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Abstract 
 
In mammals, neurons in the medial prefrontal cortex respond to action prediction errors 
(APEs). Here, using computational simulations with deep neural networks, we show the 
that this error monitoring process is crucial for inferring how controllable an environment 
is, and thus for estimating the value of control processes (meta-control). We trained both 
humans and deep reinforcement learning (RL) agents to perform a reward-guided 
learning task that required adaptation to changes in environmental controllability. Deep 
RL agents could only solve the task when designed to explicitly predict APEs, and when 
trained this way, they displayed signatures of meta-control that closely resembled those 
observed in humans. Moreover, when deep RL agents were trained to over- or under-
estimate controllability, they developed behavioural pathologies matching those of 
humans who reported depressive, anxious or compulsive traits on transdiagnostic 
questionnaires. These findings open up new avenues for studying both healthy and 
pathological meta-control using deep neural networks. 
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Introduction 
 
Humans and other animals have evolved dedicated neural processes that help them 
achieve their goals, known collectively as cognitive control1–3. Control processes help 
ensure that actions are realised as intended, even in the face of uncertainty, conflict, or 
external perturbation. For example, if playing tennis on a windy day, or when tired, control 
processes might be engaged to help a player hit the ball more accurately. However, the 
value of control depends on the action-outcome statistics of the environment4. 
Intuitively, cognitive control is most helpful when the environment is neither trivially easy 
nor impossibly hard to control, because in the former case automatic processes may 
suffice, whereas in the latter control is futile. Biological agents have evolved neural 
mechanisms that estimate the value of deploying control processes5, which have been 
collectively called ‘meta-control’. However, the computational processes that make 
meta-control possible, and their neural implementation, remain unclear6,7. 
 
Recently, neuroscientists have rediscovered connectionist (or neural network) models 
as tools for explaining cognition and brain processes8–11. Deep network models learn to 
master complex tasks by trial and error, as model parameters are gradually adjusted via 
an optimisation process12. Deep networks can account for diverse behavioural and 
neural signatures that occur as animals perform perceptual and cognitive tasks13–16. 
Here, we used networks trained with deep reinforcement learning (deep RL)17, an 
emerging computational paradigm for modelling the brain18,19 as a theoretical framework 
for studying of meta-control. We asked under what computational constraints a deep RL 
agent might learn to optimally “control itself”, i.e. to engage control processes when they 
are demanded by the environment7,20–22.   
 
The engagement of cognitive control has long been linked to processes that monitor for 
errors. In mammals, response errors lead to heightened neural signals contiguous with 
action onset, that are generated in brain regions including the medial prefrontal cortex23–

27. These have been called “action prediction errors” (APEs), because they signal a 
mismatch between intended and realised actions28,29. APEs may offer information about 
how controllable the world is, and thus can help regulate the subsequent deployment of 
control. For example, in paradigms like the Stroop or Eriksen Flanker task, or during task 
switching, response errors lead to more cautious responding30,31 and lower subsequent 
error likelihoods32. In deep RL agents, learning is naturally guided by reward prediction 
errors, but networks do not typically come equipped with means to explicitly encode 
whether their actions are translated into their intended consequences (i.e. to compute 
APEs) and thus to estimate environmental controllability. Here, thus, using a reward-
guided learning (‘bandit’) task we asked whether providing deep RL agents with an 
additional module that computed APEs would help it learn an optimal meta-control 
policy. 
 
We report that deep RL agents can learn an approximately optimal meta-control policy, 
but – critically – only when equipped with explicit mechanisms for computing APEs. 
When trained to predict the likelihood of errors, deep RL agents show patterns of meta-
control that closely resemble humans recruited to perform the same bandit task. 
Moreover, by introducing subtle biases in the way neural networks compute APEs, we 
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can simulate patterns of disrupted behaviour characteristic of human psychological 
disorders, such as learned helplessness and compulsivity33. This provides a 
computational framework, based in deep learning, for understanding meta-control and 
its pathologies. 
  
Results 
 
To study meta-control in humans and deep networks, we employed a reward learning 
task that involves choosing between two actions that pay out a reward with unknown 
probability (a ‘bandit’ task). The variant we chose, known as the “observe vs. bet task”, 
is designed to disambiguate information-seeking from reward-harvesting decisions34–36 
(Fig.1A). On each trial, participants can decide to “bet” on one of the two bandits, 
yielding an outcome (rewarded or unrewarded, depending on the payout probability) that 
is not immediately disclosed. Alternatively, they can choose to “observe” whether each 
of the two bandits would have paid out or not, a choice that yields information but no 
reward. To introduce action prediction errors, we adapted this task by introducing a 
probability 𝑝(flip)  that “bet” choices would be randomly reversed from chosen to 
unchosen bandit after participants placed their bet (Fig. 1C). We define the 
“controllability” 𝜉 of the environment as 1 − 2 × 𝑝(flip) so that when 𝜉 = 0 the observer 
has no control over the environment, whereas 𝜉 = 1  is the standard case in which 
actions always play out as intended. Bandit payout probabilities were set to 𝑝(𝑟1)=1 and 
𝑝(𝑟2)=0 for the “human” version of the task, and they reversed with a small probability 
on each trial (see Methods; although the payout probability for choosing the correct 
bandit would be the same for 𝑝(flip) = 0 and a reduced 𝑝(𝑟1), our setup differs in that 
participants receive fully informative feedback on observe trials, and receive information 
about 𝑝(flip) on bet trials that would be unavailable otherwise). To facilitate learning, at 
the end of each block of 50 trials, a screen was shown depicting the overall pattern of 
choices and outcomes, using a previously described method36 (Fig.1B). 
 
We used this task to study whether humans and deep networks could adapt to the 
controllability of the environment. Human participants were randomly split into two 
groups that were first trained and then evaluated on different subsets of the discrete 
values 𝜉 ∈ {0.125𝑘 | 0 ≤ 𝑘 ≤ 8, 𝑘 ∈ ℕ}  (see Methods). During test blocks, the level of 
controllability 𝜉 was not explicitly cued, and had to be inferred on the fly from the pattern 
of response errors (during training human participants were given overt cues to assist 
learning; see Methods). We began by using agents’ tendency to “observe” as proxy for 
their estimate of the controllability of the environment. Intuitively, if 𝜉 = 0  then each 
realised action is made entirely at random (because 𝑝(𝑓𝑙𝑖𝑝)  =  0.5) and each “observe” 
is wasteful, because it yields no useful information, but incurs an opportunity cost. By 
contrast, when 𝜉 > 0  observation helps agents learn the value of each bandit for 
subsequent trials. We verified this intuition by calculating the optimal policy under each 
level of controllability as a partially observable Markov decision process using an 
approach called SARSOP37. This optimal model revealed that in our task, it is only 
advisable to “observe” for efficacy levels in excess of  𝜉 ~ 0.4 . Observation is also 
unwarranted towards the end of a block, as the opportunity cost exceeds the benefit of 
continuing to harvest at risk (Fig. 1D). 
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Figure 1. Task overview. (A) The adapted observe or bet task (pictures taken from 
implementation for human behavioural experiment). On each trial, participants have the option 
of choosing between betting on one of two bandits (shown here as red and blue discs; to 
potentially harvest reward) and observing (shown here as glasses; to gather information); on bet 
trials, bets are potentially switched to a bandit other than the one the participant chose. (B) 
Delayed feedback screens shown to the participants at the end of an episode provide complete 
information about all transitions. The top row represents which bandit paid out on which step, 
the middle row which one action the participant chose, and the bottom row which action was 
selected. Black dots indicate an observe action, and red and blue dots the corresponding bandit 
choices. (C) The process by which an agent interacts with the task can be modelled as two steps, 
in which an agent first marks which action they intend to take; then, an action is selected; and 
only then is the outcome computed (environmental transition, rewards, and observation). (D) The 
amount of evidence that is required to justify the decision to bet (cold-hot colour map), plotted 
as a function of the number of steps elapsed (x-axis) and the degree of efficacy (y-axis), as 
evaluated by SARSOP. In higher efficacy settings, more evidence is required that a given arm is 
correct to justify taking. 

 
Learning meta-control: humans 
 
We recruited n=182 human participants (n=111 after exclusions, see Methods) to take 
part in the study, which was pre-registered at https://osf.io/9ewt8 (data from a pilot study 
with very similar results is described in Supplement 3). The study took part over three 
sessions on separate days, with training occurring on day 1, and test (task 1) on day 2 (an 
additional test, called task 2 and described below, occurred on day 3). In Fig. 2A (left 
panel) we plot human observe frequencies on test blocks (from task 1) across the entire 
range of values of 𝜉 . Without being explicitly cued, and starting from about trial 15, 
participants began to observe more frequently in more controllable environments 
(average observation rate: 0.144 ± 0.012, mean ± SEM, n=46 for 𝜉=1; 0.107 ± 0.010, n=65 
for 𝜉=0.5; 0.070 ± 0.011, n=46 for 𝜉=0; p<0.05 for all pairwise comparisons according to 
Tukey’s HSD; see Supplement for full statistics). As shown in Fig. 2B (left panel) they 
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were also more likely to intend correct bets when the environment was more controllable 
over the same range (average proportion of bets placed on correct bandit:  0.707 ± 0.028, 
mean ± SEM, n=46 for 𝜉=1; 0.566 ± 0.016, n=65 for 𝜉=0.5; 0.478 ± 0.012, n=46 for 𝜉=0; 
p<0.05 for all pairwise comparisons according to Tukey’s HSD; see Supplement for full 
statistics). Collectively, these differences mean that humans achieved greater rewards 
in the high-controllability settings (total rewards: 29.37 ± 1.06, mean ± SEM, n=46 for 𝜉=1; 
24.66 ± 0.58, n=65 for 𝜉=0.5; 22.47 ± 0.52, n=46 for 𝜉=0; p<0.05 for pairwise comparisons 
𝜉=1 vs. 𝜉=0.5 and 𝜉=1 vs.  𝜉=0, p<0.1 for 𝜉=0.5 vs. 𝜉=0 according to Tukey’s HSD; see 
Supplement for full statistics). Indeed, combining training and test trials, we can see that 
in humans both the frequency of “observe” choices, and aggregate reward, vary 
approximately linearly with the controllability of the environment (Fig. 2C-D, left panels). 
After each episode, participants were asked to indicate what level of environmental 
controllability they believed they were operating under, using a slider; their choices 
indicate they were able to explicitly estimate environmental controllability even on test 
blocks, which were not disambiguated with a cue (Fig. S1). Thus, humans adapted their 
behaviour to the controllability of the environment, similar to an ideal agent. 
 

 
 

Figure 2. Humans can correctly solve the first observe or bet task (in a way that is well-
modelled by the APE-trained networks). (A) Average proportion of observes over the course of 
each episode across (left) humans, (middle) APE-trained networks, and (right) no-APE networks 
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(see below) for three different efficacy levels, (dark) 𝝃 = 1, (medium) 𝝃 = 0.5, (light) 𝝃 = 0. Moving-
average smoothed with a window of length 8. For the networks, the average is taken over the 
policy probabilities. Shaded region represents standard error of the mean. (B) Same plot at in A, 
but for the probability of intending to place a bet on the right arm. (C) Average number of 
observations across different efficacy levels for (left) humans, (middle) APE-trained networks, 
and (right) no-APE networks. For humans, individual samples are shown; for the networks, the 
shaded regions represent standard error of the mean. (D) Same plot as in (C), but for the number 
of rewards obtained in an episode. 

 
Learning meta-control: deep networks 
 
Next, we studied the conditions under which deep neural networks were able to “meta-
learn” how to adjust their behaviour to the controllability of the environment38,39. In this 
version of the task, we introduced probabilistic bandits, so the high-paying bandit paid 
out with probability 𝑝(𝑟1)=0.9, and the low-paying bandit with 𝑝(𝑟2)=0.1. Agents were 

trained on blocks defined by 𝜉 ∈ [0,
1

3
] ∩ [

2

3
, 1] and evaluated on blocks with the same 

disjoint values of 𝜉. We trained deep RL agents to maximise reward using REINFORCE40 
with baselines, a machine learning method that uses deep networks to learn a mapping 
from observations onto optimal action probabilities (Fig. 3A). The network was equipped 
with a long short-term memory (LSTM) layer41, which incorporates recurrence (activation 
memory) and gating in a way that partially resembles the prefrontal cortex42. This is 
necessary to learn within a block (i.e. to adapt policy within the block on the basis of past 
actions, observations and rewards, also known as “learning to reinforcement learn”43,44). 
The network was trained with backpropagation to maximise reward across several 
hundred training episodes. 
 
We created three variants of the deep RL network. All variants receive as inputs the 
feedback received on the previous turn 𝑜𝑡−1, if any, alongside both the action realised on 
the previous trial 𝑎𝑡−1, and the originally intended action 𝑎̂𝑡−1 (i.e. that which was chosen 
before any flip was applied). They output intended action probabilities for the current trial 
𝑝(𝑎̂𝑡), which are translated into behaviour 𝑎′𝑡. The standard variant has no further inputs 
or outputs, and thus has to infer the level of controllability implicitly, from frequency of 
match or mismatch between 𝑎 and 𝑎′ in its inputs. Other variants explicitly compute an 
APE, which is defined as 

𝛿𝐴𝑃𝐸,𝑡 = {
0,   if 𝑎𝑡 = 𝑎̂𝑡

1,   otherwise
 

 
The 𝜉 -input variant receives the environmental controllability 𝜉  directly, as an input 
signal, but is otherwise identical to the standard variant. The APE-trained network 
produces an additional output that estimates an error likelihood signal, i.e. the 
probability of an intended bet action switching, 𝑝̂𝑡(flip) . This scales directly with 
controllability of the environment 𝜉 , which can be estimated using 𝜉𝑡 = 1 − 2𝑝̂𝑡 . By 
training the network to predict APEs, the network learns to implement a delta rule: 
 

𝑝̂𝑡+1 = 𝑝̂𝑡 + 𝛼 ∙ [𝑝̂𝑡 − 𝛿𝐴𝑃𝐸,𝑡] 
 



 7 

This is similar to the proposed function of the medial prefrontal cortex in frameworks that 
emphasise the learning of error likelihoods or the expected value of control32,45. Relative 
to the other networks, the APE-trained variant has just as single additional node that 
encodes this prediction (Fig. 3A). Finally, we evaluated the performance of single-setting 
networks that had the same architecture as standard networks, but were trained 
exclusively on MDPs with a given fixed value of 𝜉 (rather than learning to infer 𝜉 anew from 
experience on each block). 
 

 
 
Figure 3. Training deep reinforcement learning agents on the task. (A) Tested network 
architectures showing the architecture that is shared for both APE-trained and standard 
networks, as well as the APE-specific efficacy readout. (B) Learning curves for task 1 for (blue) 
APE-trained, (orange) no-APE neural networks, (green) networks trained on individual 
controllability settings, (purple) networks that receive the ground-truth controllability 𝝃 as an 
additional input, and (brown) no-APE neural networks with an additional hidden unit as measured 
by the average number of rewards achieved per episode evaluated on the test set. Upper and 
lower bounds on performance are given by performance achieved by (dashed red) SARSOP and 
(dashed grey) always betting on the same test set. (C) The mean number of observes over the 
course of an episode across all 5 model instantiations. The APE-trained models (blue) observe 
more frequently in high-efficacy episodes, whereas the no-APE models (orange) observe the 
same amount across all efficacy levels. (D) The mean rewards accumulated over the course of 
an episode across all 5 model instantiations. The APE-trained models (blue) earns more reward 
in high efficacy episodes; the difference is more slight for the (orange) standard models. (E) First 
two principal components for 100 trajectories across (darkness) five different efficacy levels for 
a sample APE-trained neural network. (F) Same as in (E), but for the no-APE networks. (G) 
Population decoding across all model instantiations from the recurrent layer (Rec) and fully 
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connected layer (FC) across the course of training for (blue) APE-trained and (orange) standard 
networks. Accuracy is measured by mean-squared-error averaged over the second half of each 
episode for 100 repetitions across all 10 model instantiations. In all plots, shading shows 1 S.E.M. 
over ten models trained from different random seeds. 

We observed that the APE-trained network was able to solve task 1, converging just 
below the maximum reward level obtainable, as revealed by SARSOP. However, the 
standard and APE-input variants struggled, reaching a level of reward that was only 
slightly higher than that expected under random choice (Fig. 3B). To ensure that the 
standard network did not fail because it had one unit fewer than the APE-trained version, 
we also included a network called standard+ that was parameter-matched to APE-
trained; this did not improve performance (and for brevity we do not consider it further). 
Thus, computing APEs seems to be important for learning a meta-control policy. 
 
Neither the standard nor the 𝜉-input network learned to respond to the controllability of 
the environment. This can be seen in Fig. 3C, which plots the average frequency of 
“observe” choices as a function of 𝜉 . For the standard and 𝜉 -input networks, this 
relationship is flat (or mostly flat). However, APE-trained networks (like humans) observe 
more in more controllable environments, and so obtain higher levels of reward (Fig. 3D). 
The proportion of “observe” choices over efficacy, and the average reward, for the APE-
trained and standard networks are very similar to those obtained by SARSOP (Fig. 3C-
3D), revealing that APE-trained networks (but not other variants) learn the optimal meta-
control policy. The time-varying pattern of observation and reward in these networks is 
also strikingly similar to that seen in humans, alongside which they are plotted in Fig. 2A-
D (centre and right panels). The APE-trained model’s policy therefore predicted human 
choices significantly better than the standard model for all but the lowest efficacy levels  
(average likelihood: 0.648 ± 0.033, mean ± SEM for APE-trained and 0.519 ± 0.018, mean 
± SEM for standard, n=46, for 𝜉=1; 0.610 ± 0.024, mean ± SEM for APE-trained and 0.481 
± 0.014, mean ± SEM, n=65 for 𝜉=0.5; 0.562 ± 0.022, mean ± SEM for APE-trained and 
0.534 ± 0.021, mean ± SEM for standard, n=46 for 𝜉=0; estimated model frequencies of 
0.9955 ± 0.0006 and 0.0045 ± 0.0006, mean ± SEM, n=111 and exceedance probabilities 
of ~1 and ~0 for APE-trained and standard, respectively; see Supplement for full statistics 
and Methods for details). 
 
Neural representations of control in deep networks 
 
Next, we studied how controllability was internally represented in the APE-trained 
networks and other variants. We used a dimensionality reduction method to visualise the 
representation of controllability in the population respond of hidden layer units for the 
LSTM, both for APE-trained and standard networks. In APE-trained networks, the neural 
response over trials is organised in the first two principal components along a 
controllability axis, with activity under low- controllability conditions at one end of PC1 
and high- controllability conditions at the other (Fig. 3E). However, no such segregation 
is observed for the standard networks (Fig. 3F). For completeness, we trained a classifier 
to decode 𝜉 from the recurrent layer (full lines) and the final fully connected linear layer 
(dashed lines) of the APE-trained, 𝜉-input and standard networks (Fig. 3G). Consistent 
with the neural state space analysis, decoding was much poorer in the recurrent layer of 
standard networks. Surprisingly, however, with sufficient training controllability could be 
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decoded from the final layer of standard networks just as readily as it could from APE-
trained networks, and could be decoded throughout the 𝜉 -input network with even 
greater accuracy (Fig. 3G). This implies that explicitly computing APE signals is not 
required to encode environmental controllability per se, but instead helps format 
information about controllability in a way that makes it most likely to be read out to guide 
behaviour. In line with this, when we use an encoding model to see what fraction of 
variance of individual neurons is explained by 𝜉 , the APE-trained networks do indeed 
represent controllability more strongly (average encoding r2 over final 25 trials: 5.25e-3 ± 
1.67e-3, mean ± SEM for APE-trained, -5.34e-5 ± 3.38e-5, mean ± SEM for standard, and 
1.19e-4 ± 4.59e-5 for 𝜉-input; p<0.05 for both pairwise comparisons with APE-trained 
according to an independent t-test, see Fig. S2). Thus, by predicting when errors might 
occur, neural systems learn to encode environment controllability in a useful format. 
 
Together, these analyses imply that deep RL agents are able to learn an optimal meta-
control policy, but only when asked to explicitly predict how controllable an environment 
is. However, this claim is potentially limited by our reliance on the frequency of observe 
choices as a proxy for the agents’ estimate of controllability. Optimal behaviour on the 
task requires “observe” choices to be made more frequently in controllable 
environments, and so (for example) agents could be learning to make auxiliary (non-bet) 
actions whenever the world is more controllable. To rule this out, it becomes necessary 
to modify the task to include a condition where auxiliary actions were required when 
controllability was low, rather than high. This is what we did next. 
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Figure 4. Humans can correctly solve the second observe of bet task (in a way that is well-
modelled by the APE-trained networks). (A) Average frequency of sleeps over the course of 
each episode across (left) humans, (middle) APE-trained networks, and (right) no-APE networks 
for three different efficacy levels, (dark) 𝝃 = 1, (medium) 𝝃 = 0.5, (light) 𝝃 = 0. Moving-average 
smoothed with a window of length 4. For the networks, the average is taken over the policy 
probabilities. Shaded region represents standard error of the mean. (B) Same plot at in (A), but 
for the frequency of observes. Moving-average smoothed with a window length of 8. (C) Same 
plot as in (B), probability of intending to place a bet on the right arm. (D) Average number of sleeps 
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across different efficacy levels for (left) humans, (middle) APE-trained networks, and (right) no-
APE networks. For humans, individual samples are shown; for the networks, the shaded regions 
represent standard error of the mean. (E) Same plot as in (D), but for the average number of 
observations. (F) Same plot as in (C), but for the number of rewards obtained in an episode. 

 
Learning to increase control via self-care 
 
On day 3, human participants returned for an extra session in which they performed a 
new test (task 2). In this task they were offered (on each trial, in addition to observe and 
bet options) a third alternative that increased 𝜉 by 0.1 for the remainder of the episode 
(to a maximum of 1). We call this the “sleep” option, and equate it with self-care 
processes that increase controllability and thus reduce response errors. For example, a 
tennis player will serve more accurately after a good night’s rest. In this new task, 
participants learned to use the sleep action early on in training, and between trial 8-20 
they used it more frequently when 𝜉 was low (Fig. 4A, left panel), leading to an overall 
downward trend in use of the sleep button and the controllability of the environment (Fig. 
4D, left panel) (average sleep rate: 0.005 ± 0.004, mean ± SEM, n=46 for 𝜉=1; 0.050 ± 
0.011, n=65 for 𝜉=0.5; 0.134 ± 0.020, n=46 for 𝜉=0; p<0.05 for all pairwise comparisons 
according to Tukey’s HSD; see Supplement for full statistics). This meant that just on day 
2, overall human reward grew with 𝜉 (total rewards: 33.83 ± 0.85, mean ± SEM, n=46 for 
𝜉=1; 26.71 ± 0.69, n=65 for 𝜉=0.5; 24.02 ± 0.58, n=46 for 𝜉=0; p<0.05 for all pairwise 
comparisons according to Tukey’s HSD; see Supplement for full statistics). By contrast, 
now the number of observe responses now did not grow with level of 𝜉  (average 
observation rate starting from trial 15: 0.118 ± 0.010, mean ± SEM, n=46 for 𝜉=1; 0.107 ± 
0.010, n=65 for 𝜉=0.5; 0.115 ± 0.11, n=46 for 𝜉=0; p>0.82 for all pairwise comparisons 
according to Tukey’s HSD; see Supplement for full statistics) (Fig. 4B and Fig. 4E, left 
panels). This presumably occurs because the APE-trained networks learn to sleep 
consistently at the start of the block, effectively rendering every condition highly 
controllable, and obviating the need to observe differentially with levels of 𝜉. 
 
As can be seen in Fig. 4A-F (centre panels), these findings were almost precisely 
recapitulated by the APE-trained network, including the time course of sleep choices for 
each level of environmental controllability (Fig. 4A). By contrast, the standard network 
did not learn to sleep more in less controllable environments (thus rendering them 
controllable; Fig. 4A-F, right panels). The APE-trained model’s policy therefore predicted 
significantly better human choices than the standard model across efficacy levels 
(average likelihood: 0.661 ± 0. 030, mean ± SEM for APE-trained and 0.594 ± 0.024, mean 
± SEM for standard, n=46, for 𝜉=1; 0.554 ± 0.031, mean ± SEM for APE-trained and 0.510 
± 0.025, mean ± SEM, n=65 for 𝜉=0.5; 0.594 ± 0.028, mean ± SEM for APE-trained and 
0.535 ± 0.028, mean ± SEM for standard, n=46 for 𝜉=0; estimated model frequencies of 
0.9955 ± 0.0006 and 0.0045 ± 0.0006, mean ± SEM, n=111 and exceedance probabilities 
of 1.000 and 2.161e-37 for APE-trained and standard, respectively; see Supplement for 
full statistics and Methods for details).  
 
A deep network model of learned helplessness and compulsivity 
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Many psychological disorders can be conceived of as pathologies of control4. For 
example, people that underestimate the level of environmental controllability may 
refrain from taking useful actions in the belief that they are pointless. This is called 
learned helplessness, and it has been proposed to be a major component of depression 
and anxiety disorders46,47. By contrast, agents that overestimate the level of 
environmental controllability may compulsively over-explore, even when doing so has no 
effect on outcomes. This is reminiscent of the behavioural pathologies in obsessive-
compulsive disorder (OCD), where participants may engage in stereotyped or ritualistic 
actions that lack apparent motive. OCD has been linked to misperception of control48. 
 
 We used our APE-trained network to create simulations of these pathologies. At test, we 
added a perturbation to the hidden unit representation along the axis that corresponded 
to the trained controllability-readout of the APE-trained network, so that its output was 
systematically biased to over- or under-estimated environmental controllability. This 
neural perturbation was successful in increasing or decreasing the number of “observe” 
responses (total number of observes across all controllability settings: 53.59 ± 2.99, 
mean ± SEM, n=10 for positive 𝜉-perturbation; 48.45 ± 2.62, n=10 for no 𝜉-perturbation; 
41.07 ± 2.66, n=10 for negative 𝜉 -perturbation; p<0.05 for all pairwise comparisons 
according to a paired t-test with Holm-Bonferroni correction for multiple comparisons). 
Since the perturbation was introduced at inference time (test), the network continued to 
respond as if the recurrent layer was representing controllability truthfully. The results 
are shown in Fig. 5A, for both task 1 and task 2 (similar results were obtained by giving 
false feedback to the networks, explicitly “gaslighting” them into believing that the world 
was more or less controllable than it really was, see Fig. S3). In task 1, both positive and 
negative perturbation rendered the network relatively insensitive to environmental 
controllability, leading to a much shallower relationship between 𝜉 and the frequency of 
‘observe’ choices. However, when agents were (negatively) perturbed to underestimate 
controllability, they consistently failed to ‘observe’ and just harvested whatever rewards 
were possible by chance, reducing overall reward (a form of learned helplessness). By 
contrast, agents (positively) perturbed to overestimate controllability were excessively 
prone to observe, even when it was not reward-maximising to do so (according to the 
SARSOP baseline). This resembles compulsive behaviour, where patients repeatedly 
attempt to verify unobservable states (e.g. that front door is locked or gas is turned off), 
even when there is no apparent benefit to doing so. 
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Figure 5. Neural networks can model individual differences in human performance. (A) The 
effect on the network policy when the population representation is perturbed to correspond to 
greater or lower values of efficacy by inverting the linear readout of the APE-trained network and 
pushing the population representation according to the corresponding projection, effectively 
causing the network to believe it has more or less control than it does in an episode. The 
intervention is performed on (left) task 1, with the average number of observes across tested 
controllability levels is showed for networks perturbed to (lighter) low and (darker) high levels of 
controllability, and (right) for task 2, where the average number of sleeps is shown. (B) The 
rewards received by participants in task 1 follows a stereotypical correlation structure in which 
participants’ number of rewards is correlated across nearby controllability levels, but anti-
correlated across controllability levels that are further away. The matrix shows the correlation 
between rewards obtained in task 1 by individuals across different levels of efficacy for (left) 
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humans and (right) “trait-level” simulated networks, i.e. those whose efficacy representation is 
perturbed by the same amount across different episodes. (C) Same as (B), but showing the 
correlation in number of observes across different episodes in task 1. (D) Same as (C), but 
showing the correlation in number of rewards obtained across different episodes in task 2. (E) 
Same as (D), but showing the correlation in number of sleeps across different episodes in task 1. 
(F) Same as (E), except showing the correlation from (rows) task 1 to (columns) task 2 of rewards 
obtained. Since these matrices are no longer symmetric, the whole matrix is used to compute 
the cosine similarity. (G) Same as (F), but showing the correlation between (rows) number of 
observes on task 1 and (columns) number of sleeps on task 2. Due to the correlation in observe 
actions across tasks, the number of observe actions on task 2 is partialled out of both variables. 
(H) Cosine similarity describing the degree of similarity between correlation matrices is between 
humans and the trait-simulated neural network agents. Upper-triangular matrices excluding the 
long diagonal are used to compute the cosine similarity when the matrix is an autocorrelation 
matrix. Error bars show 95%-confidence interval as computed using bootstrapping over 100 
iterations. 

In task 2, as expected, we see the converse pattern – networks that underestimate the 
controllability of the environment (i.e. depressive / anxious phenotype) tend to engage in 
excessive levels of ‘sleep’ across the board, whereas those that overestimate 
controllability (compulsive phenotype) fail to the “sleep” action irrespective of the value 
of 𝜉 (total number of sleeps across all controllability settings: 37.32 ± 2.99, mean ± SEM, 
n=10 for positive 𝜉-perturbation corresponding to an increased belief in controllability, 
58.27 ± 4.70, n=10 for no 𝜉 -perturbation corresponding to an accurate belief in 
controllability; 127.90 ± 17.30, n=10 for negative 𝜉 -perturbation corresponding to a 
lowered belief in controllability; p<0.05 for all pairwise comparisons according to a 
paired t-test with Holm-Bonferroni multiple comparisons correction; see Methods). 
 
Next, we examined patterns of behaviour in a population of agents for which the level of 
perturbation was randomly sampled, creating a spectrum of individual differences that 
included both anxious/depressive (A/D) and compulsive network phenotypes. We 
analysed how consistent network behaviour was across different controllability levels for 
a given hidden layer perturbation. For each task as well as between tasks, we plotted the 
correlation in rewards (Fig. 5B-F, right panels) and observe or sleep probability (Fig. 5C-
G, right panels) across the population, for each level of environmental controllability 𝜉 
with every other (in nine bins). In APE-trained networks, the cross-correlation plots 
showed a characteristic “blocked” structure for reward correlations, whereby there were 
positive correlations in reward for both low and high controllability blocks, but negative 
correlations between them. This was true for correlations within task 1 (Fig. 5B), within 
task 2 (Fig. 5C) and between tasks 1 and 2 (Fig. 5D, all right panels). This result implies 
that there are two pools of strategies in the neural network population: agents that yield 
higher rewards in less controllable environments fare more poorly in more controllable 
environments, and vice versa. Notably, these structured correlations in behavior were 
not shown by networks whose control representation was unperturbed, or was perturbed 
differently between different episodes (see Fig. S4 and Fig. S5 for these controls and the 
remaining behavioral variables). 
 
When we plotted the same data for human participants, despite being more variable, the 
same approximate patterns emerged (Fig. 5B-G, left panels). To quantify their 
correspondence with networks, we computed the cosine similarity of the network cross-
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correlograms with the human reward data, and found significant similarities (cosine 
similarity: 0.544, 90% CI = 0.375 to 0.604; Fig. 5B). Meanwhile, population similarity with 
networks that were perturbed with the same strength, but where the perturbations was 
shuffled between efficacy levels, was of significantly lower magnitude and inconsistent 
sign (see Supplement for statistics). We repeated this approach, correlating observe 
probability within task 1 (cosine similarity: 0.993, 90% CI = 0.977 to 0.996, original and 
90% CI; Fig. 5C), sleep probability within task 2 (cosine similarity: 0.957, 90% CI = 0.936 
to 0.968; Fig. 5E) and the correlation between rewards across tasks (cosine similarity: 
0.444, 90% CI = 0.305 to 0.503; Fig. 5G) and observes in task 1 and sleeps in task 2 after 
controlling for the correlation with observes on task 2 (cosine similarity: 0.222, 90% CI: -
0.089 to 0.392; Fig. 5G). In all cases, we saw greater similarity than would be expected 
by chance, although the difference was not significant for observes and sleeps (Fig. 5H). 
In other words, the overall patterns of behaviour and outcomes across the population 
varied as a function of environmental controllability in a mostly conserved fashion 
between humans and APE-trained networks. 
 
Transdiagnostic scores predict how individuals learn the value of control 
 
In the human population, we saw patterns of correlation that resembled those in APE-
trained networks that were perturbed to either over- or under-estimate the level of 
controllability of the environment. This is presumably because our randomly sampled 
human population contains a spectrum of individual differences, with some participants 
more prone to depressive/anxious type phenotypes, and others to show forms of 
compulsivity. With this idea in mind, at the end of the study we asked participants to 
complete a short self-report questionnaire which has successfully used to capture these 
traits in healthy populations33 (using scoring tools available at https://github.com/the-
wise-lab/FACSIMILE/). The survey required participants to note how much they agreed 
with statements such as “I get tired for no reason” and “I get upset if things are not 
arranged properly”, and yielded scores on three transdiagnostic dimensions: (1) anxiety 
and depression, (2) compulsivity and intrusive thoughts, and (3) social withdrawal49. We 
pre-registered our prediction that participants with higher scores on Factor 1 would be 
less prone to observe in task 1, and more prone to sleep in task 2, whereas the converse 
would be true for those with higher scores on Factor 2 (we had no predictions either way 
about social withdrawal). 
 
In Fig. 6A, we show the predictions of a linear regression in which A/D and compulsivity 
scores were included as joint predictors of observation probability in task 1 (left) and 
sleep probability in task 2 (right). The reward-maximising strategy is highly dependent on 
𝜉 , so we perform the analysis separately for both low controllability levels with 𝜉 ∈
{0, 0.125, 0.25, 0.375} and high controllability levels with 𝜉 ∈ {0.625, 0.75, 0.875, 1} . 
Contrary to our pre-registered predictions, we did not see convincing evidence for a 
linear relationship between transdiagnostic scores and the probability of observe 
choices. In task 1, the resulting coefficient for A/D was weakly positive but not significant 
for either high or low controllability levels (coefficient m=0.592, p=0.121, n=111 for low 
𝜉; m=0.623, p=0.100, n=111 for high 𝜉). The relationship for compulsivity was weakly 
negative for low controllability settings, and weakly positive for high controllability (m=0.-
0.339, p=0.384, n=111 for low 𝜉; m=0.058, p=0.881, n=111 for high 𝜉).  In task 2, the linear 
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relationships were weakly and non-significantly positive for all settings (AD: m=0.210, 
p=0.363 for low 𝜉; m=0.194, p=0.345 for high 𝜉; compulsivity: m=0.089, p=0.704 for low 
𝜉; m=0.143, p=0.495 for high 𝜉).  
 
We observed that A/D and compulsivity scores were positively correlated (𝑟2 =0.358, 
p=1.16e-4; Fig. 6B), which could be indication of a shared axis of psychopathology. Since 
our neural network simulations predict opposite effects of A/D and compulsivity 
phenotypes on estimated controllability, we adopted an exploratory approach in which 
we identified factors of variance in questionnaire data using data-driven methods.  We 
orthogonalized the space spanned by A/D and compulsivity by calculating the principal 
components across both factors. The first principal component (PC1), which had 
positive coefficients across both factors (0.729 for AD and 0.685 for compulsivity) and 
explains 67.9% variance, presumably represents generic psychopathological factors 
shared across the whole cohort. However, the second principal component (PC2), which 
we orient to have a positive coefficient for A/D (0.685) and a negative coefficient for 
compulsivity (-0.729), was a better candidate to index the transdiagnostic symptoms 
that differ between these phenotypes. In Fig. 6E, we plot the joint distribution of observe 
choices as a function of controllability and quantile of PC1 (left panels) and PC2 (centre 
left panels) on task 1, and in Fig. 6H for task 2.  
 
In the centre right panel, we plot the predictions from the trait-simulated deep network 
population, sorted by quantile of perturbation. Each plot shows how a given variable (e.g. 
rewards in Fig. 6D) varies jointly with both controllability (on the x-axis) for participants 
sorted into noniles by their transdiagnostic scores, as measured by PC2 (see Fig. S6 for 
similar effects on PC1, Fig. S7 for original transdiagnostic scores, and Supplement for 
full statistics). On the rightmost panel we see the predictions from an unperturbed 
network, which by definition has the same response for each quantile – as there is no 
variation by trait. The trait-simulated network predicts that several variables will depend 
not just on controllability but on transdiagnostic score, or on the interaction between 
these variables. As can be seen, transdiagnostic scores interact strongly with 
behavioural performance across controllability levels: Participants with higher PC2 
score tend to observe slightly more frequently on task 1 (higher values in the lower part 
of the plot) and strongly more on task 2, matching the population response of the 
perturbed APE-trained networks (fraction remaining similarity explained by the trait-
simulated networks: 0.015, 90%-CI = -0.183 to 0.154 for task 1; 0.557, 90%-CI = 0.618). 
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Figure 6  (Part 1). Neural networks can predict behavioural effects of transdiagnostic 
factors. (A) True versus predicted human behaviour for a linear model trained to predict (left) 
mean number of observes per individuals on task 1 and (right) mean number of sleeps in task 2, 
based on their A/D and compulsivity transdiagnostic factors, computed using the questionnaire 
and methods from Hopkins et al (2022). The linear models are fitted separately on low-
controllability episodes (light green, 𝝃 ∈ {𝟎, 𝟎. 𝟏𝟐𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟑𝟕𝟓}) and high-controllability 
episodes (dark green, 𝝃 ∈ {𝟎. 𝟔𝟐𝟓, 𝟎. 𝟕𝟓, 𝟎. 𝟖𝟕𝟓, 𝟏}. The linear model is statistically significant 
(p<0.05) based on an f-test for both linear models trained to predict number of observes and 
insignificant for the model trained to predict number of sleeps. The points correspond to values 
for individual people, and the dotted black line shows the identity where the true value matches 
the prediction exactly. (B) Relationship between A/D and compulsivity for (individual 
participants) and (dashed grey) the line of best fit.  (C) Difference in cosine similarity for the 
matrices between the trait-level perturbations, 0-perturbation networks, and human behaviour 
based on transdiagnostic factors A/D and compulsivity. Error bars show 95%-confidence 
interval as computed using bootstrapping over 100 iterations. 
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Figure 7  (Part 2). Neural networks can predict behavioural effects of transdiagnostic 
factors. (D) Mean reward tallies in task 1 across individuals within (row) a particular nonile for 
episodes in (column) a given efficacy level, where the noniles are taken according to 
transdiagnostic factor scores (far left) AD, (middle left) compulsivity, and (middle right) 
perturbation magnitude for neural networks, with (far right) representing a control showing the 
values for an unperturbed neural network. The matrices showing human performance are 
computed separately and normalized between minimum and maximum values for each of the 
two groups, and then combined using a weighted average based on the corresponding number 
of participants. (E) Same as (D), but showing the number of observe actions taken per episode in 
task 1. (F) Same as (E), but showing the reward tallies per episode in task 2. (G) Same as (F), but 
showing the number of sleep actions obtained per episode in task 2. (H) Same as (G), but showing 
the number of sleep actions obtained per episode in task 2. 
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Over the other panels in B-F we repeated this exercise for relevant variables, namely 
rewards (Fig. 6B) in task 1 and rewards (Fig. 6E) and sleep (Fig. 6F) actions in task 2 (see 
Fig. S5 for the remaining variables). PC2 was correlated significantly more strongly with 
behavior of the perturbed neural networks for all of these factors except number of sleep 
actions in task 2 (fraction remaining similarity explained: 0.662, 90%-CI = 0.542 to 0.687 
for task 1 rewards; 0.232, 90%-CI = 0.194 to 0.249 for task 2 rewards; -0.399, 90%-CI = -
0.632 to -0.063 for task 2 sleeps, see Fig. 6C). The relationship between transdiagnostic 
scores and performance in the task is further highlighted by the difference in 
transdiagnostic scores between participants included in the study and those who were 
excluded from analysis on the basis of pre-registered criteria for out-of-distribution 
behaviour on the practice day (A/D: 0.135 ± 0.084, mean ± SEM, N=111 for included and 
-0.199 ± 0.107, mean ± SEM, N=71 for excluded, t(180)=2.437, p<0.05; compulsivity: 
0.171s ± 0.082, mean ± SEM, N=111 for included and -0.043 ± 0.110, mean ± SEM, N=71 
for excluded, t(180)=1.546, p=0.124). Together, these results imply that our perturbed 
neural networks were able to capture human variation in a tendency to under- or 
overestimate the controllability of the environment, as measured by responses to 
transdiagnostic questionnaires. However, the relationship between survey responses 
and the predicted patterns of behaviour is our task is more complex than the one that we 
originally pre-registered, and will need to be confirmed with further research. 
 
Discussion 
 
We studied the ability of humans and deep neural networks to learn a meta-control 
policy – to adapt their behaviour to the level of controllability of the environment, 
operationalised as the probability that an action is converted into its intended 
consequences. We did not explicitly cue environmental controllability in either humans 
or networks, who instead had to estimate this quantity on the fly from the history of 
actions and outcomes. For computational inspiration, we drew upon the framework of 
deep meta-learning, which is increasingly popular as a theory of human cognition38,39. 
Deep networks were able to meta-learn a near-optimal solution to this task, but only 
when explicitly trained to the likelihood of an error – and thus to infer levels of 
environment controllability. 
 
This finding provides a strong computational explanation for why biological agents have 
evolved to explicitly monitor and update levels of uncertainty or conflict in the 
environment, or the likelihood than an error will occur. It also explains why APEs – a 
neural signal coding mismatch between intended and realised actions – are such 
prominent brain responses for humans and other animals23–26,28,32. One of the most 
interesting aspects of our data was that it was not sufficient for the network simply to 
represent environmental controllability per se. In fact, in 𝜉-input networks, which did not 
compute APEs but instead received controllability explicitly as an input, this variable was 
consequently much easier to decode – and yet these networks never learned an optimal 
meta-control policy. In other words, there exists a deep connection between the 
requirement to predict how controllable the environment is, and the capacity to reformat 
information in a way that permits the exercise of cognitive control. 
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Our human behavioural experiments show that the APE-trained network learned a meta-
control policy that was very similar to that displayed by people. Figures 2 and 4 show 
strikingly conserved behavioural signatures (between humans and networks) over the 
course of blocks with different levels of controllability. Of note, our manipulation 
involved both conditions where lower levels of environmental controllability required 
participants to overlook (‘observe’ in task 1) or engage with (‘sleep’ in task 2) auxiliary 
actions, and so are unlikely to be driven by generalised levels of engagement or 
disengagement with the task. Rather, both humans and APE-trained networks learn how 
to exploit available controllability (by observing) or to increase controllability (by 
sleeping) in the service of reward-maximisation. 
 
We used perturbations to create deep networks that exhibit individual differences in how 
they learn the value of control – being encouraged to either over- or under-estimate 
environmental controllability. We found that human participants who report 
transdiagnostic traits previously associated with anxiety / depression and compulsivity 
display patterns of behaviour that are similar to neural networks that are perturbed to 
over- and under-estimate environmental controllability respectively (as derived from the 
sign of the coefficients on the second principal component). This is consistent with 
theories that cast these pathologies as disorders of control that result in behavioural 
abnormalities. For example, depressed patients often neglect to take the initiative – to 
seek information that would permit reward-maximising behaviours, which could come 
from under-estimating the likelihood that these actions will translate to a positive 
outcome as intended. Conversely, OCD patients may over-estimate the controllability of 
the environment, leading them to compulsively check for the value of latent states, at the 
expense of reward-maximising. Both perturbations thus create behavioural pathologies.  
 
However, we note here that the correspondence between over- and under-estimation of 
environmental controllability and the symptomatology of A/D and compulsion is not 
precise. In particular, we found that the main component of transdiagnostic scores in 
our convenience sample was a generic one which jointly indexed both A/D and 
compulsive symptomatology. The axis spanning an A/D phenotype (indicative of 
underestimation of environmental controllability) and a compulsive phenotype (over-
estimation) emerged in the second principal component, and its relationship with the 
predictions of our population of perturbed neural networks was close but not exact. It is 
possible that with a significantly larger cohort (thousands rather than ~100 participants) 
this result would be much cleaner. Nevertheless, we think that our work opens up new 
avenues for studying these behaviours using computational tools based on deep neural 
networks.  
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Methods 
 
Participants 
Data collection was carried out online using the platform Prolific Academic 
(https://prolific.com). The experimental was collected in two batches over successive 
weeks using a three-day procedure, with 110 participants recruited each week. We only 
analyzed data from those participants who completed the full 3-day experiment, 
including the transdiagnostic psychiatric questionnaire at the end. In the end, we had full 
data from 182 participants across both weeks and groups. Of these participants, some 
almost never used the “observe” option (2 occasions or fewer), and some used it almost 
exclusively (18 occasions or more). We excluded these according to a pre-registered 
procedure, leaving 111 participants. 
 
When they joined the experiment, participants were randomly assigned to either group A 
or group B. Of the 182 participants, 86 were in group A and 96 in group B. Of the 111 
participants following exclusions, 46 were in group A and 65 were in group B. 
 
Participants were compensated for both their time and for correct choices. As base pay, 
participants received 5 GBP for day 1 (estimated completion time: 40 minutes), 3 GBP for 
day 2 (estimated completion time: 25 minutes), and 3.75 GBP for day 3 (estimated 
completion time: 30 minutes) for their time. Additionally, participants received an 0.01 
GBP for each point they earned during the game as a bonus. Average reward rate was 
around 9 GBP per hour on all days and for both batches. 
 
All participants provided informed consent before taking part, and the studies were 
approved by the University of Oxford Central University Research Ethics Committee. 
 
Stimuli, task and Procedure 
On each trial of task 1, participants were shown a pair of blue and red circles symbolizing 
the betting actions, an icon of a pair of glasses for the observe action. The blue circle was 
on top, in the middle the glasses, and on the bottom the red circle. All had reduced 
opacity. In lieu of a fixation cross, the stimuli were first presented for 350 ms without 
additional information and without the option for participants to click on anything. After 
that, additional text appeared on top of the screen indicating the trial number as well as 
the phrases “Bet: Click on the light of your choice” and “Observe: Click on the glasses”. 
At the bottom of the screen, the instructions “Click on one of the pictures to continue” 
appeared. Collectively, these indicated to participants that the intertrial interval was 
over and they could make an action. Participants chose one of the two betting actions 
(circles) or the glasses (observe) by directly clicking on the corresponding part of the 
stimulus. Participants could take as much time as they needed to click on an action. 
Stimuli remained on the screen until an action was selected. On trials in which 
participants selected a bet, the selected circle was modified by a dark outer ring to 
indicate that the light had been chosen by the participant, and an icon of a coin with a 
red question mark appeared to indicate where the participants’ bet had been placed. 
These remained for 1000 ms. On observe trials, the glasses increased in opacity to 
indicate that an observe trial had been taken for 1000 ms, as did the circle corresponding 
to the light that would have paid out that round. At that point, the next trial began, again 
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with the same 350 ms intertrial interval during which the stimuli were shown but could 
not be selected. Stimuli were generated using a vector graphics editor. and arranged 
using JSPsych (de Leeuw et al., 2023). Additionally, participants saw a background image 
for the story intro featuring a casino table, generated by an AI (DALL-E). 
 
At the end of an episode, participants were told how much reward they had earned. On 
training episodes, they additionally saw complete information about the entire trajectory 
of the episode, including which light lit up on which trial, which actions they intended to 
choose, and which actions were selected. On days 1 and 2, participants were 
additionally asked to indicate the level of control they had had during the episode using 
a slider. 
 
Task 2 was identical, except that the action stimuli featured an icon of a bed on top to 
represent the sleep action, and below the blue circle, glasses, and red circle arranged 
horizontally from left to right. When selected, the bed action increased in opacity. 
 
All three days were run in forced full screen mode. Day 1 was a practice day for task 1. It 
began with a short introductory story about the participant entering a casino and being 
explained the rules by a staff member at a table. The story intro featured the casino 
background image. This story was followed by plain-text explanations of the rules, that 
featured examples of moves that participants had to execute, and visualizations of the 
feedback that they received. These were on a white background. The instructions 
included quizzes on the instructions that were shown once, regardless of the 
correctness of participants’ responses, but which were followed by feedback explaining 
why a participants’ choice was right or wrong. To aid in participant comprehension, the 
instructions also explicitly described the most rewarding strategy as being to observe 
more in episodes where the participant had more control. 
 
After that, participants played nine blocks of the game, one with each controllability level 
in the set {0.125 𝑘  |0 ≤  𝑘 ≤  8, 𝑘 ∈  ℤ} . For group A, controllability levels 
{0, 0.25, 0.75, 1} was used as the training set on day 1 and {0.125, 0.375, 0.5, 0.625, 0.875} 
as test. For group B, the sets were exactly inverted. Within a set, the order of the 
controllability levels was randomized for each participant. Both training and test blocks 
used the same stimuli described above. However, on training sets, before the first trial, 
participants received a verbal description of the level of control they were going to have, 
“none” for 𝜉=0, “a little” for 0 < 𝜉 <

1

3
, “some” for 1

3
≤ 𝜉 <

2

3
, “a lot of” for 𝜉 ≥

2

3
. This was 

accompanied by a qualitative description of how often their bets would succeed: “half 
the time”, “slightly more than half the time,” “most,” “almost always”, and “always,” 
respectively. Additionally, on training episodes, the screen’s background color was 
changed to function as a controllability cue. The color was interpolated linearly between 
red for no control to yellow for complete control. The background color was changed at 
the moment participants received their verbal controllability description and remained 
that way for the remainder of the episode. In contrast, for the test episodes, participants 
received no such verbal description, and the background color was set to white.  
 
On Day 2, the data was collected for task 1. It included a short recap of the instructions 
of the previous day on the casino background before switching back to a white 
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background for quizzes. Participants performed 9 blocks of 50 trials each. Again, each 
block involved a different controllability level. However, the allocation of controllability 
levels as training and test was now flipped. On this day, for group A, {0, 0.25, 0.75, 1} was 
used as the training set on day 1 and {0.125, 0.375, 0.5, 0.625, 0.875} as test. As on the 
previous day, the order was reversed for group B. This time, the training sets were not 
accompanied by a verbal cue and explanation of the controllability level. The background 
color was still changed to reflect controllability level during the training blocks as before. 
On test blocks, participants did not receive any indication of the level of control, and 
played on a white background. 
 
Finally, on day 3, participants participated in task 2. The instructions began with a 
description of the added action again on the casino background image. They then 
reverted to plain-text instructions, The instructions also explicitly described the most 
rewarding strategy as being to sleep more in episodes where the participant had less 
control. Participants then again played nine blocks of 50 trials. As on day 2, for group A, 
{0, 0.25, 0.75, 1} was used as the training set on day 1 and {0.125, 0.375, 0.5, 0.625, 0.875} 
as test. These allocations were flipped for group B. On test blocks, participants did not 
receive a verbal description of the level of control. However, the background color was 
again interpolated between red and yellow as a cue for increasing controllability level. As 
the controllability level could change during a block in task 2, the background color was 
dynamically adjusted when participants chose the sleep action to always reflect the 
current level of control participants had. On test blocks, participants played on a white 
background and did not receive any indication of the level of controllability. 
 
At the end of day 3, participants completed psychiatric transdiagnostic questionnaires 
from Hopkins et al. (2022), which allows for robust estimation of the three 
transdiagnostic psychiatric factors originally recorded in Gillan et al. (2016). The 
questions all consistent of statements that participants agreed with by selecting one of 
a number of options ranging from “Strongly Disagree” to “Strongly Agree.”  
 
The experiment ended with a brief outro story again on the casino background. 
 
The task and instructions are available online. The link for the first day is: 
https://www.hipexperiments.co.uk/sandbox/tasks/kai/HumanObserveBetEfficacyDay1
Of2.  
 
Observe or bet task settings 
Different versions of the task were used to compare human and neural network 
performance as well as to evaluate machine learning performance. The observe or bet 
tasks used in this report were all 50 steps long. In the second task, sleeping increased 
controllability by 0.1 for all task versions. No penalty was deducted from participants for 
placing a bet on the wrong bandit in order to allow a clearer disentangling of observation 
policies between different efficacy levels. The parameter settings that differed between 
versions are listed in Table 1. 
 
Table 1. Parameters used in the observe or bet tasks. 

https://www.hipexperiments.co.uk/sandbox/tasks/kai/HumanObserveBetEfficacyDay1Of2
https://www.hipexperiments.co.uk/sandbox/tasks/kai/HumanObserveBetEfficacyDay1Of2
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Version Task Bias 
Reversal 

probability 
Human Task 1 0.5 10% 
Human Task 2 0.5 5% 
Machine Learning Task 1 0.4 5% 
Machine Learning Task 2 0.49 5% 

 
Calculation of optimal solutions 
A partially-observable Markov decision process (POMDP) is a 7-tuple ⟨𝑆, 𝐴, 𝛺, 𝑂, 𝑇, 𝑟, 𝛾⟩, 
where 𝑆 is the (finite) non-empty state space, 𝐴 is the (finite) non-empty action space, 𝛺 
is the (finite) non-empty observation space, 𝑂 ∶  𝑆 →  𝑃(𝛺) is the observation function, 
𝑇 ∶  𝑆 ×  𝐴 →  𝑃(𝑆) is the probabilistic state-transition function, 𝑟 ∶  𝑆 ×  𝐴 →  𝑃(𝑅) is a 
bounded reward function, and 0 ≤  𝛾 ≤  1  is the discount factor. We formalized the 
observe or bet task for the calculation of optimal solutions by defining the set of states 
as the product space given by the number of steps along with the two possibilities for 
which is the high-paying door. For task 1, the set of actions is to observe, to bet on the 
left door, or to bet on the right door. The set of observations are given by the product of 
the set of the number of steps and the possible observations per step, no observation, 
observing a payout on the left door, and observing a payout on the right door. The 
observation, transition, and reward functions that correspond to the regular observe-or-
bet rules. We set 𝛾 =  1. This formulation of the POMDP takes the perspective of an 
agent who knows what the overall probability level is, but does not know the assignment 
to a particular door. We used this formulation to calculate the normative solutions, 
providing an upper bound on performance. In contrast, the neural networks are meta-
trained across all probability levels, which means they start an episode with a uniform 
prior about the probability level. Because we only give participants general indication of 
probability ranges rather than an exact estimate, we can assume that they are and in any 
case start the trial without information about which arm is the higher-paying one, we can 
assume that the participants operate with some uncertainty as to the exact transition 
structure of the environment and therefore are operating under the POMDP described 
above. 
 
We used the SARSOP algorithm to closely approximate the optimal solution to the 
decision-making task from the perspective of an agent that has knowledge of the 
transition structure of the environment, including the level of efficacy. SARSOP is a state-
of-the-art solver for problems that require active information gathering (Ma and Pineau, 
2015; Silver and Viness 2010).  We used the implementation in the JuliaPOMDP package 
in the Julia programming language (Egorov et al. 2017). This solver generates the 
observations based on the state reached by the network after state transition, as 
opposed to the task given to the humans and the networks in which the observation was 
generated before the transition. This means that observe actions were more valuable for 
the POMDP solver than for the humans and networks, making the upper bound stricter. 
In practice, however, this difference is small. 
 
Training and evaluation of neural network policies 
We trained the APE-based and the solely-reward-based networks over a hierarchical task 
structure over 𝜉 to maximize returns using meta-RL (Wang et al., 2016). All networks were 
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trained using REINFORCE with a baseline of 1/3 (corresponding to the expected value of 
a random action, as on every step exactly one bandit pays out and there are three 
possible actions). We used the policy gradient over the policy 𝜋  to update network 

parameters 𝜃 . For a sampled Monte Carlo return 𝐺𝑡 = ∑ 𝛾𝑡′−𝑡 (𝑅𝑡′ −
1

3
)𝑇

𝑡′≥𝑡   and total 
number of trials in an episode 𝑇, the policy gradient for a trial t is: 
 

∇𝜃ℒ𝜋 = −𝐺𝑡 ⋅ ∇𝜃 ln 𝜋𝜃(𝑎̂𝑡|𝑜𝑡) 
 
The base neural network architecture contained an LSTM layer of 48 units, followed by a 
feedforward layer of 24 units, and finally a softmax output of the policy over the three 
possible actions. The LSTM activations were reset at the start of every episode. The error 
likelihood signal of the APE-trained networks consisted of a single node with a linear 
activation function that was connected fully to the LSTM layer. It was trained to predict 
the firing of APEs using a squared error loss function which trains the network to predict 
the error likelihood 𝑝̂𝑡, resulting in the gradient for trial t: 
 

∇𝜃 ℒ𝑝 = [𝑝̂𝑡 − 𝛿APE,𝑡] ⋅ ∇𝜃𝑝̂𝑡 
 
with a weighting coefficient of strength 25 for task 1 and 100 for task 2. This node was 
then concatenated back to the LSTM layer so that it reached the next fully-connected 
layer as an additional input. The inputs to the network consisted of one-hot encodings of 
the previously-intended action  𝑎̂𝑡−1 and the actually-taken action 𝑎𝑡−1 inputs as well as 
a scalar indicating the fraction of steps that were remaining in the episode, a unit for each 
of the two lights that was set to 1 if an observe action was chosen and that light lit up on 
the previous turn, and, matching the human input, a binary flag and a scalar tally for 
rewards earned in the previous episode that were activated on the start of a new episode. 
The input to the 𝜉-input networks contained 𝜉 as an additional scalar node. 
 

We meta-trained the networks over the set 𝜉 ∈  [0,
1

3
] ⋃ [

2

3
, 1] and tested them on discrete 

values across the entire range 𝜉 ∈  {0.125 𝑘  |0 ≤  𝑘 ≤  8, 𝑘 ∈  ℤ} . We trained 10 
instantiations per type over 500k episodes of 50 steps with a batch size of 50 episodes, 
annealing entropy regularization to 0 geometrically over 150k episodes. We used PyTorch 
without additional libraries (Paszke et al., 2019). No hyperparameter optimization was 
conducted beyond initial hand-tuning of parameters to reasonable values. 
 
Analysis of neural networks 
To determine how well efficacy is represented in the networks, we performed a 
population-level decoding analysis was represented of the recurrent layer's hidden 
units. In this analysis, the activations of all neurons in a hidden layer at a single time point 
were jointly used as predictors of efficacy at that point in time (constant over the 
episode). The accuracy was evaluated using 𝑟2 score for time-points in the second half 
of an episode (to give the network time to determine the efficacy level). To prevent over-
fitting, we used ridge regularization with a regularization strength of 1. 
 
To measure the impact of the controllability representation in the networks, we 
interrupted the efficacy prediction to evaluate its impact on network performance in the 
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APE networks. We performed perturbations of the population representation of 
controllability. For this, we inverted the linear readout weights going from the population 
representation to the readout node. Given recurrent hidden layer activity ℎ, an efficacy-
readout value 𝜉′ , and a target efficacy that represents a perturbation of the ground truth 
𝜉′target = 𝜉′ + 𝜉perturbstion

′ , we inverted the readout weights 𝑊ℎ,𝜉̂  to calculate one 
possible population activity that would correspond to 𝜉target

′  based on the formula: 
 

ℎperturbed = ℎ +  𝑊
ℎ,𝜉̂
−1(𝜉′target − 𝜉′) 

 
We then use this formula to perturb the population activity to fixed levels as we expose 
the APE-trained networks to a variety of efficacy settings. Note that networks trained 
using a 𝜉perturbation

′ = 0  will behave slightly differently from an unperturbed neural 
network since it will receive an advance indication of the given efficacy level in its 
distributed controllability representation. 
 
In an additional analysis, we mistrain networks to misinterpret environmental control 
cues. To manipulate the population-level representation of efficacy that emerges in the 
LSTM (detected through a decoding analysis and through ablations of the efficacy node), 
We selectively unfroze the weights from input to LSTM and from LSTM to efficacy readout 
of converged APE-trained networks and continued training the networks for another 100k 
episodes on false APEs generated from binomial distributions corresponding to fixed 
probabilities. 
 
Analysis of human behavior 
We computed statistics for pairwise comparisons using Tukey’s Honest Significant 
Differences test in the statsmodels package for Python (Seabold and Perktold, 2010). We 
only used data from test episodes where controllability to evaluate performance in these 
sections, so that many comparisons were across different groups. In cases where the 
data was paired, we used SciPy (Virtanen et al., 2020) for relative t-tests and statsmodels 
for Holm-Bonferroni multiple comparisons correction.  
 
In addition to statistical tests, we evaluate adaptation across efficacy levels using linear 
mixed-effect models (see Supplement for full results). For these analyses, we 
considered both group and controllability in the episode as fixed effects, and participant 
ID as a random effect. We fit the mixed-effects models using statsmodels (Seabold and 
Perktold, 2010). 
 
To evaluate how likely the APE-trained and standard models were as generative models 
of human trajectories, we first compute the log likelihood of the human trajectories 
under their respective policies. As a descriptive measure, we compute the average 
likelihood by averaging the stepwise (non-log) likelihoods of the human trajectories 
across all trials and episodes completed by an individual participant. We then average 
across different instantiations within a model type and compute statistics across 
different individual human participants. To quantify the difference, we use random-
effects analysis for Bayesian model selection (Rigoux et al. 2014 and Stephan et al. 2009) 
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based on the total log-likelihood computed across all trials and episodes for each 
individual, and then averaged across different model instantiations. 
 
We used scientific computing package PanDas (McKinney et al,. 2010) for data 
management. 
 
Analysis of individual differences 
To evaluate individual differences in performance, we constructed canonical correlation 
matrices. We  computed the canonical correlation matrices separately for each of the 
groups, and then computed the average correlation matrix of the two weighted by the 
number of participants in each group. As pre-registered, we take the partial correlation 
coefficient instead of the canonical correlation coefficient when comparing the number 
of observe actions in task 1 to the number of sleep actions in task 2. We fully partial the 
number of observe actions in task 2 here to account for possible interference with the 
number of sleep actions that could arise from the correlation in observe behavior 
between task 1 and task 2 that was observed in human participants. 
 
We construct the simulated population of perturbed participants using the methods 
described above. For task 1, we draw the perturbation magnitude for each individual 
from a standard normal distribution 𝜉perturbation

′ ~𝒩(0,1). For the trait-level simulations, 
we maintain the same perturbation level for each individual across efficacy levels; for the 
random simulations, we resample the perturbation from the same distribution for each 
episode. For task 2, we maintain the same perturbations but re-center the values so that 
𝜉perturbation

′ ~𝒩(0.8, 0.5)  instead to account for different task statistics. The random 
perturbation simulations for this task transform the used perturbation levels from task 1 
similarly but additionally shuffle their order so that there is no individual consistency 
across tasks. We simulate populations of 150 individuals to have a similarly-sized 
distribution as for our human participants, but repeat each episode 100 times to have 
more robust estimates of behavioral outcomes. 
 
We compare the correlation matrices for the human and simulated participants using 
cosine similarity. For the cases where we are comparing autocorrelation matrices 
(featuring the same variable along both rows and columns), we base the cosine similarity 
on the upper triangle matrix excluding the long diagonal. 
 
Finally, we constructed 95%-confidence intervals for the cosine similarity by 
bootstrapping. We created 100 samples of the population human participants by 
resampling with replacement. The 95%-confidence intervals are then given by the 0.025- 
and 0.975-quantiles. 
 
Analysis of psychiatric transdiagnostics 
We calculated the psychiatric transdiagnostic factors using the published procedure 
and fitted models from Hopkins et al. (2022). We computed the Pearson correlation 
coefficients between the different transdiagnostic factors using SciPy and computed 
lines of best fit using NumPy’s polyfit between transdiagnostics (Harris et al. 2020). We 
used statsmodels to relate A/D and compulsivity scores to behavioral measures 
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separately for high and low controllability settings, 𝜉 ∈ {0, 0.125, 0.25, 0.375}  and 𝜉 ∈
{0.625, 0.75, 0.875, 1}, respectively.  
 
We constructed matrix representations of the distribution of performance measures 
across controllability levels by sorting the data into noniles based on the transdiagnostic 
factors. We renormalized the data between 0 and 1 based on maximum and minimum 
values for each behavioral measure separately for each group, and then combined the 
matrices using an average weighted by the number of participants in each group. 
 
We compared the distributions in human behavior with those from the neural network 
simulations. For the trait simulations, we used the same simulations as in the previous 
sections, and computed noniles based on the value of the perturbation. To better 
capture the effect introduced by sorting based on perturbation, we compared 
performance with that of neural networks with 𝜉perturbation

′ = 0 . We normalized the 
matrices for both the trait- and zero-perturbed networks between 0 and 1 before 
computing cosine similarity to be in a similar range as for humans. We then compute the 
excess predictive power of the trait-simulated networks by comparing the cosine 
similarity of their distribution matrices with that of the unperturbed networks by the 
formula Fraction Remaining Similarity Explained =  

SimilarityTrait−SimilarityZero

1−SimilarityZero
. 

 
We again computed 95%-confidence intervals by bootstrapping over 100 samples and 
taking the 0.025- and 0.975-quantiles in cosine similarity over the resulting distribution.  
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Supplement 1: Additional results 
 

 
Fig. S1. Estimates of environmental controllability. On day 2, participants were asked 
to estimate the level of environmental controllability using a slider after each episode. 
(A) Estimates by participants in group A for both (light green) uncued training and (dark 
green) cued test episodes. (B) Same as (A), but for participants in group B. 

 

 
Fig. S2. Encoding of controllability. In addition to decoding controllability, we tested 
how strongly controllability was coded for in the LSTM layer of the networks using an 
encoding model. (A) Mean squared-error for the encoding model for (blue) APE-trained, 
(orange) standard, and (purple) 𝝃-input networks. (B) Same as (A), but using R2 score as 
the metric. 

 

 
Fig. S3. Population mistraining. As an alternative to perturbations of the controllability 
representation, by selectively unfreezing the weights leading to the networks’ 
controllability readout, we can retrain the network to believe it is operating under false 
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conditions by simulating fake action-prediction error sequences as the agent interacts 
with the environment. (A) In task 1, the networks sleep more across all controllability 
levels when (darker) they are mistrained to believe they are operating under conditions 
with higher efficacy, and the reverse for (lighter) networks trained to believe they are 
operating in low-efficacy conditions, compared with (black) the original neural network. 
(B) The same plot as (A) but for sleep actions on task 2, showing that networks mistrained 
to believe they have more control than they do sleep less, and vice versa. Note that the 
simulations depicted here use different model seeds as in the main text.  
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Fig. S4. Supplemental individual differences (Part 1). See next page for legend. 
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Fig. S5. Supplemental individual differences (Part 2). (A-J) Correlation structure for all 
behavioural variables for (far left) humans and (middle left) trait-perturbed neural 
networks, including (middle right) randomly perturbed neural networks and (far right) 
zero-perturbed neural networks. (K) Cosine similarity between the humans and both 
trait-simulated and randomly-perturbed neural networks along with bootstrapped 95%-
confidence intervals. 
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Fig. S6. Correlations with behavior for both PCs of transdiagnostic factors. (A-F) 
Heatmaps showing the interaction effect between transdiagnostics and efficacy on key 
behavioral variables for both PCs. (G) Cosine similarity for trait-simulated and zeros-
simulated networks for the different transdiagnostic factors as depicted in Figure 6. 
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Fig. S7. Supplemental transdiagnostics. (A) Scatter plot showing relationship between 
social withdrawal and (left) AD, (right) Compul. (B-H) Heatmaps showing the interaction 
effect between transdiagnostics and efficacy on key behavioral variables for both PCs. 

 
Supplement 2: Full statistics 
 
Performance improvements 
 
Performance increased slightly from day 1 to day 2 for rewards aggregated across the 
whole dataset (total rewards: 224.05 ± 1.51, N=182, mean ± SEM for day 1; 226.64 ± 1.42, 
N=182, mean ± SEM for day 2; t(181) = -1.245, p = 0.107 according to an unpaired one-
sided t-test, see Error! Reference source not found. for statistics for individual 
controllability settings). Despite the fact that the fact that the test task was harder 
because of the additional uncertainty due to the controllability, participants improve 
performance insignificantly from train to test set on both day 2 and day 3, potentially due 
to increases in skill (see Error! Reference source not found.). 
 
Table S 1. Performance improvements from day 1 to day 2 evaluated on the test set using 
unpaired one-sided t-tests 

Controll-
ability 

Mean 
Day 1 

StdErr 
Day 1 

Mean 
Day 2 

StdErr 
Day 2 

t-
statistic DoF 

p-
value 

p-value 
corrected 

Reject 
H0 

0.000 23.177 0.410 22.988 0.430 0.316 180 0.624 1.000 False 

0.125 23.674 0.472 23.688 0.370 -0.022 180 0.491 1.000 False 

0.250 23.344 0.402 23.860 0.456 -0.849 180 0.199 1.000 False 

0.375 24.488 0.488 24.646 0.400 -0.250 180 0.401 1.000 False 

0.500 24.640 0.524 24.844 0.468 -0.290 180 0.386 1.000 False 

0.625 25.151 0.445 26.052 0.477 -1.364 180 0.087 0.785 False 

0.750 26.635 0.550 27.093 0.528 -0.593 180 0.277 1.000 False 

0.875 27.744 0.577 26.896 0.658 0.955 180 0.829 1.000 False 

1.000 26.750 0.761 27.337 0.726 -0.552 180 0.291 1.000 False 

 
Table S 2. Performance improvements from train to test set using an unpaired two-sided 
t-tests 

Day Eff Set 
Mean 
Train 

StdErr 
Train 

Mean 
Test 

StdErr 
Test DoF 

T-
statis

tic 

P-
value 

Correct
ed p-

value 
Reject 

2 

[0.125, 
0.375, 

0.5, 
0.625, 
0.875] 

25.02
1 

0.275 25.22
5 

0.242 180 -
0.557 

0.578 1.0 False 
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2 

[0, 
0.25, 
0.75, 

1.0] 

25.18
8 0.270 25.32

0 0.310 180 -
0.322 0.748 1.0 False 

3 

[0.125, 
0.375, 

0.5, 
0.625, 
0.875] 

25.02
1 0.275 

25.22
5 0.242 180 

-
0.557 0.578 1.0 False 

3 

[0, 
0.25, 
0.75, 

1.0] 

25.18
8 

0.270 25.32
0 

0.310 180 -
0.322 

0.748 1.0 False 

 
Controllability estimates in task 1 
 

Table S 3. Results of linear model for task 1 

Model: MixedLM Dependent Variable: efficacy_estimates 
No. Observations: 999 Method: REML 

No. Groups: 111 Scale: 0.0484 
Min. group size: 9 Log-Likelihood: 85.9446 
Max. group size: 9 Converged: Yes 

Mean group size: 9.0 
  

 
Coef. Std.Err. z P>|z| [0.025 0.975] 

Intercept -0.077 0.015 -5.050 0.000 -0.107 -0.047 
C(group_C)[T.True] -0.005 0.014 -0.331 0.740 -0.032 0.023 

efficacy 0.280 0.022 12.973 0.000 0.238 0.322 
Group Var 0.000 0.005 

    

 
 
Human observations in task 1 
 
Table S 4: Tukey’s HSDs 

Multiple Comparison of Means - Tukey HSD, FWER=0.05 
================================================== 
group1 group2 meandiff p-adj  lower  upper  reject 
-------------------------------------------------- 
   0.0    0.5   0.0366 0.0451 0.0006 0.0726   True 
   0.0    1.0   0.0739    0.0  0.035 0.1129   True 
   0.5    1.0   0.0373 0.0405 0.0013 0.0733   True 
-------------------------------------------------- 

 
Table S 5: Linear model 

Model: MixedLM Dependent Variable: n_observes 
No. Observations: 999 Method: REML 

No. Groups: 111 Scale: 5.9580 
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Min. group size: 9 Log-Likelihood: -2458.3631 
Max. group size: 9 Converged: Yes 

Mean group size: 9.0 
  

 
Coef. Std.Err. z P>|z| [0.025 0.975] 

Intercept 5.082 0.484 10.506 0.000 4.134 6.031 
C(group_C)[T.True] -0.319 0.613 -0.521 0.603 -1.519 0.882 

efficacy 2.777 0.239 11.598 0.000 2.308 3.246 
Group Var 9.443 0.594 

    

 
Human rewards in task 1 
 
Table S 6. Tukey’s HSD for proportion of bets intended to place on correct light 

Multiple Comparison of Means - Tukey HSD, FWER=0.05 
================================================= 
group1 group2 meandiff p-adj lower  upper  reject 
------------------------------------------------- 
   0.0    0.5   0.0879 0.004 0.0239  0.152   True 
   0.0    1.0   0.2294   0.0   0.16 0.2987   True 
   0.5    1.0   0.1414   0.0 0.0774 0.2055   True 

 

 
Table S 7. Tukey’s HSD for rewards earned 

Multiple Comparison of Means - Tukey HSD, FWER=0.05 
=================================================== 
group1 group2 meandiff p-adj   lower  upper  reject 
--------------------------------------------------- 
   0.0    0.5   2.1833 0.0899 -0.2587 4.6252  False 
   0.0    1.0   6.8913    0.0  4.2486  9.534   True 
   0.5    1.0    4.708    0.0  2.2661   7.15   True 
--------------------------------------------------- 

 
Table S 8: Linear model for number of rewards earned 

Model: MixedLM Dependent Variable: rewards_tallies 
No. Observations: 999 Method: REML 

No. Groups: 111 Scale: 19.9434 
Min. group size: 9 Log-Likelihood: -2948.6878 
Max. group size: 9 Converged: Yes 

Mean group size: 9.0 
  

 
Coef. Std.Err. z P>|z| [0.025 0.975] 

Intercept 5.082 0.484 10.506 0.000 4.134 6.031 
C(group_C)[T.True] -0.319 0.613 -0.521 0.603 -1.519 0.882 

efficacy 2.777 0.239 11.598 0.000 2.308 3.246 
Group Var 9.444 0.595 

    

 
 

Table S 9. Likelihood of APE vs. standard models for displayed controllability levels 



 43 

Controllability N Mean APE SEM APE Mean Standard SEM Standard 

1.0 46 0.648 0.033 0.519 0.018 

0.5 65 0.610 0.024 0.481 0.014 

0.0 46 0.562 0.022 0.534 0.021 

 

Table S 10. Likelihood of APE vs. standard models for all efficacy levels 

Controllability N Mean APE StdErr APE Mean 
Standard 

StdErr 
Standard 

0.000 46 0.562 0.022 0.534 0.021 

0.125 65 0.591 0.017 0.493 0.015 

0.250 46 0.654 0.021 0.527 0.019 

0.375 65 0.613 0.021 0.480 0.012 

0.500 65 0.610 0.024 0.481 0.014 

0.625 65 0.611 0.027 0.485 0.013 

0.750 46 0.660 0.029 0.488 0.014 

0.875 65 0.592 0.031 0.488 0.012 

1.000 46 0.648 0.033 0.519 0.018 

 

 

Human sleep actions in task 2 
 
Table S 11. Tukey’s HSD for human sleep rate for steps 8-20 
 
Multiple Comparison of Means - Tukey HSD, FWER=0.05  
==================================================== 
group1 group2 meandiff p-adj   lower   upper  reject 
---------------------------------------------------- 
   0.0    0.5  -0.0841    0.0 -0.1271  -0.041   True 
   0.0    1.0  -0.1286    0.0 -0.1752 -0.0821   True 
   0.5    1.0  -0.0446 0.0404 -0.0876 -0.0015   True 
---------------------------------------------------- 

 
Table S 12: Linear model for number of sleep actions 

Model: MixedLM Dependent Variable: n_sleeps 

No. Observations: 999 Method: REML 

No. Groups: 111 Scale: 2.8097 

Min. group size: 9 Log-Likelihood: -2059.7559 

Max. group size: 9 Converged: Yes 

Mean group size: 9.0 
  

 
Coef. Std.Err. z P>|z| [0.025 0.975] 

Intercept 4.628 0.269 17.225 0.000 4.101 5.155 

C(group_C)[T.True] -0.302 0.334 -0.904 0.366 -0.957 0.353 
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efficacy -3.575 0.164 -21.755 0.000 -3.897 -3.253 

Group Var 2.698 0.258 
    

 
Human rewards in task 2 
 
Table S 13. Tukey’s HSD for number of rewards 

Multiple Comparison of Means - Tukey HSD, FWER=0.05 
================================================== 
group1 group2 meandiff p-adj  lower  upper  reject 
-------------------------------------------------- 
   0.0    0.5    2.686 0.0238 0.2902 5.0817   True 
   0.0    1.0   9.8043    0.0 7.2117 12.397   True 
   0.5    1.0   7.1184    0.0 4.7227 9.5141   True 
-------------------------------------------------- 

 
Table S 14: Linear model for number of rewards 

Model: MixedLM Dependent Variable: rewards_tallies 

No. Observations: 999 Method: REML 

No. Groups: 111 Scale: 32.2287 

Min. group size: 9 Log-Likelihood: -3195.7374 

Max. group size: 9 Converged: Yes 

Mean group size: 9.0 
  

 
Coef. Std.Err. z P>|z| [0.025 0.975] 

Intercept 24.148 0.503 47.964 0.000 23.161 25.135 

C(group_C)[T.True] -1.376 0.548 -2.509 0.012 -2.451 -0.301 

efficacy 9.516 0.557 17.099 0.000 8.425 10.607 

Group Var 4.517 0.212 
    

 
Human observe actions in task 2 
 
Table S 15. Tukey’s HSD for human observes in task 2 

Multiple Comparison of Means - Tukey HSD, FWER=0.05 
=================================================== 
group1 group2 meandiff p-adj   lower  upper  reject 
--------------------------------------------------- 
   0.0    0.5  -0.0077 0.8583  -0.042 0.0267  False 
   0.0    1.0   0.0031 0.9787 -0.0341 0.0403  False 
   0.5    1.0   0.0108 0.7397 -0.0236 0.0451  False 
--------------------------------------------------- 

 
Table S 16. Linear model for number of observes in task 2 

Model: MixedLM Dependent Variable: n_observes 

No. Observations: 999 Method: REML 

No. Groups: 111 Scale: 2.5760 

Min. group size: 9 Log-Likelihood: -2082.5541 

Max. group size: 9 Converged: Yes 
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Mean group size: 9.0 
  

 
Coef. Std.Err. z P>|z| [0.025 0.975] 

Intercept 6.110 0.456 13.405 0.000 5.217 7.004 

C(group_C)[T.True] -0.824 0.587 -1.405 0.160 -1.974 0.326 

efficacy 0.321 0.157 2.038 0.042 0.012 0.629 

Group Var 4.517 0.212 
    

 
 

Table S 17. Likelihood of APE vs. standard models for task 2 for displayed controllability 
levels 

Controllability N Mean APE SEM APE Mean Standard SEM Standard 

1.0 46 0.661 0.030 0.594 0.024 

0.5 65 0.554 0.031 0.510 0.025 

0.0 46 0.594 0.028 0.535 0.024 

 
Table S 18. Likelihood of APE vs. standard models for task 2 for all controllability 

Controllability N Mean APE StdErr APE Mean 
Standard 

StdErr 
Standard 

0.000 46 0.594 0.028 0.535 0.024 

0.125 65 0.537 0.029 0.501 0.024 

0.250 46 0.606 0.031 0.546 0.027 

0.375 65 0.565 0.030 0.525 0.025 

0.500 65 0.554 0.031 0.510 0.025 

0.625 65 0.573 0.032 0.523 0.026 

0.750 46 0.664 0.029 0.607 0.024 

0.875 65 0.576 0.032 0.535 0.024 

1.000 46 0.661 0.030 0.594 0.024 

 
 
Individual differences 
 
Table S 19. Cosine similarities with trait- and randomly-perturbed networks with 
bootstrapped confidence intervals 

 

Task Item Comparison 

Cosine 

Similarity Lower Upper Name 

0 T1 Rews Trait 0.544 0.375 0.604 

1 T1 Rews Random 0.192 0.055 0.296 

2 T1 Obs Trait 0.993 0.977 0.996 
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3 T1 Obs Random -0.207 -0.224 -0.181 

4 T1 Ests Trait 0.876 0.811 0.911 

5 T1 Ests Random -0.049 -0.120 0.019 

6 T2 Rews Trait 0.408 0.268 0.476 

7 T2 Rews Random -0.174 -0.258 -0.038 

8 T2 Sleeps Trait 0.957 0.936 0.968 

9 T2 Sleeps Random -0.041 -0.062 -0.014 

10 T2 Obs Trait 0.996 0.989 0.997 

11 T2 Obs Random 0.135 0.118 0.147 

12 Across 
Tasks 

T1 Rews-T2 Rews Trait 0.444 0.305 0.503 

13 Across 
Tasks 

T1 Rews-T2 Rews Random 0.206 0.084 0.292 

14 Across 
Tasks 

T1 Obs-T2 
Sleeps* 

Trait 0.222 -0.089 0.392 

15 Across 
Tasks 

T1 Obs-T2 
Sleeps* 

Random 0.166 0.012 0.245 

 
 

Table S 20. Competitive linear regression for population observe correlation structure 
featuring the trait-simulated (x1), random perturbation (x2), and zero-perturbation 
models (x3) 

                            OLS Regression Results                             
============================================================================== 
Dep. Variable:                      y   R-squared:                       0.488 
Model:                            OLS   Adj. R-squared:                  0.440 
Method:                 Least Squares   F-statistic:                     10.18 
Date:                Sun, 02 Jun 2024   Prob (F-statistic):           7.36e-05 
Time:                        15:12:59   Log-Likelihood:                 16.094 
No. Observations:                  36   AIC:                            -24.19 
Df Residuals:                      32   BIC:                            -17.85 
Df Model:                           3                                          
Covariance Type:            nonrobust                                          
============================================================================== 
                 coef    std err          t      P>|t|      [0.025      0.975] 
------------------------------------------------------------------------------ 
const          0.7489      0.075      9.938      0.000       0.595       0.902 
x1             0.2383      0.045      5.289      0.000       0.147       0.330 
x2             0.2754      0.379      0.727      0.472      -0.496       1.047 
x3             0.3911      0.322      1.215      0.233      -0.265       1.047 
============================================================================== 
Omnibus:                        0.794   Durbin-Watson:                   1.194 
Prob(Omnibus):                  0.672   Jarque-Bera (JB):                0.219 
Skew:                          -0.157   Prob(JB):                        0.896 
Kurtosis:                       3.219   Cond. No.                         27.3 
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============================================================================== 
 
Notes: 
[1] Standard Errors assume that the covariance matrix of the errors is correctly 
specified. 
Table S 21. Competitive linear regression for population rewards correlation structure 
featuring the trait-simulated (x1), random perturbation (x2), and zero-perturbation 
models (x3) 

                            OLS Regression Results                             
============================================================================== 
Dep. Variable:                      y   R-squared:                       0.385 
Model:                            OLS   Adj. R-squared:                  0.327 
Method:                 Least Squares   F-statistic:                     6.675 
Date:                Sun, 02 Jun 2024   Prob (F-statistic):            0.00126 
Time:                        15:18:16   Log-Likelihood:                 42.194 
No. Observations:                  36   AIC:                            -76.39 
Df Residuals:                      32   BIC:                            -70.05 
Df Model:                           3                                          
Covariance Type:            nonrobust                                          
============================================================================== 
                 coef    std err          t      P>|t|      [0.025      0.975] 
------------------------------------------------------------------------------ 
const          0.0432      0.017      2.595      0.014       0.009       0.077 
x1             0.0737      0.017      4.259      0.000       0.038       0.109 
x2             0.2061      0.146      1.415      0.167      -0.091       0.503 
x3             0.0145      0.156      0.093      0.926      -0.303       0.332 
============================================================================== 
Omnibus:                        1.751   Durbin-Watson:                   1.990 
Prob(Omnibus):                  0.417   Jarque-Bera (JB):                0.768 
Skew:                           0.035   Prob(JB):                        0.681 
Kurtosis:                       3.712   Cond. No.                         14.4 
============================================================================== 
 
Notes: 
[1] Standard Errors assume that the covariance matrix of the errors is correctly 
specified. 
 
 

Table S 22. Competitive linear regression for population sleeps correlation structure for 
task 2 featuring the trait-simulated (x1), random perturbation (x2), and zero-perturbation 
models (x3) 

 
                            OLS Regression Results                             
============================================================================== 
Dep. Variable:                      y   R-squared:                       0.140 
Model:                            OLS   Adj. R-squared:                  0.059 
Method:                 Least Squares   F-statistic:                     1.730 
Date:                Sun, 02 Jun 2024   Prob (F-statistic):              0.181 
Time:                        15:21:21   Log-Likelihood:                 5.1735 
No. Observations:                  36   AIC:                            -2.347 
Df Residuals:                      32   BIC:                             3.987 
Df Model:                           3                                          
Covariance Type:            nonrobust                                          
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============================================================================== 
                 coef    std err          t      P>|t|      [0.025      0.975] 
------------------------------------------------------------------------------ 
const          0.4242      0.287      1.475      0.150      -0.161       1.010 
x1             0.0120      0.080      0.149      0.883      -0.152       0.176 
x2             0.5250      0.411      1.279      0.210      -0.311       1.362 
x3             0.8627      0.464      1.858      0.072      -0.083       1.809 
============================================================================== 
Omnibus:                        0.736   Durbin-Watson:                   1.880 
Prob(Omnibus):                  0.692   Jarque-Bera (JB):                0.613 
Skew:                          -0.303   Prob(JB):                        0.736 
Kurtosis:                       2.798   Cond. No.                         47.1 
============================================================================== 
 
Notes: 
[1] Standard Errors assume that the covariance matrix of the errors is correctly 
specified. 
 
 

Table S 23. Competitive linear regression for population observes correlation structure 
for task 2 featuring the trait-simulated (x1), random perturbation (x2), and zero-
perturbation models (x3) 

                            OLS Regression Results                             
============================================================================== 
Dep. Variable:                      y   R-squared:                       0.169 
Model:                            OLS   Adj. R-squared:                  0.091 
Method:                 Least Squares   F-statistic:                     2.166 
Date:                Sun, 02 Jun 2024   Prob (F-statistic):              0.111 
Time:                        15:25:26   Log-Likelihood:                 15.444 
No. Observations:                  36   AIC:                            -22.89 
Df Residuals:                      32   BIC:                            -16.55 
Df Model:                           3                                          
Covariance Type:            nonrobust                                          
============================================================================== 
                 coef    std err          t      P>|t|      [0.025      0.975] 
------------------------------------------------------------------------------ 
const          2.2626      0.565      4.006      0.000       1.112       3.413 
x1            -0.3555      0.239     -1.485      0.147      -0.843       0.132 
x2             0.5584      0.302      1.851      0.073      -0.056       1.173 
x3             0.0213      0.334      0.064      0.949      -0.658       0.701 
============================================================================== 
Omnibus:                        0.327   Durbin-Watson:                   1.332 
Prob(Omnibus):                  0.849   Jarque-Bera (JB):                0.470 
Skew:                          -0.187   Prob(JB):                        0.790 
Kurtosis:                       2.583   Cond. No.                         56.8 
============================================================================== 
 
Notes: 
[1] Standard Errors assume that the covariance matrix of the errors is correctly 
specified. 

 
Table S 24. Competitive linear regression for population rewards correlation structure 
for task 2 featuring the trait-simulated (x1), random perturbation (x2), and zero-
perturbation models (x3) 
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                            OLS Regression Results                             
============================================================================== 
Dep. Variable:                      y   R-squared:                       0.001 
Model:                            OLS   Adj. R-squared:                 -0.093 
Method:                 Least Squares   F-statistic:                  0.008289 
Date:                Sun, 02 Jun 2024   Prob (F-statistic):              0.999 
Time:                        15:28:12   Log-Likelihood:                 29.514 
No. Observations:                  36   AIC:                            -51.03 
Df Residuals:                      32   BIC:                            -44.69 
Df Model:                           3                                          
Covariance Type:            nonrobust                                          
============================================================================== 
                 coef    std err          t      P>|t|      [0.025      0.975] 
------------------------------------------------------------------------------ 
const          0.1645      0.025      6.542      0.000       0.113       0.216 
x1            -0.0025      0.036     -0.069      0.945      -0.075       0.070 
x2            -0.0277      0.263     -0.105      0.917      -0.563       0.507 
x3             0.0306      0.247      0.124      0.902      -0.473       0.534 
============================================================================== 
Omnibus:                        7.850   Durbin-Watson:                   0.828 
Prob(Omnibus):                  0.020   Jarque-Bera (JB):                6.430 
Skew:                           0.924   Prob(JB):                       0.0402 
Kurtosis:                       3.933   Cond. No.                         16.6 
============================================================================== 
 
Notes: 
[1] Standard Errors assume that the covariance matrix of the errors is correctly 
specified. 
 
 

Table S 25. Competitive linear regression for population correlation structure for 
observes task 1 and sleeps task 2 (with observes task 2 partialed out) featuring the trait-
simulated (x1), random perturbation (x2), and zero-perturbation models (x3) 

 
                            OLS Regression Results                             
============================================================================== 
Dep. Variable:                      y   R-squared:                       0.013 
Model:                            OLS   Adj. R-squared:                 -0.025 
Method:                 Least Squares   F-statistic:                    0.3455 
Date:                Sun, 02 Jun 2024   Prob (F-statistic):              0.792 
Time:                        15:30:56   Log-Likelihood:                 95.492 
No. Observations:                  81   AIC:                            -183.0 
Df Residuals:                      77   BIC:                            -173.4 
Df Model:                           3                                          
Covariance Type:            nonrobust                                          
============================================================================== 
                 coef    std err          t      P>|t|      [0.025      0.975] 
------------------------------------------------------------------------------ 
const          0.0665      0.009      7.494      0.000       0.049       0.084 
x1            -0.0012      0.013     -0.100      0.921      -0.026       0.024 
x2             0.0988      0.113      0.875      0.384      -0.126       0.324 
x3            -0.0587      0.100     -0.584      0.561      -0.259       0.141 
============================================================================== 
Omnibus:                        0.786   Durbin-Watson:                   1.384 
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Prob(Omnibus):                  0.675   Jarque-Bera (JB):                0.376 
Skew:                          -0.139   Prob(JB):                        0.829 
Kurtosis:                       3.185   Cond. No.                         13.8 
============================================================================== 
 
Notes: 
[1] Standard Errors assume that the covariance matrix of the errors is correctly 
specified. 
 
 

Table S 26. Competitive linear regression for population rewards correlation structure 
for across tasks featuring the trait-simulated (x1), random perturbation (x2), and zero-
perturbation models (x3) 

 
                            OLS Regression Results                             
============================================================================== 
Dep. Variable:                      y   R-squared:                       0.171 
Model:                            OLS   Adj. R-squared:                  0.139 
Method:                 Least Squares   F-statistic:                     5.310 
Date:                Sun, 02 Jun 2024   Prob (F-statistic):            0.00222 
Time:                        15:34:05   Log-Likelihood:                 69.723 
No. Observations:                  81   AIC:                            -131.4 
Df Residuals:                      77   BIC:                            -121.9 
Df Model:                           3                                          
Covariance Type:            nonrobust                                          
============================================================================== 
                 coef    std err          t      P>|t|      [0.025      0.975] 
------------------------------------------------------------------------------ 
const          0.0625      0.015      4.171      0.000       0.033       0.092 
x1             0.0962      0.026      3.751      0.000       0.045       0.147 
x2            -0.0979      0.148     -0.661      0.511      -0.393       0.197 
x3             0.0818      0.138      0.593      0.555      -0.193       0.357 
============================================================================== 
Omnibus:                        1.533   Durbin-Watson:                   1.130 
Prob(Omnibus):                  0.465   Jarque-Bera (JB):                1.434 
Skew:                          -0.206   Prob(JB):                        0.488 
Kurtosis:                       2.495   Cond. No.                         14.0 
============================================================================== 
 
Notes: 
[1] Standard Errors assume that the covariance matrix of the errors is correctly 
specified. 
 
Transdiagnostic factors 
 
Table S 27. Cosine similarities with trait- and unperturbed networks with bootstrapped 
95%-confidence intervals for the first two principal components fitted to A/D and 
compulsivity scores 

Task Transdiagnostic item Comparison 
Cosine 

Similarity Lower Upper 

T1 PC1 Rews Trait 0.963 0.943 0.965 
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T1 PC1 Rews Zeros 0.893 0.858 0.898 

T1 PC2 Rews Trait 0.957 0.937 0.958 

T1 PC2 Rews Zeros 0.874 0.839 0.881 

T1 PC1 Obs Trait 0.853 0.829 0.877 

T1 PC1 Obs Zeros 0.831 0.809 0.841 

T1 PC2 Obs Trait 0.853 0.812 0.863 

T1 PC2 Obs Zeros 0.850 0.823 0.853 

T1 PC1 Ests Trait 0.880 0.872 0.889 

T1 PC1 Ests Zeros 0.984 0.974 0.984 

T1 PC2 Ests Trait 0.892 0.877 0.902 

T1 PC2 Ests Zeros 0.981 0.971 0.982 

T2 PC1 Rews Trait 0.963 0.953 0.965 

T2 PC1 Rews Zeros 0.955 0.942 0.955 

T2 PC2 Rews Trait 0.970 0.956 0.969 

T2 PC2 Rews Zeros 0.961 0.944 0.959 

T2 PC1 Sleeps Trait 0.859 0.823 0.891 

T2 PC1 Sleeps Zeros 0.908 0.886 0.914 

T2 PC2 Sleeps Trait 0.889 0.856 0.919 

T2 PC2 Sleeps Zeros 0.920 0.900 0.928 

T2 PC1 Obs Trait 0.921 0.903 0.940 

T2 PC1 Obs Zeros 0.822 0.800 0.840 

T2 PC2 Obs Trait 0.916 0.877 0.932 

T2 PC2 Obs Zeros 0.805 0.783 0.830 

 
 
Table S 28. Cosine similarities with trait- and unperturbed networks with bootstrapped 
confidence intervals on original transdiagnostic factors 

 
Task Transdiagnostic Item Comparison 

Cosine 
Similarity Lower Upper 

T2 Compul Rews Trait 0.968 0.957 0.970 

T2 Compul Rews Zeros 0.963 0.949 0.963 

T2 AD Rews Trait 0.968 0.955 0.970 

T2 AD Rews Zeros 0.961 0.946 0.962 

T2 SW Rews Trait 0.969 0.954 0.970 
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T2 SW Rews Zeros 0.963 0.943 0.961 

T2 Compul Sleeps Trait 0.887 0.851 0.896 

T2 Compul Sleeps Zeros 0.923 0.895 0.924 

T2 AD Sleeps Trait 0.860 0.834 0.888 

T2 AD Sleeps Zeros 0.923 0.904 0.927 

T2 SW Sleeps Trait 0.908 0.877 0.925 

T2 SW Sleeps Zeros 0.921 0.897 0.924 

T2 Compul Obs Trait 0.883 0.866 0.912 

T2 Compul Obs Zeros 0.820 0.794 0.838 

T2 AD Obs Trait 0.921 0.900 0.936 

T2 AD Obs Zeros 0.798 0.778 0.824 

T2 SW Obs Trait 0.930 0.890 0.935 

T2 SW Obs Zeros 0.820 0.786 0.831 

T2 Compul Rews Trait 0.968 0.957 0.970 

T2 Compul Rews Zeros 0.963 0.949 0.963 

T2 AD Rews Trait 0.968 0.955 0.970 

T2 AD Rews Zeros 0.961 0.946 0.962 

T2 SW Rews Trait 0.969 0.954 0.970 

T2 SW Rews Zeros 0.963 0.943 0.961 

T2 Compul Sleeps Trait 0.887 0.851 0.896 

T2 Compul Sleeps Zeros 0.923 0.895 0.924 

T2 AD Sleeps Trait 0.860 0.834 0.888 

T2 AD Sleeps Zeros 0.923 0.904 0.927 

T2 SW Sleeps Trait 0.908 0.877 0.925 

T2 SW Sleeps Zeros 0.921 0.897 0.924 

T2 Compul Obs Trait 0.883 0.866 0.912 

T2 Compul Obs Zeros 0.820 0.794 0.838 

T2 AD Obs Trait 0.921 0.900 0.936 

T2 AD Obs Zeros 0.798 0.778 0.824 

T2 SW Obs Trait 0.930 0.890 0.935 

T2 SW Obs Zeros 0.820 0.786 0.831 

T2 Compul Rews Trait 0.968 0.957 0.970 

T2 Compul Rews Zeros 0.963 0.949 0.963 

T2 AD Rews Trait 0.968 0.955 0.970 
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T2 AD Rews Zeros 0.961 0.946 0.962 

T2 SW Rews Trait 0.969 0.954 0.970 

T2 SW Rews Zeros 0.963 0.943 0.961 

T2 Compul Sleeps Trait 0.887 0.851 0.896 

T2 Compul Sleeps Zeros 0.923 0.895 0.924 

T2 AD Sleeps Trait 0.860 0.834 0.888 
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Supplement 3: Results of pilot study 
The results presented in the main text are a replication of a pilot study conducted with 
n=80 participants (n=60 after the same exclusions registered in this task). Note that the 
version of task 2 used here uses a higher volatility value than the one used in the main 
text and therefore is not compared with the neural networks directly. 
 

 
Fig. S8. Replication of task behavior. (A) Trial-wise behavior on task 1. (B) Variation of 
behavior across different levels of controllability for task 1. (C) Trial-wise behavior on task 
2. (D) Variation of behavior across different levels of controllability for task 2. 
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Fig. S9. Replication of individual differences. (A-B) Correlation in participant behavior 
across different controllability settings. The star indicates that we are partialling out 
number of observe actions on task 2. (C) Cosine similarity between human correlation 
matrices and the trait-perturbed and randomly-perturbed neural networks on task 1. 
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Fig. S10. Replication of transdiagnostics. (A) Predictions of linear models for number 
of observe and number of sleep actions based on transdiagnostic factors A/D and 
compulsivity. (B-F) Behavior as a function of controllability in the episode and participant 
transdiagnostic scores divided into noniles. (G) Correlation between A/D and 
compulsivity transdiagnostic scores. (H) Fraction of the remaining cosine similarity 
between humans and the unperturbed neural networks that is explained by the APE-
based neural networks. 


