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Abstract

This paper proposes a framework to construct a multi-objective optimization algorithm from
a single-objective optimization algorithm by using the Bézier simplex model. Additionally,
we extend the stability of optimization algorithms in the sense of Probably Approximately
Correct (PAC) learning and define the PAC stability. We prove that it leads to an upper
bound on the generalization error with high probability. Furthermore, we show that multi-
objective optimization algorithms derived from a gradient descent-based single-objective
optimization algorithm are PAC stable. We conducted numerical experiments with synthetic
and real multi-objective optimization problem instances and demonstrated that our method
achieved lower generalization errors than the existing multi-objective optimization algorithms.

1 Introduction

A multi-objective optimization problem is a problem to seek a solution which minimizes (or maximizes)
multiple objective functions f1, . . . , fM : X → R simultaneously over a domain X ⊆ RL:

minimize f(x) := (f1(x), . . . , fM (x))⊤

subject to x ∈ X ⊆ RL.

Each objective function can have a different optimal solution, so we need to consider the trade-off between
two or more solutions. Therefore, the notion of Pareto ordering is taken into consideration, which is defined
by

f(x) ≺ f(y) def⇐⇒ fm(x) ≤ fm(y) for all m = 1, . . . , M,

and fm(x) < fm(y) for some m = 1, . . . , M.
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Figure 1: A simplicial problem f = (f1, f2, f3)⊤ : R3 → R3. An M -objective problem f is simplicial if
the following conditions are satisfied: (i) there exists a homeomorphism Φ : ∆M−1 → X∗(f) such that
Φ(∆I) = X∗(fI) for all I ⊆ {1, . . . , M}; (ii) the restriction f |X∗(f) : X∗(f)→ RM is a topological embedding
(and thus so is f ◦ Φ : ∆M−1 → RM ).

In multi-objective optimization, the goal is to obtain the Pareto set and Pareto front, which are respectively
defined as:

X⋆(f) := (x ∈ X | f(y) ⊀ f(x) for all y ∈ X), fX⋆(f) := (f(x) ∈ RM | x ∈ X⋆(f)).

The Pareto set/front usually has an infinite number of points, whereas most of the numerical methods for
solving the problem give us a finite set of points as an approximation of the Pareto set/front (e.g., goal
programming (Eichfelder, 2008; Miettinen, 1999), evolutionary computation (Deb, 2001; Deb & Jain, 2013;
Zhang & Li, 2007), homotopy methods (Harada et al., 2007; Hillermeier, 2001), and Bayesian optimization
(Hernandez-Lobato et al., 2016; Yang et al., 2019)). Such a finite-point approximation cannot reveal the
complete shape of the Pareto set and Pareto front. In addition, the finite-point approximation suffers from
the “curse of dimensionality” since the dimensionality of the Pareto set and Pareto front is M − 1 in generic
problems (see Wan (1977; 1978) for a rigorous statement). With this background, we focus on an optimization
algorithm to obtain a parametric hypersurface describing the Pareto set.

There is a common structure of the Pareto set/front across a wide variety of problems, which can be utilized
to enhance approximation. In many problems, obtained solutions imply the Pareto set/front is a curved
(M − 1)-simplex, e.g., airplane design (Mastroddi & Gemma, 2013), hydrologic modeling (Vrugt et al.,
2003), PI controller tuning (Reynoso-Meza et al., 2015), building design (Safarzadegan Gilan et al., 2016),
motor design (Contreras et al., 2016), and Lasso’s hyper-parameter tuning (Hamada & Ichiki, 2020). To
mathematically identify such a class of problems, Kobayashi et al. (2019) defined the simplicial problem (see
Figure 1). Hamada et al. (2020) showed that strongly convex problems are simplicial under mild conditions,
which implies that facility location (Kuhn, 1967) and phenotypic divergence modeling in evolutionary biology
(Shoval et al., 2012) are simplicial. Kobayashi et al. (2019) showed that the Pareto set and Pareto front of
any simplicial problem can be approximated with arbitrary accuracy by a Bézier simplex.

By using this advantage of the Bézier simplex model, we propose a novel strategy to construct a multi-
objective optimization algorithm from a single-objective optimization algorithm. With a given single objective
optimization algorithm, such as a gradient descent method, this scheme updates the Bézier simplex to obtain
the Pareto set. In addition, we analyze the theoretical properties of the multi-objective optimization algorithm
derived from our scheme. Specifically, we define Probably Approximately Correct (PAC) stability as an
extension of the stability of optimization algorithms and prove that the PAC stability leads to an upper
bound on the generalization gap in the sense of PAC learning. Our contributions are summarized as follows:

1. We devise a strategy to construct a multi-objective optimization algorithm from a single-objective
optimization algorithm with the Bézier simplex. Unlike most of the existing multi-objective optimiza-
tion methods, the algorithm derived from our scheme has the advantage of obtaining a parametric
hypersurface that represents the Pareto set of a given simplicial, Lipschitz continuous, differentiable
multi-objective optimization problem to be solved.
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2. We define PAC stability, which is an extension of the stability introduced by Hardt et al. (2016) to
the PAC learning settings, and show that PAC stability gives an upper bound on the generalization
gap with a high probability. Also, we prove that when we employ a gradient-based optimization
algorithm as a single optimization algorithm, the derived multi-objective optimization algorithm is
PAC stable.

3. We conducted numerical experiments and demonstrated that the multi-objective optimization
algorithm constructed by our scheme achieved lower generalization errors than the existing multi-
objective optimization algorithm. In addition, the algorithm given by our scheme can efficiently
obtain the Pareto set with a small number of sample points.

Related Work Kobayashi et al. (2019) proposed Bèzier simplex fitting algorithms, the all-at-once fitting,
and inductive skeleton fitting to describe Pareto fronts, and Tanaka et al. (2020) analyzed the asymptotic risk
of the fitting algorithms. The two fitting algorithms focus on post-optimization processes and assume that
we have an approximate solution set of the Pareto set in advance. Thus, these algorithms alone cannot solve
multi-objective optimization problems. Recently, Maree et al. (2020) proposed a bi-objective optimization
algorithm that updates the Bézier curve. However, this algorithm exploits the structure of the bi-objective
optimization problem and can not be applied when the number of objective functions is more than or equal
to three. To the best of our knowledge, we are the first to propose a general framework of multi-objective
optimization with the Bézier simplex and show its theoretical properties.

2 Preliminaries

2.1 Probability simplex

Let [M ] = {1, . . . , M} be a set of M points. We consider the set of probability distribution t ∈ RM over [M ].
The set of probability distributions over [M ] is equal to the simplex

∆M−1 :=
{

(t1, . . . , tM )⊤ ∈ RM

∣∣∣∣∣ tm ≥ 0,

M∑
m=1

tm = 1
}

.

Let C(X) be the space of continuous functions over X, and we define the function F : [M ] → C(X) by
F (m) = fm. Then, we have the expectation function

E(f) : ∆ −→ C(X)

∈ ∈

t 7−→ Et(F )
.

Furthermore, if fm is strongly convex for all m ∈ [M ], then the following function is well-defined:

argminE(f) : ∆ −→ X

∈ ∈

t 7−→ argminEt(F )
.

Note that Et(F ) =
∑

m tmfm follows from the definition. Et(F ) corresponds to the sum of a function chosen
continuously along t from f . As a direct consequence from Theorem 2 in Mizota et al. (2021), the mapping
argminE(f) gives a continuous surjection onto X⋆(f) if fm is strongly convex for all m ∈ [M ].

2.2 Simplicial problem

A multi-objective optimization problem is characterized by its objective map f = (f1, . . . , fM )⊤ : X → RM .
We define the J-subsimplex for an index set J ⊆ [M ] by ∆M−1

J := {(t1, . . . , tM )⊤ ∈ ∆M−1 | tm = 0 (m ̸∈ J)}.
The problem class we wish to consider is a problem in which the Pareto set/front has the simplex structure.
Such a problem class is defined as follows.
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Definition 2.1 (Kobayashi et al. (2019)). A problem f : X → RM is simplicial if there exists a map
ϕ : ∆M−1 → X such that for each non-empty subset J ⊆ [M ], its restriction ϕ|∆(M−1)

J

: ∆M−1
J → X gives

homeomorphisms

ϕ|∆M−1
J

: ∆M−1
J → X⋆(fJ), f ◦ ϕ|∆M−1

J
: ∆M−1

J → fX⋆(fJ).

We call such ϕ and f ◦ ϕ a triangulation of the Pareto set X⋆(f) and the Pareto front fX⋆(f), respectively.

2.3 Bézier simplex

Let N be the set of nonnegative integers (i.e., N := {0, 1, 2, . . . , }) and

NM
D :=

{
(d1, . . . , dM )⊤ ∈ NM

∣∣∣∣∣
M∑

m=1
dm = D

}
.

For t := (t1, . . . , tM )⊤ ∈ ∆M−1 and d := (d1, . . . , dM )⊤ ∈ NM
D , we denote by td a monomial td1

1 . . . tdM

M . The
Bézier simplex of degree D in RL with control points {pd}d∈NM

D
⊆ RL is a map b : ∆M−1 → RL, which is

defined by

b(t |P ) :=
∑

d∈NM
D

(
D

d

)
tdpd, (1)

where
(

D
d

)
:= D!

d1!d2!...dM ! is a multinomial coefficient and P ∈ R|N
M
D |×L represents a matrix of control points,

which is defined as

P :=


(p1)1 (p1)2 · · · (p1)L

(p2)1 (p2)2 · · · (p2)L

...
... . . . ...

(p|NM
D |)1 (p|NM

D |)2 · · · (p|NM
D |)L

 . (2)

Define z(t) as a vector of a coefficient of the Bézier simplex (1) with respect to control points {pd}d, i.e.,

z(t) :=
((

D

d1

)
td1 , . . . ,

(
D

d|NM
D |

)
t

d|NM
D |
)⊤

∈ R|N
M
D |.

Then, the definition of Bézier simplex (1) is represented as b(t |P ) = P ⊤z(t). It is known that a Bézier
simplex is a universal approximator of continuous functions (Kobayashi et al., 2019), and thus, the mapping
argminE(f) can be approximated by Bézier simplices in arbitrary precision. From this theoretical advantage,
we construct a general framework to obtain a multi-objective optimization method from a single-objective
optimization method with Bézier simplices.

3 Proposed Algorithm

A number of methods have been studied in the context of multi-objective optimization. Many of the methods
are designed to apply to any multi-objective optimization problem; however, the individual methods are
written in separate contexts and are not unified. Therefore, in this paper, we introduce a general framework
to obtain a multi-objective optimization method M(A) from a single-objective optimization algorithm A.
Moreover, in contrast to the existing methods, which aim to find a finite set that approximates the Pareto
set/front, our proposed method obtains a parametric hypersurface representing the Pareto set/front of
multi-objective problems to be solved.

In our proposed algorithm, we aim to obtain control points of a Bézier simplex that represents the Pareto set
of a multi-objective problem from a single-objective optimization algorithm A. In this paper, a single-objective
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Figure 2: Conceptual diagram of M(A) at the kth iteration; the red surfaces in (a) and (c) represent the
Bézier simplices.

optimization algorithm A is a map from the direct product of the sample space Z and the space of loss
functions L to the space of model parameters W, i.e., A : Z × L →W. Then, for any t ∈ ∆M−1, we denote
by At an update rule in A, which is defined by the loss function Et(F ).

Our algorithm begins by setting the initial control points P (1). At the k-th iteration (k ≥ 1), we randomly
draw N samples {t(k)

n }N
n=1 from the uniform distribution on ∆M−1 and obtain N data points {b(t(k)

n |P (k))}N
n=1

on the Bézier simplex defined by the current control points P (k). Next, we update each b(t(k)
n |P (k)) by A

t
(k)
n

,
i.e.,

x(k)
n = A

t
(k)
n

(b(t(k)
n |P (k))). (3)

Then, we update the Bézier simplex with the obtained pairs of data {(t(k)
n , x

(k)
n )}N

n=1. Specifically, we solve
the following least squares problem to fit a Bézier simplex to {(t(k)

n , x
(k)
n )}N

n=1:

minimize
P ∈R|NM

D |×L

1
N

N∑
n=1

∥∥∥x(k)
n − b(t(k)

n |P )
∥∥∥2

2
, (4)

where P is a decision variable to be optimized, and ∥·∥2 denotes the Euclidean norm on RL Let X(k) :=
(x(k)

1 , x
(k)
2 , . . . , x

(k)
N )⊤ ∈ RN×L and Z(k) := (z(t(k)

1 ), z(t(k)
2 ), . . . , z(t(k)

N ))⊤ ∈ RN×|NM
D | be matrix of x

(k)
n and

z(t(k)
n ), respectively. Then, the problem (4) is equivalent to the following problem:

minimize
P ∈R|NM

D |×L

1
N

∥∥∥X(k) −Z(k)P
∥∥∥2

F
, (5)

where ∥·∥F denotes the Frobenius norm on RN×L. Since the optimization problem (5) is an unconstrained
convex quadratic optimization, and it can be shown that the symmetric matrix Z(k)⊤Z(k) is regular with
probability 1 (refer to Lemma B.1 and its proof), the update rule for control points is described as follows:

P (k+1) =
(

Z(k)⊤Z(k)
)−1

Z(k)⊤X(k). (6)

We repeat this procedure until k reaches the maximum number of iterations specified by the user. We
summarize the pseudocode for solving multi-objective optimization problems with the above procedure in
Algorithm 1 and show its conceptual diagram in Figure 2.

4 PAC Stability and Generalization Gap

Assume that there is an unknown distribution D over some space Z. We take S = (t1, . . . , tN ) of N examples
drawn i.i.d. from D. Then, the generalization error is defined by

R[P ] := Et∼D[ℓ(P | t)],
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Algorithm 1 Multi-objective Optimization Method M(A) from Single Optimization Method A
1: Set k ← 1 and the initial control point P (k).
2: while k ≤ K do
3: Draw {t(k)

n }N
n=1 for which each t

(k)
n is drawn i.i.d. from the uniform distribution on ∆M−1.

4: Obtain {b(t(k)
n |P (k))}N

n=1 by Equation (1).
5: Obtain {x(k)

n }N
n=1 by Equation (3).

6: Update control points by Equation (6).
7: k ← k + 1.
8: end while
9: return P (K+1).

where ℓ ∈ L is a given loss function, and ℓ(P | t) denotes the loss of the model described by P with an input t.
Since the generalization error cannot be measured directly, we instead consider the empirical error defined by
RS [P ] := 1

N

∑N
n=1 ℓ(P | tn). Then, the generalization gap of P is defined as the difference between empirical

error and generalization error, i.e.,

RS [P ]−R[P ]. (7)

We consider a potentially randomized algorithm A (e.g., stochastic gradient descent) and the expected value
of Equation (7):

EA[RS [A(S)]−R[A(S)]], (8)

where we represent A(S) as A(S, ℓ) for notational simplicity.

To treat the approximate behavior of the expected value with respect to the sample, we consider the following.
First, take an event C ⊂ ZN that has a high probability of occurring. Then, the conditional generalization
error under the condition C is defined by:

R̂[P ] := E(t1,...,tN )∼DN
C

[
1
N

N∑
i=1

ℓ(P | ti)
]

,

where DN
C is the conditional probability distribution of C. Note that if C = ZN , R̂[P ] is equal to R[P ].

Next, we consider the approximate expected value of Equation (8) by

ÊSEA

[
RS [A(S)]− R̂[A(S)]

]
, (9)

where ÊS is the conditional expected value of C. This invariant allows us to discuss the expected value of the
generalization gap with respect to events. The following introduces the definition of probably approximately
correct (PAC) uniform stability. This is a PAC-like expansion of the uniform stability in Hardt et al. (2016).
Definition 4.1. A randomized algorithm A is PAC uniformly stable if for any ε ∈ (0, 1), there exists δ > 0
and an event Dε ⊂ ZN+1 which occurs with probability at least 1− ε such that

sup
t

EA[|ℓ(A(S) | t)− ℓ(A(S′) | t)|] < δ, (10)

where S = (t1, . . . , tN ) and S′ = (t1, . . . , t′
i, . . . , tN ) are samples differing in at most one example, drawn from

D, satisfying (t1, . . . , ti, t′
i, ti+1, . . . , tN ) ∈ Dε. Furthermore, a PAC uniformly stable randomized algorithm

A is decomposable if for any ε ∈ (0, 1), there are events Bε ⊂ Z such that Dε = BN+1
ε .

With the PAC stability, we show the following, which ensures that if an algorithm is PAC uniformly stable,
the difference between its generalization and empirical error is small with high probability.
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Algorithm 2 Surface-wise Gradient Descent Method
1: Set k ← 1 and the initial control point P (k).
2: while k ≤ K do
3: Draw {t(k)

n }N
n=1 for which each t

(k)
n is drawn i.i.d. from the uniform distribution on ∆M−1.

4: Obtain {b(t(k)
n |P (k))}N

n=1 by Equation (1).
5: Obtain {x(k)

n }N
n=1 by Equations (3) and (11).

6: Update control points by Equation (12).
7: k ← k + 1.
8: end while
9: return P (K+1).

Theorem 4.2 (Proof is shown in Appendix A). Let A be a decomposable PAC uniformly stable randomized
algorithm. Then, for any ε ∈ (0, 1) and δ > 0 in Theorem 4.1, there exists an event Cε ⊂ ZN which occurs
with probability at least 1− ε such that,∣∣∣ÊSEA

[
RS [A(S)]− R̂[A(S)]

]∣∣∣ < δ,

where ÊS is the conditional expected value of Cε and R̂ is the conditional generalization error under the
condition Cε.

5 A Surface-wise Gradient Descent Method

Next, we discuss the case that an algorithm A is a gradient descent method. We refer to the method as a
surface-wise gradient descent method since the method is designed to generate a sequence of hypersurfaces.
Here, we employ the gradient descent-based update rule in Equation (3) as follows:

A
t

(k)
n

(
b(t(k)

n |P (k))
)

:= b(t(k)
n |P (k))− α(k)dxf

(
b(t(k)

n |P (k))
∣∣∣ t(k)

n

)
= b(t(k)

n |P (k))− α(k)Jf

(
b(t(k)

n |P (k))
)⊤

t(k)
n ,

(11)

where A
t

(k)
n

is the update rule, α(k) ∈ (0, 1] is a step size, dx is a first derivative with respect to x, f(· | t) is a
weighted sum of objective functions f1, . . . , fM by t, and Jf (x) is a matrix of gradient of fm at x defined by
Jf (x) := (∇f1(x), . . . ,∇fM (x))⊤ ∈ RM×L. Define B(k) and G(k) as

B(k) := Z(k)P (k), G(k) :=
((

t
(k)
1

)⊤
Jf

(
P (k)⊤z(t(k)

1 )
)

, . . . ,
(

t
(k)
N

)⊤
Jf

(
P (k)⊤z(t(k)

N )
))⊤

.

Note that B(k) and G(k) are variables determined by {t(k)
n }N

n=1 which is drawn i.i.d. from the uniform
distribution on ∆M−1 in each iteration, however, the argument is abbreviated for the sake of simplicity. Then,
the update rule with a gradient descent method described in Equation (11) is rewritten as

X(k) = B(k) − α(k)G(k).

With this notation, the update rule for the control points in Equation (6) is represented as

P (k+1) = P (k) − α(k)
(

Z(k)⊤Z(k)
)−1

Z(k)⊤G(k). (12)

We summarize the pseudocode of the surface-wise gradient descent method in Algorithm 2.

6 PAC Stability of the Surface-wise Gradient Descent Method

We prove that the surface-wise gradient descent is PAC uniformly stable. All omitted proofs are shown in the
Appendix. Hereinafter, we make the following assumption about the objective function.

7
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Assumption 6.1. All the objective functions f1, . . . , fM are µ-Lipschitz continuous and differentiable on X.

Let x⋆ : ∆M−1 → X⋆(f) be a map from ∆M−1 to the Pareto set of f . For P defined in Equation (2), we
define a loss function as ℓ(P | t) := ∥b(t |P )− x⋆(t)∥2

2. Since X∗(f) is unknown, we cannot take a sample
directly from X⋆(f). Instead, we take a sample {tn}N

n=1 drawn i.i.d. from the uniform distribution on ∆M−1.

To prove that Algorithm 2 is PAC uniformly stable, we show two propositions in advance. Note that the
following two propositions can respectively be regarded as an extension of boundedness and expansiveness
introduced in (Hardt et al., 2016) to analyze the stability of an optimization algorithm.
Lemma 6.2. Let U > 0 be a constant satisfying maxt∈∆M−1∥z(t)∥2 ≤ U . Let φT be the update rule with
parameter T = {tn}N

n=1 in Equation (12), i.e., P (k+1) = φT (P (k)). Then there exists some η > 0, and we
have the following inequality with probability at least 1− ε:

∥φT (P )− P ∥F ≤ α(k)ηNUµ.

Lemma 6.3. Let η > 0 and U > 0 be constants as in Lemma 6.2. For T = {tn}N
n=1 and T ′ = {t′

n}N
n=1

such that the difference between T and T ′ lies only in one example, there exists some ζ > 0, and we have the
following with probability at least 1− ε:

∥φT (P )− φT ′(P )∥F ≤ µU(η + ζN).

Let {Ti}K
i=1 and {T ′

i }K
i=1 be parameters whose difference lies only in the k-th element, and P (K+1) and

P ′(K+1) be respectively the output of Algorithm 2 with {Ti}K
i=1 and {T ′

i }K
i=1. From Lemmas 6.2 and 6.3, we

show that
∥∥P (K+1) − P ′(K+1)

∥∥
F is bounded above with arbitrary probability.

Lemma 6.4. Let U > 0, η > 0 and ζ > 0 be constants as in Lemma 6.3. Suppose that we run Algorithm 2
for K iterations with parameters {Ti}K

i=1 and {T ′
i }K

i=1 whose difference lies only in the kth element. Then,
we have the following with probability at least 1− ε:∥∥∥P (K+1) − P ′(K+1)

∥∥∥
F
≤ 2µηU

(
1 +

(
K − k + ζ

η

)
N

)
.

Now, we are ready to show that Algorithm 2 is PAC uniformly stable.
Theorem 6.5. Assume that α(k) ∈ (0, 1] for all k ∈ [K]. Then, Algorithm 2 is PAC uniformly stable.

From Theorems 4.2 and 6.5, if Algorithm 2 is decomposable, we can obtain an upper bound of its generalization
gap.
Remark 6.6. While we assume the decomposability of Algorithm 2 in Theorem 6.5, this assumption is not
restrictive in practice for the following reason. Suppose that an Algorithm 2 is not decomposable, meaning
that there exists ε ∈ (0, 1) such that there are no event Bε̄ satisfying Dε̄ = BN+1

ε̄ . Even in this case, we can
often take a smaller ε′ < ε so that there exists an event Bε′ satisfying BN+1

ε′ ⊆ Dε̄. Thus, by letting an event
as Dε′ ← BN+1

ε′ , we can bound the difference between the generalization and empirical errors with an event
Dε′ which occurs with a certain probability.

7 Numerical Experiments

To verify that the Pareto optimal set can be accurately approximated by a Bézier simplex obtained by the
proposed method (Algorithm 2), we applied Algorithm 2 to three multi-objective problems: scaled-MED,
skew-MMED, and skew-MMMD employed in (Hamada et al., 2011), which are known to be simplicial.
Skew-MMMD includes some important real-world problems such as a group LASSO in sparse modeling
(Yuan & Lin, 2006), and skew-MMED includes a generalized location problem (Kuhn, 1967). For real-world
instances, we applied Algorithm 2 to a group LASSO problem with the Birthwt dataset from the MASS
package1 in R language. In addition, to confirm the applicability of the proposed method to non-simplicial

1https://cran.r-project.org/web/packages/MASS/index.html
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Table 1: MSE (avg.±s.d. over 100 trials) for scaled-MED.
N Proposed (Algorithm 2) NSGAII + all-at-once MOEA/D + all-at-once
30 6.07e-05 ± 3.18e-06 9.31e-02 ± 5.40e-04 3.32e-01 ± 4.28e-03
50 4.63e-05 ± 2.41e-06 1.37e-01 ± 8.18e-04 1.26e-01 ± 6.80e-04
100 3.83e-05 ± 1.59e-06 8.86e-02 ± 7.16e-04 1.14e-01 ± 6.62e-04

instances, we applied Algorithm 2 to DTLZ instances (Deb et al., 2002), which are widely used as benchmarks
for multi-objective optimization algorithms. The definition of each problem instance is shown in Appendix E.
In Algorithm 2, we set the degree of Bézier simplex as D = 3, the initial control points as P (1) = O, which is
the zero matrix of appropriate size. In addition, we set the maximum number of iterations as K = 100 and
the step size as α(k) = 1

k for k = 1, 2, . . . , K. The number of points to be sampled from a simplex in each
iteration was tested for N ∈ {30, 50, 100}.

As a baseline, we used NSGA-II (Deb et al., 2000) and MOEA/D (Zhang & Li, 2007) with the Bézier
simplex fitting (Kobayashi et al., 2019). Specifically, we obtained approximated Pareto solution samples
by NSGA-II and MOEA/D implemented in jMetal (Benítez-Hidalgo et al., 2019), with default parameters
except for population size. Then, we fitted the approximated Pareto solution samples with Bézier simplex of
degree D = 3 by the all-at-once method proposed in (Kobayashi et al., 2019). We set the population size as
N ∈ {30, 50, 100}. We implemented these algorithms in Python 3.12.3, and the experiments were performed
on a Windows 10 PC with an Intel(R) Xeon(R) W-1270 CPU 3.40 GHz and 64 GB RAM. The source code is
accessible at https://github.com/hikimay/bezier-flow.

7.1 MSEs comparison

First, we picked up a simplicial problem instance whose map x⋆ : ∆M−1 → X⋆(f) is analytically obtained and
evaluated how accurately an obtained Bézier simplex approximates the optimal Pareto set. In this experiment,
we used scaled-MED, which is a three-objective problem with three variables and is known to be simplicial.
The problem definition is shown in Appendix E. To evaluate the approximation accuracy of the estimated
Bézier simplex, we used the mean squared error (MSE) defined by MSE := 1

N

∑N
n=1
∥∥b
(
t̂n

∣∣P )− x⋆
(
t̂n

)∥∥2
2,

where x⋆ is a map from a weight t ∈ ∆2 to the minimizer x⋆(t) of the corresponding scalarizing function.
The map x⋆ for scaled-MED is shown in Appendix F. To calculate MSE, we randomly sample {t̂n}10000

n=1 i.i.d.
from the uniform distribution on ∆2. We repeated the experiments 100 times with different parameters and
computed the average and the standard deviations of MSEs.

Table 1 shows the average and the standard deviation of the MSEs with N ∈ {30, 50, 100} for Algorithm 2
and population size N ∈ {30, 50, 100} for NSGA-II and MOEA/D. In Table 1, we highlighted the best score
of MSE out of the proposed and baseline methods where the difference is significant with the significance
level p = 0.001 by the Wilcoxon rank-sum test. Table 1 implies that the Bézier simplex obtained by our
proposed method can represent the Pareto set well. Moreover, the MSEs of our method decrease with larger
N , which supports the PAC uniform stability of Algorithm 2.

Figure 3 shows the Bézier simplex obtained by our proposed method, and Figure 4 shows the Bézier simplex
obtained by the all-at-once with the approximated Pareto solutions of NSGA-II. The true Pareto set of
scaled-MED is known to be a curved triangle that can be triangulated into three vertices. Recall that the
analytical solution of scaled-MED is shown in Appendix F. In Figure 3, the Bézier simplex obtained by the
proposed method approximates the Pareto set well even when N = 30, while the Bézier simplex obtained
by the all-at-once method with NSGA-II does not approximate the Pareto set even when N = 100. As a
supplementary empirical evaluation, we conducted experiments to investigate the algorithmic stability of the
proposed method on the scaled-MED. The details and results of this experiment are presented in Appendix H.
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Figure 3: Results for Algorithm 2 with the sample size N ∈ {30, 50, 100}.
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Figure 4: Results for NSGA-II and all-at-once with the population size N ∈ {30, 50, 100}.

7.2 GDs and IGDs comparison

Next, we validate the practicality of the proposed method in more practical settings. In this experiment, we
used two synthetic simplicial problem instances (skew-3MED and skew-3MMD) and one real-world problem
instance (group LASSO), whose map x⋆ cannot be represented in a closed-form. Additionally, to confirm the
applicability of the proposed method to non-simplicial instances, we applied Algorithm 2 to DTLZ instances
(Deb et al., 2002) as non-simplicial instances. We show the definition of each problem instance in Appendix E.
We used the generational distance (GD) (Veldhuizen, 1999) and inverted generational distance (IGD) (Zitzler
et al., 2003) to evaluate how accurately the estimated Bézier simplex approximates the Pareto optimal set,
which is defined as follows:

GD(X, Y ) := 1
|X|

∑
x∈X

min
y∈Y
∥x− y∥2, IGD(X, Y ) := 1

|Y |
∑
y∈Y

min
x∈X
∥x− y∥2,

where X is a finite set whose elements are sampled from an estimated hypersurface and Y is a validation
set. We can say that the obtained Bézier simplex is close to the Pareto set if and only if both GD and IGD
are small. As a validation set Y , we generated approximate Pareto solutions by NSGA-III (Deb & Jain,
2013; Jain & Deb, 2013) with the population size of 1000. To construct X, we randomly sampled {t̂n}1000

n=1
i.i.d. from the uniform distribution on ∆2 and obtained sample points on the estimated Bézier simplex. We
repeated the experiments 100 times with different parameters and computed the average and the standard
deviations of their GDs and IGDs.

Tables 2 to 4 show the average and the standard deviation of the GDs and IGDs for skew-3MED, skew-3MMD,
and group LASSO with the number of samples N ∈ {30, 50, 100} and the population sizes N ∈ {30, 50, 100}.
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The results for non-simplicial instances are shown in Appendix G. In Tables 2 to 4, we highlighted the best
score of GD and IGD where the difference is at a significant with significance level p = 0.001 by the Wilcoxon
rank-sum test. Tables 2 to 4 show that the proposed method achieved better GD and IGD for all cases. The
differences are pronounced in the results of small sample/population size, which implies our method obtains
a Bézier simplex approximating Pareto set well.

7.3 Run time comparison

To evaluate the computational efficiency, we measured the computation time of the proposed method
(Algorithm 2) and two baseline methods (NSGAII and MOEA/D with all-at-once) for skew-3MED and
skew-3MMD. In Table 5, we show the average and the standard deviation of the computation time in seconds
of each method over ten trials. For the proposed method, we report the computation time with the maximum
number of iterations K = 100. From Table 5, we see that the proposed method took about ten seconds
to output the resulting Bezier simplex, whereas the post-processing method (NSGA-II and MOEA/D with
Bezier simplex fitting) needed only about one to two seconds for each N . This is mainly because our method
performs Bezier simplex fitting at every iteration, whereas existing methods do this only once. On the other
hand, the computation time for the proposed methods remained almost the same even when N increases
by 100, while it grows for the existing methods. Although our method was slower in our experiments, its
computing time did not increase much with larger N , which can be advantageous in certain situations.

8 Conclusion

This paper proposes a general framework to construct a multi-objective optimization algorithm from a single
objective method with the Bézier simplex. We have also defined the PAC stability of optimization algorithms
and proved that this stability gives us an upper bound on the generalization gap in the sense of PAC learning.
The theoretical analysis showed that if we construct a multi-objective optimization algorithm from a gradient
descent-based single-objective optimization algorithm, the resultant algorithm is PAC stable. In our numerical
experiments, we applied the multi-objective optimization algorithm with our framework to three synthetic
and one real-world instances and demonstrated that our algorithm attained better generalization gaps and
approximation accuracies of the Pareto optimal set than the existing algorithm. As a concluding remark, we
have to note that this study is limited to treat simplicial problems. It would be interesting for future studies
to extend this study to non-simplicial cases.
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A Proof of Theorem 4.2

Proof. We denote two independent random samples by S = (t1, . . . , tN ), S′ = (t′
1, . . . , t′

N ). Let S(i) =
(t1, . . . , ti−1, t′

i, ti+1, . . . , tN ) be the sample that is same as S except in the ith example where we replace ti

with t′
i. Since Dε = BN+1

ε , (t1, . . . , ti, t′
i, ti+1, . . . , tN ) ∈ Dε for any i if and only if S, S′ ∈ Cε := BN

ε . In
this case, we have

EA

[∣∣∣ℓ(A(S) | ti)− ℓ(A(S(i)) | ti)
∣∣∣] < δ.

Then, adding the inequalities for i and applying the triangle inequality, we obtain∣∣∣∣∣EA

[
1
N

N∑
i=1

ℓ(A(S) | ti)−
1
N

N∑
i=1

ℓ(A(S(i)) | ti)
]∣∣∣∣∣ < δ.

Let us denote the conditional probability distribution of D,DN under the condition Bε, Cε by Bε, Cε respec-
tively. Then we have

∣∣∣∣∣E(S,S′)∼C2
ε
EA

[
1
N

N∑
i=1

ℓ(A(S) | ti)−
1
N

N∑
i=1

ℓ(A(S(i)) | ti)
]∣∣∣∣∣ < δ.

Here, we have

E(S,S′)∼C2
ε
EA

[
1
N

N∑
i=1

ℓ(A(S) | ti)
]

= ES∼Cε
EA

[
1
N

N∑
i=1

ℓ(A(S) | ti)
]

= ÊSEA[RS [A(S)]],
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and

E(S,S′)∼C2
ε
EA

[
1
N

N∑
i=1

ℓ(A(S(i)) | ti)
]

= E(S,S′)∼C2
ε
EA

[
1
N

N∑
i=1

ℓ(A(S) | t′
i)
]

= ES∼Cε
EAES′∼Cε

[
1
N

N∑
i=1

ℓ(A(S) | t′
i)
]

= ÊSEA

[
R̂[A(S)]

]
,

where ÊS is the conditional expected value of Cε and R̂[A(S)] is the conditional generalization error of Cε.
Thus, we obtain the inequality in the theorem.

Finally, we have
P(Cε) = P(Bε)N = P(Dε)

N
N+1 > P(Dε) > 1− ε,

which completes the proof.

B Proofs of Lemmas 6.2 and 6.3

We first show the three lemmas in advance.
Lemma B.1. For all ε ∈ (0, 1), there exists η > 0 satisfying

P
(

min
i

λmin

(
Z(Ti)⊤

Z(Ti)
)

> η
)
≥ 1− ε,

where λmin(A) denotes the minimal eigenvalue of a symmetric matrix A, and Ti = {t(i)
n }N

n=1 is drawn i.i.d.
from the uniform distribution on ∆M−1 for i ∈ [K + 1].

Proof. Consider the set

F0 :=
{
{Ti}K+1

i=1 ⊆
(
∆M−1)K+1

∣∣∣ min
i

λmin

(
Z(Ti)⊤

Z(Ti)
)

= 0
}

.

Since Z(Ti)⊤
Z(Ti) is a symmetric matrix, it has non-negative eigenvalues and Z(Ti)⊤

Z(Ti) has zero
eigenvalue if and only if the determinant of Z(Ti)⊤

Z(Ti) is zero. Hence, F0 is a subset of{
{tn}N

n=1 ⊆ ∆M−1

∣∣∣∣∣ ∏
i

det
(

Z(Ti)⊤
Z(Ti)

)
= 0

}
.

Therefore, F0 is equal to the zero set of a polynomial. This implies P(F0) = 0. Considering the set

Fη :=
{
{Ti}K+1

i=1 ⊆
(
∆M−1)K+1

∣∣∣ min
i

λmin

(
Z(Ti)⊤

Z(Ti)
)
≤ η

}
,

then we have

P(Fη)→ P(F0) = 0 (η → 0).

This implies that for all ε ∈ (0, 1) there exists some η > 0 such that

P
(

min
i

λmin

(
Z(Ti)⊤

Z(Ti)
)
≤ η

)
< ε, (13)

The proof is completed by taking the complementary event.

Lemma B.2. For all ε ∈ (0, 1), there exists ζ > 0 satisfying

P
(

max
i

∥∥∥Z(Ti)⊤
Z(Ti)

∥∥∥
F

< ζ
)
≥ 1− ε, (14)

where Ti = {t(i)
n }N

n=1 is drawn i.i.d. from the uniform distribution on ∆M−1 for i ∈ [K + 1].
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Proof. Since Z(Ti)⊤
Z(Ti) is a symmetric matrix, there exists an orthogonal matrix Qi such that

Z(Ti)⊤
Z(Ti) = QiΛiQ

⊤
i where Λi is a diagonal matrix whose diagonal entry is the eigenvalue of Z(Ti)⊤

Z(Ti).
According to Lemma B.1, Z(Ti)⊤

Z(Ti) is a regular matrix with probability at least 1− ε for all i ∈ [K + 1].
Hence, we have the following with probability at least 1− ε:

max
i

∥∥∥∥(Z(Ti)⊤
Z(Ti)

)−1
∥∥∥∥

F
= max

i

∥∥Q⊤
i Λ−1

i Qi

∥∥
F

= max
i

∥∥Λ−1
i

∥∥
F

= max
i

√√√√√|NM
D |∑

n=1

1
λ2

n

(
Z(Ti)⊤

Z(Ti)
)

≤

√√√√ ∣∣NM
D

∣∣
mini λ2

min

(
Z(Ti)⊤

Z(Ti)
)

<

√∣∣NM
D

∣∣
η

,

where the second equality follows from the fact that the Frobenius norm is unitarily invariant, and the second
inequality follows from Lemma B.1. The proof is completed by letting ζ be some real number greater than or

equal to
√
|NM

D |
η .

Lemma B.3. Let U > 0 be a constant satisfying maxt∈∆M−1∥z(t)∥2 ≤ U . Then, for any T ⊆ ∆M−1, we
have ∥∥∥Z(T )⊤

G(T )
∥∥∥

F
≤ NUµ. (15)

Proof. First, we show that ∥z(t)∥2 is bounded above for any t ∈ ∆M−1. Since z is a continuous function
over t whose domain ∆M−1 is compact, there exists upper bound U > 0 for any t ∈ ∆M−1. Next, we show
that

∥∥∥Z(T )⊤
G(T )

∥∥∥
F

is bounded above. For any T := {tn}N
n=1 ⊆ ∆M−1, we have

Z(T )⊤
G(T ) = (z1, . . . , zN )

 t⊤
1 Jf

(
P ⊤z1

)
...

t⊤
N Jf

(
P ⊤zN

)
 =

N∑
n=1

znt⊤
n Jf

(
P ⊤zn

)
.

Therefore,

∥∥∥Z(T )⊤
G(T )

∥∥∥
F

=
∥∥∥∥∥

N∑
n=1

znt⊤
n Jf

(
P ⊤zn

)∥∥∥∥∥
F

≤
N∑

n=1

∥∥znt⊤
n Jf

(
P ⊤zn

)∥∥
F

≤
N∑

n=1
∥zn∥2 ·

∥∥t⊤
n Jf

(
P ⊤zn

)∥∥
2

=
N∑

n=1
∥zn∥2 ·

∥∥∥∥∥
M∑

m=1
tnm∇fm

(
P ⊤z

)∥∥∥∥∥
2

≤
N∑

n=1
Uµ = NUµ.
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The last inequality holds by the fact that the term
∑M

m=1 tnm∇fm

(
P ⊤z

)
is a convex combination of

∇f1
(
P ⊤z

)
, . . . ,∇fM

(
P ⊤z

)
and the assumption that every function f1, . . . , fM is µ-Lipschitz continuous.

Finally, we show Lemmas 6.2 and 6.3.

Proof of Lemma 6.2. By Equation (12), we have

∥φT (P )− P ∥F = α(k)
∥∥∥(Z⊤Z

)−1
Z⊤G

∥∥∥
F

≤ α(k)
∥∥∥(Z⊤Z

)−1
∥∥∥

F
·
∥∥Z⊤G

∥∥
F.

Let η > 0 be a constant as in Lemma B.2. From Lemmas B.2 and B.3, we have the following with probability
at least 1− ε:

∥φt(P )− P ∥F ≤ α(k)ηNUµ.

Proof of Lemma 6.3. Let T , T ′ and T̃ be

T = {t1, . . . , tN−1, tN},
T ′ = {t1, . . . , tN−1, t′

N},

T̃ = {t1, . . . , tN−1, tN , t′
N}.

Let Z̃ be a matrix constructed by T̃ . By Sherman-Morrison formula, we have(
Z̃⊤Z̃

)−1
=
(
Z⊤Z + zN+1z⊤

N+1
)−1

=
(
Z⊤Z

)−1 +
(
Z⊤Z

)−1
zN+1z⊤

N+1
(
Z⊤Z

)−1

1 + z⊤
N+1(Z⊤Z)−1

zN+1
.

Let φT (P ) be the control points obtained by Algorithm 2 with T . Then, we have

φ
T̃

(P )− φT (P ) =
(

Z̃⊤Z̃
)−1

Z̃⊤G̃−
(
Z⊤Z

)−1
Z⊤G

=
(
Z⊤Z

)−1(
Z̃⊤G̃−Z⊤G

)
+
(
Z⊤Z

)−1
zN+1z⊤

N+1
(
Z⊤Z

)−1
Z̃⊤G̃

1 + z⊤
N+1(Z⊤Z)−1

zN+1

=
(
Z⊤Z

)−1(
zN+1t⊤

N+1Jf

(
P ⊤zN+1

))
+
(
Z⊤Z

)−1
zN+1z⊤

N+1
(
Z⊤Z

)−1
Z̃⊤G̃

1 + z⊤
N+1(Z⊤Z)−1

zN+1
.

Considering the norm on both sides, we have∥∥∥φ
T̃

(P )− φT (P )
∥∥∥

F
≤
∥∥∥(Z⊤Z

)−1
∥∥∥

F
· ∥zN+1∥2 ·

∥∥t⊤
N+1Jf

(
P ⊤zN+1

)∥∥
2

+
∥∥∥Z̃⊤G̃

∥∥∥
F
·

∥∥∥∥∥
(
Z⊤Z

)−1
zN+1z⊤

N+1
(
Z⊤Z

)−1

1 + z⊤
N+1(Z⊤Z)−1

zN+1

∥∥∥∥∥
F

In the following, for the sake of simplicity, let A = Z⊤Z, b = zN+1 and y = A−1b. Then, we have the
following inequality with probability at least 1− ε:∥∥∥∥∥

(
Z⊤Z

)−1
zN+1z⊤

N+1
(
Z⊤Z

)−1

1 + z⊤
N+1(Z⊤Z)−1

zN+1

∥∥∥∥∥
F

=
∥∥∥∥A−1bb⊤A−1

1 + b⊤A−1b

∥∥∥∥
F
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=
∥∥∥∥∥
(
b⊤A−1)⊤(

b⊤A−1)
1 + b⊤A−1(AA−1)b

∥∥∥∥∥
F

=
∥∥∥∥ yy⊤

1 + y⊤Ay

∥∥∥∥
F

= ∥y∥2
2

|1 + y⊤Ay|

≤
∥y∥2

2
y⊤Ay

≤ 1
λmin(A) < ζ,

where ζ is a constant as in Lemma B.1. The first inequality holds since A := Z⊤Z is a positive semidefinite
matrix with probability 1− ε by Lemma B.1, and the second inequality follows from the property of Rayleigh
quotient. The last inequality directly follows from Lemma B.1. Hence, we have the following inequalities
with probability at least 1− ε: ∥∥∥φ

T̃
(P )− φT (P )

∥∥∥
F
≤ µU(η + ζN),

and ∥∥∥φ
T̃

(P )− φT ′(P )
∥∥∥

F
≤ µU(η + ζN).

Therefore, we have the following with probability at least 1− ε:

∥φT (P )− φT ′(P )∥F =
∥∥∥φT (P )− φ

T̃
(P ) + φ

T̃
(P )− φT ′(P )

∥∥∥
F

≤
∥∥∥φ

T̃
(P )− φT (P )

∥∥∥
F

+
∥∥∥φ

T̃
(P )− φT ′(P )

∥∥∥
F

≤ 2µU(η + ζN).

C Proof of Lemma 6.4

Proof. Let δ(i) :=
∥∥P (i) − P ′(i)

∥∥
F. We have δ(i) = 0 for i = 1, . . . , k. From Lemma 6.2, we have the following

with probability at least 1− ε:

δ(i+1) =
∥∥∥P (i+1) − P ′(i+1)

∥∥∥
F

=
∥∥∥P (i+1) − P (i) + P (i) − P ′(i) + P ′(i) − P ′(i+1)

∥∥∥
F

≤
∥∥∥P (i+1) − P (i)

∥∥∥
F

+
∥∥∥P ′(i+1) − P ′(i)

∥∥∥
F

+
∥∥∥P (i) − P ′(i)

∥∥∥
F

≤ 2ηNUµ + δ(i),

for each i = k, . . . , K. Therefore, by using the above relation repeatedly and from Lemma 6.3, we have the
following with probability at least 1− ε:

δ(K+1) ≤ 2(K − k)ηNUµ + 2µU(η + ζN)

= 2µηU

(
1 +

(
K − k + ζ

η

)
N

)
,

which completes the proof.
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D Proof of Theorem 6.5

Proof. For any t ∈ ∆M−1 and for any {Ti}K
i=1, {T ′

i }K
i=1 ⊆ (∆M−1)K such that {Ti}K

i=1 and {T ′
i }K

i=1 differs
only one example, we have∣∣∣ℓ(A(T ) | t)− ℓ(A(T ′) | t)

∣∣∣ =
∣∣∣∣∥∥∥b(t |P (K+1))− x⋆(t)

∥∥∥2

2
−
∥∥∥b(t |P ′(K+1))− x⋆(t)

∥∥∥2

2

∣∣∣∣
≤
∥∥∥b(t |P (K+1))− b(t |P ′(K+1))

∥∥∥2

2

=
∥∥∥∥(P (K+1) − P ′(K+1)

)⊤
z(t)

∥∥∥∥2

2

≤ ∥z(t)∥2
2 ·
∥∥∥P (K+1) − P ′(K+1)

∥∥∥2

F
,

(16)

where the first inequality follows from the reverse triangle inequality. We can bound the right-hand side of
Equation (16) with probability at least 1 − ε by Lemma 6.4. Since the left-hand side of Equation (16) is
bounded for all t ∈ ∆M−1, we see that Algorithm 2 satisfies PAC uniform stability.

E Problem Definition

Scaled-MED is a three-variable three-objective problem defined by:

minimize f(x) := (f1(x), f2(x), f3(x))⊤

subject to x ∈ R3

where f1(x) = x2
1 + 3(x2 − 1)2 + 2(x3 − 1)2,

f2(x) = 2(x1 − 1)2 + x2
2 + 3(x3 − 1)2,

f3(x) = 3(x1 − 1)2 + 2(x2 − 1)2 + (x3 + 1)2.

Skew-MMED is an M -variable M -objective problem defined by:

minimize f(x) := (f1(x), . . . , fM (x))⊤

subject to x ∈ RM

where fm(x) =
(

1√
2
∥x− em∥2

)pm

,

pm = exp
(

2(m− 1)
M − 1 − 1

)
,

em = (0, . . . , 0, 1︸︷︷︸
m-th

, 0, . . . , 0)⊤,

for m = 1, . . . , M.

Skew-MMMD is an M -variable M -objective problem defined by:

minimize f(x) := (f1(x), . . . , fM (x))⊤

subject to x ∈ X ⊆ RM

where fm(x) = ∥Am(x− cm)∥pm

2 ,

pm > 0,

for m = 1, . . . , M.

In the experiments in Section 7.2, we set M = 3, X = R3,

A1 := diag
(

3
5 ,

4
5 ,

4
5

)
, A2 := diag

(
4
5 ,

3
5 ,

4
5

)
, A3 := diag

(
4
5 ,

4
5 ,

3
5

)
,
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cm := em and pm := exp
(

2(m−1)
M−1 − 1

)
. Note that diag (·) denotes the diagonal matrix.

Regarding the group Lasso instance, we followed the problem definition as in (Tanaka et al., 2020, Ap-
pendix E.2.2).

F Analytical Solution of Scaled-MED

We derive a map x⋆ : ∆2 → X⋆(f) for scaled-MED. For any t = (t1, t2, t3)⊤ ∈ ∆2, the scalarizing function
weighted by t is defined by

f(x | t) :=
3∑

m=1
tmfm(x)

= t1x2
1 + 2t2(x1 − 1)2 + 3t3(x1 − 1)2

+ 3t1(x2 − 1)2 + t2x2
2 + 2t3(x2 − 1)2

+ 2t1(x3 − 1)2 + 3t2(x3 − 1)2 + t3(x3 + 1)2.

Since f(x | t) is a convex quadratic function with respect to each x1, x2 and x3, its optimal solution
(x⋆

1(t), x⋆
2(t), x⋆

3(t))⊤ satisfies the following conditions:

∂f(x | t)
∂x1

∣∣∣∣
x=x⋆(t)

= 2t1x1 + 4t2(x1 − 1) + 6t3(x1 − 1) = 0,

∂f(x | t)
∂x2

∣∣∣∣
x=x⋆(t)

= 6t1(x2 − 1) + 2t2x2 + 4t3(x2 − 1) = 0,

∂f(x | t)
∂x3

∣∣∣∣
x=x⋆(t)

= 4t1(x3 − 1) + 6t2(x3 − 1) + 2t3(x3 + 1) = 0.

By solving the above equation, the map x⋆(t) is given by

x⋆(t) = (x⋆
1(t), x⋆

2(t), x⋆
3(t))⊤ =

(
2t2 + 3t3

t1 + 2t2 + 3t3
,

3t1 + 2t3

3t1 + t2 + 2t3
,

2t1 + 3t2 − t3

2t1 + 3t2 + t3

)⊤

.

G Numerical Experiments on Non-simplicial Instances

We present the results of Algorithm 2 for DTLZ instances in Tables 6 and 7. As in Section 7.2, we show the
average and the standard deviation of the GDs and IGDs. In this experiment, we picked DTLZ2 and DTLZ4
as non-simplicial instances. The definition of each instance can be found in (Deb et al., 2002, Chapter 6.7). As
can be seen from Tables 6 and 7, the proposed method does not work effectively for non-simplicial problems.
Thus, the development of optimization methods for non-simplicial problems remains an important direction
for future research.

H Experiments on Stability

We conducted additional numerical experiments to assess the algorithmic stability. Since directly evaluating
stability property is difficult, we examined the empirical difference

∥∥P (K+1) − P ′(K+1)
∥∥

F in Lemma 6.4. To
this aim, we repeated the following procedure ten times on the scaled-MED instance:

• Generate two sets of parameters TK =
{
{t(1)

i }N
i=1, . . . , {t(k)

i }N
i=1, . . . , {t(K)

i }N
i=1

}
and T ′

K ={
{t(1)

i }N
i=1, . . . , {t′(k)

i }N
i=1, . . . , {t(K)

i }N
i=1

}
where each t

(k)
i (i = 1, 2, . . . , N , k = 1, 2, . . . , K) is drawn

uniformly random from the standard simplex ∆M−1. Here, {t(k)
i }N

i=1 and {t′(k)
i }N

i=1 are different only
one element. In other words, there exist j ∈ [N ] such that t

(k)
j ̸= t

′(k)
j and t

(k)
i ̸= t

′(k)
i for any i ̸= j.
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Table 6: GD and IGD (avg.±s.d. over 100 trials) for DTLZ2.
N Proposed (Algorithm 2) NSGAII + all-at-once MOEA/D + all-at-once

GD 30 2.42e+01 ± 1.05e+00 5.89e-02 ± 1.93e-03 3.66e-02 ± 4.96e-04
50 1.82e+01 ± 3.69e-01 2.86e-01 ± 5.28e-03 3.44e-02 ± 4.35e-04
100 1.47e+01 ± 2.08e-01 4.56e-02 ± 3.26e-04 2.98e-02 ± 3.56e-04

IGD 30 1.67e+00 ± 6.27e-02 2.51e-01 ± 5.59e-04 3.83e-01 ± 1.83e-04
50 3.20e+00 ± 2.28e-01 4.93e-01 ± 6.77e-05 4.42e-01 ± 1.12e-03
100 1.54e+00 ± 2.64e-01 5.89e-01 ± 1.40e-03 2.85e-01 ± 5.71e-04

Table 7: GD and IGD (avg.±s.d. over 100 trials) for DTLZ4.
N Proposed (Algorithm 2) NSGAII + all-at-once MOEA/D + all-at-once

GD 30 4.34e-02 ± 1.56e-03 1.93e+01 ± 4.39e-01 6.83e-02 ± 1.75e-03
50 4.67e-02 ± 1.70e-03 3.54e+00 ± 9.42e-02 3.68e-01 ± 5.97e-03
100 5.05e-02 ± 1.86e-03 4.55e+02 ± 1.88e+01 4.07e-01 ± 5.90e-03

IGD 30 1.97e+00 ± 2.13e-04 8.52e-02 ± 2.80e-02 4.07e-02 ± 2.69e-04
50 1.97e+00 ± 5.99e-04 6.14e-02 ± 9.07e-03 4.76e-02 ± 5.80e-03
100 1.97e+00 ± 5.72e-04 6.51e-02 ± 2.75e-02 5.41e-02 ± 8.32e-03

Table 8: Empirical difference
∥∥P (K+1) − P ′(K+1)

∥∥
F for k ∈ {20, 40, 60, 80}.

k = 20 k = 40 k = 60 k = 80
∥P (K+1) − P ′(K+1)∥F 1.21e-03 1.78e-03 1.10e-03 1.09e-03

± 5.13e-04 ± 1.50e-03 ± 4.89e-04 ± 3.16e-04

• Run the proposed method (Algorithm 2) with a maximum number of iterations K = 100 for TK and
T ′

K and obtain the resulting control points matrix P (K+1) and P ′(K+1), respectively.

• Calculate the difference ∥P (K+1) − P ′(K+1)∥F.

We show the results of the average and standard deviation of ∥P (K+1) − P ′(K+1)∥F for k ∈ {20, 40, 60, 80}
below. From this table, we see that the average of the empirical difference did not necessarily decrease for
large k, while its upper bound is O(1/k) in Lemma 6.4. However, the scale of difference was sufficiently small
in the absolute sense, even for the smallest k = 20. Thus, while there may be a gap between the empirical
difference

∥∥P (K+1) − P ′(K+1)
∥∥

F and the theoretical upper bound, the proposed method are expected to be
stable in practice.
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