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Abstract

Non-convex functional constrained optimization problems have gained substantial atten-
tion in machine learning and data science, addressing broad requirements that typically go
beyond the often performance-centric objectives. An influential class of algorithms for func-
tional constrained problems is the class of primal-dual methods which has been extensively
analyzed for convex problems. Nonetheless, the investigation of their efficacy for non-convex
problems is under-explored. This paper develops a primal-dual algorithmic framework for
solving such non-convex problems. This framework is built upon a novel form of the La-
grangian function, termed the Proximal-Perturbed Augmented Lagrangian, which enables
the development of simple first-order algorithms that converge to a stationary solution un-
der mild conditions. Notably, we study this framework under both non-smoothness and
smoothness of the constraint function and provide three key contributions: (i) a single-loop
algorithm that does not require the continuous adjustment of the penalty parameter to infin-
ity; (ii) a non-asymptotic iteration complexity of Õ(1/ϵ2); and (iii) extensive experimental
results demonstrating the effectiveness of the proposed framework in terms of computational
cost and performance, outperforming related approaches that use regularization (penaliza-
tion) techniques and/or standard Lagrangian relaxation across diverse non-convex problems.

1 Introduction

We consider the following non-convex optimization problem with functional constraints:

min
x∈Rn

f(x) + r(x) s. t. g(x) ≤ 0, (1)

where f : Rn → R and g : Rn → Rm are continuous and possibly non-convex mappings; and r : Rn →
R ∪ {+∞} is a proper, closed, and convex (possibly non-smooth) function.

Problems of this form equation 1 appear in a wide range of applications in machine learning, data science,
and signal processing, e.g., wireless transmit/receive beamforming design Scutari et al. (2016b); Shi et al.
(2020), constrained classification/detection problems Huang & Vishnoi (2019); Rigollet & Tong (2011); Zafar
et al. (2019), and optimization for deep neural network Bai et al. (2023); Jiang & Chen (2023). Solving non-
convex problems, even those without constraints, is generally challenging, as finding even an approximate
global minimum is often computationally intractable Nemirovskij & Yudin (1983). The presence of functional
constraints g(x) in equation 1 that can potentially be non-convex is critical for many of the applications
mentioned above, yet it makes the problem even more challenging. A further complication arises since in
many of these applications, problem equation 1 tends to be large-scale, i.e., with large variable dimension
n Boyd et al. (2011). Hence, developing first-order methods that can find stationary solutions with lower
complexity bounds is highly desirable.

Augmented Lagrangian (AL)-based algorithms are a prevailing class of approaches for constrained optimiza-
tion problems. The foundational AL method, introduced by Hestenes (1969) and Powell (1969), has been a
powerful algorithmic framework built on by many contemporary algorithms. In particular, the Alternating
Direction Method of Multipliers (ADMM) scheme has been widely employed for solving constrained opti-
mization problems based on the AL framework; see Bertsekas (2014); Birgin & Martínez (2014) and recent
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works for constrained convex settings Ouyang et al. (2015); Lan & Monteiro (2016); Xu (2017); Liu et al.
(2019); Xu (2021); Upadhyay et al. (2025).

However, AL-based methods remain fairly limited for problems in the general form of equation 1. Key chal-
lenges arise from the non-convexity of the objective and constraint functions, which can lead to complicated
updates with no closed-form or compute-efficient updates and require carefully updating the penalty parame-
ters to ensure the solution remains near feasible. Consequently, existing analyses of AL-based methods, with
the best-known guarantees of O(1/ϵ3) for a given ϵ > 0, require increasing penalty parameters to infinity to
ensure feasibility, leading to demanding iteration complexity.

Motivated by the above discussion, we aim to answer the question:

Can we design algorithms to solve problems of the form equation 1 with an improved iteration
complexity bound and efficient update rules?

This paper answers this question in the affirmative. Notably, we develop an efficient single-loop first-order
primal-dual method for solving problem equation 1 such that based on a new augmented Lagrangian, for
a given accuracy ϵ > 0 to compute an ϵ-approximate stationary solution (see Definition 2). It achieves an
iteration complexity of Õ(1/ϵ2) in terms of the number of gradient evaluations.1

1.1 Related Work

We review the literature on iteration complexity and convergence of AL and penalty-based methods for
non-convex constrained problems.

Linearly constrained non-convex problems. Many existing works have focused on the class of problems
where g(x) in equation 1 is linear. Hajinezhad & Hong (2019) introduced a perturbed-proximal primal-dual
algorithm, with an iteration complexity of Õ(1/ϵ4), under the assumption of a feasible initialization. Kong
et al. (2023) proposed proximal AL methods that obtain the improved complexity result of Õ(1/ϵ3) under
Slater’s condition. Finally, Zhang & Luo (2020; 2022) proposed a first-order single-loop proximal AL method
that achieves O(1/ϵ2) iteration complexity, which relies on error bounds that depend on the Hoffman constant
of the polyhedral constraints.2 However, estimating the Hoffman constant is known to be difficult in practice.

Non-convex functional constrained problems. There are several recent works that focus on the itera-
tion complexity of first-order AL-based methods or penalty methods to solve equation 1 Cartis et al. (2011);
Scutari et al. (2016a); Li et al. (2021); Lin et al. (2022); Lu (2022); Kong et al. (2022); Sahin et al. (2019).
Scutari et al. (2016a) proposed double-loop distributed primal-dual algorithms with asymptotic convergence
guarantees, under the coercivity assumption and Mangasarian-Fromovitz constraint qualification (MFCQ).
More recently, a set of methods have emerged employing the regularity condition (Assumption 4 of Lin et al.
(2019), (8) of Sahin et al. (2019)) for ensuring solution feasibility. Sahin et al. (2019) proposed a double-loop
inexact AL method (iALM) that achieves an Õ(1/ϵ4) iteration complexity. Li et al. (2021) improved the
iteration complexity to Õ(1/ϵ3), which is obtained using a triple loop iALM. Kong et al. (2022) established
an Õ(1/ϵ3) complexity bound of the proximal AL method (NL-IAPIAL) for non-convex problems with non-
linear convex constraints. Lu (2022) proposed the first single-loop gradient-based algorithm that achieves the
best-known iteration complexity O(1/ϵ3) for equation 1. However, the regularity condition is non-standard
and rather strong as it forces a relationship between feasibility of the generated iterates and first-order opti-
mality. We are thus motivated to develop an algorithm that improves iteration complexity without requiring
this assumption. While our proposed framework shares similarity with the above influential works, it further
provides certain key components which we delineate in Section 1.2.

1In this paper, the notation Õ(·) suppresses all logarithmic factors from the big-O notation.
2The Hoffman constant κ is the smallest number such that for any x, dist(x, {y | Ay ≤ b}) ≤ κ∥(Ax−b)+∥, where (Ax−b)+

denotes the positive part of Ax − b.
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1.2 Our Contributions

In this paper, we develop a novel algorithmic framework designed to solve challenging non-convex functional
constrained optimization problems. Our paper offers the following key contributions:

• We propose a single-loop first-order algorithm that finds an ϵ-solution with Õ(1/ϵ2) iteration com-
plexity for both non-smooth and smooth constraint functions without requiring the strong regularity
condition used in other AL-based algorithms Li et al. (2021); Lin et al. (2022); Lu (2022); Sahin
et al. (2019).

• To establish the above results, we conduct a comprehensive convergence analysis of our method for
both non-smooth and smooth constraint functions, establishing simple and concise proofs compared
to existing works. Notably, the analysis does not impose assumptions on the surjectivity of the
Jacobian Jg(x) Bolte et al. (2018); Boţ & Nguyen (2020), or boundedness of penalty parameters
Grapiglia & Yuan (2021). It also does not require the feasibility of initialization as in Boob et al.
(2022); Sun & Sun (2021); Xie & Wright (2021), which itself is a non-convex and challenging task.

• By using a constant penalty parameter, our algorithm achieves improved computational efficiency
and ease of implementation compared to existing schemes. Specifically, we neither require linear
independence constraint qualification (LICQ) to ensure boundedness of penalty parameters Solodov
(2009), nor computational efforts for careful updating scheme of the penalty parameters. Our
numerical results validate that compared with existing methods, using a fixed penalty parameter
achieves more consistent progress toward solution stationarity and feasibility.

• The algorithmic framework is flexible, enabling it to effectively handle various non-convex, smooth,
and non-smooth functional constraints. Experimental results demonstrate its high effectiveness in
terms of computational cost and performance, outperforming related algorithms that use regular-
ization techniques and/or standard Lagrangian relaxation.

1.3 Outline

Section 2 provides the notation, definitions, and assumptions that we use throughout the paper. In Sec-
tion 3 and 4, we propose novel first-order primal-dual algorithms and establish their convergence results
for non-smooth and smooth functional constraints, respectively. Section 5 presents numerical results on
commonly encountered problems in signal processing and machine learning to demonstrate the effectiveness
of the proposed algorithm. Detailed derivations are provided in the supplementary material due to space
limitations.

2 Preliminaries

This section provides the notation, formal definitions, and assumptions utilized throughout this paper,
forming the foundation for our proposed algorithmic approach and its convergence analysis.

We adopt the following notation: Rn denotes the n-dimensional Euclidean space, and Rn
+ represents the

non-negative orthant. We use [m] to denote the set {1, . . . , m}. The inner product between two vectors
is denoted by ⟨·, ·⟩, and the Euclidean norm of matrices and vectors is denoted by ∥ · ∥. The distance
function between a vector x and a set X ⊆ Rn is defined as dist(x, X ) := infy∈X ∥y − x∥. For a proper
extended real-valued function r, its domain is defined as dom(r) := {x ∈ Rn : r(x) < +∞}. A function r is
considered proper if dom(r) ̸= ∅ and it does not take the value −∞. It is closed if it is lower semicontinuous,
meaning lim infx→x0 r(x) ≥ r(x0) for any x0 ∈ Rn. For a convex function r at x, its subgradient is denoted
by ∂r(x) := {d ∈ Rn : r(y) ≥ r(x) + ⟨d, y − x⟩ , ∀y ∈ Rn, x ∈ dom(r)}. The proximal map associated with a
proper, closed, and convex function r : Rn → R ∪ {+∞} at x ∈ Rn with η > 0 is uniquely defined by
proxηr(x) = argminy∈Rn

{
r(y) + 1

2η ∥x − y∥2
}

.

Next, we provide the formal definitions and assumptions for the class of functions, and the optimality measure
under consideration.
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Assuming a suitable constraint qualification (CQ) holds, the stationary solutions of problem equation 1
can be characterized by the points (x∗, ν∗) satisfying the Karush-Kuhn-Tucker (KKT) conditions Bertsekas
(1999).
Definition 1 (The KKT point). A point x∗ is called a KKT point for problem equation 1 if there exists
ν∗ ∈ Rm

+ such that {
0 ∈ ∇f(x∗) + ∂r(x∗) + Jg(x∗)ν∗,

gj(x∗) ≤ 0, νjgj(x∗) = 0, j ∈ [m].
(2)

A suitable CQ is necessary for the existence of multipliers that satisfy the KKT conditions (e.g., MFCQ,
Constant Positive Linear Dependence (CPLD), and others; see Andreani et al. (2022); Bertsekas (1999)). In
practice, it is difficult to find an exact KKT solution (x∗, ν∗) that satisfies equation 2. Thus, one typically
aims to find an approximate KKT solution, defined as an ϵ-KKT solution next.
Definition 2 (ϵ-KKT solution, Definition 2 of Lu (2022)). Given ϵ > 0, a point x⋆ is called an ϵ-KKT
solution for problem equation 1 if there exists ν⋆ ∈ Rm

+ such that{
v⋆ ∈ ∇f(x⋆) + ∂r(x⋆) + Jg(x⋆)ν⋆, ∥v⋆∥ ≤ ϵ,

∥ max{0, g(x⋆)}∥ ≤ ϵ,
∑m

j=1 |νjgj(x⋆)| ≤ ϵ,

where max{0, g(x⋆)} denotes the component-wise maximum of g(x⋆) and the zero vector 0 at x⋆.

To establish the ensuing analysis, we introduce the following standard assumptions for problem equation 1:
Assumption 3. There exists a point (x, ν) ∈ dom(r) × Rm satisfying the KKT conditions equation 2.
Assumption 4. ∇f is Lf -Lipschitz continuous on dom(r). That is, there exist Lf > 0 such that

∥∇f(x) − ∇f(x′)∥ ≤ Lf ∥x − x′∥, ∀x, x′ ∈ dom(r),

Assumption 5. ∇g is Lg-Lipschitz continuous on dom(r). That is, there exist Lg > 0 such that

∥∇g(x) − ∇g(x′)∥ ≤ Lg∥x − x′∥, ∀x, x′ ∈ dom(r).

Assumption 6. The domain of r is compact, i.e., Dx := maxx,x′∈dom(r)∥x − x′∥ < +∞.

Assumption 7 (Assumption 3 of Na et al. (2023b), Assumption 1 of Na et al. (2023a), Assumption 3.1 of
Hong et al. (2023)). The iterates {λk} generated by iterative methods for problem equation 1 estimating ν∗

satisfying Definition 1 are contained in a convex compact subset Λ ⊂ Rm.

These assumptions are considered standard in the optimization literature Boob et al. (2022); Huang & Lin
(2023) and are satisfied by a broad range of practical problems in signal processing and machine learning
Bolte et al. (2018); Li & Xu (2021); Li et al. (2021); Lu (2022); Kong et al. (2022); Lu & Zhou (2023).
Our work distinguishes itself by not requiring certain restrictive assumptions beyond those stated above,
such as the surjectivity of ∇g(x) (or ∇g(x)∇g(x)⊤ being positive definite) Bolte et al. (2018); Boţ et al.
(2019); Boţ & Nguyen (2020); Li & Pong (2015), Slater’s condition Boob et al. (2022); Kong et al. (2022),
or more crucially feasibility of initialization Boob et al. (2022); Hajinezhad & Hong (2019); Xie & Wright
(2021) as that by itself is a non-convex problem when g is nonconvex. For problems with an unbounded
dom(r), they can be reformulated to satisfy Assumption 6; for instance, if f is bounded below and r is
coercive, the problem can be transformed to one with f + r for some r (e.g., norm functions) with a compact
domain Lu & Zhou (2023). Notably, this can be implemented in practice for machine learning problem
using the standard practice of weight or gradient clipping. Moreover, Assumption 7 is commonly used in
the convergence analysis of constrained optimization algorithms Nocedal & Wright (2006); Bertsekas (2014);
Birgin & Martínez (2014); Hong et al. (2016; 2023); Na et al. (2023a;b). From certain constraint qualification,
such as MFCQ or CPLD, it can also be derived that the set of KKT multipliers corresponding to a local
minimum is bounded.

Furthermore, under Assumption 6, there exist constants Bg > 0 and Mg > 0 such that

max
x∈dom(r)

∥g(x)∥ ≤ Bg and max
x∈dom(r)

∥∇g(x)∥ ≤ Mg, (3)
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which implies the Lipschitz continuity of g (Rockafellar & Wets, 2009, Chapter 9.B): ∥g(x) − g(x′)∥ ≤
Mg∥x − x′∥, ∀x, x′ ∈ dom(r).

In the next section, we consider a non-convex optimization problem with non-smooth functional constraint.
In this case, Assumption 8 implies the Lipschitz continuity of the subgradient, instead of equation 3 or
Assumption 5.
Assumption 8. g is continuous with ∂g(x) ̸= ∅ on dom(r), and there exists a constant Mg > 0 such that
maxx∈dom(r)∥∂g(x)∥ ≤ Mg.

3 Non-convex Non-smooth Constraints

In this section, we consider the non-convex optimization problem equation 1 with a non-smooth functional
constraint g(·). We first introduce a novel Lagrangian with a structure designed for developing an efficient
algorithm that solves the non-smooth constrained problem. A critical feature of the resulting algorithm is
its reliance on fixed parameters α, β and ρ = α/(1 + αβ)), which eliminates the need for the sensitive and
iterative adjustments required by many existing schemes. This design not only simplifies implementation
but also enhances computational efficiency. Empirical results demonstrate that the algorithm’s performance
is not sensitive to the choice of α and β, further highlighting its robustness.

3.1 A Variant of Proximal-Perturbed Lagrangian

Motivated by the reformulation techniques in Bertsekas (1999; 2014), we employ perturbation variables
z ∈ Rm and slack variables u ∈ Rm

+ . By setting g(x) + u = z and z = 0, we first transform problem
equation 1 into an equivalent equality-constrained formulation:

min
x∈Rn,u∈Rm

+ ,z∈Rm
f(x) + r(x) s. t. g(x) + u = z, z = 0. (4)

Clearly, for z∗ = 0 and u∗ ≥ 0, the extended formulation equation 4 is equivalent to problem equation 1.

For this formulation equation 4, we define a variant of the Proximal-Perturbed Lagrangian (P-Lagrangian)
from Kim (2021) as follows:

Lαβ(x, u, z, λ, µ) := f(x) + ⟨λ, g(x) + u − z⟩ + ⟨µ, z⟩ + α

2 ∥z∥2 − β

2 ∥λ − µ∥2 + r(x), (5)

where λ ∈ Rm is a multiplier (dual) for the constraint g(x) + u − z = 0, µ ∈ Rm is an auxiliary multiplier
for the constraint z = 0, α > 0 is a penalty parameter, and β > 0 is a proximal parameter.

Given (λ, µ), Lαβ can be minimized with respect to z in closed form:

z(λ, µ) = (λ − µ)/α.

Substituting z(λ, µ) back into Lαβ yields the reduced P-Lagrangian:

Lαβ(x, u, z(λ, µ), λ, µ) = f(x) + ⟨λ, g(x) + u⟩ − 1
2ρ

∥λ − µ∥2 + r(x), (6)

where ρ := α
1+αβ . Note that equation 6 is 1

ρ -strongly concave in λ for a fixed µ. This property guarantees
a unique maximizer for λ, which can be found in closed form:

λ(x, µ) = argmax
λ∈Rm

Lαβ(x, u, z(λ, µ), λ, µ) = µ + ρ(g(x) + u), (7)

which is well-defined and is used for the update of λk+1 in equation 12.
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Algorithm 1 P-Lagrangian based Alternating Direction Algorithm (PLADA)
1: Input: Initialization (x0, u0, z0, λ0, µ0), and parameters α > 1, β ∈ (0, 1), ρ = α

1+αβ , 0 < η < 1
Lf +3ρM2

g
,

0 < τ < 1
3ρ , δ0 ∈ (0, 1], and K.

2: for k = 0, 1, . . . , K do
3: xk+1 = argmin

x∈Rn

{
⟨∇f(xk), x⟩ + ⟨λk, g(x)⟩ + 1/2η∥x − xk∥2 + r(x)

}
;

4: uk+1 = ΠRm
+

[uk − τλk];
5: µk+1 = µk + σk(λk − µk), σk = min

{
σ0, ρδk

∥λk−µk∥2+1

}
;

6: λk+1 = µk+1 + ρ(g(xk+1) + uk+1);
7: zk+1 = 1

α (λk+1 − µk+1);
8: end for

3.2 Description of Algorithm

Based on the P-Lagrangian, we propose the P-Lagrangian based Alternating Direction Algorithm (PLADA)
for solving problem equation 1 with non-smooth constraints. The complete procedure is detailed in Algorithm
1.

Each iteration of PLADA consists of a sequence of updates for the primal, dual, and auxiliary variables. The
primal variable x is updated using a proximal gradient step:

xk+1 = argmin
x∈Rn

{
⟨∇f(xk), x⟩ + ⟨λk, g(x)⟩ + 1/2η∥x − xk∥2 + r(x)

}
. (8)

The slack variable u is updated via projected gradient descent onto Rm
+ :

uk+1 = argmin
u∈Rm

+

{
⟨∇uLαβ(xk, uk, zk, λk, µk), u − uk⟩ + 1/2τ∥u − uk∥2} = ΠRm

+
[uk − τλk], (9)

where, without loss of generality, we can construct an upper bound maxk≥1{uk} ≤ Bg as ∥g(x)∥ ≤ Bg.

The auxiliary multiplier µ is updated using a gradient ascent step on equation 6:

µk+1 = µk + σk(zk + β(λk − µk)) = µk + σk

ρ
(λk − µk), (10)

with a diminishing step-size σk = min
{

σ0, ρδk/(∥λk − µk∥2 + 1)
}

, which is governed by a sequence δk > 0
that satisfies the standard conditions:

δ0 ∈ (0, 1], lim
k→∞

δk = 0, and
∞∑

k=0
δk = +∞. (11)

In Algorithm 1, we choose δk = κ · (k + 1)−1 with κ > 0, so that these conditions hold.

The main dual variable λ is subsequently updated via an exact maximization on equation 6:

λk+1 = µk+1 + ρ (g(xk+1) + uk+1) . (12)

Finally the auxiliary variable z is updated by an exact minimization on equation 5:

zk+1 = (λk+1 − µk+1)/α. (13)

A key advantage of this framework is that the parameters α, β, and the dual step size ρ are constants,
independent of the number of iterations k. In Section I, we demonstrate the robustness of the algorithm
with respect to the choices of α and β.
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3.3 Convergence Guarantees

This subsection establishes the convergence guarantees for Algorithm 1. Our analysis begins by defining
the necessary concepts from subdifferential calculus for non-smooth functions. We then present a series of
technical lemmas that establish convergence of the algorithm’s iterates with respect to the Definitions 1
and 2. These results culminate in theorems proving the algorithm’s asymptotic convergence as well as the
non-asymptotic rate of convergence on expectation. All proofs are contained in Supplementary Material for
concise main paper.

We first recall some essential definitions from variational analysis. We denote the Jacobian matrix of g at x
by ∂g(x). For any set X ⊆ Rd, its indicator function IX is defined by IX = 0 if x ∈ X and +∞, otherwise.
Note that arg minx∈X F (x) = arg minx∈Rd{φ(x) := F (x) + IX (x)}.

Definition 9 (Definition 8.3 of Rockafellar & Wets (2009)). Let gi : Rd → R∪ {+∞} be a proper and lower
semicontinuous function. For each x ∈ X , the Frechet subdifferential of g of x is given by

∂̂gi(x) :=
{

dk ∈ Rd : lim inf
w→x

gi(w) − gi(x) − ⟨d, w − x⟩
∥w − x∥

≥ 0
}

.

Definition 10. The limiting subdifferencial (or simply the subdifferential) of gi at x ∈ Rd is defined as

∂gi(x) :=
{

d ∈ Rd : ∃ xk→x and dk ∈ ∂̂gi(xk) with dk → d as k → ∞
}

.

The inclusion ∂̂gi(x) ⊆ ∂gi(x) holds for each x ∈ X and we set ∂̂gi(x) = ∂gi(x) = ∅ for x /∈ X . Each
d ∈ ∂gi(x) is called a subgradient of gi at x.

We now present the main convergence theorems for Algorithm 1, establishing the asymptotic convergence
to a KKT solution as defined in Definition 1.
Lemma 11 (Primal Stationarity). Let {wk} be the sequence generated by Algorithm 1, and let {pk :=
(xk, uk, zk)} be the primal sequence. Under Assumptions 3, 4, 6 and 8, the running averaged of the squared
primal stationarity residual converges to zero:

lim
T →∞

1
T

T −1∑
k=0

∥ζk+1
p ∥2 = 0, with the rate of O

(
log(T )

T

)
= Õ

(
1
T

)
,

where ζk+1
p := (ζk+1

x , ζk+1
u , ζk+1

z ) ∈ ∂pLαβ(wk+1). Hence, any limit point (x̄, λ̄) of the sequence (xk, λk)
satisfies the stationarity condition of the original problem: 0 ∈ ∇f(x̄) + ∂r(x̄) + ∂g(x̄)⊤λ̄.

Lemma 11 establishes that the primal iterates in an ergodic sense. The running-average of the squared
stationarity residual (first-order optimality) converges to zero at a rate of Õ (1/T )3:

1
T

T −1∑
k=0

∥ζk+1
p ∥2 = O

(
log(T )

T

)
= Õ

(
1
T

)
.

Remark 12. An immediate consequence of Lemma 33 and 11 is that the squared successive difference of the
primal iterates also converges at the same rate:

1
T

T∑
k=0

(
∥xk+1 − xk∥2 + ∥uk+1 − uk∥2) = Õ

(
1
T

)
.

Note that Lemma 11 states the convergence in an ergodic sense, which involves averaging over the sequence
of iterates or employing a randomized output selection from T iterates. Thus, the primal iterates converge
with Õ(1/T ) in an ergodic sense.

3The notation Õ(·) suppresses all logarithmic factors from the big-O notation.
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Next, we establish that the iterates converge to a feasible point. This is achieved by showing that the gap
between the dual variables vanishes as k → ∞: limk→∞ ∥λk − µk∥ = 0.
Lemma 13 (Primal Feasibility). Let {wk} be the sequence generated by Algorithm 1. Under Assumptions
3, 4, 6, 7 and 8, the gap between the dual variables vanishes:

lim
k→∞

∥λk − µk∥ = 0.

Consequently, any limit point x̄ of the sequence {xk} is feasible for problem equation 1, satisfying g(x̄) ≤ 0.
Lemma 14 (Dual feasibility). Let λ̄ be a limit point of the sequence {λk} generated by Algorithm 1. Then,
λ̄ is feasible for the dual problem of equation 1, satisfying λ̄ ≥ 0.
Lemma 15 (Complementary slackness). Let (x̄, λ̄) be a limit point of the sequence {(xk, λk)} generated by
Algorithm 1. Then, (x̄, λ̄) satisfies the complementary slackness for problem of equation 1, i.e., λ̄⊤g(x̄) = 0.
Theorem 16 (Convergence to a KKT Point). Let {wk = (xk, uk, zk, λk, µk)} be the sequence generated by
Algorithm 1. Under Assumptions 3, 4, 6, 7 and 8, any limit point w̄ of the sequence {wk} corresponds to a
KKT point of the original problem equation 1 as defined in Definition 1.

Proof. By Lemmas 11, 13, 14 and 15, w̄ satisfies the KKT conditions as defined in Definition 1.

To find the non-asymptotic ergodic rate of convergence, we construct a non-negative auxiliary sequence as

νk := λk + 1
τ

(uk+1 − uk). (14)

Note that by the first-order optimality of uk+1 for equation 9,

uk − τλk ≤ uk+1 ⇐⇒ λk + 1
τ

(uk+1 − uk) ≥ 0,

and νk ≥ 0 for all k ≥ 0. To show the ergodic convergence to a ϵ-KKT solution, define the running average
of this non-negative multiplier: ν̄T := 1

T

∑T −1
k=0 νk.

Lemma 17 (Non-asymptotic rate for primal stationarity). Let {pk := (xk, uk, zk)} be the primal sequence
generated by Algorithm 1 using the non-negative multiplier ν̄T . Under Assumptions 3, 4, 6 and 8, average
primal stationarity residual converges as

1
T

T −1∑
k=0

∥ζk+1
p ∥2 = Õ

(
1
T

)
,

where ζk+1
p := (ζk+1

x , ζk+1
u , ζk+1

z ) ∈ ∂pLαβ(wk+1).
Lemma 18 (Non-asymptotic rate for primal feasibility). Let {xk} be the primal sequence generated by
Algorithm 1. Under Assumptions 3, 4, 6, 7 and 8, average primal feasibility violation converges as

1
T

T −1∑
k=0

∥[g(xk+1)]+∥2 = Õ
(

1
T

)
. (15)

Lemma 19 (Non-asymptotic rate for complementary slackness). Let {xk, νk} be the sequence generated
by Algorithm 1. Under Assumptions 3, 4, 6, 7 and 8, average complementary slackness for Definition 2
converges as

1
T

T −1∑
k=0

m∑
j=1

|νj,kgj(xk+1)| = Õ(1/
√

T ). (16)

Theorem 20 (Non-asymptotic Rate of Convergence). Under Assumptions 3, 4, 6, 7 and 8, there exists a
uniformly-at-random iterate k ∈ {0, · · · , K − 1} from the sequence generated by Algorithm 1 that is a ϵ-KKT
solution to problem 1 on expectation as defined in Definition 2. The total number of iterations required to
achieve this is bounded by Õ(1/ϵ2).

8
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Proof. By Lemmas 17, 18 and 19 and the construction of the non-negative multiplier sequence, we have the
ergodic convergence of ϵ-KKT residuals at a rate of Õ(1/

√
T ). Hence, all conditions for an ϵ-KKT solution

are met with an overall iteration complexity of Õ(1/ϵ2). Therefore, if one chooses one of the algorithm
iterates uniformly at random, that solution will be ϵ-KKT on expectation.

4 Non-convex Continuously Differentiable Constraints

In this section, we present our novel form of augmented Lagrangian (Section 4.1), termed Proximal-Perturbed
Augmented Lagrangian (PPAL), and propose a single-loop primal-dual algorithm based on it (Section 4.2).

4.1 Proximal-Perturbed Augmented Lagrangian

Our approach for the smooth case is built upon Proximal-Perturbed Augmented Lagrangian (PPAL). As in
the non-smooth case, we work with the equivalent equality-constrained formulation of problem equation 1
and define the PPAL as:

Lρ(x, u, z, λ, µ) = ℓρ(x, u, z, λ, µ) + r(x), (17)

where
ℓρ(·) := f(x) + ⟨λ, g(x) + u − z⟩ + ⟨µ, z⟩ + α

2 ∥z∥2 − β

2 ∥λ − µ∥2 + ρ

2∥g(x) + u∥2. (18)

Analogous to equation 6, substituting the expression for z(λ, µ) back into equation 17 yields the reduced
PPAL:

Lρ(x, u, z(λ, µ), λ, µ) = f(x) + ⟨λ, g(x) + u⟩ − 1
2ρ

∥λ − µ∥2 + ρ

2∥g(x) + u∥2 + r(x). (19)

4.2 Description of Algorithm

We propose a single-loop first-order algorithm based on the properties of our PPAL, which computes a
stationary solution to problem equation 1. The complete procedure is detailed in Algorithm 2, where
Lℓ := Lf + LgBλ + ρ(LgBu + LgBg + M2

g ).

Each iteration of PPALA involves updating the primal and dual variables. The primal variable x is updated
inexactly by the proximal gradient mapping (see e.g., Bolte et al. (2014)), which can be rewritten as

xk+1 = proxηr [xk − η∇xℓρ(xk, uk, zk, λk, µk)] . (22)

Next, the slack variable u is upated via projected gradient descent:
uk+1 = ΠRm

+
[uk − τ(∇uLρ(xk, uk, zk, λk, µk)]

= ΠRm
+

[uk − τ(λk + ρ(g(xk+1) + uk)].

Note that we can construct an upper bound maxk≥1{uk} ≤ Bg from equation 3, since we have ∥g(x)∥ ≤ Bg

for all feasible solutions x.

The auxiliary multiplier µ is updated as equation 21 with a diminishing sequence δk satisfying the conditions
equation 11. In particular, we employ the form:

δk = 1
p · kq + 1 ,

2
3 < q ≤ 1, p > 0. (23)

Note that several alternatives are available for the sequence {δk} satisfying the conditions in equation 11.
Two popular alternative step sizes are: (i) δk = δ0

(k+1)q , where δ0 > 0 and 0 < q ≤ 1, and (ii) δk = δk−1
1−bδk−1

,
where δ0 ∈ (0, 1] and b ∈ (0, 1); see e.g., Bertsekas (1999); Scutari et al. (2014) for more possibilities for {δk}.
As we will see in Lemma 21 and Corollary 22, a benefit of equation 23 and choosing q ∈ (2/3, 1] is that it
allows our algorithm to achieve improved complexity bounds compared to O(1/ϵ3) found in existing works.

Then the multipliers λ and z are updated in the same manner as Algorithm 1.

9
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Algorithm 2 PPAL-based first-order Algorithm (PPALA)
1: Input: Initialization (x0, u0, z0, λ0, µ0), and parameters α > 1, β ∈ (0, 1), ρ = α

1+αβ , 0 < η < 1
Lℓ+3ρM2

g
,

0 < τ < 1
2ρ , and K.

2: for k = 0, 1, . . . , K do
3: Compute xk+1 by the proximal gradient scheme:

xk+1 = argmin
x∈Rn

{
⟨∇xℓρ(xk, uk, zk, λk, µk), x − xk⟩ + (1/2η)∥x − xk∥2 + r(x)

}
;

4: Compute uk+1 by the projected gradient descent:

uk+1 = ΠRm
+

[uk − τ(λk + ρ(g(xk+1) + uk))]; (20)

5: Update the auxiliary multiplier µk+1 by:

µk+1 = µk + σk(λk − µk), σk = δk

∥λk − µk∥2 + 1; (21)

6: Update the multiplier λk+1 by

λk+1 = µk+1 + ρ(g(xk+1) + uk+1);

7: Compute zk+1 by
zk+1 = 1

α
(λk+1 − µk+1);

8: end for

4.3 Convergence Guarantees

In this section, we establish the convergence results of Algorithm 2. We prove that the sequence generated
by Algorithm 2 converges to a KKT point of problem equation 1 as defined in equation 2. The analysis
extends to demonstrating the algorithm’s non-asymptotic rate of convergence in ergodic sense. Please find
the proofs of each Lemma in Sumpplementary Materials.

Lemma 21 (Primal Stationarity). Let {wk} be the sequence generated by Algorithm 2, and let {pk :=
(xk, uk, zk)} be the generated primal sequence. Under Assumptions 3-6, the running average of the squared
primal stationarity residual converges to zero:

lim
T →∞

1
T

T −1∑
k=0

∥ζk+1
p ∥2 = 0, with the rate of

{
O
(

log(T )
T

)
= Õ

( 1
T

)
if q = 1,

O
( 1

T q

)
if 2/3 < q < 1,

, (24)

where ζk+1
p ∈ ∂pLρ(wk+1) and δk = 1

p·kq+1 . Hence, 0 ∈ ∇f(x̄) + ∂r(x̄) + ∂g(x̄)⊤λ̄.

Thus, a consequence of Lemma 21 is that q = 1 gives the fastest primal convergence rate of Algorithm 1.

Corollary 22. Consider the sequence {δk} with the best choice of q = 1 in terms of the primal convergence
rate of Algorithm 2, i.e., δk = 1

p·k+1 . For a given tolerance ϵ > 0, the number of iterations required to reach
ϵ-primal stationarity, 1

T

∑T −1
k=0 ∥ζk+1

p ∥ ≤ ϵ, is upper bounded by Õ
(
1/ϵ2) .

Note that even with the choice of 2/3 < q < 1 for the sequence {δk}, we can derive the complexity bound
of O

(
1/ϵ2/q

)
through a similar analysis. This is still an improved complexity bound compared to the

best-known complexity of O
(
1/ϵ3).

Remark 23. As an immediate consequence of results in Lemma 37 and Lemma 21, we also have the result:
limT →∞

1
T

∑T
k=0

(
∥xk+1 − xk∥2 + ∥uk+1 − uk∥2) = 0. This result implies the following rates of the squared

10
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running-average successive differences of primal iterates:

1
T

T −1∑
k=0

(
∥xk+1 − xk∥2 + ∥uk+1 − uk∥2) =

{
O
(

log(T )
T

)
= Õ

( 1
T

)
if q = 1,

O
( 1

T q

)
if 2

3 < q < 1,

It remains to prove that limk→∞ ∥λk −µk∥ = 0 to show the feasibility guarantees of our algorithm, which will
complete our arguement of obtaining an improved iteration complexity among algorithms solving problem
equation 1. This can be easily achieved by the structural properties of Algorithm 2.
Lemma 24 (Primal Feasibility). Let {wk} be the sequence generated by Algorithm 2. Under Assumptions
3-7, the gap between the dual variables vanishes:

lim
k→∞

∥λk − µk∥ = 0.

Consequently, any limit point x̄ of the sequence {xk} is feasible for problem equation 1, satisfying g(x) ≤ 0.
Moreover, defining ζk+1

d := (ζk+1
λ , ζk+1

µ ) = (0, 1
ρ (λk+1 −µk+1)) ∈ ∇dLρ(wk+1), we have the running-average

feasibility residual:

1
T

T −1∑
k=0

∥ζk+1
d ∥2 = O

(
log(T )

T

)
= Õ

(
1
T

)
. (25)

Lemma 25 (Dual feasibility). Let λ̄ be a limit point of the sequence {λk} generated by Algorithm 2. Under
Assumptions 3-7, λ̄ is feasible for the dual problem of equation 1, satisfying λ̄ ≥ 0.
Lemma 26 (Complementary Slackness). Let (x̄, λ̄) be a limit point of the sequence {(xk, λk)} generated by
Algorithm 2. Then, (x̄, λ̄) satisfies the complementary slackness for problem of equation 1, i.e., λ̄⊤g(x̄) = 0.
Theorem 27 (Convergence to a KKT Point). Let {wk = (xk, uk, zk, λk, µk)} be the sequence generated by
Algorithm 2. Under Assumptions 3-7, any limit point w̄ of the sequence {wk} corresponds to a KKT point
of the original problem equation 1 as defined in Definition 1.

Proof. By Lemmas 21, 24, 25 and 26, w̄ satisfies the KKT conditions as defined in Definition 1.

Notably, this eliminates the need for strong regularity assumptions, which is often imposed by several AL-
based algorithms Li et al. (2021); Lin et al. (2022); Lu (2022); Sahin et al. (2019) to ensure feasibility. For
Algorithm 2, we construct a non-negative auxiliary sequence as

νk := λk + λk+1 − µk+1 +
(

1
τ

− ρ

)
(uk+1 − uk). (26)

Note that νk ≥ 0 for all k ≥ 0. By the first order optimality of uk+1 for equation 20,

uk − τ(λk + ρ(g(xk+1) + uk)) ≤ uk+1.

And by the lambda update equation 12,

0 ≤ uk+1 − uk + τ(λk + λk+1 − µk+1 − ρuk+1 + ρuk)
0 ≤ (uk+1 − uk)(1 − τρ) + τ(λk + λk+1 − µk+1)

0 ≤
(

1
τ

− ρ

)
(uk+1 − uk) + λk + λk+1 − µk+1 = νk.

Lemma 28 (Non-asymptotic rate for primal stationarity). Let {pk := (xk, uk, zk)} be the primal sequence
generated by Algorithm 2 using the non-negative multiplier ν̄T . Under Assumptions 3-6, average primal
stationarity residual converges as

1
T

T −1∑
k=0

∥ζk+1
p ∥2 = Õ

(
1
T

)
,

where ζk+1
p := (ζk+1

x , ζk+1
u , ζk+1

z ) ∈ ∂pLαβ(wk+1).

11
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Lemma 29 (Non-asymptotic rate for primal feasibility). Let {xk} be the primal sequence generated by
Algorithm 2. Under Assumptions 3-7, average primal feasibility violation converges as

1
T

T −1∑
k=0

∥[g(xk+1)]+∥2 = Õ
(

1
T

)
. (27)

Lemma 30 (Non-asymptotic rate for complementary slackness). Let {xk, νk} be the sequence generated by
Algorithm 2. Under Assumptions 3-7, average complementary slackness for Definition 2 converges as

1
T

T −1∑
k=0

m∑
j=1

|νj,kgj(xk+1)| = Õ(1/
√

T ). (28)

Theorem 31 (Non-asymptotic Rate of Convergence). Under Assumptions 3-7, there exists a uniformly-at-
random iterate k ∈ {0, · · · , K − 1} from the sequence generated by Algorithm 2 that is a ϵ-KKT solution to
problem 1 on expectation as defined in Definition 2. The total number of iterations required to achieve this
is bounded by Õ(1/ϵ2).

Proof. The proof is analogous to that of Theorem 20 using Lemmas 28, 29 and 30 and the construction of
the non-negative multiplier sequence equation 26.

5 Numerical Experiments

This section presents a comprehensive set of numerical experiments designed to validate the theoretical
results and demonstrate the practical advantages of our proposed algorithms. We evaluate our framework
on a range of non-convex optimization problems, including those with non-smooth constraints and smooth,
highly non-convex constraints. Our goals are twofold: (1) to empirically verify the convergence properties and
improved efficiency of our methods, and (2) to benchmark their performance against existing state-of-the-art
algorithms. The results confirm the robustness and superior performance of our approach, particularly in
large-scale and complex settings. Experimental details including implementation details, datasets and setups
are provided in Supplemenary Materials.

5.1 Classification Problems Under Non-smooth Fairness Constraints

We first evaluate our proposed algorithm 1 on real-world datasets with non-convex non-smooth fairness
constraints. In Supplementary Materials, we also provide experiments on hyperparameter robustness, dual
variables convergence and extension to highly stochastic setting.

5.1.1 Demographic Parity Constraint

Our first experiment addresses the problem of minimizing the logistic empirical loss:

f(x) = 1
N

N∑
i=1

log(1 + e−yix⊤xi), (29)

subject to a demographic parity (DP) constraint:

∆̂D(x) =

∣∣∣∣∣∣ 1
Np

∑
i∈Ip

σ(x⊤xi) − 1
Nu

∑
i∈Iu

σ(x⊤xi)

∣∣∣∣∣∣ , (30)

which measures the absolute difference in the positive prediction rates between protected (Ip) and unpro-
tected (Iu) groups with corresponding sizes of Np = |Ip| and Nu = |Iu|. Equation equation 30 uses sigmoid
σ(·) as a surrogate. This results in smooth and convex objective and a weakly convex and non-smooth
constraint. Figure 1 depicts the performance of all algorithms across three datasets. The result show
that PLADA consistently converges faster with lower loss and smaller constraint violation compared to the
benchmark methods.
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Figure 1: Comparison of the performance of PLADA, IPP-ConEx, IPP-SSG and SSG on the logistic loss
equation 29 with demographic parity (DP) constraint equation 30. The results are presented in terms of their
loss values, constraint violation and near stationarity (from top to bottom) on Adult, Bank and COMPAS
datasets (from left to right) with respect to CPU time in seconds.

13



Under review as submission to TMLR

5.1.2 Equalized Odds Constraints
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Figure 2: Comparison of the performance of PLADA, IPP-ConEx, IPP-SSG and SSG on the logistic loss
objective (29) and the equalized odds (EO) constraint (31) with respect to CPU time.

Next, we consider a stricter and more challenging fairness notion: equalized odds (EO). EO constraint
equation 31 requires that the true positive rates and false positive rates are equal across protected and
unprotected groups. This results in two separate constraints, which we formulate using a max operator for
the benchmark algorithms that only support a single constraint:

∆̂E(x) = max
(∣∣∣∣∣∣ 1

Npq

∑
i∈Ipq

σ(x⊤xi) − 1
Nuq

∑
i∈Iuq

σ(x⊤xi)

∣∣∣∣∣∣ ,∣∣∣∣∣∣ 1
Npu

∑
i∈Ipu

σ(x⊤xi) − 1
Nuu

∑
i∈Iuu

σ(x⊤xi)

∣∣∣∣∣∣
)

.

(31)

A notable advantage of PLADA is its ability to handle multiple constraints by alternatingly optimizing
parameters (u, z, λ, µ). Figure 2 shows that PLADA’s advantage is even more pronounced in this more
challenging setting.
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(b) Average fairness violation over inter-
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Figure 3: Comparison of the validation performance of PLADA and Narasimhan et al., Narasimhan et al.
(2020) on the intersectional group fairness equation 32 versus Epochs.

5.1.3 Intersectional Group Fairness on Neural Networks

The fairness constraint equation 32 is particularly demanding, requiring parity across intersectional groups
defined on the Communities and Crime dataset Redmond (2009). In particular, the groups are created with
ten thresholds on three criteria: the percentages of the Black, Hispanic and Asian populations. Among
103 groups, 535 groups with memberships of more than 1% of data points are selected. The constraint is
formulated as an expectation over the fairness violations for each group:

∆̂I(x) = EG

[
1

NG

∑
i∈IG

[1 − yifx(xi))]+ − 1
N

N∑
i=1

[1 − yifx(xi)]+
]

, (32)

where fx(·) is the neural network classifier, G is a uniformly sampled group, and [·]+ represents a hinge
function.

We compare PLADA with the method of Narasimhan et al. (2020), which employs a separate deep neural
network to update the Lagrange multipliers. In contrast, PLADA uses a simple, direct update scheme that
guarantees the boundedness of the Lagrange multiplier sequence, leading to consistent fairness satisfaction.
As shown in Figure 3, PLADA achieves a lower validation error rate while more effectively reducing fairness
violations.

5.2 Non-convex Multi-class Neyman-Pearson Classification

This section evaluates the performance of PPALA on a highly non-convex multi-class Neyman-Pearson
classification (mNPC) problem using neural networks.

Task formulation. The mNPC problem, which aims to minimize the loss for a particular class of interest
while ensuring the losses for others remain below given thresholds, is formulated as:

min
∥x∥≤θ

1
|D1|

∑
j ̸=1

∑
ξ∈D1

ϕ(f1(x1; ξ) − fj(xj ; ξ))

s. t. 1
|Di|

∑
j ̸=i

∑
ξ∈Di

ϕ(fi(xi; ξ) − fj(xj ; ξ)) ≤ κi, i = 2, . . . , N,

where fi with weights xi is a nonlinear classifier for class i, Di is the corresponding class data, and ϕ is a
loss function.

Results and discussion. Figure 4 shows that PPALA converges faster compared to GDPA. In particular,
The performance advantage is particularly pronounced on the more complex CIFAR-10 dataset. PPALA’s
robust performance is attributable to its fixed penalty mechanism, which required minimal tuning of param-
eters across both datasets. In contrast, GDPA exhibited high sensitivity to its penalty parameter update
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(a) Fashion-MNIST

(b) CIFAR10

Figure 4: Performance comparison of PPALA and GDPA on Fashion-MNIST and CIFAR10 datasets in terms
of obtaining stationarity and feasibility. We see that PPALA provides a consistent reduction of stationarity
and feasibility gaps that align with our theoretical expectations. In contrast, GDPA reduces the feasibility
gap at a slower rate on Fashion-MNIST and CIFAR10 in our neural network setting.

schedule. For instance, we observed that GDPA fails to converge when using large ratio to update the penalty
parameter, necessitating careful parameter selection. The gradual update of its penalty parameter hinders
GDPA’s ability to reduce infeasibility effificiently, while PPALA achieves a fast and consistent reduction in
infeasibility with the fixed parameter ρ = α

1+αβ . The results emphasize PPALA’s practical advantages in
both robustness and computational efficiency when solving more complex problems with highly non-convex
constraints.

6 Conclusions

In this paper, we have introduced a novel single-loop primal-dual algorithmic framework designed to address
non-convex functional constrained optimization problems. A significant contribution of our method is its
ability to achieve an improved iteration complexity of Õ(1/ϵ2) for computing an ϵ-approximate stationary
solution. The proposed algorithmic framework is flexible and robust, capable of effectively handling a vari-
ety of non-convex functional constraints. This includes problems with continuously differentiable (smooth)
constraints, as well as non-smooth non-convex constraints, which are made tractable through the use of suit-
able differentiable or sub-differentiable surrogates, particularly relevant in applications like fair classification.
Our comprehensive convergence analysis demonstrates that the algorithm ensures a consistent reduction in
stationarity and feasibility gaps.

Numerical experiments across diverse non-convex problems, including fairness-constrained classification and
multi-class Neyman-Pearson classification (mNPC), consistently demonstrate the algorithm’s effectiveness
in terms of computational cost and performance. Our algorithm has been shown to outperform related ap-
proaches that use regularization techniques and/or standard Lagrangian relaxation, highlighting its superior
performance and robustness, especially in large-scale and complex settings.

Future research will explore extending this simple optimization method to stochastic non-convex con-
strained optimization problems, possibly leveraging variance reduction strategies Cutkosky & Orabona
(2019); Hashemi (2024), which would further broaden its application domain in machine learning and signal
processing. Preliminary applications in such highly stochastic settings have already shown promising re-
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sults in achieving better constraint satisfaction with comparable error rates. Extensions to distributed and
federated learning settings is of further interests Kairouz et al. (2021); Das et al. (2022).
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A Supporting Lemmas for Convergence Analysis of Algorithm 1

The core of our convergence analysis relies on the following technical lemmas, which establish bounds on
the iterates and demonstrate the descent properties of the P-Lagrangian. For convenience, we let wk :=
{(xk, uk, zk, λk, µk)} denote the sequence generated by Algorithm 1.
Lemma 32. Let {(xk, uk, zk, λk, µk)} be the sequence generated by Algorithm 1. Then for any k ≥ 0, the
following relations hold:

∥µk+1 − µk∥2 = (σ2
k/ρ2)∥λk − µk∥2 ≤ δ2

k/4; (33a)
∥µk+1 − λk∥2 = (1 − (σk/ρ))2 ∥µk − λk∥2; (33b)
∥λk+1 − λk∥2 ≤ 3ρ2M2

g ∥xk+1 − xk∥2 + 3ρ2∥uk+1 − uk∥2 + 3(σ2
k/ρ2)∥λk − µk∥2. (33c)

Proof. From the µ-update equation 10 and noting that a+b ≥ 2
√

ab for any a, b ≥ 0, we immediately obtain
the relations in equation 33a:

∥µk+1 − µk∥2 = σ2
k

ρ2 ∥λk − µk∥2 ≤ δ2
k

∥λk − µk∥2 + 2 + (1/∥λk − µk∥2) ≤ δ2
k

4 .
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Subtracting µk+1 from λk yields

∥λk − µk+1∥ =
∥∥∥∥λk − µk − σk

ρ
(λk − µk)

∥∥∥∥ =
(

1 − σk

ρ

)
∥λk − µk∥.

Squaring both sides of the above inequality yields the relation equation 33b.

By the λ-update equation 12, we have

∥λk+1 − λk∥ ≤ ∥µk+1 − µk∥ + ρ∥g(xk+1) + uk+1 − g(xk) − uk∥
≤ ∥µk+1 − µk∥ + ρMg∥xk+1 − xk∥ + ρ∥uk+1 − uk∥,

which, along with (a + b + c)2 ≤ 3(a2 + b2 + c2) and equation 33a, provides the relation equation 33c.

Lemma 33 (Approximate Decrease of Lαβ). Let {wk} be the sequence generated by Algorithm 1. Under
Assumptions 4, 6 and 8, the P-Lagrangian Lαβ equation 5 satisfies:

Lαβ(wk+1) − Lαβ(wk) ≤ −C1∥xk+1 − xk∥2 − C2∥uk+1 − uk∥2 + δ̂k, (34)

where C1 := 1
2

(
1
η − Lf − 3ρM2

g

)
> 0, C2 := 1

2
( 1

τ − 3ρ
)

> 0, and δ̂k := δ2
k

2ρ + δk

ρ .

Proof. First, note that

Lαβ(xk, uk, zk, λk, µk) = f(xk) + ⟨λk, g(xk) + uk⟩ − ⟨λk − µk, zk⟩

+ α

2 ∥zk∥2 − β

2 ∥λk − µk∥2 + r(x)

= f(xk) + ⟨λk, g(xk) + uk⟩ − 1
2ρ

∥λk − µk∥2 + r(x)

= Lαβ(xk, uk, ẑ(λk, µk), λk, µk),

where ρ = α/(1 + αβ), and thus

Lαβ(xk+1, uk+1, zk, λk, µk) = Lαβ(xk+1, uk+1, ẑ(λk, µk), λk, µk).

Then the difference of two successive sequences of Lαβ can be divided into two parts:

Lαβ(xk+1, uk+1, zk+1, λk+1, µk+1) − Lαβ(xk, uk, zk, λk, µk)
= [Lαβ(xk+1, uk+1, zk, λk, µk) − Lαβ(xk, uk, zk, λk, µk)]

+ [Lαβ(xk+1, uk+1, ẑ(λk+1, µk+1), λk+1, µk+1) − Lαβ(xk+1, uk+1, ẑ(λk, µk), λk, µk)] .

(35)

Consider the first part equation 35. Since xk+1 and uk+1 are the results of the subproblems equation 8 and
equation 9, respectively, we have that for any x ∈ X and for any u ∈ U ,

⟨∇f(xk), xk+1 − x⟩ + ⟨λk, g(xk+1) − g(x)⟩

+ 1
2η

(
∥xk+1 − xk∥2 − ∥x − xk∥2)+ r(xk+1) − r(x) ≤ 0,

and
⟨∇uLαβ(wk), uk+1 − u⟩ + 1

2τ
(∥uk+1 − uk∥2 − ∥u − uk∥2) ≤ 0. (36)

By taking x = xk in equation 36, u = uk in equation 36, and using ∇uLαβ(wk) = λk, we have

⟨∇f(xk), xk+1 − xk⟩ + ⟨λk, g(xk+1) − g(xk)⟩ + r(xk+1) − r(x) ≤ − 1
2η

∥xk+1 − xk∥2,

and
⟨λk, uk+1 − uk⟩ ≤ − 1

2τ
∥uk+1 − uk∥2.
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By adding and subtracting the term ⟨∇f(xk), xk+1 − xk⟩, we obtain

Lαβ(xk+1, uk+1, zk, λk, µk) − Lαβ(xk, uk, zk, λk, µk)
= [f(xk+1) + ⟨λk, g(xk+1) + uk+1⟩ + r(xk+1)] − [f(xk) + ⟨λk, g(xk) + uk⟩ + r(xk)]
= ⟨λk, g(xk+1) − g(xk)⟩ + ⟨λk, uk+1 − uk⟩ + [f(xk+1) − f(xk)] + [r(xk+1) − r(xk)]
= [⟨∇f(xk), xk+1 − xk⟩ + ⟨λk, g(xk+1) − g(xk)⟩ + r(xk+1) − r(xk)]

+ [f(xk+1) − f(xk) − ⟨∇f(xk), xk+1 − xk⟩] + ⟨λk, uk+1 − uk⟩

≤ −1
2

(
1
η

− Lf

)
∥xk+1 − xk∥2 − 1

2τ
∥uk+1 − uk∥2.

(37)

Next, we derive an upper bound for the second part. We start by noting that

Lαβ(xk+1, uk+1, ẑ(λk+1, µk+1), λk+1, µk+1) − Lαβ(xk+1, uk+1, ẑ(λk, µk), λk, µk)

= 1
ρ

⟨λk+1 − λk, g(xk+1) + uk+1⟩ − 1
2ρ

(
∥λk+1 − µk+1∥2 − ∥λk − µk∥2) .

Using the facts that g(xk+1) + uk+1 = 1
ρ (λk+1 − µk+1) and ⟨a, b⟩ = 1

2 ∥a∥2 + 1
2 ∥b∥2 − 1

2 ∥a − b∥2 for any
a, b ∈ Rm, we have

1
ρ

⟨λk+1 − λk, λk+1 − µk+1⟩ = 1
2ρ

(
∥λk+1 − λk∥2 + ∥λk+1 − µk+1∥2 − ∥µk+1 − λk∥2) .

Hence,
Lαβ(xk+1, uk+1, ẑ(λk+1, µk+1), λk+1, µk+1) − Lαβ(xk+1, uk+1, ẑ(λk, µk), λk, µk)
(a)
≤ 1

2ρ

(
3ρ2M2

g ∥xk+1 − xk∥2 + 3ρ2∥uk+1 − uk∥2 + 3σ2
k∥λk − µk∥2)

+ 1
2ρ

(
1 − (1 − σk)2) ∥λk − µk∥2

= 1
2
(
3ρM2

g ∥xk+1 − xk∥2 + 3ρ∥uk+1 − uk∥2)+ 3σ2
k

2ρ
∥λk − µk∥2

+ 1
2ρ

(
2σk − σ2

k

)
∥λk − µk∥2

(b)
≤ 1

2
(
3ρM2

g ∥xk+1 − xk∥2 + 3ρ∥uk+1 − uk∥2)+ 2δ2
k + δk

ρ
,

(38)

where (a) is from equation 33b and equation 33c, and (b) holds by σk∥λk − µk∥2 ≤ δk

1+(1/∥λk−µk∥2) ≤ δk.
Combining equation 37 and equation 38 yields the desired result:

Lαβ(wk+1) − Lαβ(wk)

≤ −1
2

(
1
η

− Lf − 3ρM2
g

)
∥xk+1 − xk∥2 − 1

2

(
1
τ

− 3ρ

)
∥uk+1 − uk∥2 + 2δ2

k + δk

ρ
,

which completes the proof.

Lemma 34 (Subgradient Error Bound). Let {wk} be the sequence generated by Algorithm 1, and let {pk :=
(xk, uk, zk)} be the primal sequence. Under Assumptions 4 and 6, there exists a constant d1 > 0 such that
for the primal subgradient ζk+1

p := (ζk+1
x , ζk+1

u , 0) ∈ ∂pLαβ(wk+1),

∥ζk+1
p ∥ ≤ d1 (∥xk+1 − xk∥ + ∥uk+1 − uk∥) + (Mg + 1)δk,

where
d1 = max{Lf + 1/η + ρ(M2

g + Mg), ρ(Mg + 1) + 1/τ}.
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Proof. Writing down the optimality condition for the update of xk+1 in equation 8, we have

0 ∈ ∇f(xk) + ∂g(xk+1)⊤λk + 1
η

(xk+1 − xk) + vk+1, vk+1 ∈ ∂r(xk+1) (39)

Using the subdifferential calculus rules, we have

∇f(xk+1) + ∂g(xk+1)⊤λk+1 + vk+1 ∈ ∂xLαβ(wk+1) (40)

By defining the quantity

ζk+1
x = ∇f(xk+1) − ∇f(xk) + ∂g(xk+1)⊤(λk+1 − λk) − 1

η
(xk+1 − xk) (41)

and using equation 39 and equation 40, we obtain that ζk+1
x ∈ ∂xLαβ(wk+1).

Next, define the quantity
ζk+1

u := uk+1 − ΠU [uk+1 − λk+1],
which is equivalent to the projected gradient of Lαβ in u. It is a measure of optimality for the update of
uk+1 Nesterov (2012):

∇̃uLαβ(wk+1) := uk+1 − argmin
v∈U

{
⟨∇uLαβ(wk+1), v − uk+1⟩ + 1

2∥v − uk+1∥2
}

= uk+1 − ũk+1.

where we define ũk+1 := argminv∈U

{
⟨∇uLαβ(wk+1), v − uk+1⟩ + 1

2 ∥v − uk+1∥2}.

From the update of zk+1 in equation 13, we have

∇zLαβ(wk+1) = −(λk+1 − µk+1) + αzk+1 = 0.

Hence, we obtain

ζk+1
p :=

ζk+1
x

ζk+1
u
0

 where

ζk+1
x ∈ ∂xLαβ(xk+1, uk+1, zk+1, λk+1, µk+1)

ζk+1
u = ∇̃uLαβ(xk+1, uk+1, zk+1, λk+1, µk+1)
0 = ∇zLαβ(xk+1, uk+1, zk+1, λk+1, µk+1)

 .

We derive an upper estimate for ζk+1
p . A direct calculation gives

∥ζk+1
x ∥ ≤ ∥∇f(xk+1) − ∇f(xk)∥ + (1/η)∥xk − xk+1∥ + ∥∂g(xk+1)∥∥λk+1 − λk∥

≤ (Lf + 1/η)∥xk+1 − xk∥ + Mg∥λk+1 − λk∥
≤ (Lf + 1/η)∥xk+1 − xk∥ + ρM2

g ∥xk+1 − xk∥ + ρMg∥uk+1 − uk∥ + Mgδk

≤ (Lf + 1/η + ρM2
g )∥xk+1 − xk∥ + ρMg∥uk+1 − uk∥ + Mgδk

(42)

Next, we estimate an upper bound for the component ζk+1
u . The first-order optimality condition implies

that
⟨∇uLαβ(uk+1) + (ũk+1 − uk+1), u − ũk+1⟩ ≥ 0. (43)

Here, ∇uLαβ(wk+1) is denoted by ∇uLαβ(uk+1). By the definition uk+1 in equation 9, we have〈
∇uLαβ(uk) + 1

τ
(uk+1 − uk), u − uk+1

〉
≥ 0, (44)

where ∇uLαβ(uk) = ∇uLαβ(xk, uk, zk, λk, µk) for simplicity. Combining equation 43 and equation 44, with
settings u = uk+1 in equation 43 and u = ũk+1 in equation 44, yields〈

∇uLαβ(uk) − ∇uLαβ(uk+1) + 1
τ

(uk+1 − uk) − (ũk+1 − uk+1), ũk+1 − uk+1

〉
≥ 0,
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equivalently, 〈
∇uLαβ(uk) − ∇uLαβ(uk+1) + 1

τ
(uk+1 − uk), ũk+1 − uk+1

〉
≥ ∥ũk+1 − uk+1∥2.

By applying the Cauchy-Schwarz inequality and triangle inequality yields(
∥∇uLαβ(uk) − ∇uLαβ(uk+1)∥ + 1

τ
∥uk+1 − uk∥

)
∥ũk+1 − uk+1∥ ≥ ∥ũk+1 − uk+1∥2

and

∥∇uLαβ(uk) − ∇uLαβ(uk+1)∥ ≤ ∥λk − λk+1∥
≤ ρMg∥xk+1 − xk∥ + ρ∥uk+1 − uk∥ + δk.

Therefore,
∥ζk+1

u ∥ = ∥ũk+1 − uk+1∥ ≤ ρMg∥xk+1 − xk∥ + (ρ + 1/τ) ∥uk+1 − uk∥ + δk. (45)

Combining equation 42 and equation 45, we obtain

∥ζk+1
p ∥ ≤ d1(∥xk+1 − xk∥ + ∥uk+1 − uk∥) + (Mg + 1)δk,

where d1 = max{Lf + 1/η + ρ(M2
g + Mg) + 1/η, ρ(Mg + 1) + 1/τ}. This inequality, along with ζk+1

p ∈
∂pLαβ(wk+1), yields the desired result.

B Proofs of Asymptotic Convergence for Algorithm 1

B.1 Proof of Primal Stationarity (Lemma 11)

Proof. From Lemma 33, we have

Cp
(
∥xk+1 − xk∥2 + ∥uk+1 − uk∥2) ≤ Lαβ(wk) − Lαβ(wk+1) + δ̂k, (46)

where Cp = max{C1, C2}. Using Lemma 34 and the fact (a + b + c)2 ≤ 3(a2 + b2 + c2), we have

∥ζk+1
p ∥2 ≤ 3d2

1(∥xk+1 − xk∥2 + ∥uk+1 − uk∥2) + 3(Mg + 1)2δ2
k,

which, combined with equation 46, yields

∥ζk+1
p ∥2 ≤ 3d2

1
Cp

(
Lαβ(wk) − Lαβ(wk+1) + δ̂k

)
+ 3(Mg + 1)2δ2

k.

Summing up the above inequalities over k = 0, . . . , T − 1, we obtain

T −1∑
k=0

∥ζk+1
p ∥2 ≤ 3d2

1
Cp

(
Lαβ(w0) − Lαβ(wT ) +

T −1∑
k=0

δ̂k

)
+ 3(Mg + 1)2

T −1∑
k=0

δ2
k

Since
∑∞

k=0 δ2
k < +∞, we denote Bδ =

∑∞
k=0 δ2

k. Therefore,

1
T

T −1∑
k=0

∥ζk+1
p ∥2

≤
3d2

1
Cp

(Lαβ(w0) − Lαβ(wT ))
T

+
3d2

1
Cp

∑T −1
k=0 δ̂k

T
+ 3(Mg + 1)2∑T −1

k=0 δ2
k

T

≤
3d2

1
Cp

(
Lαβ(w0) − Lαβ

)
T

+

(
3d2

1
2ρCp

+ 3(Mg + 1)2
)∑T −1

k=0 δ2
k

T
+

1
ρ

∑T −1
k=0 δk

T
,

(47)
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where the second inequality holds by the the lower boundedness of Lαβ(wk), denoted by Lαβ , that is from
the boundedness of generated sequences, and δ̂k = δ2

k

2ρ + δk

ρ .

Note that given δk = κ · (k + 1)−1 and κ > 0, for sufficiently large T , we know that

T −1∑
k=0

δk ≈ κ−1 log(κT ).

Since the last term on the right-hand side (RHS) of equation 47 dominates the other terms and T grows
faster than log(T ), the RHS of equation 47 decreases to 0 as T increase.

B.2 Proof of Primal Feasibility (Lemma 13)

Proof. From the µ-update equation 10, notice that µk+1 = µ0 + 1
ρ

∑k
t=0 σt(λt − µt). Using the fact that

∥a∥ − ∥b∥ ≤ ∥a + b∥ for any a, b ∈ Rm, we have∥∥∥∥∥
∞∑

t=0
σt(λt − µt)

∥∥∥∥∥ ≤ ∥µk+1∥ + ∥µ0∥ < +∞, (48)

where the last inequality hold by the boundedness of {µk} from Assumption 7 together with the boundedness
of sequence {(λk − µk) := ρ(g(xk) + uk)}. The convergence of the sequences {xk} and {uk} to finite values
(x, u), along with the definition of λk = µk + ρ(g(xk) + uk), implies that {λk − µk} is convergent to a finite
value (λ − µ).

We prove that {λk − µk} → 0 by contradiction. Assume that {λk − µk} does not converge 0, meaning there
exists some e ̸= 0 such that {λk − µk} → e as k → ∞. Since

∑∞
k=0 σk = ∞, we see that∥∥∥∥∥

∞∑
k=0

σk(λk − µk)
∥∥∥∥∥ = ∞,

which contradicts equation 48. This contradiction leads to the desired result that λ − µ = 0. It directly
follows the definitions of λk+1 and uk+1 that

0 = 1
ρ

(
λ − µ

)
= g(x) + u and u ≥ 0.

Hence, we have the feasibility of x, namely, g(x) ≤ 0. Now consider the dual stationarity defined as ζk+1
d :=

(ζk+1
λ , ζk+1

µ ) ∈ ∂dLρ(wk+1). Since λ update step equation 12 is an exact maximization, ζk+1
λ = 0. Due to

pointwise convergence of ∥λk − µk∥ → 0 as k → 0, ζk+1
µ → 0 as well by µ update step equation 10.

B.3 Proof of Dual Feasibility (Lemma 14)

Proof. By the update rule equation 9, u ∈ Rm
+ and ū ≥ 0. And the stationarity condition with respect to u

implies that a fixed point ū must satisfy

ū = ΠRm
+

[ū − τ λ̄] ⇐⇒ ⟨λ̄, u − ū⟩ ≥ 0, ∀u ∈ Rm
+ .

This condition can be stated as

0 ∈ λ̄ + NRm
+

(ū) ⇐⇒ −λ̄ ∈ NRm
+

(ū), (49)

where NRm
+

(ū) is the normal cone to Rm
+ at the limit point ū. For any component j, if ūj > 0, the

point is in the interior of the set along this axis, and the normal cone contains only the zero vector, i.e.,
(NRm

+
(ū))j = {0}. Thus, equation 49 implies that if ūj > 0, we must have λ̄j = 0. If ūj = 0, the point is

at the boundary, and the normal cone consists of all non-positive scalars, i.e., (NRm
+

(ū))j = (−∞, 0]. In any
case, we conclude that λ̄ ≥ 0.
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B.4 Proof of Complementary Slackness (Lemma 15)

Proof. We prove that for each component j, λ̄jgj(x̄) = 0. Consider two cases for ūj ≥ 0, where the non-
negativity follows from the update rule equation 9. First, if ūj > 0, λ̄j = 0 by the stationarity condition
used in the proof of Lemma 14. Thus,

λ̄jgj(x̄) = 0 · gj(x̄) = 0.

Second, if ūj = 0, from Lemma 13, gj(x̄) = −ūj = 0. Thus,

λ̄jgj(x̄) = λ̄j · 0 = 0,

concluding the proof.

C Proofs of Non-asymptotic Convergence Rate for Algorithm 1

C.1 Proof of Primal Stationarity Convergence Rate (Lemma 17)

Proof. The rate of average residual convergence established in Lemma 11 corresponds to using λk. From
the definition of primal residual,

ζk+1
x = ∇f(xk+1) − ∇f(xk) + ∂g(xk+1)⊤(λk+1 − λk) − 1

η
(xk+1 − xk).

And the optimality condition for the update of x + k + 1 in equation 8 gives

−(∇f(xk) + ∂g(xk+1)⊤λk + 1
η

(xk+1 − xk)) ∈ ∂r(xk+1).

Rearranging this gives an expression for the stationarity residual with respect to λk+1:

ζk+1
x ∈ ∇f(xk+1) + ∂r(xk+1) + ∂g(xk+1)⊤λk+1 (50)

The difference between the stationarity residuals for λk and νk is bounded by ∥∂g(x̄T )⊤(ν̄T − λ̄T )∥, where
x̄T = 1

T

∑
xk and λ̄T = 1

T

∑
λk. The difference in the averaged multipliers is:

ν̄T − λ̄T = 1
T

T −1∑
k=0

(νk − λk) = 1
T

T −1∑
k=0

1
τ

(uk+1 − uk) = 1
τT

(uT − u0). (51)

Since the iterates {uk} are bounded, ∥ν̄T − λ̄T ∥ = O(1/T ). This difference vanishes faster than the station-
arity residual itself, which converges at Õ(1/

√
T ). Therefore, the stationarity condition holds for ν̄T with

the same convergence rate.

C.2 Proof of Primal Feasibility Convergence Rate (Lemma 18)

Proof. The rate of convergence for primal feasibility is independent of the choice of multiplier and can be
quantified by leveraging the convergence rate of the dual variables. From the update rule equation 12 for
λk+1, we have the relation g(xk+1) + uk+1 = 1

ρ (λk+1 − µk+1). Since uk+1 ≥ 0, the norm of the primal
feasibility violation, [g(xk+1)]+ = max{0, g(xk+1)}, is bounded:

∥[g(xk+1)]+∥ ≤ ∥g(xk+1) + uk+1∥ = 1
ρ

∥λk+1 − µk+1∥. (52)

This inequality holds because for any component j, if gj(xk+1) ≤ 0, then ([g(xk+1)]+)2
j = 0 ≤ (gj(xk+1) +

uj,k+1)2. If gj(xk+1) > 0, then since uj,k+1 ≥ 0, we have ([g(xk+1)]+)2
j = gj(xk+1)2 ≤ (gj(xk+1) + uj,k+1)2.

Summing over all components yields the squared norm inequality.
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The convergence results in Lemma 13 establish that 1
T

∑T −1
k=0 ∥λk+1 − µk+1∥2 = Õ(1/T ). This allows us to

bound the running average of the squared primal feasibility violation:

1
T

T −1∑
k=0

∥[g(xk+1)]+∥2 ≤ 1
ρ2T

T −1∑
k=0

∥λk+1 − µk+1∥2 = Õ
(

1
T

)
. (53)

By applying Jensen’s inequality, we find that the average primal feasibility violation converges at a rate of
Õ(1/

√
T ).

C.3 Proof of Complementary Slackness Convergence Rate (Lemma 19)

Proof. From the optimality of u-update equation 9 and the construction of ν, uk+1 = ΠRm
+

[uk+1 − τνk]
implies the complementarity condition ⟨νk, u − uk+1⟩ ≥ 0 for all u ≥ 0. By choosing u = 0, we have
−⟨νk, uk+1⟩ ≥ 0. Since both νk and uk+1 are non-negative vectors, they are orthogonal component-wise:

νj,kuj,k+1 = 0 ∀j ∈ [m]. (54)

Now consider the approximate complementary slackness at each iteration defined as Definition 2. By the
λ-update equation 12 and equation 54,

νj,kgj(xk+1) = νj,k

(
−uj,k+1 + 1

ρ
(λj,k+1 − µj,k+1)

)
= νj,k

ρ
(λj,k+1 − µj,k+1).

By applying Cauchy-Schwarz inequality on the approximate complementary slackness,
m∑

j=1
|νj,kgj(xk+1)| ≤ 1

ρ

m∑
j=1

|νj,k||λj,k+1 − µj,k+1| ≤ 1
ρ

∥νk∥∥λk+1 − µk+1∥. (55)

Since {λk} and {uk} are bounded, {νk} is bounded by a constant Bν := maxk≥1{νk}. Thus,

m∑
j=1

|νj,kgj(xk+1)| ≤ Bν

ρ
∥λk+1 − µk+1∥.

Now, we can analyze the running average:

1
T

T −1∑
k=0

m∑
j=1

|νj,kgj(xk+1)| ≤ Bν

ρT

T −1∑
k=0

∥λk+1 − µk+1∥.

Using Jensen’s inequality and the established rate for the dual residual from , we get:

1
T

T −1∑
k=0

∥λk+1 − µk+1∥ ≤

√√√√ 1
T

T −1∑
k=0

∥λk+1 − µk+1∥2 =

√
Õ
(

1
T

)
= Õ

(
1√
T

)
.

This then establishes that the average of the sum of absolute values converges at the required rate of
Õ(1/

√
T ).

D Supporting Lemmas for Convergence Analysis of Algorithm 2

Now, we establish several key properties of Algorithm 2, including important relations among the primal and
dual sequences, the approximate decrease of the Proximal-Perturbed Augmented Lagrangian (Lρ), and error
bounds for its subgradient in the primal variables. These intermediate results are crucial stepping stones for
proving the algorithm’s overall convergence to an ϵ-KKT point. We first provide basic yet crucial relations
on the sequences λk, µk, and xk.
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Lemma 35. Let {(xk, uk, zk, λk, µk)} be the sequence generated by Algorithm 2 with the choice of the
sequence {δk} as in equation 23. Under Assumption 6, for any k ≥ 1, the following relations hold:

∥µk+1 − µk∥2 = σ2
k∥λk − µk∥2 ≤ δ2

k/4, (56a)
σk∥λk − µk∥2 ≤ δk, (56b)
∥µk+1 − λk∥2 = (1 − σk)2∥λk − µk∥2, (56c)
∥λk+1 − λk∥2 ≤ 3ρ2M2

g ∥xk+1 − xk∥2 + 3ρ2∥uk+1 − uk∥2 + 3δ2
k/4, (56d)

where Mg denotes the Lipschitz constant of g from equation 3.

Proof. Relations equation 56a, equation 56c and equation 56d follow the same proofs as equation 33a,
equation 33b and equation 33c, respectively.

By the definitions σk = δk

∥λk−µk∥2+1 ≤ 1 and δk ∈ (0, 1], we know that σk ≤ 1. Thus, we obtain the relation
equation 56b:

σk∥λk − µk∥2 = δk

1 + 1
∥λk−µk∥2

≤ δk.

Subtracting µk+1 from λk yields

∥λk − µk+1∥ = ∥λk − µk − σk(λk − µk)∥ = (1 − σk)∥λk − µk∥.

Squaring both sides of the inequality yields the relation equation 56c.

The relations in Lemma 35 are critical to our technique for proving convergence, bypassing the need for the
surjectivity of the Jacobian ∇g(x) (or subgradient mapping ∂g(x)) as in Bolte et al. (2018); Boţ & Nguyen
(2020).
Lemma 36. Let {xk} be the sequence generated by Algorithm 2. Under Assumptions 4, 5 and 6, there exists
a constant Lℓ > 0 such that

ℓρ(xk+1) ≤ ℓρ(xk) + ⟨∇xℓρ(xk), xk+1 − xk⟩ + Lℓ

2 ∥xk+1 − xk∥2, (57)

where Lℓ := Lf + LgBλ + ρ(LgBu + LgBg + M2
g ) with Bλ = maxk≥0 ∥λk∥, Bu = maxk≥0 ∥uk∥, Bg =

maxx∈dom(r) ∥g(x)∥ and Mg = maxx∈dom(r) ∥∇g(x)∥ from equation 3.

In the statement of Lemma 36, we omitted (uk, zk, λk, µk) in the argument of ℓρ(·) for simplicity.

Proof. Note that ∇xℓρ(x, u, z, λ, µ) = ∇f(x) + ∇g(x)(λ + ρ(g(x) + u)). A direct computation gives

∥∇xℓρ(xk+1) − ∇xℓρ(xk)∥ ≤ ∥∇f(xk+1) − ∇f(xk)∥ + ∥ (∇g(xk+1) − ∇g(xk)) (λk + ρuk)∥
+ ρ∥∇g(xk+1)g(xk+1) − ∇g(xk)g(xk+1)∥
+ ρ∥∇g(xk)g(xk+1) − ∇g(xk)g(xk)∥

≤ Lf ∥xk+1 − xk∥ + Lg(Bλ + ρBu)∥xk+1 − xk∥
+ ρLgBg∥xk+1 − xk∥ + ρM2

g ∥xk+1 − xk∥
≤
(
Lf + LgBλ + ρ(LgBu + LgBg + M2

g )
)

∥xk+1 − xk∥.

Hence, by the descent lemma (Bertsekas, 1999, Proposition A.24), we obtain the desired result.

Now, we establish key properties that lead to our main convergence results.
Lemma 37. Let the sequence {wk} be generated by Algorithm 2. Under Assumptions 4, 5 and 6, the
Proximal-Perturbed Augmented Lagrangian Lρ equation 17 satisfies:
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(a) (Approximate Decrease of Lρ)

Lρ(wk+1) − Lρ(wk) ≤ −c1∥xk+1 − xk∥2 − c2∥uk+1 − uk∥2 + δ̂k,

where c1 = 1
2

(
1
η − Lℓ − 3ρM2

g

)
> 0, c2 =

( 1
τ − 2ρ

)
> 0, and δ̂k := δ2

k

4ρ + δk

ρ .

(b) (Convergence of Lρ) the sequence {Lρ(wk)} is convergent, i.e., limk→∞ Lρ(wk+1) := Lρ > −∞.

Proof. (a) The difference between two consecutive sequences of Lρ can be divided into four parts:

Lρ(wk+1) − Lρ(wk) = [Lρ(xk+1, uk, zk, λk, µk) − Lρ(wk)] (58a)
+ [Lρ(xk+1, uk+1, zk, λk, µk) − Lρ(xk+1, uk, zk, λk, µk)] (58b)
+ [Lρ(xk+1, uk+1, zk, λk+1, µk+1) − Lρ(xk+1, uk+1, zk, λk, µk)] (58c)
+ [Lρ(wk+1) − Lρ(xk+1, uk+1, zk, λk+1, µk+1)] . (58d)

First, we consider equation 58a. Writing Lρ(xk+1) = Lρ(xk+1, uk, zk, λk, µk), and using Lemma 36, we have

ℓρ(xk+1) ≤ ℓρ(xk) + ⟨∇xℓρ(xk), xk+1 − xk⟩ + Lℓ

2 ∥xk+1 − xk∥2. (59)

From the definition of xk+1 in equation 22, it follows that

Lρ(xk) ≥ ℓρ(xk) + ⟨∇xℓρ(xk), xk+1 − xk⟩ + 1
2η

∥xk+1 − xk∥2 + r(xk+1),

implying ⟨∇xℓρ(xk), xk+1 − xk⟩ + r(xk+1) ≤ − 1
2η ∥xk+1 − xk∥2 + r(xk). Combining the this expression with

equation 59 yields

Lρ(xk+1, uk, zk, λk, µk) − Lρ(xk, uk, zk, λk, µk) ≤ −1
2

(
1
η

− Lℓ

)
∥xk+1 − xk∥2. (60)

Next, consider the second part equation 58b. Noting that ∇uLρ is ρ-Lipschitz continuous, we have

Lρ(uk+1) ≤ Lρ(uk) + ⟨∇uLρ(uk), uk+1 − uk⟩ + ρ

2∥uk+1 − uk∥2.

By using the property of the projection operator,
〈
Π[0,U ][a] − a, b − Π[0,U ][a]

〉
≥ 0 for b ∈ Π[0,U ], ∀a ∈ Rm,

with a = uk − τ∇uLρ(uk), and b = uk, we get

⟨uk+1 − uk + τ∇uLρ(uk), uk − uk+1⟩ ≥ 0,

from which we have ⟨∇uLρ(uk), uk+1 − uk⟩ ≤ − 1
τ ∥uk+1 − uk∥2. Therefore,

Lρ(xk+1, uk+1, zk, λk, µk) − Lρ(xk+1, uk, zk, λk, µk) ≤ −
(

1
τ

− ρ

2

)
∥uk+1 − uk∥2. (61)

Now consider equation 58c. We start by noting that

Lρ(xk+1, uk+1, zk, λk+1, µk+1) − Lρ(xk+1, uk+1, zk, λk, µk)
= ⟨λk+1 − λk, g(xk+1) + uk+1⟩︸ ︷︷ ︸

(I)

+ ⟨(λk − µk) − (λk+1 − µk+1), zk⟩︸ ︷︷ ︸
(II)

− β

2 ∥λk+1 − µk+1∥2 + β

2 ∥λk − µk∥2.

(62)
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Using the updates λk+1 = µk+1 + ρ(g(xk+1) + uk+1) and zk = 1
α (λk − µk), and the fact that ⟨a − b, a⟩ =

1
2 ∥a − b∥2 + 1

2 ∥a∥2 − 1
2 ∥b∥2 with a = λk − µk and b = λk+1 − µk+1, we have

(I) = 1
2ρ

∥λk+1 − λk∥2 + 1
2ρ

∥λk+1 − µk+1∥2 − 1
2ρ

∥µk+1 − λk∥2,

(II) = 1
2α

∥(λk+1 − µk+1) − (λk − µk)∥2 + 1
2α

∥λk − µk∥2 − 1
2α

∥λk+1 − µk+1∥2

= α

2 ∥zk+1 − zk∥2 + 1
2α

∥λk − µk∥2 − 1
2α

∥λk+1 − µk+1∥2.

(63)

Substituting equation 63 into equation 62 yields

Lρ(xk+1, uk+1, zk, λk+1, µk+1) − Lρ(xk+1, uk+1, zk, λk, µk)

≤ 1
2ρ

∥λk+1 − λk∥2 − 1
2ρ

∥µk+1 − λk∥2 + 1
2ρ

∥λk − µk∥2 + α

2 ∥zk+1 − zk∥2

(i)
≤ 1

2ρ

(
3ρ2M2

g ∥xk+1 − xk∥2 + 3ρ2∥uk+1 − uk∥2 + 3∥µk+1 − µk∥2)
+ 1

2ρ

(
2σk − σ2

k

)
∥λk − µk∥2 + α

2 ∥zk+1 − zk∥2

(ii)
≤ 1

2
(
3ρM2

g ∥xk+1 − xk∥2 + 3ρ∥uk+1 − uk∥2)
+ 1

2ρ

(
2σk + 2σ2

k

)
∥λk − µk∥2 + α

2 ∥zk+1 − zk∥2

(iii)
≤ 1

2
(
3ρM2

g ∥xk+1 − xk∥2 + 3ρ∥uk+1 − uk∥2)+ δ2
k

4ρ
+ δk

ρ
+ α

2 ∥zk+1 − zk∥2,

(64)

where (i) follows from equation 56c and equation 56d in Lemma 35; (ii) follows from equation 56a in Lemma
35; and (iii) is from equation 56a and equation 56b in Lemma 35.

Lastly, we consider equation 58d. Write down Lρ(zk+1) = Lρ(xk+1, uk+1, zk+1, λk+1, µk+1) for notational
simplicity. From the α-strong convexity of Lρ in z, we have

Lρ(zk) ≥ Lρ(zk+1) + ⟨∇zLρ(zk+1), zk − zk+1⟩ + α

2 ∥zk+1 − zk∥2.

Since zk+1 minimizes Lρ(xk+1, uk+1, z, λk+1, µk+1), we have that ∇zLρ(zk+1) = 0. Thus,

Lρ(zk+1) − Lρ(zk) ≤ −α

2 ∥zk+1 − zk∥2. (65)

Combining equation 60, equation 61, equation 64, and equation 65 yields the desired result.

(b) By using the update of zk+1 = λk+1−µk+1
α , we deduce

Lρ(wk+1) = f(xk+1) + ⟨λk+1, g(xk+1) + uk+1⟩

− 1
2ρ

∥λk+1 − µk+1∥2 + ρ

2∥g(xk+1) + uk+1∥2︸ ︷︷ ︸
=0

+r(xk+1)

= f(xk+1) + 1
2ρ

∥λk+1∥2 + 1
2ρ

∥λk+1 − µk+1∥2 − 1
2ρ

∥µk+1∥2 + r(xk+1) > −∞,

where the last inequality holds by the boundedness of {µk} (Assumption 7) and the lower boundedness of
f and r over dom(r) (Assumption 6). Given the step sizes 0 < η < 1/(Lℓ + 3ρM2

g ) and 0 < τ < 1/2ρ, we
already know the sequence {Lρ(wk+1)} is approximately nonincreasing (Lemma 37(a)); Although it may
not decrease monotonically at every step, it tends to decrease over iterations. As {δk} goes to 0 as k → ∞,
{Lρ(wk+1)} converges to a finite value Lρ > −∞.
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Lemma 38 (Subgradient Error Bound). Let the sequence {wk := (xk, uk, zk, λk, µk)} be generated by
Algorithm 2, and let {pk := (xk, uk, zk)} be the primal sequence. Under Assumptions 6, 4 and 5, there exists
a constant d1 > 0 such that for the primal subgradient ζk+1

p = (ζk+1
x , ζk+1

u , 0) ∈ ∂pLρ(wk+1),

∥ζk+1
p ∥ ≤ d1 (∥xk+1 − xk∥ + ∥uk+1 − uk∥) + (Mg + 1)δk,

where
d1 = max

{
Lf + BλLg + ρ(Mg + Lg(Bg + Bu) + 2M2

g ) + 1/η, 2ρ(Mg + 1) + 1/τ
}

.

Proof. From the proof of Lemma 34, we have that for all k ≥ 0

ζk+1
x := ∇xℓρ(wk+1) − ∇xℓρ(wk) + 1

η
(xk − xk+1) ∈ ∂xLρ(wk+1),

ζk+1
u := uk+1 − Π[0,U ][uk+1 − (λk+1 + ρ(g(xk+1) + uk+1)] = ∇̃uLρ(wk+1),

∇zLρ(wk+1) = αzk+1 − (λk+1 − µk+1) = 0.

Hence, we obtain

ζk+1
p :=

ζk+1
x ∈ ∂xLρ(xk+1, uk+1, zk+1, λk+1, µk+1)

ζk+1
u = ∇̃uLρ(xk+1, uk+1, zk+1, λk+1, µk+1)
0 = ∇zLρ(xk+1, uk+1, zk+1, λk+1, µk+1)

 .

We derive upper estimates for ζk+1
x and ζk+1

u . A straightforward calculation yields

∥ζk+1
x ∥ ≤∥∇f(xk+1) − ∇f(xk)∥ + (1/η)∥xk − xk+1∥

+ ∥∇g(xk+1)(λk+1 + ρ(g(xk+1) + uk+1) − ∇g(xk)(λk + ρ(g(xk) + uk)∥
≤(Lf + 1/η)∥xk+1 − xk∥

+ ∥∇g(xk+1)λk+1 − ∇g(xk)λk+1 + ∇g(xk)λk+1 − ∇g(xk)λk∥ (66a)
+ ρ∥∇g(xk+1)g(xk+1) − ∇g(xk)g(xk+1) + ∇g(xk)g(xk+1) − ∇g(xk)g(xk)∥ (66b)
+ ρ∥∇g(xk+1)uk+1 − ∇g(xk)uk+1 + ∇g(xk)uk+1 − ∇g(xk)uk∥, (66c)

in which equation 66a, equation 66b, and equation 66c can be bounded by

equation 66a ≤ BλLg∥xk+1 − xk∥ + Mg∥λk+1 − λk∥
≤ BλLg∥xk+1 − xk∥ + ρM2

g ∥xk+1 − xk∥
+ ρMg∥uk+1 − uk∥ + Mg∥µk+1 − µk∥

≤
(
BλLg + ρM2

g

)
∥xk+1 − xk∥

+ ρMg∥uk+1 − uk∥ + Mgδk;
equation 66b ≤ (ρBgLg + ρM2

g )∥xk+1 − xk∥;
equation 66c ≤ ρBuLg∥xk+1 − xk∥ + ρMg∥uk+1 − uk∥.

where for bounding equation 66a, we used the λ-update and ∥µk+1 − µk∥ = δk

∥λk−µk∥+ 1
∥λk−µk∥

≤ δk. Hence,

∥ζk+1
x ∥ ≤ (Lf + 1/η + BλLg + ρLg(Bg + Bu + 2M2

g ))∥xk+1 − xk∥
+ 2ρMg∥uk+1 − uk∥ + Mgδk.

Next, we estimate an upper bound for the component ζu,k+1. From the proof of Lemma 34, we have(
∥∇uLρ(uk) − ∇uLρ(uk+1)∥ + τ−1∥uk+1 − uk∥

)
· ∥ũk+1 − uk+1∥ ≥ ∥ũk+1 − uk+1∥2,
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where
∥∇uLρ(uk) − ∇uLρ(uk+1)∥ = ∥∇uLρ(xk+1, uk, zk, λk, µk)

− ∇uLρ(xk+1, uk+1, zk+1, λk+1, µk+1)∥
≤ ∥λk + ρ(g(xk+1) + uk) − λk+1 − ρ(g(xk+1) + uk+1)∥
≤ ρ(Mg∥xk+1 − xk∥ + 2∥uk+1 − uk∥ + δk).

Therefore,

∥ζk+1
u ∥ = ∥ũk+1 − uk+1∥ ≤ ρMg∥xk+1 − xk∥ +

(
2ρ + τ−1) ∥uk+1 − uk∥ + δk. (67)

Combining equation 67 and equation 67, we obtain

∥ζk+1
p ∥ ≤ d1(∥xk+1 − xk∥ + ∥uk+1 − uk∥) + (Mg + 1)δk,

where d1 = max{Lf + BλLg + ρ(Mg + BgLg + BuLg + 2M2
g ) + 1/η, 2ρ(Mg + 1) + 1/τ}. This inequality,

combined with ζk+1
p ∈ ∂pLρ(wk+1), yields the desired result.

It can be easily verified that if 1
T

∑T −1
k=0 ∥ζk+1

p ∥ → 0, then a point that satisfies stationarity in the KKT
conditions equation 2,

0 ∈ ∇f(x∗) + ∂r(x∗) + ∇g(x∗)λ∗,

is obtained. Specifically, {
0 ∈ ∇f(x) + ∂r(x) + ∇g(x)λ,

0 = u − ΠRm
+

[u − (λ + ρ(g(x) + u)],

⇐⇒ 0 ∈ ∇f(x) + ∂r(x) + ∇g(x)λ.

We will use this part to establish convergence to a KKT point in Theorem 27. Note that we need not
consider the gradient of Lρ with respect to λ, i.e., ξk+1

λ := ∇λLρ(wk+1), since we know from the λ-update
step equation 12 that ∇λLρ(wk+1) = g(xk+1) + uk+1 − zk+1 − β(λk+1 − µk+1) = 0.

E Proofs of Asymptotic Convergence for Algorithm 2

E.1 Proof of Primal Stationarity (Lemma E.1)

Proof. Analogous to the proof of Lemma 11 in Section B.1, by using Lemma 37 and 38 with δ̂k = δ2
k

4ρ + δk

ρ ,
we have

1
T

T −1∑
k=0

∥ζk+1
p ∥2 ≤

3d2
1

c3

(
Lρ(w0) − Lρ

)
T

+

(
3d2

1
4ρc3

+ 3(Mg + 1)2
)∑T −1

k=0 δ2
k

T
+

1
ρ

∑T −1
k=0 δk

T
. (68)

Given δk = 1
p·kq+1 with 2/3 < q ≤ 1 and p > 0, the third term on the RHS of the above inequality dominates

the second term. Moreover, for sufficiently large T , one can easily show that

T −1∑
k=0

δk ≈

{
p−1 log(pT ) if q = 1,

(p − qp)−1T 1−q if 2
3 < q < 1.

Thus, for q = 1, the sum grows logarithmically, while for 2/3 < q < 1, the sum grows polynomially with
T . Therefore, for each choice of q, the RHS of equation 68 goes to 0 as T increases, which proves that the
primal sequences are convergent.

E.2 Proof of Primal Feasibility (Lemma 29)

Proof. Follow the same proof as that of Lemma 13 in Section C.2.

32



Under review as submission to TMLR

E.3 Proof of Dual Feasibility (Lemma 25)

Proof. The proof is analogous to that of Lemma 14 in Section B.3. By the update rule equation 20, u ∈ Rm
+

and ū ≥ 0. Thus, there are two cases for ū > 0 and ū = 0. If ū > 0, by Lemma 24 and the stationarity of
ū and λ̄, λ̄ + ρ(g(x̄) + ū) = λ̄ = 0. Similarly, if ū = 0, λ̄ + ρ(g(x̄) + ū) = λ̄ ≥ 0. In any case, we conclude
that λ̄ ≥ 0.

E.4 Proof of Complementary Slackness (Lemma 26)

Proof. It follows the same proof as that of Lemma 15 in Section B.4.

F Proofs of Non-asymptotic Convergence Rate of Algorithm 2

F.1 Proof of Primal Stationarity Convergence Rate (Lemma 28)

Proof. The proof is analogous to that of Lemma 17 using Lemma 21 and equation 26. By triangle inequality,
Jensen’s inequality and the result from Lemma 24,

ν̄T − λ̄T = 1
T

T −1∑
k=0

(
1
τ

− ρ

)
(uk+1 − uk) + λk+1 − µk+1 (69)

≤ 1 − τρ

τT
(uT − u0) + 1

T

T −1∑
k=0

∥λk+1 − µk+1∥ (70)

= O(1/T ) + O(1/
√

T ) = O(1/
√

T ). (71)

Therefore, the stationarity condition holds for ν̄T with the same convergence rate.

F.2 Proof of Primal Feasibility Convergence Rate (Lemma 29)

Proof. The proof is analogous to that of Lemma 18 using Lemma 24.

F.3 Proof of Complementary Slackness Convergence Rate (Lemma 30)

Proof. From the optimality of u-update equation 20 and the construction of ν equation 26, we have uk+1 =
ΠRm

+
[uk+1 − τνk], which implies the complementarity condition ⟨νk, u − uk+1⟩ ≥ 0 for all u ≥ 0. The rest

of the proof is the same as that of Lemma 19.

G Proof of Corollary 22

Proof. By using Jensen’s inequality,
(

1
T

∑T −1
k=0 ∥ζk+1

p ∥
)2

≤ 1
T

∑T −1
k=0 ∥ζk+1

p ∥2, and taking the square root, we
obtain

1
T

T −1∑
k=0

∥ζk+1
p ∥ ≤ 1√

T

√√√√T −1∑
k=0

∥ζk+1
p ∥2.

Denoting the RHS of inequality equation 68 by ∆T and combining Lemma 21 with the above inequality give

1
T

T −1∑
k=0

∥ζk+1
p ∥ ≤

√
∆T√
T

≤ ϵ,

which, along with the result in equation 24, gives Õ
(

1√
T

)
. Therefore, the following number of iterations is

required to have ϵ-primal stationarity:

T :=
⌈

∆T

ϵ2

⌉
= Õ

(
1
ϵ2

)
.
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H Experimental Details

H.1 Classification Problems Under Non-smooth Fairness Constraints

Experimental Setup

We benchmark PLADA against four state-of-the-art algorithms: the single-loop switching subgradient (SSG)
algorithm Huang & Lin (2023), two double-loop inexact proximal point (IPP) algorithms (IPP-ConEx Boob
et al. (2022) and IPP-SSG Huang & Lin (2023)) and the multiplier model approach Narasimhan et al.
(2020). For the benchmark algorithms, we followed the hyperparameter settings of Huang & Lin (2023) and
Narasimhan et al. (2020) and we provide detailed descriptions of hyperparameters in Table 1. Note that
we only used two hyper-parameter sets for 8 different experiments, while our benchmark algorithms used
different hyper-parameters for every datasets, objectives and constraints.

Table 1: Hyper-parameters of PLADA used in experiments
Problem ηw ηu α β γ0

Models 5.1.1 and 5.1.2 0.001 0.1 10.0 0.1 0.1
Neural network 5.1.3 0.1 0.01 10.0 0.5 0.1

Datasets

Our evaluation uses several standard real-world datasets: Adult Kohavi et al. (1996), Bank Moro et al.
(2014), COMPAS Angwin et al. (2022) and Communities and Crime Redmond (2009). The descriptions
of the datasets are presented in Table 2.

Table 2: Real-world fairness datasets used in experiments
Dataset n d Label Sensitive Group

Adult (a9a) 48,842 123 Income Gender
Bank 41,188 54 Subscription Age

COMPAS 6,172 16 Recidivism Race
Communities and Crime 1,994 140 Crime Race

MSLR-WEB10K 1.2 M 136 Relevance Quality Score

H.2 Non-convex Multi-class Neyman-Pearson Classification

Implementation details

We employ a two-layer feed-forward neural network with sigmoid activation for the classition faction on the
Fashion-MNIST Xiao et al. (2017) and CIFAR10 Krizhevsky et al. (2009) datasets. We compare Algorithm
2 (PPALA) with GDPA, as NL-IAPIAL can only handle convex constraints. A sigmoid function ϕ(y) =
1/(1 + exp(y)) is used for the loss function as in Lu (2022). For the experiments, we use 4 classes and set
θ = 1 with κi = 1 for Fashion-MNIST and κi = 2 for CIFAR-10.4 PPALA uses a fixed learning rate 10−3

and parameters α = 10, β = 0.2 for both datasets. The initial point x0 is randomly generated in each
experiment. These numerical experiments were conducted using an A100 GPU and were implemented with
Pytorch Paszke et al. (2019).

4Note that the parameter settings for GDPA, as in (Lu, 2022, Section F in Appendix), lead to a lack of convergence in the
neural network setting, particularly with a small value of the threshold κi and a large increase ratio for updating the penalty
parameter.
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Loss DP Violation Near Stationarity
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Figure 5: Comparison of the performance of PLADA with different α on the logistic loss objective with
demographic parity (DP) constraint on Adult dataset. The results show the performance of PLADA is not
sensitive to the value of α (β = 0.1 is fixed).
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Figure 6: Comparison of the performance of PLADA with different β on the logistic loss objective with
demographic parity (DP) constraint on Adult dataset. The results show that the performance of PLADA is
very slightly sensitive to the choice of β, as it affect dual parameter defined by ρ = α

1+αβ (α = 10 is fixed).

I Additional Experiments

In this section, we further validate the claims on hyperparameter sensitivity and dual variable convergence
by conducting additional experiments. We also show the empirical performance of Algorithm 1 by extending
the application to stochastic setting.

Hyperparameter robustness

Although PLADA requires the selection of multiple hyperparameters (α, β, ρ, η, τ), we show that it is straight-
forward to select appropriate values for each hyperparameter. Figures 5 and 6 show the performance of
PLADA across a wide range of values for the key parameters α > 0 and β > 0, respectively. The results
demonstrate that the algorithm’s convergence behavior is remarkably stable and can still provide solutions
that minimize the objective while remaining feasible.

Dual variables convergence

Lemma 24 claims that the gap between the dual variables ∥λ−µ∥ should converge to zero, ensuring feasibility.
Figure 7 provides empirical validation of this result. The plots clearly show the convergence of |λ − µ| to
zero, as well as the individual convergence of λ and µ.
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Adult Bank COMPAS
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Figure 7: The values of |λ − µ|, λ, µ of PLADA on the logistic loss objective with demographic parity (DP)
constraint. The results show the converging behavior of the dual variables and their difference.

Highly stochastic setting

To evaluate PLADA in a more challenging setting, we applied it to a ranking fairness problem using the large-
scale MSLR-WEB10K dataset, which involves over 470,000 pairwise constraints. In this highly stochastic en-
vironment, where mini-batching is inevitable, PLADA was benchmarked against the method of Narasimhan
et al. (2020). As shown in Figure 8, our algorithm achieves lower error rate and better constraint satisfaction,
demonstrating its effectiveness even under highly stochastic conditions.
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Figure 8: The average performance of PLADA and Narasimhan et al. (2020) on the ranking fairness versus
Epochs after three repetitions. MSLR-WEB10K dataset has over 1.2M data points, from which over 470k
pairs are created. PLADA achieves better constraint satisfaction with comparable error rate against approx-
imate methods for the stochastic setting.
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