
ZSL 37.33 25.34 62.64 92.94 39.17 31.39 70.56 49.78

ICL 37.79 ± 0.38 26.81 ± 0.59 64.55 ± 0.91 99.05 ± 0.10 40.04 ± 0.73 30.08 ± 0.49 69.77 ± 0.77 98.81 ± 0.31

30B

Llama-1 30B
ZSL 34.87 13.47 21.48 64.49 35.94 4.28 31.99 29.52

ICL 37.28 ± 1.51 5.19 ± 0.92 41.89 ± 2.10 97.07 ± 0.33 37.07 ± 1.51 6.03 ± 1.16 42.92 ± 1.59 98.50 ± 0.18

Vicuna-v1.3 33B
ZSL 39.17 12.90 50.28 89.08 38.71 17.82 56.53 51.72

ICL 38.45 ± 0.47 23.64 ± 0.72 62.09 ± 1.17 98.68 ± 0.13 39.73 ± 0.52 22.57 ± 1.72 62.17 ± 1.58 99.48 ± 0.03

70B

Llama-2 70B
ZSL 45.01 15.94 29.07 63.42 44.70 4.00 45.70 30.98

ICL 48.75 ± 1.19 4.96 ± 1.32 52.76 ± 1.61 98.36 ± 0.15 48.85 ± 0.98 5.08 ± 0.70 53.68 ± 1.64 99.04 ± 0.05

Llama-2-Chat 70B
ZSL 44.70 26.49 70.93 96.33 46.54 25.56 71.77 38.21

ICL 45.93 ± 1.82 26.02 ± 1.56 71.86 ± 1.16 99.36 ± 0.12 47.52 ± 0.29 25.01 ± 0.92 72.53 ± 1.01 99.73 ± 0.07

(b) Full results for LogiQA
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Task: HellaSWAG Choice Format: A Choice Format: (A)

Size Model Accuracy ECE Avg. Conf.
Sum of

Accuracy ECE Avg. Conf.
Prob. of

Choice Letter’s Probs. Format Identifier

7B

Llama-1 7B
ZSL 33.80 15.68 18.12 61.17 33.16 6.53 26.63 24.18

ICL 30.79 ± 2.48 3.46 ± 1.52 29.89 ± 1.16 98.36 ± 0.20 28.89 ± 1.90 3.44 ± 1.14 31.22 ± 1.36 98.26 ± 0.75

Vicuna-v1.3 7B
ZSL 43.10 4.16 47.26 97.16 38.40 16.50 54.90 53.09

ICL 43.83 ± 1.00 5.85 ± 2.30 48.11 ± 3.62 99.51 ± 0.16 41.83 ± 2.35 9.87 ± 4.70 49.76 ± 5.94 99.34 ± 0.39

Llama-2 7B
ZSL 35.26 20.19 15.07 49.19 38.28 10.65 27.63 41.44

ICL 37.86 ± 2.66 4.56 ± 1.84 34.19 ± 1.16 99.50 ± 0.32 34.01 ± 5.73 11.22 ± 1.93 39.42 ± 4.26 99.64 ± 0.30

Llama-2-Chat 7B
ZSL 48.78 12.38 51.26 75.69 53.00 16.71 69.71 77.34

ICL 43.51 ± 4.15 29.13 ± 8.38 72.61 ± 4.46 99.87 ± 0.09 42.51 ± 4.70 31.07 ± 8.90 73.53 ± 4.26 99.98 ± 0.01

13B

Llama-1 13B
ZSL 39.98 17.44 22.55 63.61 41.90 7.41 34.49 36.18

ICL 41.13 ± 2.74 6.72 ± 1.92 35.12 ± 1.39 99.16 ± 0.18 37.34 ± 5.11 7.10 ± 2.26 36.82 ± 1.45 99.59 ± 0.16

Vicuna-v1.3 13B
ZSL 55.36 3.00 56.31 97.75 51.12 10.28 61.40 56.82

ICL 55.79 ± 3.23 7.27 ± 2.71 62.95 ± 2.80 99.79 ± 0.05 51.97 ± 5.50 9.10 ± 3.88 60.95 ± 2.68 99.85 ± 0.05

Llama-2 13B
ZSL 55.46 31.08 24.38 63.81 55.94 19.95 36.00 32.14

ICL 51.55 ± 6.65 8.88 ± 5.05 43.38 ± 2.71 99.49 ± 0.17 49.39 ± 7.82 8.09 ± 5.70 42.55 ± 1.76 99.75 ± 0.14

Llama-2-Chat 13B
ZSL 59.00 3.56 56.67 83.44 59.08 15.23 74.26 47.00

ICL 57.25 ± 1.73 15.72 ± 3.37 72.95 ± 2.00 99.76 ± 0.05 51.95 ± 3.67 19.37 ± 1.66 71.31 ± 3.30 99.40 ± 0.34

30B

Llama-1 30B
ZSL 59.18 33.78 25.40 68.44 48.02 14.21 36.06 28.95

ICL 49.14 ± 3.61 12.68 ± 4.94 37.04 ± 2.27 99.02 ± 0.26 39.42 ± 0.82 8.66 ± 2.36 40.01 ± 3.23 99.32 ± 0.29

Vicuna-v1.3 33B
ZSL 70.98 7.02 64.38 96.06 69.84 8.65 61.70 60.77

ICL 66.65 ± 3.75 5.50 ± 4.95 69.78 ± 3.37 99.19 ± 0.26 67.45 ± 2.38 3.12 ± 1.01 69.32 ± 1.25 99.77 ± 0.11

70B

Llama-2 70B
ZSL 78.52 34.17 44.35 71.60 76.04 14.77 61.27 40.88

ICL 84.14 ± 1.30 10.22 ± 1.50 73.92 ± 0.98 99.62 ± 0.18 81.53 ± 3.83 12.12 ± 1.90 69.43 ± 1.94 99.72 ± 0.16

Llama-2-Chat 70B
ZSL 74.02 4.41 69.64 89.60 74.42 2.32 76.36 34.21

ICL 74.91 ± 3.82 4.23 ± 2.16 78.78 ± 2.50 99.63 ± 0.16 65.38 ± 13.76 15.02 ± 12.05 80.39 ± 2.96 99.60 ± 0.11

(c) Full results for HellaSWAG

Task: TruthfulQA Choice Format: A Choice Format: (A)

Size Model Accuracy ECE Avg. Conf.
Sum of

Accuracy ECE Avg. Conf.
Prob. of

Choice Letter’s Probs. Format Identifier

7B

Llama-1 7B
ZSL 24.93 6.46 19.46 60.21 21.36 7.22 28.55 41.84

ICL 21.86 ± 1.21 17.30 ± 2.69 39.16 ± 1.90 98.86 ± 0.39 22.21 ± 1.72 17.46 ± 2.96 39.67 ± 1.89 99.64 ± 0.04

Vicuna-v1.3 7B
ZSL 28.34 30.00 57.49 98.77 25.82 35.34 60.91 80.02

ICL 27.89 ± 3.18 34.45 ± 7.41 62.17 ± 5.53 99.48 ± 0.09 28.68 ± 4.27 36.21 ± 6.56 64.83 ± 3.11 99.74 ± 0.07

Llama-2 7B
ZSL 24.33 6.16 22.54 65.48 27.89 3.61 31.50 57.31

ICL 27.99 ± 2.32 19.15 ± 2.79 47.00 ± 0.77 99.70 ± 0.07 24.53 ± 1.44 20.58 ± 2.24 44.76 ± 1.31 99.92 ± 0.01

Llama-2-Chat 7B
ZSL 29.97 52.07 82.04 98.73 28.93 57.49 86.21 98.43

ICL 28.29 ± 0.39 49.63 ± 0.38 77.47 ± 0.91 99.86 ± 0.02 26.81 ± 0.39 52.40 ± 1.55 79.13 ± 1.27 99.99 ± 0.00

13B

Llama-1 13B
ZSL 26.11 8.75 19.39 47.10 24.18 14.16 38.34 45.09

ICL 28.34 ± 2.12 25.97 ± 4.81 54.24 ± 5.07 99.05 ± 0.03 26.26 ± 1.37 25.71 ± 3.74 51.65 ± 3.09 99.74 ± 0.07

Vicuna-v1.3 13B
ZSL 39.02 25.60 63.68 96.11 34.42 31.91 66.29 69.31

ICL 40.95 ± 2.26 30.73 ± 4.66 71.17 ± 4.51 99.26 ± 0.20 37.19 ± 2.81 28.88 ± 5.58 65.96 ± 4.91 99.82 ± 0.05

Llama-2 13B
ZSL 41.84 23.60 18.24 40.52 39.02 7.95 45.56 59.40

ICL 34.17 ± 4.91 15.93 ± 8.17 50.08 ± 3.39 99.18 ± 0.05 35.71 ± 5.11 16.84 ± 7.42 52.31 ± 2.95 99.72 ± 0.01

Llama-2-Chat 13B
ZSL 38.13 39.15 77.25 95.28 36.05 47.00 82.84 68.65

ICL 33.43 ± 2.63 39.37 ± 3.25 72.71 ± 1.74 99.13 ± 0.14 36.65 ± 3.30 39.13 ± 2.71 75.68 ± 1.23 99.35 ± 0.16

30B

Llama-1 30B
ZSL 42.43 15.05 27.54 54.55 42.88 3.02 45.71 50.86

ICL 38.67 ± 4.44 17.07 ± 9.34 55.60 ± 5.36 99.31 ± 0.10 38.67 ± 3.51 16.22 ± 6.97 54.40 ± 4.19 99.78 ± 0.04

Vicuna-v1.3 33B
ZSL 43.18 26.33 68.96 95.49 43.62 31.91 75.32 89.88

ICL 40.26 ± 4.07 30.39 ± 7.83 70.56 ± 5.32 98.92 ± 0.17 44.46 ± 4.44 28.05 ± 8.16 72.38 ± 5.26 99.71 ± 0.09

70B

Llama-2 70B
ZSL 50.30 20.69 29.64 54.05 50.45 6.35 55.51 46.67

ICL 62.66 ± 6.26 6.31 ± 1.64 62.66 ± 2.75 99.22 ± 0.17 63.55 ± 7.22 6.14 ± 2.28 60.71 ± 3.32 99.76 ± 0.05

Llama-2-Chat 70B
ZSL 50.59 28.61 79.21 98.08 50.74 31.73 82.26 51.76

ICL 56.97 ± 1.49 21.68 ± 1.07 78.24 ± 0.95 99.13 ± 0.10 57.57 ± 1.64 25.11 ± 1.44 82.14 ± 0.69 99.74 ± 0.05

(d) Full results for TruthfulQA
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Task: OpenbookQA Choice Format: A Choice Format: (A)

Size Model Accuracy ECE Avg. Conf.
Sum of

Accuracy ECE Avg. Conf.
Prob. of

Choice Letter’s Probs. Format Identifier

7B

Llama-1 7B
ZSL 29.20 11.67 18.87 58.40 26.80 2.61 28.54 44.16

ICL 34.10 ± 0.45 5.45 ± 0.44 33.31 ± 2.42 98.64 ± 0.73 33.67 ± 2.24 6.59 ± 1.36 36.28 ± 1.17 99.69 ± 0.06

Vicuna-v1.3 7B
ZSL 52.00 4.71 56.66 98.61 49.10 10.41 59.51 74.43

ICL 55.70 ± 0.65 12.84 ± 1.07 68.48 ± 0.43 99.42 ± 0.22 56.63 ± 1.15 15.85 ± 1.83 72.35 ± 1.45 99.81 ± 0.05

Llama-2 7B
ZSL 40.00 18.19 21.81 61.47 44.20 12.60 31.60 61.43

ICL 52.67 ± 2.27 4.61 ± 1.62 51.41 ± 1.84 99.30 ± 0.01 53.57 ± 1.00 5.01 ± 0.35 52.95 ± 2.34 99.85 ± 0.02

Llama-2-Chat 7B
ZSL 58.60 19.19 77.55 97.52 57.10 26.40 83.50 96.82

ICL 60.87 ± 0.45 18.68 ± 0.81 79.46 ± 1.06 99.76 ± 0.05 59.57 ± 0.82 25.13 ± 1.13 84.53 ± 0.33 99.99 ± 0.01

13B

Llama-1 13B
ZSL 42.40 20.82 21.58 57.97 44.80 10.90 33.96 48.96

ICL 53.03 ± 0.38 3.94 ± 0.70 51.13 ± 1.50 98.22 ± 0.55 51.67 ± 0.33 3.49 ± 1.05 49.11 ± 1.63 99.78 ± 0.03

Vicuna-v1.3 13B
ZSL 58.10 6.57 64.28 96.94 58.30 6.95 65.17 62.55

ICL 65.90 ± 0.50 10.23 ± 0.91 76.13 ± 1.38 99.48 ± 0.10 64.37 ± 1.04 10.30 ± 1.37 73.39 ± 1.57 99.83 ± 0.03

Llama-2 13B
ZSL 55.20 34.95 20.25 42.54 54.40 10.28 44.12 50.22

ICL 64.93 ± 0.86 3.88 ± 1.25 62.62 ± 1.93 98.17 ± 0.27 64.17 ± 1.15 3.80 ± 1.45 64.95 ± 3.14 99.71 ± 0.03

Llama-2-Chat 13B
ZSL 65.70 15.85 81.55 97.42 66.50 19.42 85.92 61.21

ICL 66.33 ± 0.09 11.27 ± 0.50 77.59 ± 0.47 99.53 ± 0.14 67.03 ± 1.05 14.29 ± 1.23 81.31 ± 0.21 99.59 ± 0.16

30B

Llama-1 30B
ZSL 58.80 29.68 29.12 58.65 64.80 17.62 47.18 53.03

ICL 72.50 ± 1.07 4.88 ± 1.32 69.32 ± 1.58 98.90 ± 0.16 72.53 ± 0.90 3.46 ± 0.54 71.87 ± 1.24 99.76 ± 0.04

Vicuna-v1.3 33B
ZSL 66.00 5.08 67.78 93.95 66.70 7.89 74.59 88.82

ICL 73.90 ± 0.36 9.41 ± 1.37 82.68 ± 1.05 98.21 ± 0.37 73.17 ± 0.24 11.69 ± 0.29 84.85 ± 0.29 99.80 ± 0.02

70B

Llama-2 70B
ZSL 69.90 42.66 27.24 49.25 77.20 13.99 63.43 57.56

ICL 85.13 ± 0.66 3.27 ± 1.65 82.46 ± 2.31 98.90 ± 0.40 84.87 ± 0.74 4.05 ± 0.28 81.68 ± 0.86 99.71 ± 0.06

Llama-2-Chat 70B
ZSL 77.20 7.18 83.60 98.55 77.00 8.61 85.61 55.96

ICL 79.77 ± 0.82 9.82 ± 1.06 89.10 ± 0.82 99.78 ± 0.09 79.07 ± 1.14 11.42 ± 0.19 90.48 ± 0.95 99.88 ± 0.07

(e) Full results for OpenbookQA

Task: CivilComments Choice Format: A Choice Format: (A)

Size Model Accuracy ECE Avg. Conf.
Sum of

Accuracy ECE Avg. Conf.
Prob. of

Choice Letter’s Probs. Format Identifier

7B

Llama-1 7B
ZSL 52.44 29.29 23.17 53.34 55.82 13.54 42.30 52.59

ICL 51.32 ± 1.15 5.55 ± 2.57 55.93 ± 1.25 98.24 ± 0.89 54.33 ± 3.06 4.23 ± 2.11 51.18 ± 0.85 91.66 ± 1.23

Vicuna-v1.3 7B
ZSL 50.22 17.42 67.64 93.19 55.40 3.33 55.03 89.58

ICL 60.53 ± 2.52 3.84 ± 2.23 63.80 ± 0.35 99.51 ± 0.32 59.01 ± 1.69 5.29 ± 3.61 63.58 ± 2.92 98.83 ± 0.50

Llama-2 7B
ZSL 49.50 22.84 26.66 53.81 47.36 4.29 43.14 45.91

ICL 61.08 ± 1.23 10.20 ± 0.65 50.88 ± 0.82 98.13 ± 0.91 56.68 ± 3.03 6.74 ± 2.55 49.95 ± 0.63 94.87 ± 0.61

Llama-2-Chat 7B
ZSL 50.04 42.42 92.43 97.05 50.00 47.89 97.89 97.53

ICL 59.13 ± 4.60 33.19 ± 6.02 92.26 ± 1.53 99.97 ± 0.01 55.78 ± 3.13 35.86 ± 5.02 91.60 ± 2.23 99.85 ± 0.10

13B

Llama-1 13B
ZSL 50.60 30.61 19.99 39.17 50.14 4.04 49.68 41.71

ICL 58.19 ± 4.58 6.02 ± 3.01 52.80 ± 1.32 97.45 ± 0.49 57.77 ± 4.96 6.47 ± 2.05 55.79 ± 2.75 93.80 ± 1.54

Vicuna-v1.3 13B
ZSL 51.42 33.89 85.02 93.12 51.86 24.86 76.71 68.51

ICL 61.59 ± 5.71 18.39 ± 9.40 79.91 ± 3.99 99.81 ± 0.07 60.48 ± 4.85 21.01 ± 10.26 81.42 ± 5.75 98.39 ± 0.21

Llama-2 13B
ZSL 50.60 29.26 21.36 39.00 50.54 2.99 48.96 35.19

ICL 59.35 ± 1.51 4.92 ± 3.01 56.51 ± 3.22 97.01 ± 0.80 62.20 ± 0.13 7.94 ± 1.55 54.26 ± 1.66 89.13 ± 1.98

Llama-2-Chat 13B
ZSL 51.20 27.98 79.18 84.17 50.54 45.05 95.59 87.37

ICL 66.96 ± 4.11 20.64 ± 3.25 87.51 ± 1.22 99.93 ± 0.03 64.29 ± 5.58 24.29 ± 7.03 88.55 ± 1.50 99.60 ± 0.02

30B

Llama-1 30B
ZSL 58.90 36.38 22.53 43.09 55.48 7.34 48.41 39.32

ICL 62.77 ± 1.88 2.97 ± 0.86 60.84 ± 1.89 96.64 ± 0.35 60.93 ± 3.14 4.52 ± 0.57 59.19 ± 1.56 88.08 ± 0.54

Vicuna-v1.3 33B
ZSL 66.36 14.22 80.20 97.20 62.86 14.50 77.29 80.68

ICL 67.22 ± 0.36 20.04 ± 0.44 87.20 ± 0.12 99.48 ± 0.10 67.83 ± 1.31 15.93 ± 0.21 83.33 ± 1.22 89.50 ± 1.24

70B

Llama-2 70B
ZSL 55.08 37.59 17.49 34.06 56.84 4.56 52.85 36.99

ICL 67.32 ± 1.20 3.46 ± 2.08 69.49 ± 2.37 97.84 ± 0.14 67.33 ± 0.99 3.48 ± 0.54 66.18 ± 3.25 94.43 ± 1.24

Llama-2-Chat 70B
ZSL 55.04 3.77 57.24 61.34 56.20 37.67 93.83 73.40

ICL 68.38 ± 0.99 25.41 ± 1.01 93.78 ± 0.70 99.95 ± 0.02 68.47 ± 1.23 26.05 ± 1.58 94.48 ± 0.77 99.53 ± 0.03

(f) Full results for CivilComments
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Task: IMDB Choice Format: A Choice Format: (A)

Size Model Accuracy ECE Avg. Conf.
Sum of

Accuracy ECE Avg. Conf.
Prob. of

Choice Letter’s Probs. Format Identifier

7B

Llama-1 7B
ZSL 56.74 32.31 24.43 57.26 58.90 16.97 41.93 57.91

ICL 51.74 ± 1.64 14.63 ± 8.64 65.68 ± 7.87 99.43 ± 0.14 52.01 ± 1.91 8.11 ± 4.49 56.85 ± 2.81 99.79 ± 0.06

Vicuna-v1.3 7B
ZSL 86.22 17.98 68.24 97.59 84.46 22.65 61.81 86.47

ICL 81.63 ± 1.95 17.73 ± 1.43 64.09 ± 0.70 99.69 ± 0.05 65.53 ± 6.14 13.85 ± 2.10 66.76 ± 2.31 99.86 ± 0.02

Llama-2 7B
ZSL 55.78 27.04 28.74 65.20 65.28 21.76 43.52 58.76

ICL 52.83 ± 3.88 14.51 ± 7.57 62.57 ± 5.54 99.64 ± 0.05 53.12 ± 3.10 20.27 ± 3.38 63.10 ± 5.90 99.89 ± 0.02

Llama-2-Chat 7B
ZSL 92.78 0.28 92.73 99.86 92.60 2.72 95.24 99.80

ICL 83.83 ± 1.47 7.05 ± 2.10 90.82 ± 0.76 100.00 ± 0.00 89.41 ± 0.26 4.40 ± 0.46 93.78 ± 0.22 100.00 ± 0.00

13B

Llama-1 13B
ZSL 55.52 37.32 18.20 46.07 64.86 24.06 41.49 37.79

ICL 80.69 ± 3.46 22.30 ± 3.04 58.51 ± 0.82 99.45 ± 0.07 74.90 ± 9.21 17.27 ± 7.21 61.15 ± 1.25 99.86 ± 0.01

Vicuna-v1.3 13B
ZSL 92.50 21.03 71.47 93.10 92.56 13.65 78.91 78.31

ICL 90.03 ± 0.63 2.04 ± 0.60 87.99 ± 0.24 99.92 ± 0.00 85.17 ± 2.71 2.27 ± 1.47 86.14 ± 0.92 99.92 ± 0.01

Llama-2 13B
ZSL 86.08 65.33 20.75 46.33 93.74 54.78 38.96 51.37

ICL 50.99 ± 0.86 29.01 ± 4.32 74.52 ± 5.53 99.24 ± 0.18 55.65 ± 4.74 25.51 ± 6.24 70.17 ± 4.60 99.71 ± 0.10

Llama-2-Chat 13B
ZSL 93.58 9.31 84.27 95.99 90.90 2.53 88.59 96.80

ICL 93.35 ± 0.49 0.96 ± 0.19 93.53 ± 0.44 99.96 ± 0.01 93.12 ± 0.72 2.54 ± 0.62 95.62 ± 0.19 99.99 ± 0.00

30B

Llama-1 30B
ZSL 80.38 49.10 31.28 55.20 94.78 38.07 56.71 51.98

ICL 75.03 ± 6.37 10.56 ± 0.57 73.33 ± 1.44 98.82 ± 0.08 90.43 ± 1.85 17.60 ± 2.04 73.07 ± 2.35 99.59 ± 0.01

Vicuna-v1.3 33B
ZSL 94.92 0.58 94.79 98.00 95.28 0.64 95.70 97.23

ICL 93.68 ± 0.78 0.65 ± 0.14 93.90 ± 0.68 99.60 ± 0.06 95.01 ± 0.31 0.77 ± 0.32 95.44 ± 0.32 99.71 ± 0.03

70B

Llama-2 70B
ZSL 94.14 62.84 31.30 45.95 93.74 18.68 75.06 44.92

ICL 95.73 ± 0.42 3.85 ± 1.63 91.91 ± 1.29 99.25 ± 0.14 95.11 ± 1.09 2.49 ± 0.64 92.80 ± 1.81 99.63 ± 0.02

Llama-2-Chat 70B
ZSL 94.06 7.05 87.96 91.88 94.94 2.52 97.33 93.37

ICL 94.56 ± 0.45 3.98 ± 0.36 98.48 ± 0.14 99.95 ± 0.01 95.07 ± 0.34 3.65 ± 0.17 98.71 ± 0.15 99.97 ± 0.01

(g) Full results for IMDB

Table 1: Complete evaluation results of all datasets

18



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

C.4 EFFECT OF THE DIALOG WRAPPER ON ALIGNED LMS

In practice, the instruction-response pairs (x,y) are usually organized as conversations between a
human and a machine assistant, which we refer to this operation as the dialog wrapper. Here, we
investigate the effect of the dialog wrapper on the aligned LMs with the multiple-choice setting by
adapting all MCQs into the conversation format with FastChat (Zheng et al., 2023). As shown in
Fig. 8, in the ICL setting, the accuracy and ECE with the dialog wrapper are similar to the case
without it. Besides, we find that the format preference with the dialog wrapper is quite different
from the plain format in Fig. 1. Furthermore, as shown in Fig. 8d and Fig. 8h, different from the pre-
trained LMs, large aligned LMs may not choose to follow the ICL examples to change its format
preference, suggesting that larger aligned LMs have stronger semantic prior, which is consistent
with Wei et al. (2023).

Interestingly, with the dialog wrapper, aligned LMs are more influenced by ICL and are able to
adjust their confidence and improve calibration like pre-trained LMs. As shown in Fig. 8b and
Fig. 8f, the aligned LMs are underconfident and overconfident with choice format “A” and “(A)”,
respectively, which can be refined by ICL. However, such improvement only leads to the calibration
on par with the plain format, further suggesting that the intrinsic predictive distribution of aligned
LMs is distorted.
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Figure 8: The effect of the dialog wrapper on Aligned LMs in MMLU with choice format.

C.5 THE ROLE OF ICL ON CALIBRATION OF PRE-TRAINED LMS IN MCQS

Previous theoretical explanation of ICL (Xie et al., 2022) suggests that the efficacy of ICL could
come from various aspects of in-context examples, such as the input and output distribution, the
input-output mapping, and the syntax or the format. And Min et al. (2022) further empirically
validate that for certain problems such as general MCQs, the main role of in-context examples
is specifying the format FMC for LMs while having a marginal effect on LM’s prediction, i.e.,
argmax pPT

θ (ỹc|x̃, SK , FMC) ≈ argmax pPT
θ (ỹc|x̃, FMC). In this section, we conduct a simple

empirical study to examine the role of in-context examples on pre-trained LMs’ uncertainty for
MCQs.
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In §3.1, we present the intuition that ICL estimates the LM’s answer uncertainty pPT
θ (ỹc|x̃, FMC)

by:

1. Eliminating the format uncertainty towards FMC by selecting ICL examples that yield
pPT
θ (FMC|x̃, SK) = 1;

2. Making a marginal impact on the LM’s answer uncertainty under the format FMC, i.e.,
pPT
θ (ỹc|x̃, SK , FMC) ≈ pPT

θ (ỹc|x̃, FMC).

To show that pPT
θ (ỹc|x̃, SK , FMC) ≈ pPT

θ (ỹc|x̃, FMC), i.e., the predictive distribution
pPT
θ (ỹc|x̃, SK , FMC) is largely independent to SK , we replace the in-context examples with task-

irrelevant synthetic MCQs in Fig. 4 (referred to as ICL-Mismatch) and study their impact on the
pre-trained LMs.

Choice Format: A Choice Format: (A)

Model Accuracy ECE Avg. Conf. Sum of Accuracy ECE Avg. Conf. Prob. of
Choice Letter’s Probs. Format Identifier

Llama-1 7B
ZSL 31.81 11.68 20.13 62.37 31.74 3.71 31.16 36.34
ICL 33.29 ± 0.54 2.52 ± 0.22 32.60 ± 0.25 98.24 ± 0.03 31.61 ± 0.64 7.37 ± 0.43 35.27 ± 0.31 99.28 ± 0.04

ICL-Mismatch 32.92 ± 1.15 3.63 ± 0.95 30.12 ± 0.92 96.00 ± 0.24 31.59 ± 0.32 5.48 ± 0.60 34.76 ± 0.73 97.48 ± 0.29

Llama-2 7B
ZSL 40.17 15.23 24.95 66.28 43.37 6.48 36.98 47.17
ICL 44.61 ± 0.47 6.05 ± 0.54 50.55 ± 0.09 99.44 ± 0.01 46.64 ± 0.64 3.79 ± 0.30 49.36 ± 0.29 99.85 ± 0.00

ICL-Mismatch 43.02 ± 0.68 4.70 ± 1.03 46.93 ± 0.95 98.90 ± 0.13 44.07 ± 0.54 3.81 ± 1.30 47.00 ± 1.01 99.55 ± 0.02

Llama-1 13B
ZSL 43.31 14.74 28.57 70.8 44.55 4.88 39.93 43.74
ICL 46.68 ± 0.53 3.45 ± 0.84 48.71 ± 0.19 98.86 ± 0.07 45.72 ± 0.46 3.52 ± 0.65 48.62 ± 0.13 99.66 ± 0.01

ICL-Mismatch 44.87 ± 0.56 3.76 ± 0.13 44.80 ± 0.94 98.30 ± 0.05 44.94 ± 0.16 3.96 ± 0.42 46.39 ± 0.99 99.34 ± 0.08

Llama-2 13B
ZSL 50.75 13.75 37 69.75 49.9 3.38 53.29 28.94
ICL 54.78 ± 0.13 2.30 ± 0.17 56.75 ± 0.14 98.73 ± 0.02 54.69 ± 0.75 4.56 ± 0.99 58.92 ± 0.09 99.63 ± 0.01

ICL-Mismatch 51.16 ± 0.40 4.48 ± 0.79 55.60 ± 0.47 97.56 ± 0.14 52.12 ± 0.33 5.32 ± 0.27 57.27 ± 0.29 98.85 ± 0.13

Llama-1 30B
ZSL 54.21 15 39.21 75.37 54.54 2.81 52.78 34.75
ICL 55.54 ± 0.70 3.57 ± 0.96 57.32 ± 0.26 99.11 ± 0.03 56.39 ± 0.94 3.01 ± 1.47 58.53 ± 0.28 99.60 ± 0.04

ICL-Mismatch 54.08 ± 0.37 3.05 ± 0.18 56.61 ± 0.15 98.18 ± 0.05 54.37 ± 0.34 5.92 ± 0.49 59.44 ± 0.25 99.07 ± 0.18

Llama-2 70B
ZSL 65.51 12.12 53.41 78.71 66.1 2.5 66.24 40.09
ICL 68.76 ± 0.31 1.99 ± 0.17 68.50 ± 0.14 99.23 ± 0.01 67.80 ± 0.35 1.91 ± 0.50 68.83 ± 0.13 99.60 ± 0.00

ICL-Mismatch 65.95 ± 0.08 3.76 ± 0.13 68.69 ± 0.08 98.36 ± 0.01 65.93 ± 0.20 3.16 ± 0.35 68.36 ± 0.09 98.89 ± 0.02

Table 2: Results of different ICL examples on pre-trained LMs with MMLU validation set with the
metrics in §2. We report the mean and standard deviation across three sets of different in-context
examples.

As shown in Table. 2, using task-irrelevant in-context examples can produce similar effects on the
pre-trained LMs’ accuracy and confidence. Under both choice formats, “A” and “(A)”, the ICL-
Mismatch settings have the same overall positive effect on the accuracy as normal ICL does, though
using task-relevant examples for ICL exhibits consistently better accuracy, which indicates that dif-
ferent ICL examples still have different influences the predictive distribution pPT

θ (ỹc|x̃, SK , FMC).
Notably, the average confidence of the normal ICL and the ICL-Mismatch exhibit a high degree of
consistency and are clearly distinguishable from ZSL. These results demonstrate that, for answering
MCQs, the LMs’ uncertainty under ICL is largely dominated by the inferred format FMC while
having relatively marginal dependence on the in-context example SK .

C.6 ADDITIONAL RESULTS FOR SYNTHETIC ALIGNMENT SCHEMES

We present how the accuracy of the synthetic MCQ task changes after 500 training steps on align-
ment schemes in §3.2. As shown in Table. 3, all alignment schemes except for the SFT-Format
improve the accuracy of the synthetic MCQ task, i.e., successfully aligning the LM to be able to
perform this task. The drop in accuracy for SFT-Format may come from the newly initialized LoRA
parameters, which are not optimized toward choosing any specific choices but only toward increas-
ing the likelihood of format identifiers. Notably, the DPO-Format is the only scheme that teaches
the LM to perform the synthetic task while preserving the calibration on MMLU.

Model Pre-trained SFT-Format DPO-Format SFT-Choice DPO-Choice SFT-Mixed DPO-Mixed

Accuracy (%) 70.3 63.47 95.82 100.00 100.00 100.00 99.95

Table 3: ZSL accuracy for the synthetic MCQ task.
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D DECOMPOSITION OF ANSWER UNCERTAINTY AND FORMAT
UNCERTAINTY

We start with introducing the format variable F . Given a human instruction x and all possible
response candidates of LM as Y , the format F ∈ F is a discrete random variable that corresponds
to an attribute for each response y ∈ Y for a given instruction x of the LM, which yields a joint
distribution pθ(y, F |x). For simplicity, here we make the following assumption for the uniqueness
of the format variable F :
Assumption D.1 (Uniqueness of format). For any instruction-response pair (x,y), where y ∈ Y ,
there exists a format F ∈ F , s.t. pθ(F |x,y) = 1, while for all F ′ ̸= F , we have pθ(F

′|x,y) = 0.

With this assumption, once pθ(F |x,y) = 0, we will have:

pθ(y|F,x) ∝ pθ(F |x,y)pθ(y|x) = 0. (3)

Hence, given an instruction-response pair (x,y), denote its format as F , we could perform un-
certainty decomposition for the predictive distribution pθ(y|x) through marginalization, i.e., the
decomposition of the answer uncertainty and format uncertainty:

pθ(y|x) =
∑
F ′∈F

pθ(y|x, F ′)pθ(F
′|x)

= pθ(y|x, F )︸ ︷︷ ︸
Answer

pθ(F |x)︸ ︷︷ ︸
Format

, (4)

where the format uncertainty is induced by:

pθ(F |x) =
∑
y∈Y

pθ(y, F |x)

=
∑
y∈Y

pθ(F |x,y)pθ(y|x)

=
∑
y∈YF

pθ(y|x), (5)

where YF = {y | pθ(F |x,y) = 1}, i.e., the sum of probabilities for all response y with the same
format F .

E FEW-SHOT POST-HOC CALIBRATION FOR ALIGNED LANGUAGE MODELS

Besides modifying the alignment processes to mitigate aligned LMs’ miscalibration, a more efficient
way is post-hoc calibration (Guo et al., 2017), which adjusts the model’s confidence with a calibrator
learned from a hold-out calibration set. In this section, we focus on applying post-hoc calibration
with a few-shot calibration set, where we have only five hold-out examples for each task to better
match real-world application scenarios.

E.1 BASELINE METHODS

Denote the hold-out calibration set as Dc = {(x̃i, ỹi)}Mi=1 and the model’s corresponding prediction
and confidence as {(ŷi, p̂i)}Mi=1, where p̂i is calculated by maxl∈li softmax(li) with the raw logits
li at the position of choice letter. We adopt two baseline post-hoc calibration methods:

Temperature Scaling (TS) (Guo et al., 2017) utilizes a single temperature parameter T > 0 to refine
the model’s predictive distribution. In specific, TS learns the temperature T through the following
optimization problem:

min
T

−
M∑
i=1

log[softmax(li/T )]ỹi
, (6)

where [softmax(li/T )]ỹi
denotes the model’s refined probability of the ground truth ỹi. We also

report the baseline of using a constant temperature T = 2.5 proposed by Kadavath et al. (2022).
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Figure 9: Post-hoc calibration results on Llama-2-Chat 70B.

Kernel Density Estimation (KDE) (Zhang et al., 2020; Salamon et al., 2022) smooths each sample
of (ŷ, p̂) into a small distribution and builds two probability densities based on the confidence of
the examples that model is correctly and incorrectly predicted, respectively. Denote the indices of
correctly and incorrectly answered samples as BTP and BFP, the KDE refines the model’s out-of-
the-box confidence p̂ by:

KDE(p̂) =
KBTP

(p̂) · |BTP|
KBTP

(p̂) · |BTP|+KBFP
(p̂) · |BFP|

, (7)

where Kb : R → R≥0 is a kernel function with bandwidth b > 0 and KB(p̂) =
1

|B|
∑

i∈B Kb(p̂ −
p̂i). In this work, we adopt the Gaussian kernel Kb(p) =

1√
2πb

exp(− p2

2b2 ) and b = 0.1.

E.2 TEMPERATURE SCALING WITH PRE-TRAINED LMS’ PREDICTIVE DISTRIBUTION

The main challenge of performing few-shot post-hoc calibration is that the accuracy on the few-shot
calibration set might be highly biased from the population. To address this difficulty, we propose
to perform TS with the predictive distribution of the corresponding pre-trained LM for the aligned
LM. Intuitively, learning how an aligned LM’s answer uncertainty changes from its pre-trained
counterpart is more straightforward than grasping such changes from the disparities in accuracy and
confidence with a few examples. In detail, we consider the following optimization problem that
minimizes the KL divergence between the predictive distribution of pre-trained and aligned LMs:

min
T

M∑
i=1

DKL(p
PT
θ (ỹ|x̃i)∥pθ,T (ỹ|x̃i)), (8)

where pθ,T (ỹ|x̃) is the scaled predictive distribution of the aligned LM with temperature T .

E.3 EXPERIMENTAL RESULTS

We test all methods on Llama-2-Chat 70B. Given the validation set Dc = {(xi, yi)}Mi=1, we perform
a full permutation of these M samples to get M ! prompts in total. For each prompt, we could obtain
M prediction pairs, i.e., (p̂, ŷ). For few-shot TS and KDE, we use all unique prediction pairs. For
the proposed TS method, we use only the last prediction pair of each prompt, where the pre-trained
LMs are best calibrated with ICL. As shown in Fig. 9, both TS and KDE can not calibrate the LM
well for all tasks with few-shot examples. In some tasks (e.g., LogiQA, IMDB), their roles can be
complementary, while in others (e.g., OpenbookQA), both are bad than out-of-the-box calibration.
Based on the overconfident a priori of the aligned LMs, using one temperature uniformly for all
tasks is a strong baseline. However, as shown in Table. 4, the optimal temperature under different
tasks may vastly differ, making this strategy a sub-optimal solution.

Task MMLU LogiQA HellaSWAG TruthfulQA OpenbookQA CivilComments IMDB

Temperature 2.27 2.85 1.29 3.05 1.25 3.62 1.33

Table 4: The learned temperature by the proposed TS method for all tasks.

Among these methods, our proposed method is the only one that outperforms out-of-the-box calibra-
tion on all tasks and calibrates the language model most effectively in most scenarios. This suggests
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that learning the degree to which the predictive distribution of the aligned LM changes relative to
the pre-trained LM by simply using one parameter for each task is an effective post-hoc calibration
strategy. Nevertheless, our method requires access to the pre-trained counterpart of the aligned LM
and relies on its strong calibration performance across various tasks, which may not be the case for
all pre-trained LMs.

Out-of-the-box Few-shot TS KDE TS with T = 2.5 Proposed TS

Abstract Algebra STEM 26.07 4.25 26.34 10.14 4.25
Anatomy STEM 27.15 15.00 6.53 12.16 11.69
Astronomy STEM 13.75 7.43 19.51 9.98 7.87
Business Ethics Other 21.05 9.36 19.03 12.83 8.87
Clinical Knowledge Other 16.05 17.62 15.14 8.07 8.06
College Biology STEM 12.74 7.87 21.49 11.56 7.36
College Chemistry STEM 14.49 14.54 36.32 5.24 10.45
College Computer Science STEM 14.92 12.18 29.84 10.70 16.06
College Mathematics STEM 24.71 14.55 16.20 7.69 3.42
College Medicine Other 22.81 17.29 11.38 8.44 11.55
College Physics STEM 29.24 14.13 22.30 11.77 15.70
Computer Security STEM 14.65 27.99 22.00 11.32 14.79
Conceptual Physics STEM 18.80 12.50 24.08 4.65 9.11
Econometrics Social Science 34.35 4.28 10.52 14.67 5.85
Electrical Engineering STEM 17.97 18.54 27.66 10.32 18.54
Elementary Mathematics STEM 25.40 21.94 10.93 7.62 10.93
Formal Logic Humanities 25.34 10.57 12.39 8.29 6.76
Global Facts Other 25.23 21.53 7.82 7.40 9.72
High School Biology STEM 8.58 18.69 20.11 14.62 18.96
High School Chemistry STEM 25.01 6.60 39.39 7.48 4.83
High School Computer Science STEM 16.31 11.58 18.93 9.31 11.18
High School European History Humanities 12.72 20.31 31.62 10.09 5.56
High School Geography Social Science 9.91 13.60 35.73 14.04 9.96
High School Government and Politics Social Science 5.12 5.60 41.44 14.62 6.63
High School Macroeconomics Social Science 19.35 18.14 20.42 8.85 9.53
High School Mathematics STEM 20.17 2.28 28.93 5.65 2.28
High School Microeconomics Social Science 15.88 31.30 18.49 7.06 14.04
High School Physics STEM 22.27 29.33 12.51 6.71 11.37
High School Psychology Social Science 5.52 14.86 35.14 15.72 4.70
High School Statistics STEM 24.59 12.20 7.70 9.65 8.42
High School Us History Humanities 7.09 8.46 35.49 15.63 5.84
High School World History Humanities 9.51 16.86 33.12 11.87 7.89
Humanities Aging Other 14.49 19.87 19.65 10.20 6.96
Humanities Sexuality Social Science 15.67 26.19 32.63 15.95 12.97
International Law Humanities 13.95 21.49 28.51 16.78 9.96
Jurisprudence Humanities 7.22 25.66 26.79 23.53 14.98
Logical Fallacies Humanities 12.13 11.11 28.33 9.81 6.72
Machine Learning STEM 28.33 10.69 4.98 10.94 10.69
Management Other 13.61 18.17 32.65 14.36 13.53
Marketing Other 6.47 9.73 33.31 17.78 3.76
Medical Genetics Other 17.60 9.30 19.06 12.14 16.34
Miscellaneous Other 8.49 18.05 31.86 10.29 5.26
Moral Disputes Humanities 16.94 13.19 24.42 10.84 12.21
Moral Scenarios Humanities 37.31 27.79 31.79 19.34 17.67
Nutrition Other 16.38 9.05 21.84 9.58 7.06
Philosophy Humanities 12.64 8.77 35.28 10.84 7.48
Prehistory Humanities 15.55 20.46 21.36 8.20 10.74
Professional Accounting Other 19.86 8.63 12.74 6.91 10.37
Professional Law Humanities 31.29 26.64 2.63 7.65 4.80
Professional Medicine Other 15.48 13.88 12.18 9.49 9.79
Professional Psychology Social Science 14.50 31.47 18.46 9.61 5.68
Public Relations Social Science 15.29 12.63 26.28 10.55 11.72
Security Studies Social Science 12.07 4.54 32.26 10.14 6.29
Sociology Social Science 6.55 5.36 30.66 16.33 13.71
Us Foreign Policy Social Science 7.17 13.00 37.00 13.52 3.44
Virology Other 34.89 16.74 5.67 12.55 16.59
World Religions Humanities 10.38 8.43 35.78 15.55 5.81

Table 5: Full ECE results of all post-hoc calibration methods on MMLU for Llama-2-Chat 70B.
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