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ABSTRACT

Recent advancements in Large Language Models (LLMs) have achieved robust
performance across diverse tasks, but fine-tuning these models for specific do-
mains remains resource-intensive. Parameter-Efficient Fine-Tuning (PEFT) meth-
ods like Low-Rank Adaptation (LoRA) address this challenge by fine-tuning a
small subset of parameters. However, existing methods for fusing multiple LoRAs
lack dynamic fusion based on contextual inputs and often increase inference time
due to token-level operations. We propose DLP-LoRA, a Dynamic Lightweight
Plugin that employs a mini-MLP module with only 5M parameters to dynami-
cally fuse multiple LoRAs at the sentence level using top-p sampling strategies.
This approach reduces inference time to less than twice that of single LoRA infer-
ence by leveraging parallel computation. Evaluations across 26 tasks—including
multiple-choice questions and question answering—demonstrate that DLP-LoRA
achieves an average accuracy of 92.34% on multiple-choice datasets and signifi-
cant improvements in BLEU and ROUGE scores on QA datasets, outperforming
different LLMs backbones under composite task settings. DLP-LoRA effectively
balances performance and efficiency, making it a practical solution for dynamic
multi-task adaptation in LLMs.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) such as LLaMA 3.1 (Dubey et al., 2024),
Qwen 2.5 (Team, 2024), and Gemma 2 (Team et al., 2024) have led to robust and superior perfor-
mance across multiple benchmarks (Muennighoff et al., 2022; Ilyas Moutawwakil, 2023; Fourrier
et al., 2024). These models have demonstrated remarkable capabilities in diverse areas, including
code generation (Bai et al., 2023), mathematical reasoning (Ahn et al., 2024), and question answer-
ing (Achiam et al., 2023). Despite these achievements, fine-tuning all parameters of such large
models for specific domains remains resource-intensive and time-consuming.

Parameter-Efficient Fine-Tuning (PEFT) methods (Houlsby et al., 2019; Xu et al., 2023) address
this challenge by enabling the fine-tuning of a small subset of parameters, thereby improving per-
formance in various applications like multi-task learning (Xu et al., 2024; Kong et al., 2024), mul-
tilingual summarisation, and transfer learning (Whitehouse et al., 2024; Zhao et al., 2024). One
prominent PEFT approach is Low-Rank Adaptation (LoRA) (Hu et al., 2021), which fine-tunes
low-rank matrices to capture domain-specific knowledge and merges them with pre-trained LLMs.

To enhance the multi-task learning capabilities of LLMs, several methods have been proposed to
fuse task-specific LoRAs, including MoLE (Wu et al., 2024b), S-LoRA (Sheng et al., 2023), and
LoRAHub (Huang et al., 2023). These approaches primarily use learnable gating networks or au-
tomatic loading mechanisms to combine multiple LoRAs. For instance, MeteoRA (Xu et al., 2024)
introduces a token-level gating network to all attention and MLP layers for dynamic LoRA fusion.

However, most of these methods lack the ability to dynamically fuse LoRAs based on contextual
prompt inputs during inference. They either require manual selection before combining LoRAs or
necessitate additional fine-tuning when tasks change. Moreover, existing LoRA mixture strategies
like MeteoRA focus on token-level Mixture-of-Experts (MoE) gating across all attention heads and
MLP layers, which significantly increases inference time for next-token generation. Observations
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from prior studies (Xu et al., 2024; Lin et al., 2024b; Muqeeth et al., 2024) indicate that within the
same sentence of a task, the same LoRA is consistently assigned to each token. This suggests that
token-level LoRA MoE might be unnecessary and computationally inefficient.

In this paper, we propose a Dynamic Lightweight Plugin for LoRA fusion (DLP-LoRA), which
employs a lightweight MLP module to dynamically fuse multiple LoRAs based on top-p sampling
strategies. This mini-MLP plugin, containing only 5M parameters, is fast to train for multi-task
classification and easily adaptable to new domains. By leveraging sentence-level LoRA selection
and fusion guided by the mini-MLP plugin, DLP-LoRA requires less than twice the inference time
compared to manually selecting and loading a single LoRA, making it comparable in efficiency.

We evaluate DLP-LoRA across 26 tasks, including 17 multiple-choice question (MCQ) datasets
spanning mathematical QA, logical reasoning, language identification, and reading comprehension,
as well as 9 question-answering (QA) datasets focused on summarisation, machine translation, and
open-domain QA. Under comparable inference times to single LoRA setups, DLP-LoRA achieves
an average accuracy of 92.34% across the 17 MCQ datasets and average BLEU, ROUGE-1, and
ROUGE-L scores of 57.62, 56.03, and 53.96, respectively, across the 9 QA datasets. These evalua-
tions are conducted using Qwen-2 1.5B, Qwen-2 7B, LLaMA-2 7B, and LLaMA-3 8B backbones.
Additionally, our model demonstrates relative improvements of 92.95% and 13.2% for the MCQ
and QA tasks, respectively, compared to different LLM backbones under composite task settings.
With DLP-LoRA, the inference speed and performance of the Qwen-2 1.5B backbone are improved
by over 90.90% and 82.55% under composite-26 task setting, respectively, when compared to the
baseline LLaMA-2 13B. Our case studies further illustrate that sentence-level DLP-LoRA effec-
tively balances the trade-off between multi-LoRA inference and fusion.

In summary, our contributions are threefold:

• We introduce DLP-LoRA, a dynamic and lightweight plugin for multi-LoRA selection and
fusion that is fast to train and easily adaptable to new domains.

• By employing sentence-level multi-LoRA selection and fusion, DLP-LoRA leverages par-
allel CUDA acceleration, achieving less than twice the inference time compared to single
LoRA inference and outperforming token-level MoE gating routers in efficiency.

• Through extensive evaluations on 26 tasks including MCQ and QA, DLP-LoRA achieves
performance comparable to single-task LoRA models and significantly improves accuracy
and ROUGE metrics under composite task settings.

2 BACKGROUND

Low-Rank Adaption. Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a method developed to
fine-tune large language models (LLMs) for specific downstream tasks with enhanced efficiency
by minimising the number of trainable parameters. Instead of updating all the model’s parameters
during training, LoRA introduces supplementary low-rank matrices. In Transformer-based autore-
gressive LLMs, this technique involves freezing the pre-trained weights and integrating trainable
low-rank matrices into designated layers, thereby substantially reducing computational overhead.
The primary motivation for LoRA stems from the recognition that many parameter updates dur-
ing fine-tuning occur within a low-dimensional subspace, indicating that full-rank weight updates
are often unnecessary. By employing low-rank approximations, LoRA significantly decreases the
number of parameters required for training—sometimes by factors as large as 10,000—while still
maintaining competitive performance levels.

Formally, consider a weight matrix W ∈ Rh×d within the original LLMs. LoRA introduces two
low-rank matrices, A ∈ Rh×r and B ∈ Rr×d, where r ≪ min(h, d). Instead of directly updating
the weight matrix, LoRA modifies the model’s forward pass according to the following equation:

W ′ = o+∆o = W +AB (1)

Here, W ′ represents the adjusted weight matrix, while A and B are the trainable matrices incorpo-
rated by LoRA. Consequently, the forward computation for an input x ∈ R1×d is expressed as:

h = xW ′ = x(o+∆o) = x(W +AB) = xW + xAB (2)

2
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Figure 1: DLP-LoRA framework: different LoRAs will be activated based on the input task and
sentence via mini-MLP plugin. When Top-p sampling is used via the mini-MLP plugin, multiple
LoRAs will be sampled and fused with probability p as the threshold. DLP-LoRA fusion is only
enabled once the first token of every new sentence is generated.

This approach guarantees that during the inference phase, after the training process is finalised, the
low-rank matrices A and B can be integrated with the original weights W , thereby removing any
additional computational overhead.

LoRA is predominantly applied to the attention projection matrices within the self-attention mech-
anisms of Transformer architectures, specifically targeting the query, key, and value projections, as
well as the output projection. Recently, MLP layers can also be applied by LoRA (Dou et al., 2024;
Li et al., 2024). This targeted application enhances the method’s overall efficiency.

The minimalistic design of LoRA renders it especially beneficial for environments with limited com-
putational resources or for applications necessitating the swift adaptation of extensive models. By
keeping the majority of the model’s parameters fixed and concentrating solely on learning the low-
rank modifications, LoRA substantially decreases both memory usage and computational demands
during the fine-tuning process.

Multi-task LoRA Mixture A LoRA adapter is fine-tuned for a specific downstream task, limiting
its utility to that particular application. To enhance the ability of LLMs to handle multiple tasks, two
primary approaches are commonly employed. The first approach involves combining datasets from
multiple tasks and fine-tuning a single LoRA module on this aggregated dataset. However, Lin et al.
(2024b) have identified significant challenges in encapsulating the specialised knowledge required
for diverse domains within a single LLM, often leading to suboptimal performance.

The second approach leverages existing LoRA adapters as interchangeable modules that can be
directly integrated into a base LLM. Within this strategy, two distinct directions have emerged.
The first direction focuses on architectural designs that combine multiple LoRAs using a learnable
weighted sum (Huang et al., 2023) or by implementing unified memory pool designs in CUDA
kernels (Sheng et al., 2023). However, these frameworks often require continuous few-shot learning
or in-context learning for each individual downstream task and necessitate manual assignment of
active LoRAs. This manual intervention poses a significant drawback, as it lacks the capability for
autonomous selection and dynamic switching of LoRAs during the inference phase.

The second direction involves developing frameworks that enable dynamic fusion of LoRAs. For
instance, Xu et al. (2024) introduced MeteoRA, a token-level Mixture-of-Experts (MoE) style multi-
task LoRA framework. MeteoRA incorporates a trainable gating mechanism across all attention and
MLP layers to automatically select and fuse different LoRAs based on input tokens. While MeteoRA
successfully facilitates dynamic management of multiple tasks, the inclusion of a trainable gating
module at every attention and MLP layer with token-level routing significantly increases inference

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

time compared to single LoRA inference. This performance drawback remains substantial even with
the development of GPU kernel acceleration methods.

3 METHODOLOGY

Our proposed DLP-LoRA framework comprises three key components: a lightweight mini-MLP
plugin CMLP, a base LLM backbone M, and a set of N fine-tuned LoRA modules L{1...N} cor-
responding to different tasks D{1...N}, as illustrated in Figure 1. Initially, we train the mini-MLP
classifier CMLP on these tasks to achieve high task classification accuracy (we evaluate 26 tasks in
this work; see Appendix C for details). Once trained, the LLM backbone M utilises the mini-MLP
plugin to dynamically fuse the appropriate fine-tuned LoRAs L{1...N} at the sentence level, enabling
efficient multi-task learning.

3.1 LIGHTWEIGHT MULTI-TASK CLASSIFICATION PLUGIN

Previous methods that perform token-level task classification and routing within the LLM back-
bone—by injecting a trainable gating network at each attention and MLP layer—are computation-
ally intensive and inefficient during inference (Xu et al., 2024). Observing that most tokens within a
sentence typically pertain to the same task, we propose a more efficient sentence-level task detection
approach. Specifically, we introduce an off-the-shelf 4-layer mini-MLP plugin CMLP that requires
training only once on the sentence level for the selected tasks.

Given N distinct tasks D{1...N} and a collection of M sentences S{1...M} ∈ Dn, our lightweight
4-layer CMLP encodes each input sentence Sm using a specific tokenizer (we utilise the ALBERT
tokenizer (Lan, 2019) in this work) and classifies Sm to the correct task Dn:

Yn = CMLP(Sm), where Yn ∈ D{1...N}. (3)

3.2 DYNAMIC LORA FUSION

Once the CMLP classifier is well-trained on the tasks D{1...N}, it serves as a plugin to the LLM
backbone M for dynamically fusing multiple LoRAs L{1...N} at the sentence level. For the current
input sentence Sm ∈ Dn, we consider the first token w1 and the previous contextual history H{1...k}.
We employ a top-p sampling scheme via CMLP to dynamically select the possible LoRAs to fuse,
using probability p as the threshold:

Ip = {Y{1...R} | w1 ∈ Sm,H{1...k}}, where Yr ≥ p. (4)

Using the set Ip for the current sentence Sm, we fuse the selected LoRAs based on normalised
weights obtained via a softmax function:

Wm = Softmax(Ip) = {w1, . . . , wR}. (5)

Importantly, the CMLP classifier is only activated when the first token w1 of the current sentence Sm

is generated, leveraging the contextual information H{1...k}. This approach significantly accelerates
the inference time of M compared to token-level gating network classification (Xu et al., 2024), as
it avoids the overhead of per-token classification.

3.3 PARALLEL MULTI-LORA ACCELERATION

Beyond the efficiency gained from sentence-level LoRA sampling and fusion—which avoids the
inefficiency of repetitive per-token LoRA classification—a significant advantage of our approach is
the ability to fully exploit parallel multi-LoRA acceleration.

Given N fine-tuned LoRAs, we construct two tensors A ∈ RN×h×r and B ∈ RN×r×d, which are
allocated contiguously in High Bandwidth Memory (HBM). In contrast to token-level LoRA classi-
fication and forward computation—where each token in the batch operates independently, limiting
the effectiveness of General Matrix Multiplication (GEMM) optimisations in frameworks like Py-
Torch—our sentence-level LoRA classification removes the independence constraints among tokens
within a sentence. By iterating over all N LoRAs using a hash table stored in HBM, we retrieve the
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Figure 2: The performance of DLP-LoRA compared to the Basic LLaMA-2 7B and single LoRA
baselines across 17 MCQ tasks and 9 QA tasks using accuracy and Rouge-L metrics. See Ap-
pendix D for more results using different LLMs backbones.

sampled LoRAs Ip based on top-p sampling and their corresponding weights Wm. Subsequently,
all sampled LoRAs are fused into the original layer-wise weights W of the LLM as follows:

[∆o1, . . . ,∆oBM ]︸ ︷︷ ︸
B×M

=
∑
R

WB×M×R(([x1, . . . ,xBMR]︸ ︷︷ ︸
B×M×R

× [A1, . . . ,ABMR]︸ ︷︷ ︸
B×M×R

)× [B1, . . . ,BBMR]︸ ︷︷ ︸
B×M×R

)

(6)
where B is the batch size, M is the number of sentences, R is the number of sampled LoRAs, and
x represents the encoded representation of the first token of each input sentence Sm. Leveraging
this parallel multi-LoRA acceleration, our DLP-LoRA achieves an inference time that is on average
only 1.24 times slower than single LoRA inference (see Section 4.2 for detailed comparisons).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To comprehensively evaluate our proposed DLP-LoRA framework, we follow the
methodology of Xu et al. (2024) and conduct experiments across 26 diverse tasks. These include 17
multiple-choice question (MCQ) datasets covering domains such as mathematical question answer-
ing, logical reasoning, language identification, and reading comprehension. Additionally, we assess
performance on 9 question-answering (QA) datasets focused on summarisation, machine translation,
and open-domain QA. Specifically, we utilise 20 tasks from the BigBench benchmark (Srivastava
et al., 2023), 3 machine translation tasks from the News Commentary dataset (Tiedemann, 2012)
translating from non-English to English, and 3 generative tasks: GSM8K (Cobbe et al., 2021),
CNN/DailyMail (See et al., 2017), and Alpaca (Taori et al., 2023). Detailed descriptions of each
dataset are provided in Appendix C.

LLM Backbones, LoRAs, and Mini-MLP Plugin. We evaluate DLP-LoRA using four widely
adopted LLM backbones: Qwen-2 1.5B and 7B (Yang et al., 2024a), LLaMA-2 7B (Touvron et al.,
2023), and LLaMA-3 8B (Dubey et al., 2024). To assess the effectiveness of DLP-LoRA in scenarios
with significant model size differences, we also compare the performance of DLP-LoRA based on
the Qwen-2 1.5B backbone against the baseline LLaMA-2 13B model without LoRA adaptations,
representing a 10x difference in model size.

For the baseline comparisons involving single LoRA modules, we fine-tune a separate LoRA for
each task using 900 training samples, randomly selected according to a 9:1 train/test split from
each original dataset. The mini-MLP plugin, responsible for task classification, is trained on the
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Table 1: The classification accuracy results on 17 MCQ tasks by comparing different basic LLMs
backbones, single LoRA baselines and our DLP-LoRA approach. The evaluation results are aver-
aged after running 10 times. The underline indicates the second-best accuracy and the subscript
percentage denotes relative accuracy improvement or reduction over each single LoRA baseline.

Task Qwen-2 1.5B Qwen-2 7B LLaMA-2 7B LLaMA-3 8B
Basic LoRA DLP-LoRA Basic LoRA DLP-LoRA Basic LoRA DLP-LoRA Basic LoRA DLP-LoRA

AbsNarr 33.12 89.25 89.75 27.87 93.25 92.75 33.05 92.50 89.50 86.53 97.38 97.25
ConParaKC 24.50 100.00 93.75 24.75 99.00 94.00 32.67 96.00 92.75 84.10 98.00 95.13
CSAlg 25.25 97.50 98.75 25.00 100.00 100.00 33.33 99.00 98.75 78.40 99.50 99.00
DisflQA 55.59 87.57 88.10 54.44 89.63 87.98 61.80 89.03 91.17 87.96 94.42 89.97
ElemMath 25.50 81.00 81.25 25.75 85.75 86.00 32.46 78.00 80.00 88.95 90.00 90.50
EpiReason 25.00 99.75 99.50 27.59 100.00 100.00 33.33 100.00 100.00 84.26 100.00 100.00
FormFall 25.75 100.00 100.00 25.00 100.00 100.00 33.33 100.00 100.00 83.40 100.00 100.00
LangID 27.23 77.00 77.00 25.75 89.25 88.00 33.89 79.75 79.75 76.41 95.12 94.50
LogDeduc 35.50 84.50 80.75 25.00 89.50 90.75 33.33 83.00 82.75 93.08 96.00 96.38
ObjCount 49.67 89.01 88.00 45.45 94.74 93.89 63.49 91.11 90.71 92.30 97.06 97.27
PlayDiag 25.00 89.00 88.00 25.50 90.75 89.75 33.33 87.75 88.25 75.73 95.00 94.75
QuesSel 33.52 99.00 98.00 51.11 98.00 97.00 33.00 99.00 99.00 70.41 97.00 97.00
ColorReason 25.00 79.00 78.25 25.50 87.50 87.75 33.33 80.75 80.75 82.27 95.62 96.25
TrackObj 27.75 79.75 78.75 26.25 81.00 82.25 33.33 80.00 78.75 85.17 90.00 90.50
UnitConv 27.11 100.00 100.00 25.00 100.00 100.00 33.33 100.00 100.00 82.67 100.00 100.00
VitaFact 32.85 94.00 92.25 30.00 96.50 95.50 33.33 90.93 92.70 79.04 96.12 95.38
WinoWhy 43.62 94.75 96.00 30.21 91.25 93.50 33.33 94.25 96.25 88.43 96.12 96.88

Avg. 31.88 90.65 89.89−0.84% 30.60 93.30 92.89−0.44% 36.69 90.65 90.65−0.00% 83.48 96.31 95.93−0.12%

Table 2: The BLEU, ROUGE-1 and ROUGE-L results on 9 QA tasks by comparing different basic
LLMs backbones, single LoRA baselines and our DLP-LoRA approach. The evaluation results
are averaged after running 10 times. The underline indicates the second-best performance and the
subscript percentage denotes relative BLEU, ROUGE-1 and ROUGE-L improvement or reduction
over each single LoRA baseline.

Task Metric Qwen-2 1.5B Qwen-2 7B LLaMA-2 7B LLaMA-3 8B
Basic LoRA DLP-LoRA Basic LoRA DLP-LoRA Basic LoRA DLP-LoRA Basic LoRA DLP-LoRA

GSM8K
BLEU 80.00 84.70 83.87 83.02 91.54 91.59 69.30 80.06 79.46 71.55 80.48 78.32
ROUGE-1 85.19 87.39 86.78 88.73 94.44 94.25 69.20 81.29 80.28 77.05 83.40 81.04
ROUGE-L 83.27 85.96 85.16 87.54 94.28 94.08 66.12 78.00 76.89 71.65 81.00 77.83

CNNDM
BLEU 18.23 15.12 18.61 13.74 16.07 14.17 8.21 8.02 14.31 13.92 8.96 17.90
ROUGE-1 25.00 16.92 18.98 14.68 16.90 15.51 7.81 7.39 13.22 13.99 9.70 18.93
ROUGE-L 16.94 15.83 17.19 13.48 15.40 14.03 7.30 6.95 12.45 13.25 8.80 17.76

LingPuzz
BLEU 39.43 43.34 42.03 40.96 57.24 56.83 44.01 58.02 56.40 36.30 64.56 65.68
ROUGE-1 25.00 29.36 26.67 23.25 47.77 46.72 23.25 45.38 43.90 24.02 58.63 58.93
ROUGE-L 20.68 27.78 26.03 20.63 46.24 45.95 20.20 44.13 41.85 20.37 57.24 58.07

NewsDE
BLEU 62.67 64.16 64.26 61.46 63.60 68.79 66.77 69.40 67.64 62.55 68.17 58.71
ROUGE-1 60.38 66.65 63.82 60.21 64.26 68.96 61.66 67.73 65.49 61.19 70.39 68.81
ROUGE-L 58.68 67.53 62.67 59.02 63.25 67.64 60.19 66.63 64.50 59.96 69.16 67.81

NewsES
BLEU 64.66 66.66 67.30 66.68 68.87 66.85 68.03 68.71 66.96 63.69 69.11 69.23
ROUGE-1 61.70 67.53 67.23 64.43 69.62 68.06 62.49 68.75 66.46 62.02 69.87 69.15
ROUGE-L 60.61 65.70 65.69 62.73 68.68 66.99 60.49 67.50 65.31 60.34 69.16 67.83

NewsIT
BLEU 61.04 63.52 64.43 63.52 69.63 65.12 68.03 69.66 67.37 62.79 65.59 68.44
ROUGE-1 59.62 65.10 65.01 63.42 71.40 66.19 62.49 67.80 66.49 63.39 67.21 69.88
ROUGE-L 57.74 64.38 64.37 62.11 70.77 65.85 60.49 67.00 65.63 62.50 66.52 69.29

StratQA
BLEU 56.69 60.67 63.25 60.44 67.75 68.02 65.11 65.58 66.51 59.26 64.34 66.22
ROUGE-1 53.28 57.86 60.99 58.13 67.28 67.72 62.08 59.87 60.08 56.83 62.82 63.45
ROUGE-L 49.23 54.60 56.86 54.12 64.97 65.60 60.85 56.78 56.72 52.87 60.03 60.14

TopChat
BLEU 30.00 32.00 29.00 25.76 33.59 34.77 59.96 33.63 33.69 32.90 35.95 29.58
ROUGE-1 30.97 31.12 29.71 26.30 33.66 35.93 53.72 32.20 30.23 31.34 35.94 30.30
ROUGE-L 27.83 28.28 26.93 24.27 31.66 33.85 50.01 30.17 28.31 28.49 33.52 27.80

ALPACA
BLEU 62.73 62.18 66.04 62.40 63.86 63.79 37.08 64.65 66.42 63.42 64.40 63.35
ROUGE-1 60.02 57.20 63.85 58.61 61.46 61.22 32.91 59.19 61.73 58.25 61.78 61.22
ROUGE-L 54.13 52.25 57.52 52.86 56.13 56.00 30.28 53.62 55.86 52.20 56.58 56.34

Avg.
BLEU 52.82 54.70 55.42+1.32% 53.11 59.13 58.83−0.51% 53.91 57.52 57.64+0.21% 51.82 57.95 58.60+1.12%

ROUGE-1 50.56 52.99 53.67+1.28% 50.86 58.52 58.28−0.41% 48.20 54.40 54.21−0.35% 49.79 57.75 57.96+0.36%

ROUGE-L 47.68 50.87 51.36+0.96% 48.53 56.82 56.66−0.28% 45.64 52.27 51.95−0.61% 46.84 55.72 55.88+0.29%

same samples and achieves an average classification accuracy of 98.45%. Notably, the mini-MLP
plugin is lightweight, containing only 5 million parameters, and can be trained rapidly—in under
10 minutes—for all 26 tasks. All experiments are conducted on a single custom-upgraded NVIDIA
GTX 2080Ti GPU with 22GB of memory.

Evaluation Metrics and Composite Task Setting. Given that all 26 tasks can be categorised
into MCQ and QA types, we employ accuracy as the evaluation metric for MCQ tasks and BLEU,
ROUGE-1, and ROUGE-L scores for QA tasks. To assess multi-task learning capabilities, we cre-
ate composite task settings by combining the 17 MCQ tasks (Composite-17) and the 9 QA tasks
(Composite-9). In all experiments, we report the average results over 10 runs to ensure statistical
reliability.
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Table 3: Evaluation results for composite-n task, where composite-9 includes all QA tasks, and
composite-17 includes all MCQ tasks. In addition, we compare a single LoRA with a higher rank
trained on composite-26 task setting. The evaluation results are averaged after running 10 times.
The subscript percentage denotes relative accuracy, BLEU, ROUGE-1 and ROUGE-L improvement
or reduction over each basic LLMs baseline.

Model Method Composite-n Acc. (%) ↑ BLEU ↑ ROUGE-1 ↑ ROUGE-L ↑

Qwen-2 1.5B
Basic 9 - 51.48 48.69 45.72

17 31.65 - - -

LoRA (r = 64) 26 33.23 51.46 48.86 45.90

DLP-LoRA 9 - 56.00 54.61 52.27
17 90.43 - - -

Qwen-2 7B
Basic 9 - 53.25 50.70 48.58

17 58.59 - - -

LoRA (r = 64) 26 59.42 53.63 51.75 48.92

DLP-LoRA 9 - 57.44 56.84 54.90
17 92.75 - - -

LLaMA-2 7B
Basic 9 - 52.32 46.78 44.36

17 36.29 - - -

LoRA (r = 64) 26 37.93 52.84 46.96 45.35

DLP-LoRA 9 - 58.61 54.70 52.60
17 91.20 - - -

LLaMA-3 8B
Basic 9 - 52.00 50.16 47.16

17 65.44 - - -

LoRA (r = 64) 26 65.98 52.26 50.38 47.40

DLP-LoRA 9 - 57.79 57.45 55.35
17 96.03 - - -

Avg.
Basic 9 - 52.26 49.08 46.46

17 47.99 - - -

LoRA (r = 64) 26 49.14 52.55 49.49 46.89

DLP-LoRA 9 - 57.46+9.95% 55.90+13.90% 53.78+15.76%

17 92.60+92.95% - - -

4.2 EXPERIMENTAL RESULTS

Main Results. Figure 2 presents the classification accuracy across the 17 MCQ tasks and ROUGE-
L scores across the 9 QA tasks, comparing our DLP-LoRA with the baseline LLaMA-2 7B backbone
and individually fine-tuned single LoRAs. Our DLP-LoRA not only significantly outperforms the
baseline LLaMA-2 7B model but also achieves performance comparable to, and in some cases sur-
passing, that of the manually loaded single LoRAs on the 17 MCQ tasks. Similar trends are observed
for the 9 QA tasks (additional results for other LLM backbones are provided in Appendix D). As
shown in Table 1, DLP-LoRA achieves performance within a relative difference of -0.35% in ac-
curacy across the 17 MCQ tasks when compared to the single LoRA models using different LLM
backbones. Remarkably, DLP-LoRA consistently outperforms the single LoRA models on the El-
emMath and WinoWhy datasets. A similar pattern emerges in Table 2 for the 9 QA tasks, where
DLP-LoRA shows relative improvements in BLEU, ROUGE-1, and ROUGE-L scores by averages
of 0.54%, 0.22%, and 0.09% across all QA tasks and LLM backbones, respectively. These results
demonstrate that DLP-LoRA can match or even exceed the performance of individually fine-tuned
single LoRAs by dynamically selecting and fusing multiple LoRAs.

Multi-task Composite Performance. We further evaluate DLP-LoRA’s capability in multi-task
learning under composite task settings by combining the 17 MCQ tasks and the 9 QA tasks. As
presented in Table 3, DLP-LoRA significantly enhances performance over the baseline LLM back-
bones, achieving relative improvements of 92.95% in accuracy for the MCQ composite, and 9.95%,
13.90%, and 15.76% in BLEU, ROUGE-1, and ROUGE-L scores, respectively, for the QA com-
posite. These findings indicate that DLP-LoRA effectively and automatically selects the appropriate
LoRAs based on the input prompts within composite tasks, facilitating dynamic multi-task adapta-
tion. A detailed example illustrating how DLP-LoRA selects and fuses multiple LoRAs is provided
in Section 4.3.
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Table 4: The averaged inference time ratio across 26 datasets by comparing the single LoRA, and
DLP-LoRA equipped ALBERT and mini-MLP plugin with the basic LLMs backbones. The sub-
script percentage denotes relative inference time improvement or reduction of DLP-LoRA over the
single LoRA inference.

Method Qwen-2 1.5B Qwen-2 7B LLaMA-2 7B LLaMA-3 8B
LoRA 1.15 1.00 1.05 1.00

DLP-LoRA (ALBERT) 1.90+65.22% 1.13+13.00% 1.80+71.43% 1.12+12.00%

DLP-LoRA (mini-MLP) 1.12−2.61% 1.12+12.00% 1.60+52.38% 1.11+11.00%

Inference Time Efficiency. We also conduct a comprehensive evaluation of the inference time
efficiency of DLP-LoRA and its variants compared to the baseline LLM backbones and single LoRA
models. As shown in Table 4, single LoRA models exhibit inference speeds comparable to the
baseline LLMs, being only about 1.05 times slower on average. When incorporating ALBERT
(11M parameters) as the plugin, DLP-LoRA’s inference time ranges from 1.12 to 1.90 times slower
than the baseline LLMs, representing a 40.41% increase compared to single LoRA inference. By
contrast, using the mini-MLP plugin with 5M parameters, DLP-LoRA achieves faster inference,
with only an 18.19% average increase in inference time over single LoRA models across all tasks.
These results validate the efficiency of our sentence-level LoRA selection and fusion approach.

4.3 CASE STUDY

Is it common to see frost during some college commencements?

Yes, it is common to see frost during some college commencements, especially in areas where the 
weather is cooler or more temperate. Frost is the formation of ice crystals on surfaces in the 
atmosphere, typically when the temperature is below freezing. It can occur on surfaces such as grass, 
leaves, and even clothing.

In some cases, frost can form on the ground or on surfaces during college commencements, especially 
if the temperature is around or below freezing. This can happen in the early morning or late evening, 
when the air is colder.

Aber das Ausmaß dieser Korruption sollte uns angesichts der Probleme mit der Buchführung der 
öffentlichen Hand nicht blenden. Auch in diesem Bereich werden hinterhältige Dinge gedreht.

But the freezing of this corruption should not blind us to the problems with the public sectors accounting. 
In this area, too, something is being covered up.

It is not always easy to see which chemicals are contained in our consumer products. The following 
argument pertains to this question: First premise: Selenium sulfide is an ingredient of Water Baby. 
Second premise: Being an ingredient of Climate Control is sufficient for not being an ingredient of 
Water Baby. We may conclude that selenium sulfide is not an ingredient of Climate Control.\“\n Is the 
argument, given the explicitly stated premises, deductively valid or invalid? A valid B invalid:

A

AbsNarr
50.5%

GSM8K
49.5%

NewsDE
100.0%

FormFall
100.0%

Figure 3: Case study of DLP-LoRA based on
LLaMA-3 8B backbone under composite-3 task set-
ting, where the selected LoRAs with corresponding
probabilities are demonstrated on the right side.

To illustrate the practical effectiveness of
DLP-LoRA, we present a case study in Fig-
ure 3 using the LLaMA-3 8B backbone under
a composite task setting involving three tasks.
For the first input prompt, DLP-LoRA selects
two LoRAs—AbsNarr and GSM8K—with
probabilities of 50.5% and 49.5%, respec-
tively, using top-p sampling. The AbsNarr
dataset involves narratives encapsulating hu-
man experiences and wisdom, while GSM8K
focuses on practical scenarios requiring gen-
eral knowledge through mathematical reason-
ing. The gold standard dataset, StratQA,
requires answering general knowledge ques-
tions with reasoning steps. DLP-LoRA effec-
tively fuses the AbsNarr and GSM8K LoRAs
to generate logical explanations that incorpo-
rate general knowledge about frost weather and commencements. When subsequent questions are
input, concatenated with the history, DLP-LoRA continues to successfully select the appropriate
LoRAs—NewsDE and FormFall—from the pool of 26 LoRAs stored in high-bandwidth memory
(HBM). This case study demonstrates DLP-LoRA’s ability to dynamically select and fuse multiple
LoRAs to address diverse tasks effectively.

5 DISCUSSION

Limitations of Top-k Selection Most existing Multi-LoRA or LoRA-MoE methods employ a top-
k router to manually determine the fixed number of LoRAs to use for multi-task learning (Li et al.,
2024). This manual selection can restrict the model’s ability to dynamically select and fuse multiple
LoRAs based on the task requirements. In our approach, we utilise top-p selection, which leverages
the probabilities assigned by the mini-MLP plugin to each LoRA, using a threshold p. This allows
DLP-LoRA to adaptively decide both the number and combination of LoRAs to fuse for different
tasks, enhancing flexibility and performance.

Can a Smaller LLM with DLP-LoRA Outperform a Larger LLM Backbone? Our evalua-
tions of DLP-LoRA across various LLM backbones ranging from 1.5B to 8B parameters under

8
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Table 5: The comparison between smaller Qwen-2 1.5B equipped with DLP-LoRA and basic
LLaMA-2 13B backbone under composite-26 task setting. The subscript percentage denotes rela-
tive inference time, each evaluation metric improvement or reduction of Qwen-2 1.5B + DLP-LoRA
over the LLaMA-2 13B.

Model Inference Time (s) ↓ Acc. (%) ↑ BLEU ↑ ROUGE-1 ↑ ROUGE-L ↑
LLaMA-2 13B 4672.73 45.54 19.89 17.99 17.25
Qwen-2 1.5B + DLP-LoRA 425.03−90.90% 82.68+81.55% 20.59+3.52% 39.57+119.96% 38.84+125.16%

composite task settings prompted us to investigate whether a smaller LLM backbone equipped
with DLP-LoRA can outperform a larger, unadapted LLM backbone. As shown in Table 5,
the Qwen-2 1.5B model equipped with DLP-LoRA reduces inference time by over 90% com-
pared to the LLaMA-2 13B backbone when processing a mixture of 26 tasks. Moreover,
it achieves significant improvements in accuracy, ROUGE-1, and ROUGE-L scores by 81%,
119%, and 125%, respectively. These findings suggest that smaller LLMs augmented with
DLP-LoRA have the potential to match or even surpass the performance of much larger mod-
els (with over eight times more parameters) across diverse tasks. This is particularly benefi-
cial for deployment on devices with limited computational resources, such as mobile devices.

Table 6: The inference time ratio com-
pared between different numbers of Lo-
RAs and the basic LLaMA-3 8B. #
Params denote the percentage of Lo-
RAs’ parameters over the LLaMA-3
8B.

Num. of LoRA # Params Inference Time Ratio
50 0.043% 1.76

100 0.085% 1.83

Inference Time of Multi-LoRA Loading at Scale By
avoiding inefficient and repetitive token-level LoRA clas-
sification, our method fully leverages PyTorch’s Gen-
eral Matrix Multiplication (GEMM) operations for par-
allel multi-LoRA acceleration. We conducted an ablation
study to assess how the inference time scales with the in-
creasing number of LoRAs, using the LLaMA-3 8B back-
bone as a reference. As illustrated in Table 6, even as the
number of LoRAs increases, the inference time ratio re-
mains within 2x of the baseline LLaMA-3 8B model. Additionally, the combined parameters of
all LoRAs constitute less than 0.1% of the 8B parameters in the LLaMA-3 backbone. These re-
sults demonstrate that our approach scales efficiently with the number of LoRAs without incurring
significant computational overhead, maintaining practical inference times even at scale.

Table 7: The inference time and memory consuming ratio
compared with different dynamic LoRAs baselines based on
LLaMA-2 7B. The subscript percentage denotes relative in-
ference time and memory usage improvement of different
LoRAs baselines over the LLaMA-2 7B backbone.

Method Decoding latency ratio Peak Memory ratio

LLaMA2-7B 1.00 1.00

MOLA (Gao et al., 2024) 10.54+954% 2.04+104%

PESC (Wu et al., 2024a) 3.54+254% 1.02+2%

MoRAL (Yang et al., 2024b) 3.58+258% 1.02+2%

LoRA-Switch (Kong et al., 2024) 1.29+29% 1.07+7%

DLP-LoRA (7 LoRAs) 1.20+20% 1.00+0%

Efficiency comparison with differ-
ent dynamic LoRAs baselines We
further compare our DLP-LoRA with
different dynamic LoRAs baselines
in order to evaluate the DLP-LoRA’s
efficiency at inference speed and
memory usage. We fine-tuned 7 dif-
ferent LoRAs based on selected 7
datasets including ARC (Clark et al.,
2018), HellaSwag (Zellers et al.,
2019), MMLU (Hendrycks et al.,
2020), TruthfulQA (Lin et al., 2022),
WinoGrande (Sakaguchi et al., 2021), ScienceQA (Lu et al., 2022), CommonsenseQA (Talmor et al.,
2019), and OpenbookQA (Mihaylov et al., 2018). Then we compare DLP-LoRA with different base-
lines on the ShareGPT dataset (Wang et al., 2023) 1 following LoRA-Swich (Kong et al., 2024). As
shown in Table 7, it is evident that DLP-LoRA stands out in both speed and memory efficiency. Even
when handling seven tasks, DLP-LoRA completes inference tasks quickly with minimal additional
memory costs, demonstrating a significant advantage over other methods. With our DLP plugin
method, switching to a different LoRA requires only retraining a small 5M mini-MLP, resulting in
minimal computational overhead. This simplifies the implementation of new MoE plugins. Further-
more, DLP-LoRA maintains strong performance even with a large number of LoRAs, a scenario

1Since LoRA-Switch did not descript how many LoRAs are utilised during inference for ShareGPT dataset,
we assume that all 7 LoRAs based on the original work are equipped and we can regard this as the lower-bound
of DLP-LoRA.
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where other methods often struggle in Table 7. This robustness is advantageous for applications re-
quiring multiple LoRAs. Additionally, DLP-LoRA effectively minimizes the increase in parameters.
For example, using LLaMA-3 8B with 100 MoE dynamic LoRAs, a typical gating method would
add approximately 26M parameters, calculated as hidden size × LoRA types × hidden layers × 2
(accounting for query and value matrices). In contrast, DLP-LoRA only adjusts the final linear layer,
keeping the total increase to around 5M parameters. This suggests that LoRA fine-tuning can en-
able LLMs to enhance their capabilities across various domains simultaneously when equipped with
sufficient LoRAs.

6 RELATED WORK

In the area of multi-task learning with LoRA, two primary research directions have emerged be-
yond the straightforward approach of fine-tuning a single LoRA on a combined dataset of multiple
tasks (Lin et al., 2024b). The first direction focuses on developing libraries or frameworks to reuse
and integrate existing LoRAs, while the second aims to design router networks based on MoEs to
dynamically fuse multiple LoRAs.

Multiple LoRA Architectures Several works have proposed frameworks for combining and man-
aging multiple LoRAs. Huang et al. (2023) introduced LoRAHub, a framework that combines
existing fine-tuned LoRAs using a learnable weighted sum, allowing for more flexible adaptation
across tasks. S-LoRA (Sheng et al., 2023) emphasises unified memory pool design to manage dy-
namic LoRA weights with varying ranks and key-value cache tensors for CUDA kernels, enhancing
computational efficiency. Additionally, Model-Based Clustering (MBC) (Ostapenko et al., 2024)
employs clustering techniques to group tasks based on the similarity of their LoRA parameters,
facilitating better parameter sharing and task generalization.

Mixture-of-Experts with Multiple LoRAs Another line of research integrates Mixture-of-
Experts mechanisms to control and fuse multiple LoRAs dynamically. In these approaches, multiple
LoRAs are fine-tuned and injected into the model’s MLP layers, with a router network determin-
ing which LoRA to activate for a given task. Examples include LoRAMoE (Dou et al., 2024),
PHATGOOSE (Muqeeth et al., 2024), MoLE (Wu et al., 2024b), and LoRA-Switch (Kong et al.,
2024). Some methods extend this fusion to both MLP and attention layers, such as MixLoRA (Li
et al., 2024) and Mixture of Adaptations (MoA) (Feng et al., 2024), enabling more comprehensive
adaptation across model components.

Furthermore, token-level routing strategies have been proposed to enhance the granularity of LoRA
selection. MeteoRA (Xu et al., 2024) introduces a token-level MoE-style multi-task LoRA frame-
work with trainable gating mechanisms across all attention and MLP layers, allowing for dynamic
selection and fusion of different LoRAs based on input tokens. Similarly, AdaMoE (Zeng et al.,
2024) presents an adaptive MoE approach that leverages token-level routing within transformer
models to improve performance across diverse tasks. Apart from the token-level gating mechanism
for multiple LoRAs, some existing works also proposed sentence-level routing, for instance Polytro-
pon (Ponti et al., 2023) and FLix (Lin et al., 2024a). However, Flix mainly focuses on multilingual
task settings and Polytropon mainly explores the encoder-decoder architecture. It is unclear whether
those works can maintain superior inference efficiency when loading high volumes of LoRAs across
different tasks.

7 CONCLUSION

We introduced DLP-LoRA, a dynamic and lightweight plugin that employs a mini-MLP module
with only 5 million parameters to dynamically fuse multiple LoRAs at the sentence level using
top-p sampling strategies. Our comprehensive evaluation across 17 MCQ tasks and 9 QA tasks
demonstrates that DLP-LoRA not only closely matches the performance of individually fine-tuned
single LoRAs but also surpasses them on certain tasks, all while incurring less than twice the in-
ference time. Through detailed discussions and ablation studies, we have shown that DLP-LoRA
effectively balances performance and efficiency in multi-task learning, making it a practical solution
for dynamic multi-task adaptation in LLMs.
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A LIMITATIONS

Our evaluation of DLP-LoRA was primarily conducted on LLM backbones ranging from 1.5 bil-
lion to 8 billion parameters, constrained by the computational limitations of our GPU resources.
Consequently, we were unable to assess the performance of DLP-LoRA on larger models such as
Qwen-2.5 32B (Hui et al., 2024) and LLaMA-3.1 70B (Dubey et al., 2024), which may exhibit
different behaviors and performance characteristics. Additionally, when composite tasks include a
higher proportion of MCQ datasets, DLP-LoRA tends to assign higher probabilities to the specific
MCQ LoRA, potentially limiting its ability to effectively fuse and utilize QA LoRAs. This tendency
might restrict the diversity of generated outputs and the fusion capabilities of DLP-LoRA across a
broader range of tasks.

B BROADER IMPACTS

The lightweight design of DLP-LoRA, featuring a mini-MLP with only 5 million parameters, of-
fers significant flexibility and efficiency, making it suitable for deployment on smaller devices with
limited computational resources. Moreover, DLP-LoRA facilitates easy integration of new LoRAs
corresponding to additional tasks without necessitating further fine-tuning of the entire model. This
capability enhances the accessibility and adaptability of LLMs in various applications, promoting
broader utilisation in resource-constrained environments.

C DETAILS ABOUT 26 TASKS AND DATASETS

Table 8 includes detailed descriptions of each dataset’s name, keywords, main content and corre-
sponding evaluation metrics. These 26 tasks include diverse topics, such as mathematical QA, logi-
cal reasoning, language identification, reading comprehension, summarisation, machine translation,
and open-domain QA.

D EVALUATION RESULTS BASED ON DIFFERENT LLMS BACKBONES

We demonstrate more radar charts to show more results for each LLM backbone. Figure 4, 5 and 6
demonstrate that DLP-LoRA significantly outperforms the basic LLM backbones under 17 MCQ
datasets, and DLP-LoRA also outperforms the basic LLaMA-3 8B a lot across 17 MCQ datasets
in Figure 3. In addition, we can find that DLP-LoRA achieves comparable performance of single
LoRA mode based on different LLM backbones from 1.5B to 8B under 9 QA tasks.
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Table 8: Details about the 26 selected tasks following Xu et al. (2024).
Task Name Keywords Description Evaluation Metrics

abstract narrative understanding (AbsNarr) narrative understanding,
multiple choice

Given a narrative, choose the most related proverb. Accuracy

alpaca (ALPACA) instruction-tuning Write appropriate answers according to instruc-
tions.

BLEU, ROUGE

cnn dailymail (CNNDM) summarization Given news articles, write the summarization. ROUGE

contextual parametric knowledge conflicts (ConParaKC) contextual question-
answering, multiple
choice

Answer questions given the contextual informa-
tion.

Accuracy

cs algorithms (CSAlg) algorithms, numerical
response

Solve two common computer-science tasks. Accuracy

disfl qa (DisflQA) contextual question-
answering, reading
comprehension

Pick the correct answer span from the context
given the disfluent question.

Accuracy

elementary math qa (ElemMath) mathematics Answer multiple choice mathematical word prob-
lems.

Accuracy

epistemic reasoning (EpiReason) logical reasoning, multi-
ple choice

Determine whether one sentence entails the next. Accuracy

formal fallacies syllogisms negation (FormFall) logical reasoning, multi-
ple choice,

Distinguish deductively valid arguments from for-
mal fallacies.

Accuracy

gsm8k (GSM8K) mathematics Solve the grade school math word problems. Accuracy

language identification (LangID) multilingual, multiple
choice

Given a sentence, select the correct language. Accuracy

linguistics puzzles (LingPuzz) logical reasoning, lin-
guistics

Solve Rosetta Stone-style linguistics puzzles. BLEU, ROUGE

logical deduction (LogDeduc) logical reasoning, multi-
ple choice

Deduce the order of a sequence of objects. Accuracy

news commentary de (NewsDE) multilingual, translation Translate German sentences into English. BLEU

news commentary es (NewsES) multilingual, translation Translate Spanish sentences into English. BLEU

news commentary it (NewsIT) multilingual, translation Translate Italian sentences into English. BLEU

object counting (ObjCount) logical reasoning Questions that involve enumerating objects and
asking the model to count them.

Accuracy

play dialog same or different (PlayDiag) reading comprehension,
multiple choice

Determine if nearby lines in a Shakespeare play
were spoken by the same individual.

Accuracy

question selection (QuestSel) reading comprehension,
multiple choice

Given an answer along with its context, select the
most appropriate question which has the given an-
swer as its answer.

Accuracy

reasoning about colored objects (ColorReason) reading comprehension,
logical reasoning, multi-
ple choice

Answer extremely simple questions about the col-
ors of objects on a surface.

Accuracy

strategyqa (StratQA) logical reasoning,
context-free question
answering

Answer questions in which the required reasoning
steps are implicit in the question.

BLEU, ROUGE,
Accuracy

topical chat (TopChat) free response Open-domain response generation. BLEU, ROUGE

tracking shuffled objects (TrackObj) logical reasoning, multi-
ple choice

Determine the final positions given initial posi-
tions and a description of a sequence of swaps.

Accuracy

unit conversion (UnitConv) contextual question-
answering, mathematics,
multiple choice

Perform various tasks relating to units, including
identification and conversion.

Accuracy

vitaminc fact verification (VitaFact) truthfulness, reading
comprehension, multiple
choice

Identify whether a claim is True or False based on
the given context.

Accuracy

winowhy (WinoWhy) causal reasoning, multi-
ple choice

Evaluate the reasoning in answering Winograd
Schema Challenge questions.

Accuracy
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Figure 4: Radar chart of Qwen-2 1.5B across 17 MCQ and 9 QA tasks.
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Figure 5: Radar chart of Qwen-2 7B across 17 MCQ and 9 QA tasks.
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Figure 6: Radar chart of LLaMA-2 7B across 17 MCQ and 9 QA tasks.
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Figure 7: Radar chart of LLaMA-3 8B across 17 MCQ and 9 QA tasks.
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