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Abstract

Large Language Models (LLMs) have demon-001
strated remarkable capability in a variety of002
NLP tasks. Despite their effectiveness, these003
models are prone to generate nonfactual con-004
tent. Uncertainty Quantification (UQ) is pivotal005
in enhancing our understanding of a model’s006
confidence in its generated content, thereby aid-007
ing in the mitigation of nonfactual outputs. Ex-008
isting research on UQ predominantly targets009
short text generation, typically yielding brief,010
word-limited responses. However, real-world011
applications frequently necessitate much longer012
responses. Our study first highlights the lim-013
itations of current UQ methods in handling014
long text generation. We then introduce LUQ,015
a novel sampling-based UQ approach specifi-016
cally designed for long text. Our findings reveal017
that LUQ outperforms existing baseline meth-018
ods in correlating with the model’s factuality019
scores (negative coefficient of -0.85 observed020
for Gemini 1.0 Pro). With LUQ as the tool for021
UQ, we investigate behavior patterns of several022
popular LLMs’ response confidence spectrum023
and how that interplays with the response’ fac-024
tuality. We identify that LLMs lack confidence025
in generating long text for rare facts and a fac-026
tually strong model (i.e. GPT-4) tends to reject027
questions it is not sure about. To further im-028
prove the factual accuracy of LLM responses,029
we propose a method called LUQ-ENSEMBLE030
that ensembles responses from multiple mod-031
els and selects the response with the least un-032
certainty. The ensembling method greatly im-033
proves the response factuality upon the best034
standalone LLM.035

1 Introduction036

Large Language Models (LLMs) have demon-037

strated significant prowess across a wide range of038

NLP tasks and are increasingly being used in vari-039

ous downstream applications (Zhao et al., 2023;040

Chang et al., 2023). However, existing LLMs041

are susceptible to hallucination, often resulting in042

the generation of nonfactual or fabricated content 043

(Manakul et al., 2023; Zhang et al., 2023). One way 044

to predict the factuality of an LLM’s output with- 045

out resorting to resource-intensive fact-checking 046

procedures is by examining its uncertainty over a 047

user query. Moreover, accurate measurement of 048

a model’s confidence in its generated responses 049

can enable the rejection of answers with high un- 050

certainty, potentially reducing hallucinations and 051

improving the factuality of the output (Geng et al., 052

2023; Wang et al., 2023). 053

Although Uncertainty Quantification (UQ) is a 054

well-researched area in the broader field of machine 055

learning (Gawlikowski et al., 2023), its application 056

in the context of LLMs remains relatively under- 057

explored. One primary limitation is that previous 058

studies on UQ mostly require access to a model’s 059

internal states (e.g. logits) (Murray and Chiang, 060

2018; Kuhn et al., 2022; Vazhentsev et al., 2023; 061

Duan et al., 2023). However, many of the most 062

advanced LLMs, such as GPT-4 (OpenAI, 2023), 063

Gemini 1.0 Pro (Gemini Team, 2023), and Claude 064

2.1 (Anthropic, 2023), are closed-source and only 065

accessible via API calls. This limits the ability to 066

directly analyze their internal processes. Another 067

challenge is that existing research on modeling un- 068

certainty predominantly focuses on short responses, 069

typically less than 10 words in length (Kuhn et al., 070

2022; Duan et al., 2023; Lin et al., 2023). This 071

is in stark contrast to the more common use cases 072

of LLMs, where responses to queries often far ex- 073

ceed this length, sometimes reaching hundreds of 074

words. Such disparity points to a need for new UQ 075

methods tailored for long-form text generated by 076

LLMs. Therefore, in this study we aim to answer 077

the following research questions: RQ1: Are ex- 078

isting UQ methods still effective in the context of 079

long-text generation? RQ2: If not, how can we 080

effectively quantify LLMs’ uncertainty for long- 081

form answers? RQ3: In what ways can uncertainty 082

scores be utilized to enhance the factuality of model 083
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Tell me a bio of Ramesses IV .

Ramesses IV (reigned 1153-1147 BC) was was the son of 
Ramesses III and his Great Royal Wife, Iset Ta-Hemdjert. He 
was the third pharaoh of the 20th Dynasty of Ancient Egypt 
... His tomb was discovered in 1898 by Victor Loret in KV35.  

Ramesses IV (also spelled Ramses IV), was the third 
pharaoh of the 20th Dynasty of Egypt. He reigned for six 
years, from 1150 to 1143 BC. ... His tomb in the Valley of 
the Kings (KV2) was discovered in 1898 by Victor Loret.

Ramesses IV, also known as Ramesses Menpehtyre, was 
the third pharaoh of the 20th Dynasty of Ancient Egypt. His 
reign lasted from 1155 to 1149 BC. Ramesses IV was the 
son of Ramesses III and Queen Tyti. ... His tomb was 
discovered in 1898 by Howard Carter in KV35. 

…

Uncertainty: 0.998

Uncertainty: 0.112

Is “third pharaoh of the 20th Dynasty of 
Ancient Egypt” supported by [SAMPLE 1]?
Yes: 0.95 No: 0.05 

Is “third pharaoh of the 20th Dynasty of 
Ancient Egypt” supported by [SAMPLE N]?
Yes: 0.97 No: 0.03 

Is “He reigned for six years, from 1155 to 
1149 BC” supported by [SAMPLE 1]?
Yes: 0.08 No: 0.92 
Is “He reigned for six years, from 1155 to 
1149 BC” supported by [SAMPLE N]?
Yes: 0.06 No: 0.94 

Uncertainty: 0.545

…

…

User

Answers from Different LLMs:

…

Uncertainty: 0.545

Sample Responses: Uncertainty Calculation:

Figure 1: The illustration of the LUQ and LUQ-ENSEMBLE framework. Given a question, various LLMs exhibit
differing levels of uncertainty. We generate n sample responses from each LLM and then assess the uncertainty
based on the diversity of these samples (the LUQ metric). Green highlights indicate consistency across responses
(low uncertainty) and red highlights discrepancies (high uncertainty). The LUQ-ENSEMBLE method selects the
response from the LLM with the lowest uncertainty score as the final answer.

outputs?084

Our experiments primarily focus on black-box085

LLMs, with an emphasis on using factuality as the086

key metric to evaluate the models’ performance.087

The main contributions of this paper are:088

• We first highlight the limitations of existing089

UQ methods for long text generation and090

subsequently propose LUQ (Long-text Uncer-091

tainty Quantification; pronounced as “luck”),092

a novel UQ method that computes sentence-093

level consistency in long text scenarios.094

• Through extensive experiments on the original095

FACTSCORE dataset and our newly proposed096

FACTSCORE-DIS dataset in medical domain,097

we demonstrate that our proposed LUQ consis-098

tently shows strong negative correlations with099

the responses’ factuality over 6 popular LLMs,100

outperforming all the baseline methods.101

• We propose an ensemble modeling approach102

that selects responses from the model exhibit-103

ing the lowest LUQ uncertainty score, observ-104

ing an improvement of up to 5% in the overall105

factuality scores. Additionally, we enhance106

the model’s uncertainty awareness by imple-107

menting a selective answering strategy.108

2 Background109

2.1 Uncertainty and Confidence110

Confidence and uncertainty in the context of ma-111

chine learning models pertain to the level of assur-112

ance or certainty associated with a prediction or113

decision (Geng et al., 2023). While many studies 114

treat confidence and uncertainty as antonyms and 115

use them interchangeably (Xiao et al., 2022; Chen 116

and Mueller, 2023), Lin et al. (2023) provide a clear 117

distinction: uncertainty denotes the dispersion of 118

potential predictions for a given input, whereas con- 119

fidence pertains to the degree of confidence in a 120

specific prediction or output. We will adopt this 121

terminology in the following sections. 122

Currently, a formal and universally accepted def-
inition of uncertainty levels in language generation
tasks remains elusive. Common practice in existing
literature involves measuring uncertainty through
the entropy of predictions, akin to approaches in
classification tasks (Kuhn et al., 2022; Lin et al.,
2023). Predictive entropy is formally expressed as
H(Y | x) = −

∫
p(y | x) log(p(y | x))dy, which

captures the uncertainty associated with a predic-
tion for a given input x. In the context of NLG,
where R denotes all possible generations and r is
a specific response, the uncertainty score can thus
be conceptualized as:

U(x) = H(R | x) = −
∑
r

p(r | x) log(p(r | x))

Similarly, the concept of confidence within NLG
frequently adopts methodologies from classifica-
tion tasks. In these tasks, confidence for a specific
prediction y is quantified using the predicted prob-
ability, represented as p̂(Y = y | x) (Geifman
and El-Yaniv, 2017; Hendrycks and Gimpel, 2016).
In the context of NLG, the confidence score for a
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given response r is represented by the joint proba-
bility of the tokens in the response:

C(x, r) = p̂(r | x) =
∏
i

p̂ (ri | r<i, x) .

2.2 Uncertainty for Long Text Generation123

In our study, we adopt a more flexible approach124

to defining uncertainty and confidence in long text125

generation. We focus on the ability of UQ meth-126

ods to effectively rank responses, differentiating127

between correct and incorrect predictions. This128

approach aligns with the concept of relative con-129

fidence as discussed by Geng et al. (2023). Our130

objective diverges from the orthogonal research di-131

rection about models’ calibration, which requires132

models to precisely reflect their true accuracy in133

practical scenarios (Lin et al., 2023). We argue that134

while short-answer questions may be straightfor-135

wardly assessed using metrics such as accuracy or136

exact match, these standards are often unrealistic137

for long text generation, given the complexities of138

real-life probabilities.139

From a practical perspective, we aim for the un-
certainty score to serve as a reliable indicator of
the model’s performance. This performance en-
compasses several dimensions of generation qual-
ity, including factuality, coherence, and creativity.
Notably, our study prioritizes factuality and the
truthfulness of responses, adopting these as our pri-
mary metrics. The factuality of the responses R
given a specific query x is denoted as F (R | x).
Considering two inputs xi and xj , we explore the
relationship between the model’s uncertainty, de-
noted as U(x), and the factuality. Our goal is to
have:

U(xi) ≤ U(xj) ⇐⇒ F (R | xi) ≥ F (R | xj)

Correspondingly, for a given input x, the model’s
confidence in generating a specific response r is
represented as C (x, r). Thus, we aim to establish
the following relationship:

C (x, ri) ≤ C (x, rj) ⇐⇒ F (ri | x) ≤ F (rj | x)

3 LUQ140

In this section, we introduce our LUQ method for141

estimating uncertainty in long text generation. The142

framework is illustrated in Figure 1. Our underly-143

ing assumption posits that the greater the model’s144

uncertainty regarding a given question x, the more145

diverse its responses to question x will be. For146

instance, as shown in Figure 1, the term “third 147

pharaoh of the 20th Dynasty of Egypt” is frequently 148

supported by other sample responses, indicating the 149

model’s high confidence in this information. How- 150

ever, the samples suggest different reign periods for 151

Ramesses IV; the inconsistency shows the model 152

is uncertain about this information. We begin by 153

highlighting the limitations of previous UQ meth- 154

ods on dealing with long text, then formally define 155

our LUQ method that overcomes these issues. 156

Motivation Following the generation of n re- 157

sponses, traditional UQ methods for short text 158

commonly calculate the pairwise similarity among 159

the responses, employing either Jaccard Similarity 160

or calculating Natural Language Inference (NLI) 161

scores (Kuhn et al., 2022; Lin et al., 2023). These 162

pairwise similarity scores indicate the consistency 163

between a pair of responses and play a vital role in 164

subsequent uncertainty estimation. 165

However, responses to certain queries are brief, 166

making it relatively straightforward to distinguish 167

between different answers. For example, for the 168

question “What is the capital of France?”, the an- 169

swers often consists of just a few words and can be 170

easily examined. In contrast, answers to other ques- 171

tions such as “Give me an introduction of ...” and 172

“Tell me something about ...” may extend to hun- 173

dreds of words. Longer text leads to an unexpected 174

high similarity across all response pairs when ap- 175

plying previous methods. To address this issue and 176

achieve a more nuanced similarity assessment, we 177

propose the LUQ uncertainty measurement with 178

sentence-level similarity computation. Inspired by 179

the hallucination detection method in Manakul et al. 180

(2023), we split each response to sentences, and 181

check whether each sentence can be supported by 182

other samples. 183

Notation Let ra represent the response gener- 184

ated by a LLM to a user query x. We generate 185

an additional n stochastic LLM sample responses 186

R = {r1, r2, . . . , rn} using the same query. The 187

set R′ = {ra, r1, r2, . . . , rn} encompasses all out- 188

puts from the model. 189

For any given response ri ∈ R′, the first objec- 190

tive is to determine how often it is supported (or 191

entailed) by other samples. To this end, we employ 192

a NLI classifier to assess the similarity between ri 193

and each r′ ∈ R′ \ {ri}. The output from an NLI 194

classifier normally includes classifications of entail- 195

ment, neutral, and contradiction, along with their 196

respective logit values. It is important to note that 197
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we focus exclusively on the “entailment” and “con-198

tradiction” classes, as sentences labeled as “neutral”199

generally do not impact the overall factuality of a200

response. We calculate the NLI score for each sen-201

tence sj within a response r, and then average these202

scores. Formally, the similarity score S(ri, r′) be-203

tween ri and r′ is defined as:204

P
(

entail | sj , r′
)
=

exp (le)

exp (le) + exp (lc)
205

206

S(ri, r′) =
1

n

n∑
j=1

P
(

entail | sj , r′
)

207

where le and lc are the logits of the “entailment”208

and “contradiction” classes, respectively. We opt209

to calculate P(entail | sj , r′) over P(contradict |210

sj , r
′) because non-contradictory responses can211

still be largely irrelevant, indicating higher uncer-212

tainty (Lin et al., 2023). The model’s confidence in213

response ri and the overall uncertainty is therefore214

defined as:215

C(x, ri) =
1

n

∑
r′∈R′K{r′}

S(ri, r′)216

U(x) =
1

n+ 1

∑
ri∈R′

(1− C(x, ri))217

Unlike Kuhn et al. (2022)’s method of apply-218

ing an off-the-shelf DeBERTa model, we apply219

the DeBERTa-v3-large model (He et al., 2022),220

fine-tuned on the MultiNLI (Williams et al., 2018)221

dataset. This choice is due to our input being a con-222

catenation of short hypothesis (sentence s) and a223

comparatively longer premises (reference response224

r′). The format of our input aligns with the task in225

MultiNLI dataset, ensuring an effective assessment226

of consistency among the responses.227

4 Experiments228

4.1 Dataset, Metric, and LLM Selection229

Dataset We employ FACTSCORE (Min et al.,230

2023) to evaluate the factuality of our generated231

text. FACTSCORE offers automated assessment232

with a low error rate (below 2%), enabling scal-233

able application to diverse LLMs without requiring234

manual annotation. To supplement the extensive235

reliability testing of FACTSCORE conducted by its236

creators, we performed a smaller-scale human an-237

notation study. Our findings demonstrate a strong238

Pearson correlation of 0.88 between FACTSCORE239

ratings and human factuality judgments, suggest- 240

ing FACTSCORE being a reliable reference for fac- 241

tuality. For a comprehensive description of our 242

validation process, please refer to Appendix E. 243

The original FACTSCORE dataset (denoted 244

as FACTSCORE-BIO) includes 500 individuals’ 245

biographies from Wikidata with corresponding 246

Wikipedia entries. To evaluate the applicability 247

of UQ methods across different domains, we ad- 248

ditionally developed a dataset, FACTSCORE-DIS, 249

focusing on disease entities. Details of this dataset 250

can be found in Appendix D. 251

Metrics For each generated response, 252

FACTSCORE calculates a factuality score 253

(FS). It first breaks down the response into a series 254

of atomic facts, which are concise statements 255

that capture a single piece of information. It 256

then assigns a binary label to each atomic fact 257

and calculate the precision as the response’s 258

factuality score. We apply FACTSCORE for the 259

first generated response (ra). As the LLMs may 260

sometime refuse to answer certain questions, to 261

have a fair comparison, we introduce a penalized 262

factuality score (PFS) and penalized uncertainty 263

score (PUS). To calculate PFS and PUS, we assign 264

a factuality score of zero and uncertainty score of 265

one to questions that models opt not to answer. 266

We then proceed to calculate both the Pearson 267

Correlation Coefficient (PCC) and Spearman Cor- 268

relation Coefficient (SCC) between the factuality 269

scores and uncertainty scores. Following the cri- 270

teria proposed by Schober et al. (2018), we clas- 271

sify the correlation coefficients into five categories 272

based on their absolute values: over 0.9 indicates a 273

very strong correlation; 0.7 to 0.9 signifies strong; 274

0.5 to 0.7 suggests moderate; 0.3 to 0.5 denotes 275

weak; 0.1 to 0.3 implies very weak; and below 0.1 276

means negligible correlation. 277

LLMs We selected six top-performing LLMs 278

from the Arena Leaderboard (Zheng et al., 2023) 279

for our experiments. Within our access rights, we 280

chose three closed-sourced models: GPT-4 (Ope- 281

nAI, 2023), GPT-3.5 (OpenAI, 2022), and Gem- 282

ini 1.0 Pro (Gemini Team, 2023); and three open- 283

sourced models: Yi-34B-Chat (01.ai, 2023), Tulu- 284

2-70B (Ivison et al., 2023), and Vicuna-33B (Zheng 285

et al., 2023). For each LLM, we include the follow- 286

ing baseline UQ methods for comparison. Our im- 287

plementation is based on the LM-Polygraph frame- 288

work as proposed by Fadeeva et al. (2023). More 289

details are provided in Appendix A. 290
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LexSim Ecc NumSets EigV Deg SelfCheck LUQ

FACTSCORE-BIO

GPT-4 PCC -45.25 -24.83 -8.24 -36.94 -3.78 -53.12 -60.37
SCC -35.97 -12.74 4.18 -18.72 6.73 -41.79 -45.28

GPT-3.5 PCC -67.75 -10.61 -11.90 -30.30 -22.44 -65.14 -71.30
SCC -52.45 -26.46 -17.02 -34.60 -22.85 -61.07 -66.62

Yi-34B-Chat PCC -70.09 -27.63 -25.69 -48.97 -39.82 -70.34 -73.78
SCC -68.23 -44.97 -31.34 -51.12 -38.94 -72.69 -74.59

Tulu-2-70B PCC -55.69 -2.13 -20.68 -50.08 -53.39 -75.63 -77.58
SCC -61.84 10.12 -18.07 -50.29 -53.97 -76.89 -75.39

Gemini Pro PCC -67.24 -50.27 -52.98 -72.73 -64.37 -84.49 -85.09
SCC -63.73 -57.79 -57.02 -69.68 -67.69 -82.37 -81.29

Vicuna-33B PCC -38.28 -18.72 -20.04 -60.49 -58.25 -66.82 -71.79
SCC -50.62 -13.98 -16.65 -61.74 -62.38 -66.48 -70.78

FACTSCORE-DIS

GPT-3.5 PCC -41.75 -27.92 -7.81 -38.75 -13.50 -58.97 -67.31
SCC -39.37 -25.96 -6.94 -36.93 -16.33 -59.11 -65.30

Yi-34B-Chat PCC -63.61 -19.27 -11.23 -40.59 -26.45 -65.14 -70.48
SCC -58.68 -21.52 -16.34 -38.41 -22.11 -67.81 -72.39

Table 1: Pearson and Spearman correlation coefficients (expressed as percentages) between different LLMs and
various UQ methods on the FactScore dataset. We use the original factuality scores instead of the penalized ones.

FS PFS US PUS RR

GPT-4 80.76 72.37 20.75 28.98 86.62
GPT-3.5 68.25 68.25 25.71 25.71 100
Yi-34B-Chat 55.71 55.71 41.25 41.25 100
Tulu-2-70B 47.19 47.19 55.83 55.83 100
Gemini Pro 43.20 42.73 61.74 62.17 98.90
Vicuna-33B 42.47 42.47 55.31 55.31 100

Table 2: Results on FACTSCORE-BIO dataset; FS and
PFS stand for average factuality score and penalized
factuality score; US and PUS stand for average uncer-
tainty score and penalized uncertainty score computed
by LUQ; RR means the respond rate. All numbers are
in percentages.

Baselines for UQ We use the following black-291

box UQ methods as baselines: Lexical similarity292

(LexSim) (Fomicheva et al., 2020), Numer of se-293

mantic sets (NumSets) (Lin et al., 2023), Sum of294

eigenvalues of the graph Laplacian (EigV) (Lin295

et al., 2023), Degree matrix (Deg) (Lin et al., 2023),296

Eccentricity (Ecc) (Lin et al., 2023), SelfCheckNLI297

(SelfCheck) (Manakul et al., 2023). We mainly use298

the library LM-Polygraph (Fadeeva et al., 2023) for299

the UQ methods. The details of these methods can300

be found in Appendix B.301

4.2 Uncertainty Quantification Results302

Effectiveness of LUQ Table 1 and Figure 2 illus-303

trate the correlation between factuality scores and304

uncertainty scores. The results highlight LUQ’s305

effectiveness as an indicator of model factuality in306

long text generation tasks. LUQ demonstrates a307

strong negative correlation for GPT-3.5, Gemini 308

1.0 Pro, Yi-34B-Chat, Vicuna-33B, and Tulu-2- 309

70B, with the strongest Pearson correlation being 310

-0.8509. 311

For the baseline methods, LexSim emerges as 312

a robust baseline offering lower computational de- 313

mands. EigV have competing performance with 314

LexSim in models like Gemini 1.0 Pro and Vicuna- 315

33B. The confidence-based SelfCheck method 316

demonstrates the best Spearman correlation in mod- 317

els such as Gemini 1.0 Pro and Tulu-2-70B. Other 318

baselines such as Eccentricity, NumSets and Deg 319

yield unsatisfactory results, occasionally exhibiting 320

even positive correlations. 321

We also observe that LUQ is better suited for 322

models with relatively lower factuality and a lack 323

of self-awareness regarding uncertainty. For mod- 324

els with high factuality capabilities, such as GPT- 325

4, LUQ only demonstrates a moderate correlation 326

with factuality scores. As indicated in Table 2 and 327

Figure 2a, among all models, GPT-4 exhibits the 328

highest overall factuality scores and the lowest aver- 329

age uncertainty scores. The data points are tightly 330

clustered with only few instances of uncertainty. 331

Moreover, GPT-4’s self-awareness of uncertainty 332

may also impact external UQ efficiency, as it tends 333

to abstain from answering questions more often 334

compared to other models, highlighting its height- 335

ened internal uncertainty awareness. This obser- 336

vation does not influence the effectiveness of our 337

method, as in real life models with lower factual- 338
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(c) Gemini 1.0 Pro
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(d) Yi-34B-Chat
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(e) Tulu-2-70B
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(f) Vicuna-33B

Figure 2: Scatter plot illustrating the relationship between factuality scores (x-axis) and uncertainty scores (y-axis)
for different LLMs. Each point symbolizes an item in the FactScore dataset, with a red line highlighting the Pearson
correlation. The distribution suggests a pattern where higher factuality correlates with lower uncertainty.

ity and unable to express uncertainty are in greater339

need of external uncertainty measurements.340

LUQ in FACTSCORE-DIS We test one closed-341

source LLM, GPT-3.5, and one open-source LLM,342

Yi-34B-Chat in our newly proposed FACTSCORE-343

DIS. Our LUQ model consistently surpasses the344

performance of baseline models, thereby demon-345

strating its effectiveness on the newly proposed346

dataset within the medical domain.347

Higher frequency leads to higher factuality and348

lower uncertainty. In Figure 3, we compare the349

factuality and uncertainty scores across different en-350

tity frequencies. The original FACTSCORE dataset351

provides the frequency of each entity in Wikipedia,352

categorizing them based on page views and co-353

occurrence within the training set (Min et al., 2023).354

Frequencies are classified into five categories, rang-355

ing from “very rare” to “very frequent.” Our ob-356

servations suggest that questions associated with357

higher entity frequencies tend to yield more fac-358

tual responses, alongside decreased model uncer-359

tainty. Notably, GPT-4 demonstrates consistent360

performance regarding uncertainty and factuality361

across varying frequencies, potentially attributable362

to its selective response strategy. Although it an-363

swers all the questions in the “very frequent,” “fre-364

quent,” and “medium” categories, it refuses to an-365

swer around 25% of “rare” questions and 30% of366

“very rare” questions. 367
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Figure 3: Comparison of factuality and uncertainty
scores across different frequencies on FACTSCORE-
BIO.

4.3 LUQ-ENSEMBLE 368

Given the variance in training corpus, different 369

LLMs may possess varying levels of knowledge 370

for a specific question, leading to discrepancies 371

in uncertainty levels across models. Utilizing the 372

LUQ uncertainty score as a reliable indicator of fac- 373
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GPT-3.5 Yi-34B-Chat Tulu-2-70B Vicuna-33B Gemini 1.0 ProPercentile FS US FS US FS US FS US FS US
0 68.25 25.71 55.71 41.25 47.19 55.83 42.47 55.31 43.20 61.74

2.5 69.80 24.07 56.91 40.24 48.28 53.86 43.59 54.41 44.28 60.05
5 70.82 23.40 57.99 39.28 49.35 53.13 44.54 53.76 45.20 59.23

7.5 71.52 22.66 58.86 38.12 50.27 52.57 45.54 52.97 46.34 58.19
10 72.30 22.18 60.21 36.79 51.45 51.87 46.14 52.34 47.25 57.73

12.5 74.13 21.61 61.69 35.04 52.13 51.31 46.53 51.58 48.41 56.29
15 75.04 21.17 62.91 34.18 53.29 50.63 47.52 50.96 49.51 55.40

Table 3: Selective question answering results on FACTSCORE-BIO (expressed as percentage). The percentile
indicates the percentage of questions for which answers were abstained.

Methods PFS PUS AD

Tulu-2-70B 47.19 55.83 42.08
Gemini 1.0 Pro 42.73 62.17 29.51
Vicuna-33B 42.47 58.06 28.41
LUQ-ENSEMBLE 52.83 45.83 100

Yi-34B-Chat 55.71 41.25 66.12
Tulu-2-70B 47.19 55.83 21.31
Gemini 1.0 Pro 42.73 62.17 12.57
LUQ-ENSEMBLE 58.75 37.60 100

GPT-3.5 67.31 25.71 92.35
Gemini 1.0 Pro 42.73 62.17 1.64
Vicuna-33B 42.47 58.06 6.01
LUQ-ENSEMBLE 67.37 24.75 100

GPT-4 72.11 28.98 60.11
GPT-3.5 67.31 25.71 32.79
Yi-34B-Chat 55.71 41.25 7.10
LUQ-ENSEMBLE 76.61 17.27 100

Table 4: Results of different ensemble strategies on
FACTSCORE-BIO (expressed as percentage). The An-
swer Distribution (AD) metric indicates the percentage
of final answers generated by each component model.

tuality, we enhance overall performance through374

an ensemble approach. In this method, the model375

exhibiting the lowest LUQ score for a given ques-376

tion is chosen as the final answer. Experimental377

results (Table 4) affirm the superiority of the LUQ-378

ENSEMBLE over its constituent counterparts.379

Ensembling models with similar factuality380

scores can notably enhance performance. Our381

findings suggest that ensembling models with simi-382

lar factuality scores can significantly enhance per-383

formance. For instance, in the combination of384

Tulu-2-70B, Gemini 1.0 Pro, and Vicuna-33B, the385

PFS increases by 5% compared to the originally386

top-performing Tulu-2-70B, which scored 47.19%.387

Additionally, ensembling models with compara-388

ble performance leads to a more balanced distribu-389

tion of answers. In contrast, integrating a model390

with substantially superior performance, as seen in391

the combination of GPT-3.5, Gemini 1.0 Pro, and392

Vicuna-33B, predominantly favors answers from 393

GPT-3.5 (92.35%), leading to marginal improve- 394

ment (0.06%) in the ensemble method. 395

To provide a detailed analysis, Table 4 includes 396

an ensemble of the top three models with the high- 397

est factuality scores: GPT-4, GPT-3.5, and Yi-34B- 398

Chat. The results indicate that the majority of an- 399

swers are generated by GPT-4 and GPT-3.5, ac- 400

counting for 92.90%. However, the improvement 401

in PFS primarily stems from questions that GPT-4 402

refuses to answer. They are given a factuality score 403

of zero and an uncertainty score of one for penalty. 404

This underscores a pivotal decision point for prac- 405

titioners regarding model behavior in the face of 406

uncertainty: whether the model should attempt to 407

answer even though it is uncertain or opt to abstain. 408

4.4 Selective Question Answering 409

From Table 2, it is observed that while GPT-4 opts 410

not to respond to some queries, other models gen- 411

erally attempt to answer all questions. The limited 412

refusal by Gemini 1.0 Pro primarily stems from 413

considerations of sensitive content and regulatory 414

constraints, rather than uncertainty1. Therefore, 415

we investigate the application of the LUQ score to 416

equip these models with the capability for selec- 417

tive question answering—that is, to enable them 418

to decline responses when uncertain. Contrary to 419

the traditional aim of responding correctly to every 420

question, the objective in a selective question an- 421

swering framework is to preserve accuracy while 422

maximizing the number of questions answered (Ka- 423

math et al., 2020; Cole et al., 2023; Yang et al., 424

2023). 425

Table 3 presents the results of selective question 426

answering. The models are permitted to refrain 427

from answering questions with high uncertainty. 428

The percentiles indicate the proportion of ques- 429

1Gemini 1.0 Pro API returns the reasons of refusing to
answer certain questions.
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tions each model abstained from answering. The430

findings demonstrate that adopting a selective an-431

swering approach enhances the models’ factuality432

by allowing for more question rejections. By de-433

clining to answer a similar proportion of questions434

(approximately 15%) as GPT-4, the models typi-435

cally achieve an improvement of over 5% in overall436

factuality scores. Notably, when implementing this437

selective answering strategy in practical applica-438

tions, it is essential for practitioners to tailor the439

uncertainty thresholds to the specific models and440

tasks at hand.441

5 Related Work442

UQ in Machine Learning Prior to LLMs, UQ443

has been extensively explored within the field of444

machine learning (Gawlikowski et al., 2023). Ac-445

cording to the source of uncertainty, it is typi-446

cally categorized into two types: aleatoric and447

epistemic uncertainty(Hora, 1996; Der Kiureghian448

and Ditlevsen, 2009). Aleatoric uncertainty, also449

known as statistical uncertainty, pertains to the in-450

herent randomness in experimental outcomes due451

to stochastic effects (Hüllermeier and Waegeman,452

2021). In contrast, epistemic uncertainty stems453

from incomplete knowledge, potentially including454

uncertainties in a machine learning model’s param-455

eters or the lack of certain training data (Hüller-456

meier and Waegeman, 2021; Huang et al., 2023).457

Our focus is primarily on epistemic uncertainty.458

UQ in LLMs In contrast to discriminative mod-459

els, which readily provide probability scores for460

specific categories, uncertainty estimation in gener-461

ative LLMs presents unique challenges: (1) There462

is an exponential increase in the output space as463

sentence length grows, rendering the evaluation of464

all possible predictions impractical (Geng et al.,465

2023; Wang et al., 2023). (2) The significance of466

semantic nuances and their inherent uncertainties,467

which diverges from the fixed category labels typi-468

cal of discriminative models, complicates matters469

further (Kuhn et al., 2022). Generally, UQ methods470

for LLMs can be categorized based on the acces-471

sibility of the model’s internal states, distinguish-472

ing between black-box and white-box approaches.473

White-box LLMs often rely on logit-based evalua-474

tions, assessing sentence uncertainty through token-475

level probabilities or entropy (Murray and Chiang,476

2018; Kuhn et al., 2022; Vazhentsev et al., 2023;477

Duan et al., 2023).478

However, as access to LLMs increasingly relies479

on API calls, research has pivoted towards black- 480

box methods. These can be further categorized 481

into: (i) verbalized methods, which prompt LLMs 482

to articulate their uncertainty in the output, using 483

phrases like “I am sure" or “I do not know" (Mielke 484

et al., 2022). Nonetheless, a practical mismatch 485

between the expressed and actual uncertainty lev- 486

els has been noted (Lin et al., 2022; Xiong et al., 487

2023). Xiong et al. (2023) highlight that LLMs of- 488

ten display excessive confidence when verbalizing 489

their certainty. (ii) Consistency-based (sampling- 490

based) estimation premises on the assumption that 491

increased uncertainty in a model corresponds to 492

greater diversity in its outputs, frequently result- 493

ing in hallucinatory outputs (Manakul et al., 2023; 494

Lin et al., 2023). Our proposed method, LUQ, fol- 495

lows this consistency-based approach. There are 496

also efforts on integrating verbalized methods with 497

consistency-based approaches (Xiong et al., 2023; 498

Rivera et al., 2024). 499

6 Conclusion 500

In this work, we first identify that existing UQ 501

methods are ineffective on long text generation. 502

We therefore introduce LUQ, a novel UQ method 503

tailored for long-form text generation in LLMs. It 504

overcomes the limitation of previous methods by 505

calculating sentence level consistency. We con- 506

duct extensive experiments over six popular LLMs, 507

such as GPT-4 and Gemini 1.0 Pro. We extend the 508

existing FACTSCORE dataset with human valida- 509

tion and annotations for additional disease domain. 510

Our findings demonstrate that LUQ significantly 511

improves the correlation with models’ factuality 512

scores over previous methods across various differ- 513

ent setups and domains. LUQ serves as a reliable 514

indicator of model’s factuality performance. Ad- 515

ditionally, we present LUQ-ENSEMBLE, a model 516

ensembling and selective question answering strat- 517

egy, which showcases a promising avenue for en- 518

hancing the factual accuracy of LLM outputs. This 519

research not only advances our understanding of 520

UQ in the context of LLMs but also offers practical 521

tools for improving the reliability and trustworthi- 522

ness of AI-generated content. 523

Limitation 524

The limitations of this study include the following: 525

(1) A primary challenge in studying uncertainty 526

quantification for long text generation lies in the 527

difficulty of evaluating the generated text. Unlike 528
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classification tasks and short-answer QA, there is529

no straightforward metric for assessing the qual-530

ity of generated text. In this study, we employ531

the factuality score as the primary evaluation met-532

ric, thereby leaving other text aspects, such as co-533

herence, cohesion, and creativity, under-explored.534

Future work could investigate uncertainty scores535

using more comprehensive evaluation metrics. (2)536

Fact-checking for long text generation is costly, es-537

pecially when involving human annotation. While538

we utilized FACTSCORE as an automated evalu-539

ation tool, it still requires numerous API calls to540

fact-check each piece of information. The develop-541

ment of more cost-effective evaluation metrics or542

datasets could allow for the expansion of the exper-543

imental scope. (3) We discovered that temperature544

plays a crucial role in measuring uncertainty. A545

common limitation among all consistency-based546

uncertainty quantification methods is their effec-547

tiveness only at high temperatures. In practice, if548

some scenarios necessitate a fixed low tempera-549

ture, these consistency-based UQ methods may not550

perform effectively.551

Ethics Statement552

Our research strictly follows ethical guidelines, fo-553

cusing on data privacy, bias mitigation, and societal554

impact. We use the publicly available FACTSCORE555

dataset, which ensures a balanced representation556

of different nationalities. Our code usage complies557

with original licensing agreements and is strictly558

for academic purposes, reflecting our commitment559

to ethical research standards.560
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A Experiment Setup765

For GPT-4 and GPT-3.5, we use766

the OpenAI API, with specific ver-767

sion gpt-4-turbo-0125-preview and768

gpt-3.5-turbo-0613. For Gemini 1.0 Pro,769

we call the API for developers. For Yi-34B-Chat,770

Tulu-2-70B (tulu-2-dpo-70b), and Vicuna-33B771

(vicuna-33b-v1.3), we use them off-the-shelf772

and only for inference. We run our uncertainty773

measurement experiments on A100-SXM-80GB774

GPUs. For our experiments, we use the following775

prompt:776

Tell me a short bio of the person <entity>.
Begin with their birth, significant life events,
achievements, and contributions. Include
their education, career milestones, any no-
table awards or recognitions received, and
their impact on their field or society. En-
sure the biography is concise, factual, and
engaging, covering key aspects of their life
and work.

From the esitimation of Min et al. (2023), run-777

ning FACTSCORE costs about $1 of the API cost778

per 100 sentences. For instance, for 100 genera-779

tions, each with 5 sentences on average, it costs $5780

in total.781

B Baselines782

LexicalSimilarity (Fomicheva et al., 2020): it com-783

putes the similarity between two phrases using met-784

rics like ROUGE scores and BLEU. For our exper-785

iment, we utilize BERTScore (Zhang et al., 2020)786

to enhance performance, computing the average787

similarity score with other answers.788

NumSemSets (Lin et al., 2023): it clusters seman-789

tically equivalent answers into the same sets. Ini-790

tially, the number of semantic sets equals the total791

number of generated answers. Then it sequentially792

examines responses, making pairwise comparisons793

between them, and combines different answers.794

One of the limitation of this method is that the795

uncertainty score UNumSemSets can only take inte-796

ger values. EigValLaplacian is therefore designed797

to overcome this problem.798

EigValLaplacian (Lin et al., 2023): For a similar-799

ity matrix S, it calculates the Normalized Graph800

Laplacian of S using L = I −D− 1
2SD− 1

2 , where801

D is a diagonal matrix and Dii =
∑m

j=1 Sij802

(m is the number of responses). Consequently,803

the uncertainty score is defined as UEigV =804

∑m
k=1max (0, 1− λk). This value is a continu- 805

ous analogue of UNumSemSets. In extreme case if 806

adjacency matrix S is binary these two measures 807

will coincide. 808

DegMat (Lin et al., 2023): it is based on the idea 809

that the total uncertainty of the answers might be 810

measured as a corrected trace of the diagonal ma- 811

trix D. This is because elements on the diagonal of 812

matrix D are sums of similarities between the given 813

answer and other answers. We thus define uncer- 814

tainty estimate UDeg (x) = trace(m−D)/m2 . 815

Eccentricity (Lin et al., 2023): A drawback of pre- 816

viously considered methods is the limited knowl- 817

edge of the actual embedding space for the dif- 818

ferent answers since we only have measures of 819

their similarities. The graph Laplacian, however, 820

can provide us with coordinates for the responses. 821

Denote u1, . . . ,uk ∈ Rm as the eigenvectors 822

of L that correspond to k smallest eigenvalues. 823

We can efficiently construct an informative em- 824

bedding vj = [u1,j , . . . ,uk,j ] for an answer yj . 825

Then it uses the average distance from center as 826

the uncertainty measure, defined as : UEcc = 827∥∥[ṽT
1 , . . . , ṽ

T
m

]∥∥
2
, where ṽj = vj − 1

m

∑m
ℓ=1 vℓ. 828

SelfCheckNLI (Manakul et al., 2023): As de- 829

fined in Section 2, SelfCheckNLI primarily func- 830

tions as a confidence measurement tool, calculating 831

the similarity exclusively between the primary re- 832

sponse ra and the other generated samples. Distinc- 833

tively, it evaluates P(contradict | s, r′) and focuses 834

solely on C(x, ra). 835

C Number of Facts in a Response 836

Figure 4 shows the average atomic facts provided 837

by various AI models for the FACTSCORE dataset. 838

GPT-4 has the highest average number of atomic 839

facts at 52.24, indicating it provides the most de- 840

tailed factual responses. Tulu-2-70B follows with 841

an average of 52.17, nearly matching GPT-4 in fac- 842

tual details. GPT-3.5 has an AF of 50.67, showing 843

it also delivers a high level of factual details in 844

its responses. Yi-34B-Chat and Gemini 1.0 Pro 845

have comparatively lower averages, at 45.80 and 846

42.72 respectively. Vicuna-33B has the lowest AF 847

at 36.20, indicating it offers the least amount of fac- 848

tual information in its responses. Generally, these 849

models provide similar number of atomic facts in 850

their responses. 851
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Figure 4: Average number of atomic Facts (AF) in a
response for each model.

C.1 Ablation Study852

Temperature As the diversity of content gen-853

erated by LLMs may be influenced by the tem-854

perature setting, we adjust the temperature to test855

the robustness of our methods. Due to limitations856

in computational resources and API budget con-857

straints, we selected GPT-3.5, Yi-34B-Chat, and858

Vicuna-33B for our experiments (refer to Figure859

5). Our findings indicate that a lower temperature860

leads to a weaker correlation score, likely because861

the generated responses are more uniform, pro-862

viding limited information for the self-consistency863

test. As the temperature increases, we observe a864

strengthening in correlation. However, beyond a865

certain point, further increases in temperature lead866

to diminishing improvements and can even result867

in a weaker correlation. We hypothesize that exces-868

sively diverse responses may complicate the NLI869

process, as a greater number of sentences fail to be870

supported by other samples.871

Number of Samples Previous research on short872

answer generation (Kuhn et al., 2022; Lin et al.,873

2023) has demonstrated that an increase in the874

number of samples correlates with enhanced per-875

formance. We investigate whether it also applies876

to long-text generation and find that with more877

samples, LUQ shows better performance and PCC878

scores, which corroborates with previous observa-879

tions in short-text generation, as depicted in Fig-880

ure5. Providing a greater number of samples en-881

ables the NLI process to predict sentence factuality882

with higher accuracy. However, a notable drawback883

of increasing the sample size is the associated rise884

in computational costs.885
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Figure 5: The effect of different temperatures (upper)
and the number of samples (lower) on the PCC with
LUQ.

D Experiments on FACTSCORE-DIS 886

To demonstrate the generalization of our proposed 887

LUQ model across various domains, we create a 888

new dataset adopting the methodology used to con- 889

struct the original FACTSCORE dataset for the dis- 890

ease entities. To differentiate, we refer the original 891

dataset as FACTSCORE-BIO and the new dataset 892

as FACTSCORE-DIS. The detailed information of 893

FACTSCORE-DIS dataset is as follows: 894

Data Collection Following FACTSCORE-Bio, 895

we use Wikipedia as our main knowledge source. 896

We first select all the diseases names using the fol- 897

lowing SPARQL codes calling the wiki API. We 898

then removed those diseases with empty Wikipedia 899

pages. 900

Following FACTSCORE-BIO, we utilized 901

Wikipedia as our primary knowledge source. Ini- 902

tially, we extracted all disease names using the 903

following SPARQL queries to call the Wikidata 904

API. Subsequently, we removed those diseases with 905

empty Wikipedia pages. 906

SELECT ?item ?itemLabel WHERE { 907
?item wdt:P31 wd:Q112193867. # is an 908

instance of class of diseases 909
SERVICE wikibase:label { bd: 910

serviceParam wikibase:language "[ 911
AUTO_LANGUAGE],en". } 912

} 913

Frequency For each entity retrieved, we adhere 914

to the methodology described by Min et al. (2023) 915

to assign a frequency label ranging from “Very 916
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Rare" to “Very Frequent" based on an entity’s917

pageviews. It’s crucial to acknowledge that in the918

context of diseases, the number of diagnosed cases919

is commonly used as a metric. However, we opted920

not to use this metric because our goal is to simulate921

the distribution of these diseases within the train-922

ing corpus of LLMs. Relying solely on diagnosed923

case numbers may underrepresent the prominence924

of a disease within the corpus. Diseases like Amy-925

otrophic Lateral Sclerosis (ALS), despite their low926

incidence rate in the population, attract significant927

global interest and impact. As a result, LLMs may928

demonstrate extensive knowledge about such dis-929

eases, reflecting their visibility in the data on which930

they are trained, rather than their actual morbidity931

rates.932

After determining the frequencies, we sampled933

36 disease entities for each category, amassing a934

total of 180 data points. Subsequently, we con-935

ducted a human evaluation to validate the selected936

data points, replacing any that were deemed unsuit-937

able with diseases that were more clearly defined938

and well-documented. Several examples from the939

dataset are showcased in Table 5.940

Frequency Wikidata ID Disease Name

Very Freq
Q8071861 Zika fever
Q12199 HIV/AIDS
Q12152 myocardial infarction
Q12206 diabetes
Q12204 tuberculosis

Freq
Q154874 yellow fever
Q188638 mood disorder
Q159701 glaucoma
Q1138580 Ewing sarcoma
Q209369 Hodgkin lymphoma

Medium
Q5134736 cloacal exstrophy
Q247978 anisometropia
Q2373361 tree nut allergy
Q778731 pyuria
Q7900433 urethral syndrome

Rare
Q220322 agnosia
Q2735907 cutis laxa
Q500695 retinoblastoma
Q627625 histoplasmosis
Q1347729 Epstein syndrome

Very Rare
Q21505502 spina bifida
Q1862031 pinguecula
Q1361850 patulous eustachian tube
Q4667534 leiomyoma
Q595010 hypertrichosis

Table 5: Frequency Categories of Diseases

E Human Evaluation 941

We also engage human annotators to assess the 942

factuality of the generated passages. Although 943

Min et al. (2023) conducted comprehensive ex- 944

periments to demonstrate the effectiveness of the 945

FACTSCORE framework, we perform a sanity 946

check by directly correlating the annotated pas- 947

sage factuality with uncertainty scores. The anno- 948

tators are recruited from student volunteers with a 949

Masters Degree in Computer Science. Annotators 950

are compensated above the local minimum hourly 951

wage standard. The instructions provided to the 952

annotators are as follows: 953
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Your task is to evaluate the veracity of each
sentence in the provided passage. It is crucial
to carefully assess each statement for accuracy
and relevance to the main topic.
Steps to Follow:

1. Read the Passage Thoroughly: Begin
by reading the entire passage to grasp the
overall context and the main topic.

2. Check Each Sentence: Examine each
sentence individually for accuracy and
completeness. Determine if the infor-
mation is factual and supported by reli-
able sources, and whether the sentence
presents a partial truth or is fully accu-
rate.

3. Scoring: Assign each sentence a score
based on its accuracy, using a specified
range (e.g., 1 to 3). Scores should reflect:

• The sentence is entirely accurate
and provides a complete picture.
[Highest Score: 3]

• The sentence is partially correct but
may lack context or omit important
details. [Mid-Range Score: 2]

• The sentence is largely inaccurate
or misleading. [Lowest Score: 1]

4. Relevance: Flag any sentence that does
not contribute to or is off-topic as Not
Relevant.

Guidelines:

• Use reliable sources (e.g. Wikipedia) to
verify factual information, maintaining
an impartial stance throughout.

• Keep the passage and your assessments
confidential.

We randomly selected 50 passages from the re-954

sponses generated by the Yi-34B-Chat model. We955

observed a Pearson correlation coefficient of 0.88956

between the FACTSCORE factuality score and the957

human-annotated factuality score. This finding958

aligns with the results reported by Min et al. (2023),959

demonstrating that FACTSCORE is a reliable tool960

in our experiments. Table 6 compares the results961

of different UQ methods with those obtained using962

FACTSCORE and human annotation.963

Methods
FactScore Human

PCC SCC PCC SCC

LexSimilarity -67.31 -66.45 -65.63 -64.0

Eccentricity -26.28 -25.46 -22.58 -25.12

NumSemSets -26.42 -26.92 -24.28 -23.52

EigValLaplacian -45.77 -43.94 -43.35 -42.71

DegMat -38.93 -39.68 -36.81 -31.61

SelfCheckNLI -68.52 -67.27 -66.13 -69.22

LUQ -72.72 -71.4 -69.02 -68.27

Table 6: Pearson and Spearman correlation coefficients
(expressed as percentages) between different factuality
scores and various UQ methods on the FactScore-Bio
dataset using Yi-34B-Chat.
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