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Abstract—We propose a novel method that integrates Long
Short-Term Memory (LSTM) networks with Graph Neural
Networks (GNNs) to build reduced-order models of cardiovas-
cular simulations. Reduced-order models are often used as an
alternative to full three-dimensional cardiovascular simulations,
providing a way to simplify the computational demands associ-
ated with fully detailed 3D simulations. The proposed method
encodes blood fluid dynamics within a MeshGraphNet-based
framework, which is particularly effective in modeling complex
physical systems by leveraging graph structures to represent
the state of the system. Our method extends the capabilities
of the original framework by incorporating LSTMs to capture
long-term dependencies, thereby improving predictive accuracy
and significantly reducing the computational resources required
for the training process. This method achieves errors below
2% for blood pressure and flow rate predictions, showcasing
a 65% improvement in average error rates compared to the
MeshGraphNet-based framework and a notable increase in
computational efficiency, reducing training time by at least 57%.
Our method also introduces the ability to adapt the simulation
to different cardiac cycles depending on the patient, providing
a robust and efficient tool for patient-specific cardiovascular
modeling.

Index Terms—Cardiovascular modeling, Graph Neural Net-
works, Long Short-term Memory Networks, Reduced-order mod-
eling.

I. INTRODUCTION

Cardiovascular disease remains the leading cause of prema-
ture death and disability in humans, and its incidence is on
the rise globally, presenting an ongoing challenge for medical
research and healthcare [1]. Over the past two decades, the
field of Computational Fluid Dynamics (CFD) has played a
pivotal role in cardiovascular research [2]–[4]. In CFD, the
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Navier-Stokes equations are numerically solved for patient-
specific blood flow simulations, which enable personalized
models and detailed analysis, such as evaluating wall shear
stress, velocity, and pressure fields.

However, clinical deployment of cardiovascular simulations
is severely limited by their excessive computational cost.
Indeed, the simulation of a single heartbeat for an anatomi-
cally accurate patient-specific model can require several hours
of computational time even on a supercomputer platform
[5]. To address this, physics-based Reduced-Order Models
(ROMs), simplifying the complexity of vessel geometry and
reducing the variables needed to describe key quantities,
have been developed [6]. ROMs include zero-dimensional
and one-dimensional models [6]. Zero-dimensional models
describe the cardiovascular system using an electrical circuit,
where blood flow and pressure drops are analogous to electric
currents and potential differences, respectively. These models
do not depend on spatial variables. On the other hand, one-
dimensional models simplify the three-dimensional Navier-
Stokes equations to a single spatial dimension, representing
arterial trees as segments and focusing on axial components
of pressure, flow rate, and vessel wall displacement.

Both zero- and one-dimensional models often yield accu-
rate results with a lower computational burden compared to
full three-dimensional simulations. However, challenges arise,
especially in accurately representing pressure losses at vascular
junctions and modeling pathological cases like stenosis or
aneurysms [7]. These limitations led to a growing interest
in data-driven approaches such as Physics-Informed Neural
Networks (PINNs) [8]–[10], Latent Neural Ordinary Differen-
tial Equations (LNODEs) [5], and Deep Operator Networks
(DeepONets) [11]. These methods leverage the large amount
of ground truth data generated from simulations, enabling the



models to learn complex patterns and relationships within
the data. Although these methods have the flexibility to be
tailored to specific geometries using interpolation techniques
[12]–[15], they often fall short of fully capturing the diverse
and complex geometric variations that are typical in patient-
specific anatomical models.

To overcome these difficulties, Graph Neural Networks
(GNNs) have emerged as a promising alternative to traditional
fully connected and convolutional neural networks. Although
initially not used for patient-specific cardiovascular simula-
tions, GNNs have shown adaptability to complex geometries.
They have been effectively utilized in learning particle in-
teraction laws [16], as solvers, such as MeshGraphNet, in
mesh-based simulations [17], and have demonstrated their
capabilities in predicting steady blood flow within three-
dimensional arterial structures [18].

GNNs have also been recently utilized for learning ROMs
for cardiovascular simulations [7]. In this MeshGraphNet-
based method, the network iteratively considers the state of
the system, comprising pressure and flow rate at a particular
timestep and other relevant features, and computes approxi-
mations for the next values of pressure and flow rate. This
model outperforms physics-driven one-dimensional models in
geometries characterized by many junctions or pathological
conditions. However, the accuracy of the model may be limited
by its inability to account for long-term dependencies inherent
in the cardiovascular system. Furthermore, there is the oppor-
tunity to enhance its generalization capabilities, particularly
in integrating patient-specific features more effectively. This
would allow for a more personalized approach to analyzing
cardiovascular data.

To address these challenges, this work explores the integra-
tion of Long Short-Term Memory (LSTM) [19] networks in
a GNN-based framework. LSTMs are particularly effective in
tasks that require capturing long-term dependencies [20], such
as in natural language processing and time-series analysis,
but also in statistics, linguistics, medicine, and transportation
[21]. While incorporating LSTMs into the proposed approach,
the graph structure was retained to effectively model the
geometries. This integration ensures that while harnessing the
strengths of LSTMs for handling temporal dependencies, the
spatial and structural complexities of cardiovascular geome-
tries are still adequately represented through the graph-based
framework. Indeed, Graph LSTMs can be used to enhance
the efficiency of propagating long-term information across the
graph structure [22].

Our contributions include a novel methodology to improve
the MeshGraphNet-based method [7] performance. In sum-
mary, the main contributions of this article are:

1) Development and validation of a novel approach for
cardiovascular simulations that integrates LSTM net-
works into a GNN framework. This resulted in several
advantages:

a) Accuracy Improvement: Our method exhibits a
notable increase in accuracy, significantly reducing

the average error compared to the MeshGraphNet-
based method.

b) GPU Training Efficiency: We achieved a significant
improvement in training efficiency on GPUs, with
our model completing epochs considerably faster
than the MeshGraphNet-based method.

c) CPU Training Efficiency: Similarly, our method
shows enhanced efficiency in CPU training times
per epoch, requiring substantially less time com-
pared to the MeshGraphNet-based method.

2) Flexibility in Cardiac Cycle Period: Our method in-
troduces the ability to select different periods for a
cardiac cycle for each patient, offering improved adapt-
ability and customization potential, contrasting the fixed
period approach of the MeshGraphNet-based method,
potentially leading to better generalizability in diverse
simulation scenarios.

The paper is structured to first provide a comprehensive
background, followed by a description of our method, results,
and a thorough discussion of our findings and their implica-
tions for future cardiovascular research.

II. BACKGROUND AND RELATED WORKS

In this section, we delve into the progression and current
state of computational approaches in cardiovascular research.
We start with physics-based one-dimensional ROMs and then
explore advanced data-driven methods based on GNNs.

A. Physics-based models for cardiovascular applications

Let us consider one-dimensional models designed to ap-
proximate the characteristics of compliant blood vessels, fo-
cusing on pressure, flow rate, and wall displacement along
the central axis. These models are derived from the three-
dimensional Navier-Stokes equations, given by:

∇ · u = 0, (1)
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ f , (2)

where u represents the velocity field of the fluid, p is
the fluid pressure, ρ is the fluid density, ν is the kinematic
viscosity, and f is the body force per unit mass acting on the
fluid. One-dimensional models are then derived by integrating
these equations over the vessel cross-section to reduce the
equations to a single spatial variable [23]. These models are
defined in a three-dimensional space parameterized by an axial
variable (z), where the functions p(z, t), q(z, t), and A(z, t)
represent the pressure, flow rate, and vessel lumen area at
position z and time t. The equations governing blood fluid
dynamics under the assumption of Poiseuille flow are given
by:

∂A

∂t
+

∂q

∂z
= 0, (3)
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∂p

∂z
, (4)



where the kinematic viscosity of blood ν is conventionally
set to ν = 3.77×10−2 s cm−2. To accurately predict the vessel
response to blood flow, these equations are supplemented with
a constitutive model. One-dimensional models offer a simpli-
fied yet valuable approach to studying blood fluid dynamics.
However, the validity of these models may be compromised
when they are employed on anatomies that contain numerous
junctions or are affected by pathological conditions [7].

B. Graph-Based Models for Cardiovascular Applications

Among the different data-driven methods available in the
literature for addressing this problem [8]–[11], some recent
advances have focused on using GNNs, as described in [7].
This method is based on MeshGraphNets, a framework for
learning mesh-based simulations using GNNs [17]. Meshes
are widely utilized in the numerical modeling of physical
systems as they discretize complex geometries into intercon-
nected elements, such as nodes and edges, facilitating the
application of numerical methods like finite element analysis.
The approach described in [17] is particularly effective for
solving systems governed by partial differential equations,
which describe a broad range of physical phenomena, includ-
ing fluid dynamics, aerodynamics, and structural mechanics.
MeshGraphNets leverage the inherent flexibility of mesh-
based representations by encoding the state of the system into
a graph, where nodes correspond to discrete points within
the mesh and edges represent their spatial and functional
relationships. Through message-passing operations between
nodes, MeshGraphNets approximate the differential operators
necessary to capture the underlying dynamics of the system.
Additionally, the framework allows for adaptive mesh refine-
ment, enabling the resolution of different regions of the system
at varying levels of detail, thus improving both computa-
tional efficiency and scalability in simulating complex physical
processes. In [7], the MeshGraphNet framework is used to
process complex cardiovascular geometries represented as
graphs, which are constructed by mapping the geometry of
the cardiovascular system, where nodes and edges represent
anatomical features like vessel segments and junctions. In
this MeshGraphNet-based method [7], GNNs serve as a data-
driven one-dimensional ROM. The architecture of the model
incorporates a rollout phase, illustrated in Fig. 1 (b), where the
network accepts as input the system state Θk and calculates an
update facilitating the progression of the system state from Θk

to Θk+1. The state of the system includes pressure and flow
rate at a particular time step and other relevant features detailed
in Section III-B (such as cross-sectional area and parameters
governing the boundary conditions). The application of the
GNN is iterative: at the initial time step t0, a predetermined
initial condition is given as input to the network, while at each
successive time step tk for k > 0, the previously estimated
system state is provided. The GNN forward step is based on
Multilayer Perceptrons (MLPs) with hidden layers numbered
as nh. The neuron count per hidden layer is uniform and equal
to ns. Each layer employs the LeakyReLU activation function.
Furthermore, the output layer undergoes layer normalization.

For multi-input scenarios, the MLP inputs are concatenated
into one tensor. As shown in Fig. 1, MeshGraphNet operates
in three pivotal stages that define the forward step:

1) Encode: Node and edge attributes are encoded into
latent features via MLPs. For each node feature vk

i , the
latent representation is computed as v

(0)
i = fen(v

k
i ) ∈

Rnl , with the MLP fen mapping node features to
an nl-dimensional latent space. Edge features wij are
analogously encoded to w

(0)
ij = fee(wij) ∈ Rnl .

2) Process: Conducted over L iterations, this phase in-
volves updating edge features initially, and then node
features via aggregation functions, utilizing the MLPs
fpe and fpn:

w
(l)
ij = f (l)

pe

(
w

(l−1)
ij ,v

k,(l−1)
i ,v

k,(l−1)
j

)
∈ Rnl , (5)

v
k,(l)
j = f (l)

pn

v
k,(l−1)
j ,

∑
i:∃eij

w
(l)
ij ,win,j ,wout,j

 ∈ Rnl .

(6)

3) Decode: Latent node features are reverted to the output
space using the MLP fdn, and the output is a vector
comprising the updated values of pressure and flow rate
[δpki , δq

k
i ] = fdn(v

k,(L)
i ) ∈ R2.

Upon finalization of the forward step, nodal pressure pki
and flow rate qki values are updated to pk+1

i and qk+1
i by

incorporating the respective deltas δpki and δqki . The vector
δvk

i = [δpki , δq
k
i , 0, . . . , 0] ∈ R17, and the function Ψm are

introduced, representing the cumulative effect of m GNN
applications during the rollout phase. Specifically,

Ψ1(Θ
k) =

N⋃
i=1

{vk
i + δvk

i } ∪
⋃

i,j:∃eij

{wij}, (7)

Ψm(Θk) = (Ψ1 ◦ · · · ◦Ψ1︸ ︷︷ ︸
m times

)(Θk). (8)

The approximation of p and q at node i, after m applications
of the GNN, is denoted as Ψm(Θk) |p,i and Ψm(Θk) |q,i,
respectively.

III. METHODS

As a baseline, we considered the MeshGraphNet-based
architecture presented in [7]. To ensure a fair comparison, we
kept a consistent graph representation, maintained the same
data generation pipeline, and used the dataset considered in
their study. These aspects are detailed within our work, allow-
ing for a comprehensive understanding of the methodology
and results.

A. Notation

This work examines a collection of G cardiovascular ge-
ometries, denoted by the set {Ω1,Ω2, . . . ,ΩG}, where each
Ωg represents the vascular structure of a specific patient. For
each geometry, a directed graph is constructed with nodes
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Fig. 1. Schematics of MeshGraphNet. (a) Aorta representation. The graph
and relative node and edge features are generated in correspondence with the
centerline of the vessels. (b) The rollout phase of the method is presented.
Here, the initial state of the system Θk is fed into the GNN, which then
generates the prediction for the update of the state variables. This update is
merged with the current state to calculate Θk+1. (c) The steps within the
GNN are outlined. The node and edge attributes are initially encoded using
an MLP, then processed L times through aggregation functions, and finally
decoded into the output domain.

ng
1, n

g
2, . . . , n

g
Ng positioned along the central line of the vessel.

The directed edge from node i to node j is denoted by egij .
The duration of a complete cardiac cycle is represented

by T g
cc. A temporal sequence starting from zero is consid-

ered, represented by t0,g, t1,g, . . . , tM,g , where t0,g = 0 and
tM,g = T g

cc, with a uniform time interval ∆tg such that
t1,g − t0,g = tM,g − tM−1,g . In the original [7], a unique
∆tg is applied to all patients. Instead, in this work the model
is adapted to variable cardiac cycle periods, including the
addition of ∆t among the node features: this enhancement
contributes to an increased generalizability of the model. At
any given time tk,g , the state of the system is characterized by
Θk,g(µ), where µ denotes the system parameters, particularly
related to the boundary conditions. A sequence of states
Θk,g(µ̃) for a specific set of parameters µ̃ is referred to
as a trajectory. While these parameters and quantities are
patient-specific, the superscript g will be generally omitted
in subsequent sections, unless otherwise stated.

B. Dataset

We examine eight patient-specific geometries sourced from
the Vascular Model Repository (VMR)1: Geometries 1-5 rep-
resent healthy aortas, Geometry 6 is an aortofemoral model
featuring an aneurysm, Geometry 7 illustrates a healthy pul-
monary system, and Geometry 8 is an aorta affected by
coarctation. The last three geometries are selected because
they exhibit features that have been identified in previous
research as being particularly challenging for conventional
physics-based models, such as aneurysm in Geometry 6,
numerous junctions in Geometry 7, and stenosis in Geometry
8 [6]. Background information about these subjects, which is

1https://www.vascularmodel.com

Fig. 2. Graph of a healthy aorta, depicting branch nodes in blue, junction
nodes in orange, inlet node in green, and outlet nodes in red. Additionally,
this figure highlights the boundary edges: edges connecting the model inlet
or outlets to interior nodes.

necessary to understand their conditions fully, can be found in
Table I.

TABLE I
INFORMATION OF THE PATIENTS AND THEIR ASSOCIATED GEOMETRY

IDENTIFIERS IN THE VMR.

# Geometry Age Sex Imaging Anatomy Condition
1 0090 0001 13 M MRI Aorta Healthy
2 0091 0001 6 M CT Aorta Healthy
3 0093 0001 11 F MRI Aorta Healthy
4 0094 0001 23 F MRI Aorta Healthy
5 0095 0001 26 M MRI Aorta Healthy
6 0140 2001 76 M CT Abd. Aorta Aneurysm
7 0080 0001 43 F MR Pulmonary Healthy
8 0104 0001 11 F MRI Aorta Coarctation

The selection of node and edge features relies on a thorough
understanding of the problem. It is acknowledged that, under
Poiseuille flow conditions, there exists a linear relationship
between the flow rate Q and the pressure drop ∆P in a vessel
that approximates a cylindrical shape. The relationship can be
expressed as:

∆P = RQ =
8µL

πr4
Q. (9)

The constant of proportionality R denotes the resistance,
which is dependent on the viscosity of the blood µ, the
length of the vessel L, and its radius r. In this analysis,
blood viscosity and density are treated as constants, with
µ = 0.04 g cm−1s−1 and ρ = 1.06 g cm−3, respectively, for
all patients. These are not included as graph features since
they are the same for all patients. Following fluid dynamics
principles, the cross-sectional area is incorporated into the
node features.

Node features. Average cross-sectional pressure pki ∈ R+

and flow rate qki ∈ R are considered at each centerline node
ni as key indicators of the state of the system Θk at any given
time tk. These metrics are derived from planar cross-sections
perpendicular to the centerline and within the encompassing
cylindrical approximation of the vessel structure. The cross-
sectional area Ai ∈ R, representing the area of the vessel



lumen, is the area of the section passing through node i and
is considered a node feature. To distinguish different types
of nodes within the graph, namely branch nodes, junction
nodes, and inlet/outlet nodes (see Fig. 2), a one-hot encoding
vector αi ∈ R4 is employed. This is particularly crucial as
the cross-sectional area can significantly vary at junctions,
affecting hemodynamic behavior. Node feature vectors also
encompass the tangential vector to the centerline, computed
at node ni, denoted as ϕi ∈ R3. This is essential for
capturing the directional flow characteristics of the vessel
over time. The entire cardiac cycle Tcc ∈ R+, the minimum
pressure pmin ∈ R+ and maximum pressure pmax ∈ R+,
and three parameters for the boundary conditions (RCR or
resistance), namely Ri,p ∈ R+, Ci ∈ R+, and Ri,d ∈ R+,
are also accounted for. Although this research relies on values
pmin and pmax based on prior simulations, it is important to
note that these values are typically known for the patient
at hand and correspond to diastolic and systolic pressure in
clinical practice. Furthermore, differently from [7], our work
introduces the time step size ∆t ∈ R+ as a node feature.
This addition enhances the flexibility of the model, allowing
it to adapt to varying cardiac cycle durations across different
patients. By incorporating ∆t as a feature, the model can more
accurately represent patient-specific physiological conditions,
thereby achieving a higher degree of personalization. In sum-
mary, the feature vector for each node ni reads:

v
k
i =

[
p
k
i , q

k
i , Ai,α

T
i ,ϕ

T
i , Tcc,∆t, pmin, pmax, Ri,p, Ci, Ri,d

]T
∈ R17

. (10)

Edge features. Three edge features are defined:
1) The difference between the position of nodes ni and nj ,

i.e. dij = xj − xi ∈ R3

2) The length of the shortest path connecting nodes ni and
nj , that is zij ∈ R+.

3) Firstly, it is necessary to introduce the so-called bound-
ary edges, namely edges connecting boundary nodes to
interior ones, in addition to physical edges. Therefore,
a one-hot vector βij ∈ R4 is introduced to represent
the edge type: branch-to-branch, junction-to-junction,
or boundary-to-interior (model inlet or outlets to inte-
rior). For simplicity, connections between branch and
junction nodes share the same type as those within
branches. Notably, only edges defining the centerline of
the anatomical geometry (within branches and junctions)
are considered when calculating shortest paths (zij).
Although introducing boundary edges alters the graph
structure, the different edge types preserve information
about the original topology.

The combined edge features for the edge eij are represented
as a vector:

wij =

[
dT
ij

∥dij∥2
, zij ,β

T
ij

]T

∈ R8. (11)

Note that all features (with the exception of the unit vectors
ti and

dT
ij

∥dij∥2
) are normalized to conform to a standard

Gaussian distribution N (0, 1) using statistics derived from the
dataset.

C. LSTM architecture
LSTM networks [19] were designed to address the vanishing

gradient problem in recurrent neural networks, particularly for
tasks involving long-term dependencies. LSTMs are character-
ized by their gating mechanisms: these include input, forget,
and output gates that manage information flow, enabling the
network to retain and manipulate data over extended time
periods. Graph LSTM can be used to enhance the efficiency of
propagating long-term information across the graph structure
[22]. Given two generic nodes j and z, each of the LSTM
units in this work contains input and output gates ij and oj , a
memory cell cj , a hidden state hj , the modulated input uj , and
a forget gate fjz for each edge, allowing node j to aggregate
information from its neighbors accordingly. The equations for
the proposed Graph LSTM are:

ikj = σ

W ivk
j +

∑
z∈Nj

U ihk−1
z + bi

 , (12)

fk
jz = σ

(
W fwk

jz + Ufhk−1
z + bf

)
, (13)

okj = σ

W ovk
j +

∑
z∈Nj

Uohk−1
z + bo

 , (14)

uk
j = tanh

Wuvk
j +

∑
z∈Nj

Uuhk−1
z + bu

 , (15)

ckj = ikj ⊙ uk
j +

∑
z∈Nj

fk
jz ⊙ σ

(
ck−1
j

)
, (16)

hk
j = okj ⊙ tanh

(
ckj
)
. (17)

Where vk
j represents the node feature of node j at timestep

k, wk
jz is the edge feature at timestep k of the edge connecting

nodes j and z, ⊙ denotes the Hadamard product, σ (·) is
the sigmoid activation function, and z ∈ Nj denotes the
neighbor node of j. The gradients of parameters W , U ,
and b are computed from the loss introduced in (20), and
are updated according to the computed gradient following
the backpropagation algorithm. Differently from [7], where
training was conducted on small consecutive time steps, in this
work, we train on the entire temporal sequence. This approach
is necessary since the output of each LSTM cell serves as the
input for the next. Specifically, the quantity hk−1

z , computed
at the previous time step k − 1, is needed. The dependence
of the computation of each cell on the previous one increases
memory requirements since the computational graph becomes
larger and larger as the number of steps increases. For the
development of the proposed model, the LSTM structure
presented in [22] is used as a starting point. However, the
following modifications have been implemented:

1) Following (16) as in the original reference [22], wherein
the activation function was not applied to cj , resulted in
divergence towards infinity. The application of the sig-
moid activation function ensures that the output of (16)



remains within a bounded range, addressing potential
problems with uncontrolled growth.

2) In the original LSTM unit, matrices U were dependent
on the edge type, represented as Um(j,z). This configura-
tion made the model computationally intensive, exceed-
ing the resources detailed in Section IV-B. Consequently,
we used edge-type-independent matrices U to prevent
the model from becoming prohibitively expensive from
the computational viewpoint.

3) In the initial cell configuration, the formulation of fk
jz

is the following:

fk
jz = σ

(
W fvk

j + Uf
m(j,z)h

k−1
z + bf

)
. (18)

The quantity vj (node features) was modified to wjz

(edge features) in order to incorporate information re-
garding edge types. This adjustment was made in re-
sponse to the transition of matrices to edge-type inde-
pendence, as described in Step 2.

We embedded the LSTM architecture in the MeshGraphNet-
based method [7] forward step, outlined in Section II-B. As
represented in Fig. 3, we implemented the LSTM unit between
the process step and decode step. However, we made a minor
adjustment in our proposed framework: we do not encode
edge features due to the excessive computational resource
requirements relative to our available capacity, delineated in
Section IV-B.

Fig. 3. The proposed GNN-LSTM architecture. At time k, the node features
vk are encoded using an MLP. Edge features w and encoded node features
fen(vk) are then processed L times using aggregation operations and sent
as input in the LSTM cell. Node features are then decoded into the output
space. The cumulative effect δvk

i of the GNN is used to update the pressure
and flow rate at time k + 1.

D. Training and Evaluation
Let us define the training dataset, {Ωg}g∈T , where T is a

subset of the indices ranging from 1 to G. Unlike the previous
approaches [7] that trained on small strides of consecutive
time steps, the proposed method involves training on the entire
sequence to capture the precise values of nodal pressure p̂k,gi

and flow rate q̂k,gi , as explained in Section III-C. The single-
geometry Mean Squared Error (MSE) is defined as follows:

MSEg =
1

Ng

Mg∑
l=1

Ng∑
i=1

bi

[
(p̂l,gi −Ψl(Θ

0,g)|p,i)2 + (q̂l,gi −Ψl(Θ
0,g)|q,i)2

]
,

(19)

where bi = c for boundary nodes and bi = 1 otherwise (c is
a hyperparameter), and Ψl denotes the result of applying the
LSTM l consecutive times. Consequently, the loss function L
for the GNN is given by:

L =
∑
g∈T

MSEg

|T |
. (20)

Stochastic gradient descent, coupled with the Adam op-
timizer, is employed to optimize the loss function. Each
trajectory within the dataset is considered as a single data point
for training purposes. For validation, k-fold cross-validation
(with k = 10) is used and the partitioning of the data into
training and testing sets is configured such that a proportion
of 1− 1

k of the trajectories is allocated to the training set, while
1
k is allocated to the testing set. The dataset is partitioned to
prevent data leaks, ensuring that the augmented data for each
simulation is assigned to the same set (train or test) as the
original simulation. In order to evaluate the performance of
the model, the mean rollout error is used, both for pressure
and flow rate, obtained on the test dataset post-training.
Specifically, for a patient labeled as g, the error metrics for
pressure egp and flow rate egq were computed according to the
following expressions:

egp =

∑
i∈Bg

∑Mg

k=1(p̂
k,g
i −Ψk(Θ

0,g|p,i))2∑
i∈Bg

∑Mg

k=1(p̂
k,g
i )2

, (21)

egq =

∑
i∈Bg

∑Mg

k=1(q̂
k,g
i −Ψk(Θ

0,g|q,i))2∑
i∈Bg

∑Mg

k=1(q̂
k,g
i )2

, (22)

where p̂k,gi and q̂k,gi denote the exact measurements of
pressure and flow rate at time tk and at node ni for patient
g. It is important to note that these error calculations only
included node indices within the branched regions, denoted as
Bg . The term Average Error refers to the following metric:

Average Error =
1

2
(egp + egq). (23)

IV. EXPERIMENTAL DESIGN

A. Hyperparameter optimization

In this study, hyperparameters were optimized by using
Tune [24], a Python library for hyperparameter tuning. The
monitored objective function is the Average Error (23) defined
in Section III-D. With respect to the healthy Geometries 1-5,
we reach the optimal parameters reported in Table II after 50
iterations.

B. Experimental Setup

Central to the proposed method was the use of the Deep
Graph Library (DGL) [25], a Python library designed for
processing and manipulating GNNs. The Deep Graph Library
is complemented with Modulus2, an open-source deep learning
framework for building, training, and fine-tuning deep learning

2https://developer.nvidia.com/modulus



TABLE II
LIST OF TUNED HYPERPARAMETERS.

Hyperparameter Value
Learning rate 7, 6 · 10−4

Learning rate decay 1, 3 · 10−3

Training Batch size 17
Weight of boundary nodes (c in 19) 1
Number of hidden layers 42
GNN latent size 46
MLP latent size 182
MLP Number of hidden layers 1
Process iterations 1

models using state-of-the-art physics-informed machine learn-
ing methods, which has been used to develop the GPU version
of the code. Our method is implemented in PyTorch [26], a
Python library that allows for the design of deep learning
models. Hyperparameter tuning, Training, and inference run
over Expanse, a supercomputer that is collaboratively designed
by Dell and the San Diego Supercomputer Center (SDSC).
Expanse GPU nodes were employed, each featuring four
NVIDIA V100s (32 GB SMX2) connected via NVLINK,
supplemented with dual 20-core Intel Xeon 6248 CPUs.

V. RESULTS

The proposed method is compared with the MeshGraphNet-
based method [7]. To ensure a fair comparison, we take the
following steps:

• Hyperparameter Optimization was performed for both
models,

• The ∆t feature was added to the MeshGraphNet-based
method as well,

• The same computational resources for training as de-
scribed in Subection IV-B were used,

• The same dataset outlined in Section III-B was employed.
Fig. 4 shows the advantages achieved by the proposed method
in comparison to the MeshGraphNet-based one across three
different performance indicators:

1) Average Error: The proposed method shows a signifi-
cant increase in accuracy with an average error of 1.39%,
which is a 65% relative improvement over the 4% error
rate of the MeshGraphNet-based method for Geometries
1 to 5, and a 2.46% error rate with a 52% improvement
over the 5.14% error rate for Geometries 6 to 8.

2) GPU Training Efficiency: When it comes to training
efficiency on a GPU, the proposed method completes
an epoch in 16.41 seconds on average for Geometries 1
to 5, which is 57% faster than the MeshGraphNet-based
method that takes 38.41 seconds, and in 19.65 seconds
for Geometries 6 to 8, a 73% improvement over the 73.3
seconds of the MeshGraphNet-based method.

3) CPU Training Efficiency: Similarly, CPU training
times per epoch are optimized. The proposed method
requires on average 172 seconds per epoch for Geome-
tries 1 to 5, which is a 59% improvement in comparison
to the 418 seconds required by the MeshGraphNet-based

method, and 475 seconds for Geometries 6 to 8, a 60%
improvement over the 1190 seconds.

The observed improvement in training performance can
be attributed to the methodology employed in the training
process. The MeshGraphNet-based method uses overlapping
strides of time steps, which means the same samples are
observed multiple times during training. This redundancy
increases computational effort without necessarily improving
learning efficiency. In contrast, the proposed model embeds
time steps more efficiently by avoiding this overlap, thereby
utilizing the data more effectively and reducing unnecessary
computations.

Cardiac Cycle Period Flexibility. Additionally, the pro-
posed model introduces the ability to select different periods
for the cardiac cycle of each patient, providing better adapt-
ability and potential for customization, as opposed to the fixed
period in the MeshGraphNet-based method. This flexibility
could translate into better generalizability in diverse simulation
scenarios.

Fig. 4. Performance metrics for the MeshGraphNet-based method [7] and
the proposed method, showcasing improvements in average error rates, and
computational efficiency during training on both GPU and CPU.

VI. CONCLUSIONS

In this study, a novel approach for cardiovascular simula-
tions that integrates LSTM networks into a GNN framework
has been successfully developed and validated. This method,
which builds upon the MeshGraphNet-based framework [7],
demonstrates considerable advancements in terms of accuracy,
computational efficiency, and adaptability to varying cardiac
cycles. The integration of LSTM networks enables the model
to capture long-term dependencies effectively, an aspect cru-
cial for accurately simulating cardiovascular dynamics over
extended periods. Key results of this work include:

1) Significant improvement in accuracy: the average error
reduction achieved by the proposed method, particularly
in geometries with complex cardiovascular structures,
underscores its superior predictive capability over the
MeshGraphNet-based method. This improvement is crit-
ical for advancing the reliability and clinical relevance
of cardiovascular simulations.

2) Enhanced computational efficiency: the notable reduc-
tion in training times on both GPU and CPU platforms
highlights the efficiency of the proposed method, making
it a more practical option for broader applications,
including time-sensitive clinical settings.



3) Flexibility in cardiac cycle period: the ability of the
proposed method to adapt to different cardiac cycle pe-
riods for individual patients represents a significant step
towards personalized medicine. This flexibility enhances
the applicability of the method to a wider range of
patient-specific scenarios, thereby increasing its utility
in personalized healthcare.

Future research directions include further validation of
the method with larger and more diverse datasets, including
pathological cases, to robustly assess its generalizability. A
further avenue for exploration involves assessing the im-
pact of modifying the feature set on the accuracy of the
method. Specifically, the possibility of excluding boundary
condition parameters while holding the patient-specific data
typically employed to establish these conditions presents a
notable potential improvement over existing methodologies.
Currently, the calibration of boundary conditions in physics-
based simulations is a pivotal process, often executed by
adjusting parameters in simpler surrogate models (like zero-
or one-dimensional ROMs) through Bayesian optimization.
This process typically relies on functions aiming to evaluate
the accuracy of the surrogate model in replicating crucial
physiological metrics, such as systolic and diastolic pressures.
By directly integrating these physiological metrics into the
neural networks, there may be an opportunity to eliminate the
need for boundary condition calibration, thereby streamlining
the process from medical image acquisition to the evalua-
tion of calibrated simulation results. Additionally, alternative
methods, such as the application of transformers, should be
further investigated. A challenge might include the need for
more training data, which, in the field of scientific computing,
may be computationally expensive to generate and not always
readily available. Another challenge could be effectively deal-
ing with topologically diverse graphs. Nevertheless, through
continued exploration and refinement, valuable insights and
improvements may be uncovered.
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