
Self-Improving Autonomous Underwater Manipulation

Ruoshi Liu1, Huy Ha1,2, Mengxue Hou3, Shuran Song1,2, Carl Vondrick1

1Columbia University 2Stanford University 3University of Notre Dame
aquabot.cs.columbia.edu

Abstract— Underwater robotic manipulation faces significant
challenges due to complex fluid dynamics and unstructured en-
vironments, causing most manipulation systems to rely heavily
on human teleoperation. In this paper, we introduce AquaBot,
a fully autonomous manipulation system that combines be-
havior cloning from human demonstrations with self-learning
optimization to improve beyond human teleoperation perfor-
mance. With extensive real-world experiments, we demonstrate
AquaBot’s versatility across diverse manipulation tasks, in-
cluding object grasping, trash sorting, and rescue retrieval.
Our real-world experiments show that AquaBot’s self-optimized
policy outperforms a human operator by 41% in speed.
AquaBot represents a promising step towards autonomous and
self-improving underwater manipulation systems. We will open-
source both hardware and software implementation details.

I. INTRODUCTION

Despite high demand and continuous efforts, a fully au-
tonomous manipulation system is still out of reach for most
critical underwater applications. What makes underwater
manipulation so hard? In addition to the typical difficul-
ties robotic manipulation systems face, underwater robots
encounter unique challenges posed by high-dimensional and
nonlinear fluid dynamics. Such complexity in modeling is
further exacerbated by the wide variety of objects, tasks,
and environments encountered underwater. This leads to
significant challenges in controller design for underwater
manipulation. As a result, many hand-engineered robotics
manipulation systems fall short when attempting to explicitly
model the complex dynamics of both the robot and its
environment.

On the other hand, teleoperated systems [1], [2], [3]
benefit from human adaptability, allowing them to handle
unpredictable conditions and execute complex tasks. How-
ever, teleoperation is not the perfect solution. First, its
scalability is constrained by its dependence on human input.
Furthermore, the system’s performance is inherently capped
by the operator’s skill level, which is often suboptimal. For
instance, operators usually operate the robot at low speeds
when executing precise manipulation tasks, which trades off
the system’s performance for ease of teleoperation.

This raises a critical question: Can we distill the strategies
demonstrated by human operators into a robust and reactive
visuomotor policy that enables autonomous execution of
manipulation tasks under complex dynamics? Furthermore,
can the robot system continuously improve its learned policy
through self-guided exploration and optimization, thereby
exceeding the performance of human operators?

To answer this question, we propose AquaBot, a system

Fig. 1: AquaBot combines behavior cloning with self-
learning to optimize fully autonomous end-to-end visuomo-
tor policies to achieve efficient manipulation skills across
a wide range of tasks, including generalization to unseen
objects (Rock Grasping), long horizon tasks (Trash Sorting)
and robustness against large perturbations from unmodelled
deformable and articulated objects (Rescue Retrieval).

designed to learn end-to-end visuomotor policies for fully
autonomous underwater manipulation that can improve be-
yond human teleoperation performance through self-learning.
The training process consists of two stages: In the first stage,
we distill human adaptability into a closed-loop visuomotor
policy. To do so, we record human demonstrations that
teleoperate the robot to perform various manipulation tasks
and then use the data to train a visuomotor policy. By short-

ar
X

iv
:2

41
0.

18
96

9v
1

 [
cs

.R
O

]
 2

4
O

ct
 2

02
4

https://aquabot.cs.columbia.edu
aquabot.cs.columbia.edu

ening the policy’s action horizon, we effectively increase the
reactiveness of the policy, which is critical in dealing with
unexpected underwater dynamics. In the second stage, we
allow the robot to accelerate its learned behavior through
self-guided optimization. In this step, we repeatedly execute
the learned policy and use the execution time as a reward
to accelerate the policy with a surrogate-based optimization
algorithm. This step allows the system to further optimize
those suboptimal parameters (e.g., execution speed) in the
human demonstration data.

Through extensive real-world experiments, we empirically
found that our learning-based system offers several major
advantages when compared with classical underwater robot
controllers:

• Versatility. We apply the same method across three dif-
ferent challenging manipulation tasks, including object
grasping, trash sorting, and rescue retrieval.

• Simplicity. Unlike prior systems, our method handles
perception, dynamics modeling, motion planning, and
control within a single end-to-end visuomotor policy.

• Self-improving. Our base policy learned from demon-
strations can continue to improve as the robot accumu-
lates more experience in the field.

Our experiments have shown that end-to-end visuomotor
policies can handle multiple manipulation tasks with high
accuracy. With only 120 trials, our accelerated policy out-
performs the human operator by 41% and base policy by
68% in manipulation speed.

II. RELATED WORK

A. Autonomous Underwater Manipulation

Prior works in underwater manipulation have looked at
various components of a system, including manipulator and
end-effector design, dynamic modeling, model-based con-
trollers, motion planning, and perception systems [4], [5].

Dynamics. Mathematical models are extensively used in
the control of robotic systems. Applying these controllers for
on-land robots directly to underwater robots poses significant
problems due to the hydrodynamic effects. The hydrody-
namic effects of simple two-link manipulators were studied
in [6], [7], [8]. Further studies on modeling dynamics of
vehicle-manipulator systems were done in [9], [7] to study
the dynamic coupling effectors between the vehicle and
attached manipulators. Another innovative line of work fo-
cuses on modeling the dynamics of bio-inspired underwater
swimming manipulators (USM) [10], [11], [12], [13].

Control. Prior works have also extensively studied the
design of controllers to cope with the disturbances and un-
certainties introduced by water environments. A line of work
focuses on developing control laws for underwater robotic
control [14], [15], [16]. More recently, deep reinforcement
learning (DRL) was used in robotic control [17], [18] and
inspired many works to use DRL for underwater robotic
control [19], [20], [21]. Another line of work focuses on
learning a Model Predictive Control (MPC) controller with
neural networks [22], [23], [24].

QYSEA V-EVO

Underwater Drone

Top Camera

(100ms latency)

Front Camera

(700ms latency)

QYSEA

Parallel Gripper

Camera Mount

LED Head Lamp

Thruster x6

Tether (100m)

Control Box

(100 Hz)

Policy

(10 Hz)

Wireless

Fig. 2: Our accessible hardware platform ($2000 USD)
consists of 2 cameras and a parallel jaw gripper for research
and development of underwater visuomotor policy learning.

Perception. Prior works have explored topics including
perception [25], sensing [26], and multi-sensor fusion [27].
More recently, with the rapid development of computer
vision, such as techniques like SLAM [28], [29], neural
rendering [30], [31], 3D reconstruction [32], [33], many re-
search works have started to explore data-driven underwater
perception systems [34], [35].

B. Sensorimotor Policy

Sensorimotor policy is a decision-making model that
chooses actions to control a dynamical system based on
sensory data. Such actions could be, for example, the motor
torque commands of a robot, and the sensory data could
come from on-robot or external sensors such as cameras,
sonar, thermostats, and water pressure sensors. Reinforce-
ment learning (RL) has been one of the main avenues of
research towards learning visuomotor policy for manipu-
lation [36], [37], [38]. More recently, deep reinforcement
learning (DRL) uses deep neural networks to parameter-
ize a policy that can be optimized under a reinforcement
learning algorithm [39], [40], [41], [42]. Another line of
works focuses on learning a world model as a differentiable
world simulator, in which manipulation could be performed
through optimization-based planning or a policy can be
learned through reinforcement learning [43], [44], [45], [46],
[47]. Dynamic action primitives were extensively studied
to enhance a policy’s ability to perform manipulation in a
dynamic environment [48], [49], [50], [51], [52].

III. APPROACH

A. Hardware / Software System

Our hardware platform (Fig. 2) is built around the QYSEA
FIFISH V-EVO underwater drone which is a cheap ($1600)
and accessible ROV drone with six thrusters providing 6
DoF torque and force control. The drone also comes with
a parallel gripper that can be attached externally to the
drone body. The front camera has a relatively high latency
(700 ms). Therefore, we externally mounted a low-cost
($170) waterproof streaming camera with 100 ms latency
on top of the robot body, also adding a stereo view for
manipulation. A 3D-printed camera mount was fixed to the

Fig. 3: Learning Framework. In the first stage (a), we train our base policy by learning from human demonstrations from
offline data. In the second stage (b), we roll out the behavior-cloned policy to collect more self-learning data to learn a
surrogate model in an online fashion, which optimizes the motor speed δ in an online fashion.

robot body. The movement of the robot and its gripper
is controlled by a tethered control box with a 100 Hz
control frequency. For autonomous manipulation, we use a
software SDK to send control signals to the robot through
the control box and receive proprioceptive data through the
same connection. Additionally, we mounted two external
cameras at two corners of the pool for real-time localization
of the robot. The detected 3D position, plus the internal IMU
sensor and compass, provide a full 6 DoF robot pose in the
global coordinate system, which we use for navigation and
reset. Note that this is a proxy for existing localization and
navigation methods, a well-studied area in marine robotics
with extensive prior works.

B. Manipulation Policy with Behavior Cloning
Since we cannot precisely detect the position and orien-

tation of the robot underwater, we perform force and torque
control instead of position control (commonly used for on-
land manipulation [53], [54], [55]), as shown in Fig. 3(a). We
implemented a teleoperation system with an Xbox controller
to collect human demonstrations for different tasks. During
demonstration collection, we record visual data at 10 Hz and
control data at 30 Hz. Each recorded action is an 8D vector
composing the 3 Cartesian directions, 3 rotational directions,
and open/close gripper movement.

With demonstration data collected, we follow the typical
behavior cloning methods [39], [53], [54] for learning an
end-to-end visuomotor policy. For the visual encoder, we use
a convolutional neural network (CNN) to obtain a feature
vector for each image. We use two separate visual encoders
for each camera (top camera + front camera), each with an
observation horizon of 2. The features were concatenated
as the input to a multi-layer perceptron (MLP) to predict
the 8D action vector, which is supervised with an MSE loss
(empirically better than L1). Formally, we optimize for

argmin
θ

L = E
a,I

∥∥a−πθ (f (I1),g(I2))
∥∥

2 (1)

where πθ is the learned policy with parameters θ , a is
ground truth action vector, f ,g are vision encoders, and I1, I2

are observation from the two camera stream. When other
action decoders, such as diffusion and transformer-based
CVAE, are used, we apply their corresponding loss function
for supervision. During deployment, our policy inference
time is well below 100ms, so we are able to perform 10
Hz real-time control of the robot using the learned policy.

Implementation Details. Both of the camera inputs were
resized to 224x224. We use a ResNet-18 with the last
residual block removed and replaced with a spatial-softmax
layer [39] to obtain a 512x2 feature vector for each input
image. We concatenate all feature vectors from an obser-
vation horizon of =2 for both cameras as the input to
the 3-layer MLP with LeakyReLU activation layers and a
hidden dimension of 64. For each task, we train on the
demonstrations for 50 epochs with a batch size of 32 and
an lr of 1e-4. For DP and ACT, we use hyperparameters
in the original official implementation. During deployment,
policy inference and real-time localization are run on two
RTX A6000 GPUs. A 32-core AMD Threadripper CPU was
used to handle the real-time decoding of camera streams and
other operations.

C. Self Learning for Policy Acceleration

Due to the limitation of teleoperation systems and the
human’s lack of underwater motor skills, human demon-
strations are likely to be sub-optimal. This could manifest
in several ways, such as the complexity of demonstrations,
manipulation efficiency, and the inability to predict effects
caused by water currents. A visuomotor policy learned from
behavior cloning can be significantly improved through self-
learning, where a robot performs a task by itself and learns
to adjust its behavior to optimize for a predefined reward.
Since most policies are trained once and deployed numerous
times. A self-learning method can benefit from the continual
accumulation of robot deployment data.

Safe Environment for Self Learning. Self-learning is
typically costly to set up on land due to safety concerns.
Luckily, water provides a safety buffer for the robot. In
addition, the one-piece design of the underwater drone is

Accelerate Towards Object Decelerate Close Gripper Lift and Move Forward

Lift and Move ForwardClose Gripper Open Gripper Close Gripper

Forward / Backward Close Gripper Open Gripper

(a) Grasping Control Sequence

(b) Recovery from Unstable Grasp

Fig. 4: Dynamic and Robust Manipulation. We plot policy outputs below their corresponding third-person views. (a)
shows how the robot decelerates by applying backward forces when it is close to the object, demonstrating proficiency in
underwater dynamics. (b) shows how the policy will retry after unstable grasps, demonstrating robustness.

physically robust. These conditions create a safe environment
for our robot to perform self-learning without engineering
many safety constraints. Since our policy outputs a contin-
uous 6 DoF force/torque control signal, we can learn to
accelerate the policy by learning a scaling parameter for
each control dimension, where the objective is to complete
a manipulation task in the shortest time possible.

Learning to Accelerate. To solve this non-convex
gradient-free optimization problem, we adopted the
surrogate-based optimization algorithm proposed by [52]
as illustrated in Fig. 3(b). Consider a reward we are
learning to optimize r, a BC-trained policy π , and our
goal is to maximize the reward by learning the optimal
scaling parameters δ , which is time-invariant. To optimize
a neural surrogate model that maps from δ to r, we use
an epsilon-greedy exploration strategy as follows. During
an exploration episode, we randomly sample a δ from a
uniform distribution. During an exploitation episode, we use
the neural surrogate model to optimize for the best parameter
δ . At the end of the episode, we measure r, add {δ ,r} to the
self-learning dataset, and use all previously self-collected
data to train the surrogate model. The implementation for
automatic reward evaluation and reset for each task can be
found in IV-B.

Implementation Details. The surrogate model used is a
3-layer MLP with an input dimension matching the corre-
sponding parameter space, hidden dimensions of 512, and
a scalar output for reward. Given a dataset of pairs of
input speed parameters and execution time as a reward, we

train the network for 1000 iterations with a batch size of
8. We use an AdamW optimizer with a learning rate of
0.01 and weight decay of 0.1 to optimize for the Huber
loss (smoothed L1 loss) between the predicted reward and
ground truth. Because the surrogate model training and
inverse optimization combined take less than 2 seconds on
an NVIDIA RTX A6000 GPU, which is far from being the
bottleneck during experiments, we perform these two steps
before each trial.

IV. EVALUATION
A. Behavior Cloning

TABLE I: Object Grasping Performance

Metric MLP DP ACT
Success Rate 20/20 8/20 0/20
Average Time (s) 13.52 45.53 N/A
Standard Deviation (s) 3.59 18.53 N/A

1) Task 1: Object Grasping: Grasping is a classic robotic
task extensively studied in prior works. However, water
makes the task significantly harder. Many on-land grasping
policies rely on precise positional control and long-horizon
motion planning, which are both difficult to achieve. In
addition, with disturbances and uncertainty created by water,
a grasping policy needs to constantly counter these forces
to navigate towards the target grasping pose and stabilize
the robot pose while closing the gripper. Despite its dif-
ficulty, a human operator, with several hours of training,
is able to control the robot with an Xbox controller to

Fig. 5: By self-learning (SL), AquaBot learns to accelerate
a manipulation policy learned from Behavior Cloning (BC)
through trial-and-error. After only 100 iterations, it can
perform the same manipulation task more efficiently than
vanilla BC policy and human experts.

perform reliable grasping. Therefore, we aim to distill such
manipulation skills demonstrated by humans into a policy
with behavior cloning. An illustration of these tasks can be
found in Fig. 1(a). For this task, we collected 492 human
demonstrations.

Findings: for this task, we evaluate the performance of
learned policy with three different policy decoder architec-
tures, including vanilla MLP, Diffusion Policy (DP) [53],
and Action Chunk Transformers (ACT) [54]. We found that
MLP policy yields the highest performance and manipulation
efficiency, outperforming both DP and ACT. Further analyz-
ing the policy behavior, we found that the biggest failure
mode of both DP and ACT is the gripper motion. With
a short action horizon, DP fails to generate continuous
gripper closing and opening motions, causing the grasping
to be unstable or unsuccessful. After training, ACT fails to
generate any gripper motion.

TABLE II: Trash Sorting Performance

Object Category Toy Rock Plastic

Policy Architecture MLP DP MLP DP MLP DP

Success Rate 10/10 8/10 10/10 4/10 9/10 9/10

2) Task 2: Trash Sorting: Motivated by the potential
application of autonomous ocean trash collection with robots,
we designed a trash sorting task where the robot learns to
pick up an object, predict its object classes, and place it in
the corresponding bin. This task demonstrates the system’s
ability to perform long-horizon tasks. We collected a total
of 527 demonstrations from human teleoperation to learn a
grasping policy for 3 object categories as shown in Fig. 1,
each with six different object instances. In addition, we
train a classifier model to predict the object category after
grasping it successfully. Finally, we use two external cameras
to perform real-time localization and use a PID controller to
navigate the robot and place the object in the corresponding
bin. An illustration of this task can be found in Fig. 1(b).

Findings: As shown in Tab. II, we found that both MLP
and DP perform well on grasping toys and plastic bags, but
MLP performs better than DP for grasping rocks. Through
this task, we found that a single system can autonomously
perform grasping, sorting, and placing of objects with a
variety of appearances, material properties, geometry, and
mass.

TABLE III: Success Rate Comparison for Rescue Retrieval

Policy MLP DP

Success Rate 5/10 3/10

3) Task 3: Rescue Retrieval: Third, we teach our robot to
perform a rescue retrieval task where a robot needs to grasp
an object larger and heavier than itself and drag it to a target
area, as shown in Fig. 1(c). In the experiment, the humanoid
object weighs 6.8kg, which is significantly heavier than the
robot’s own weight of 3.8kg. For this task, we collected
100 demonstrations and found that MLP achieves slightly
better performance than DP. Through this task, we found that
underwater robots can manipulate objects much larger and
heavier than their own body due to the presence of buoyancy.

TABLE IV: Performance vs. Action Horizon

Action Horizon 1 2 4 8

Average Time (s)
MLP 13.52 28.39 41.65 55.15
DP 45.53 49.10 54.04 56.77

Success Rate
DP 20/20 16/20 10/20 4/20
Diffusion 8/20 6/20 3/20 2/20

Action Horizon. Water introduces significant uncertainty
in robot movement, resulting in low repeatability and mak-
ing pose stabilization challenging for underwater vehicles.
Recent work on behavior cloning [53], [54] has shown
that action chunking—predicting and executing long ac-
tion sequences—improves manipulation success and sample
efficiency on land. However, in underwater environments,
where currents increase movement uncertainty, shorter action
horizons are more effective. Our ablation studies (Tab. IV)
confirm that reducing the action horizon improves both
success rate and policy efficiency.

Policy learns control and recovery behavior. Fig. 4(a)
highlights our policy learns to control. During grasping, the
robot first accelerates toward the object and then applies
reverse forces to decelerate and prevent overshooting or
colliding with the object, showing the policy’s ability to
perform both manipulation and robot control concurrently.
Additionally, when failures occur, such as unstable grasps,
the closed-loop policy quickly recovers, further illustrating
the advantages of a shorter action horizon, as shown in
Fig. 4(b).

B. Self Learning for Policy Acceleration
A key limitation of behavior cloning is that the policy

learned from human demonstrations is inherently restricted

optimal for
teleoperation

optimal for
policy (learned)

Fig. 6: Human Manipulation Efficiency vs. Motor Speed.
High motor speed leads to unstable manipulation and mis-
takes, and low motor speed leads to slow robot movements,
both hurting the manipulation efficiency. There exists a sweet
spot for the motor speed, balancing stability and speed.

by the performance of the human operator. During teleop-
eration, we observed that increasing motor speed leads to a
higher rate of errors by the operator, as shown in Fig. 6. Our
self-learning algorithm is designed to search for the optimal
combination of speed parameters through trial and error. To
validate this approach, we conduct self-learning experiments
on object-grasping tasks, demonstrating its effectiveness in
improving task performance.

Experimental Protocol. With everything fully automated,
we perform 120 episodes of policy rollouts to optimize a
5D speed vector, including (forward/backward, pan left/right,
up/down, yaw, and pitch). We leave out the rolling action due
to its irrelevance to the grasping task. We plot the results of
self-learning in Fig. 5, with the y-axis representing the task
completion time of each episode and the x-axis representing
the number of episodes conducted so far. We calculate the
standard deviation for each episode from samples of moving
window size of 20 and plot it as the error bars. For compar-
ison, we also plotted the mean and standard deviation of the
human teleoperation performance and BC policy with base
speed, both calculated from 10 trials. The speed parameters
are sampled uniformly random from [0.5,3].

Assessment of Success. To automate self-learning in the
real world, we need to automatically predict whether a task
is completed. For grasping, we check for 3 conditions:

• the policy outputs a gripper closing signal or not
• the gripper is fully closed or not
• the gripper is moving or not

If the policy is controlling the gripper to close and the
gripper is not fully closed and the gripper is not moving are
all true for 1 second, we decide that the grasping has been
successful. One may argue that such criteria may lead to
adversarial behavior where the robot finds non-target objects
to grasp, which is often encountered during reinforcement
learning [17]. However, since we are not changing the param-
eters of the base policy, we never observe such adversarial

TABLE V: Learned Speed Generalizes to Other Tasks

Object Sorting Rescue
(per object) Retrieval

BC 37.47s 41.23s
BC + SL 31.34s 33.54s

behavior during our experiments.
Reset Mechanism. We use localization and navigation

systems based on the external cameras to reset robot and
object positions before each episode. During each episode,
we start with the object already being grasped by the robot
and navigate the robot towards a predefined starting position.
Upon reaching the starting position, the robot releases the
object on the ground. At the same time, the robot moves
backward and upward for 2 seconds, after which the robot
starts being controlled by the policy. We measure the time
it takes for the robot to successfully grasp the object. The
aforementioned criteria decide the success of grasping.

Result Analysis. Fig. 5 shows that the manipulation
efficiency from self-learning was initially significantly worse
than that of the BC policy human baseline. This is expected
because randomly sampled speed parameters from the range
likely lead to worse behavior by either running too fast,
which causes instability or moving too slowly to finish the
task within the time limit. As more episodes are conducted,
the surrogate model finds an optimal trade-off between effi-
ciency and stability, thus able to obtain parameters that grad-
ually improve the manipulation efficiency. Within only 120
trials (only 100 were shown due to a moving window size
of 20), self-learning is able to find speed parameters leading
to manipulation behavior that’s significantly more efficient
than the baselines, outperforming the human baseline by 41%
and BC baseline by 68%. After obtaining the optimal motor
speed parameters, we apply them to other tasks and see a
19.6% and 22.9% improvement for trash sorting and rescue
retrieval, respectively. This shows the improvement obtained
from self-learning is not task-specific.

V. CONCLUSIONS

In this paper, we presented a self-learning framework for
autonomous underwater manipulation. We first demonstrated
that an end-to-end visuomotor policy can be learned from
human demonstrations to control an underwater robot to
perform a diverse set of manipulation tasks. We then apply
self-learning to accelerate the learned policy by optimizing
a speed parameter for each action dimension through trial
and error. The final accelerated policy achieves much higher
manipulation efficiency than both the BC policy and the
human operator. We believe behavior cloning will be an
excellent avenue for achieving robust autonomous underwa-
ter manipulation in the wild, and self-learning will continue
to improve these manipulation skills to achieve superhuman
performance. Finally, we hope to bridge the robot learning
and marine robotics community, bring learning methods to
underwater manipulation, and inspire more robot learning
researchers to explore applications in underwater robotics.

VI. ACKNOWLEDGEMENTS

We would like to thank Cheng Chi, Aurora Qian, Yunzhu
Li, Zeyi Liu, Matei Ciocarlie, and Xia Zhou for their
helpful feedback. We would also like to acknowledge the
technical support from QYSEA. This work is supported in
part by NSF Award #2143601, #2037101, and #2132519,
#1925157, Sloan Fellowship. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of the sponsors.

REFERENCES

[1] O. Khatib, X. Yeh, G. Brantner, B. Soe, B. Kim, S. Ganguly, H. Stuart,
S. Wang, M. Cutkosky, A. Edsinger, P. Mullins, M. Barham, C. R.
Voolstra, K. N. Salama, M. L’Hour, and V. Creuze, “Ocean one: A
robotic avatar for oceanic discovery,” IEEE Robotics and Automation
Magazine, vol. 23, no. 4, pp. 20–29, 2016.

[2] H. Stuart, S. Wang, O. Khatib, and M. R. Cutkosky, “The ocean
one hands: An adaptive design for robust marine manipulation,” The
International Journal of Robotics Research, vol. 36, no. 2, pp. 150–
166, 2017.

[3] G. Brantner and O. Khatib, “Controlling ocean one: Human–robot
collaboration for deep-sea manipulation,” Journal of Field Robotics,
vol. 38, no. 1, pp. 28–51, 2021.

[4] H. Huang, Q. Tang, J. Li, W. Zhang, X. Bao, H. Zhu, and G. Wang, “A
review on underwater autonomous environmental perception and target
grasp, the challenge of robotic organism capture,” Ocean Engineering,
vol. 195, p. 106644, 2020.

[5] S. Aldhaheri, G. De Masi, È. Pairet, and P. Ardón, “Underwater
robot manipulation: Advances, challenges and prospective ventures,”
in OCEANS 2022-Chennai. IEEE, 2022, pp. 1–7.

[6] K. Leabourne and S. Rock, “Model development of an underwater
manipulator for coordinated arm-vehicle control,” in IEEE Oceanic
Engineering Society. OCEANS’98. Conference Proceedings (Cat.
No.98CH36259), vol. 2, 1998, pp. 941–946 vol.2.

[7] S. T. Wilson, A. P. Sudheer, and S. Mohan, “Dynamic modelling,
simulation and spatial control of an underwater robot equipped with
a planar manipulator,” in 2011 International Conference on Process
Automation, Control and Computing, 2011, pp. 1–6.

[8] L. Gümüşel and N. G. Özmen, “Modelling and control of manipulators
with flexible links working on land and underwater environments,”
Robotica, vol. 29, no. 3, pp. 461–470, 2011.

[9] C. Barbălată, M. W. Dunnigan, and Y. Pétillot, “Dynamic coupling
and control issues for a lightweight underwater vehicle manipulator
system,” in 2014 Oceans - St. John’s, 2014, pp. 1–6.

[10] E. Kelasidi, K. Y. Pettersen, J. T. Gravdahl, and P. Liljebäck,
“Modeling of underwater snake robots,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), 2014, pp. 4540–
4547.

[11] J. Sverdrup-Thygeson, E. Kelasidi, K. Pettersen, and J. Gravdahl,
“Modeling of underwater swimming manipulators**this research was
partly funded by the research council of norway through the centres
of excellence funding scheme, project no. 223254 ntnu amos, and
partly funded by vista, a basic research program in collaboration
between the norwegian academy of science and letters, and statoil.”
IFAC-PapersOnLine, vol. 49, no. 23, pp. 81–88, 2016, 10th IFAC
Conference on Control Applications in Marine SystemsCAMS 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2405896316319127

[12] J. Sverdrup-Thygeson, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl,
“The underwater swimming manipulator—a bioinspired solution for
subsea operations,” IEEE Journal of Oceanic Engineering, vol. 43,
no. 2, pp. 402–417, 2018.

[13] P. Fairchild, Y. Mei, and X. Tan, “Physics-informed online estimation
of stiffness and shape of soft robotic manipulators,” IEEE Control
Systems Letters, 2023.

[14] C. Barbalata, M. W. Dunnigan, and Y. Petillot, “Position/force
operational space control for underwater manipulation,” Robotics
and Autonomous Systems, vol. 100, pp. 150–159, 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S092188901730386X

[15] C. Barbălată, M. W. Dunnigan, and Y. Pétillot, “Reduction
of the dynamic coupling in an underwater vehicle-manipulator
system using an inverse dynamic model approach,” IFAC-
PapersOnLine, vol. 48, no. 2, pp. 44–49, 2015, 4th IFAC Workshop
onNavigation, Guidance and Controlof Underwater VehiclesNGCUV
2015. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2405896315002475

[16] B. O. A. Haugaløkken, E. K. Jørgensen, and I. Schjølberg,
“Experimental validation of end-effector stabilization for
underwater vehicle-manipulator systems in subsea operations,”
Robotics and Autonomous Systems, vol. 109, pp. 1–12, 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0921889018300952

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[18] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, et al., “Deepmind
control suite,” arXiv preprint arXiv:1801.00690, 2018.

[19] Y. R. Jadhav and Y. S. Moon, “Rov manipulation from observation and
exploration using deep reinforcement learning,” Journal of Advanced
Research in Ocean Engineering, vol. 3, no. 3, pp. 136–148, 2017.

[20] I. Carlucho, M. De Paula, C. Barbalata, and G. G. Acosta, “A
reinforcement learning control approach for underwater manipulation
under position and torque constraints,” in Global Oceans 2020:
Singapore – U.S. Gulf Coast. IEEE, Oct. 2020. [Online]. Available:
http://dx.doi.org/10.1109/IEEECONF38699.2020.9389378

[21] H. Yang, J. Liu, X. Fang, X. Chen, Z. Gong, S. Wang, S. Kong, J. Yu,
and L. Wen, “Prediction model-based learning adaptive control for
underwater grasping of a soft manipulator,” International Journal of
Intelligent Robotics and Applications, vol. 5, pp. 337–353, 2021.

[22] A. Nikou, C. K. Verginis, and D. V. Dimarogonas, “A tube-based mpc
scheme for interaction control of underwater vehicle manipulator sys-
tems,” in 2018 IEEE/OES Autonomous Underwater Vehicle Workshop
(AUV), 2018, pp. 1–6.

[23] T. Salloom, X. Yu, W. He, and O. Kaynak, “Adaptive neural network
control of underwater robotic manipulators tuned by a genetic algo-
rithm,” Journal of Intelligent & Robotic Systems, vol. 97, pp. 657–672,
2020.

[24] I. Carlucho, D. W. Stephens, and C. Barbalata, “An adaptive data-
driven controller for underwater manipulators with variable payload,”
Applied Ocean Research, vol. 113, p. 102726, 2021.

[25] J. P. Oubre, I. Carlucho, and C. Barbalata, “Data-driven controllers
and the need for perception systems in underwater manipulation,”
2021. [Online]. Available: https://arxiv.org/abs/2109.10327

[26] K. Y. Chee and M. A. Hsieh, “LEARNEST: LEARNing Enhanced
Model-based State ESTimation for robots using knowledge-based
neural ordinary differential equations,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
11 590–11 596.

[27] S. Rahman, A. Quattrini Li, and I. Rekleitis, “Svin2: A multi-sensor
fusion-based underwater slam system,” The International Journal of
Robotics Research, vol. 41, no. 11-12, pp. 1022–1042, 2022.

[28] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[29] H. Matsuki, R. Murai, P. H. Kelly, and A. J. Davison, “Gaussian
splatting slam,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 18 039–18 048.

[30] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaussian
splatting for real-time radiance field rendering.” ACM Trans. Graph.,
vol. 42, no. 4, pp. 139–1, 2023.

[31] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp.
99–106, 2021.

[32] R. Liu, R. Wu, B. Van Hoorick, P. Tokmakov, S. Zakharov, and
C. Vondrick, “Zero-1-to-3: Zero-shot one image to 3d object,” in
Proceedings of the IEEE/CVF international conference on computer
vision, 2023, pp. 9298–9309.

[33] S. Wang, V. Leroy, Y. Cabon, B. Chidlovskii, and J. Revaud, “Dust3r:
Geometric 3d vision made easy,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024, pp.
20 697–20 709.

https://www.sciencedirect.com/science/article/pii/S2405896316319127
https://www.sciencedirect.com/science/article/pii/S2405896316319127
https://www.sciencedirect.com/science/article/pii/S092188901730386X
https://www.sciencedirect.com/science/article/pii/S092188901730386X
https://www.sciencedirect.com/science/article/pii/S2405896315002475
https://www.sciencedirect.com/science/article/pii/S2405896315002475
https://www.sciencedirect.com/science/article/pii/S0921889018300952
https://www.sciencedirect.com/science/article/pii/S0921889018300952
http://dx.doi.org/10.1109/IEEECONF38699.2020.9389378
https://arxiv.org/abs/2109.10327

[34] Y. Tang, C. Zhu, R. Wan, C. Xu, and B. Shi, “Neural underwater scene
representation,” 2024.

[35] T. Zhang and M. Johnson-Roberson, “Beyond nerf underwater: Learn-
ing neural reflectance fields for true color correction of marine
imagery,” IEEE Robotics and Automation Letters, 2023.

[36] H. Durrant-Whyte, N. Roy, and P. Abbeel, Learning to Control a Low-
Cost Manipulator Using Data-Efficient Reinforcement Learning, 2012,
pp. 57–64.

[37] J. Kober and J. Peters, Movement Templates for Learning of Hitting
and Batting. Cham: Springer International Publishing, 2014, pp. 69–
82.

[38] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning
force control policies for compliant manipulation,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2011, pp.
4639–4644.

[39] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[41] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[42] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, et al., “Solving
rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113,
2019.

[43] D. Ha and J. Schmidhuber, “World models,” arXiv preprint
arXiv:1803.10122, 2018.

[44] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
International conference on machine learning. PMLR, 2019, pp.
2555–2565.

[45] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to con-
trol: Learning behaviors by latent imagination,” arXiv preprint
arXiv:1912.01603, 2019.

[46] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg, “Day-
dreamer: World models for physical robot learning,” in Conference on
robot learning. PMLR, 2023, pp. 2226–2240.

[47] J. Liang, R. Liu, E. Ozguroglu, S. Sudhakar, A. Dave, P. Tokmakov,
S. Song, and C. Vondrick, “Dreamitate: Real-world visuomotor policy
learning via video generation,” arXiv preprint arXiv:2406.16862,
2024.

[48] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” IEEE
Transactions on Robotics, vol. 36, no. 4, pp. 1307–1319, 2020.

[49] Z. Xu, C. Chi, B. Burchfiel, E. Cousineau, S. Feng, and S. Song,
“Dextairity: Deformable manipulation can be a breeze,” arXiv preprint
arXiv:2203.01197, 2022.

[50] H. Ha and S. Song, “Flingbot: The unreasonable effectiveness of
dynamic manipulation for cloth unfolding,” in Conference on Robot
Learning. PMLR, 2022, pp. 24–33.

[51] C. Chi, B. Burchfiel, E. Cousineau, S. Feng, and S. Song, “Itera-
tive residual policy: for goal-conditioned dynamic manipulation of
deformable objects,” The International Journal of Robotics Research,
vol. 43, no. 4, pp. 389–404, 2024.

[52] R. Liu, J. Liang, S. Sudhakar, H. Ha, C. Chi, S. Song, and C. Vondrick,
“Paperbot: Learning to design real-world tools using paper,” arXiv
preprint arXiv:2403.09566, 2024.

[53] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,”
arXiv preprint arXiv:2303.04137, 2023.

[54] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained
bimanual manipulation with low-cost hardware,” 2023. [Online].
Available: https://arxiv.org/abs/2304.13705

[55] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and
L. Pinto, “Behavior generation with latent actions,” arXiv preprint
arXiv:2403.03181, 2024.

https://arxiv.org/abs/2304.13705

	INTRODUCTION
	RELATED WORK
	Autonomous Underwater Manipulation
	Sensorimotor Policy

	APPROACH
	Hardware / Software System
	Manipulation Policy with Behavior Cloning
	Self Learning for Policy Acceleration

	EVALUATION
	Behavior Cloning
	Task 1: Object Grasping
	Task 2: Trash Sorting
	Task 3: Rescue Retrieval

	Self Learning for Policy Acceleration

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	References

