
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SOCRATIC-ZERO: BOOTSTRAPPING REASONING VIA
DATA-FREE AGENT CO-EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent breakthroughs in large language models (LLMs) on reasoning tasks rely
heavily on massive, high-quality datasets—typically human-annotated and thus
difficult to scale. While data synthesis or distillation offers a promising alterna-
tive, existing methods struggle with inconsistent data quality and an inability to
dynamically adapt to the evolving capabilities of the model, leading to suboptimal
training signals. To address these limitations, we introduce Socratic-Zero, a fully
autonomous framework that generates high-quality training data from minimal seed
examples through the co-evolution of three agents: the Teacher, the Solver, and the
Generator. The Solver continuously refines its reasoning by learning from prefer-
ence feedback on both successful and failed trajectories; the Teacher adaptively
crafts increasingly challenging questions based on the Solver’s weaknesses; and the
Generator distills the Teacher’s question-design strategy to enable scalable, high-
fidelity curriculum generation. This closed-loop system produces a self-improving
curriculum—requiring no pre-existing tasks or labels. Remarkably, starting from
only 100 seed questions, our Socratic-Solver-8B achieves an average gain of +20.2
percentage points over prior data synthesis methods across seven mathematical
reasoning benchmarks (AMC23, AIME24-25, Olympiad, MATH-500, Minerva,
and GSM8K), with consistent gains on both Qwen3 and GLM4 series models.
Even more surprisingly, synthetic data from Socratic-Generator-32B enables stu-
dent LLMs to achieve superior performance compared to other state-of-the-art
(SOTA) commercial LLMs on these benchmarks, including Qwen3-235B-A22B,
DeepSeek-V3.1-671B, GPT-5, and Gemini-2.5-Pro.

Aristotle: I focus on
how he leads me — not
to the answer, but
through the path. Each
‘why?’ reshapes my
thinking. I learn by
being lost, then found

Plato: What makes a question unlock thought? I am
learning to teach by studying how Socrates teaches.

Socrates: I do not give answers — I
midwife understanding. My questions must
be precise enough to reveal ignorance,
yet open enough to spark insight.

(a) Socrates Method (b) Socratic-Zero: A multi-agent coevolution framework

Teacher:

Solver: generating better solutions by
learning from the Teacher’s feedback

Generator: producing higher-quality questions
by imitating how the Teacher behaves

evolve

Ge
ne

rat
e A

ns
we

rs

Updated
Curriculum

Ge
ne

rat
e
Fe
ed

ba
ck

evolve

Original
CurriculumUpdate

imitate

Dataflow
Teacher’s behavior
Generator’s behavior
Solver’s behavior

guiding the evolution of the
Solver and the Generator

Figure 1: The Socratic-Zero Framework: From Philosophical Analogy to a Co-evolutionary System.
(a) The Socratic Methodlogy illustrates the philosophical foundation: the Teacher (Socrates)
acts as an intellectual midwife, eliciting understanding through probing questions; the Practitioner
(Aristotle) learns not by receiving answers, but by being guided along a path of reasoned inquiry; and
the Apprentice-Teacher (Plato) learns to teach by observing and internalizing the master’s method.
(b) The Socratic-Zero Framework operationalizes this philosophy. Here, the Teacher—a powerful
LLM—guides the co-evolution of two agents. The Solver improves by generating solutions and
refining them through the Teacher’s feedback, while the Generator evolves by strategically distilling
the Teacher’s behavior to produce an increasingly suitable curriculum for the Solver.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(b
)

So
lv

er
 P

er
fo

rm
an

ce
 (

%
)

(a
)

G
en

er
at

or
 P

er
fo

rm
an

ce
 (

%
)

Socratic-Solver-8B Qwen-3-8B-Base Qwen-3-8B-Base + SFT Qwen-3-8B-Base + Static Augment Qwen-3-8B-Base + LLM2LLM

Figure 2: Overall performance comparison demonstrating the giant effectiveness of Socratic-Zero.
(a) Our Socratic-Generator-32B produces synthetic data that enables student models to achieve
performance competitive with much larger state-of-the-art models, showcasing strong generalization
capabilities. (b) Our Socratic-Solver-8B achieves an impressive 56.1% average accuracy, marking a
substantial +20.2 point improvement over the baseline.

1 INTRODUCTION

The pursuit of advanced mathematical reasoning in large language models has reached a critical
juncture. While recent breakthroughs have demonstrated remarkable capabilities on complex mathe-
matical problems (Hendrycks et al., 2021; Cobbe et al., 2021), these advances rely on massive datasets
of meticulously curated reasoning trajectories — a requirement that is both costly and fundamentally
unscalable. Current state-of-the-art models depend on millions of human-annotated problem-solution
pairs and hand-designed curricula (Yu et al., 2024), creating a fundamental bottleneck that limits both
accessibility and the potential for models to evolve beyond human-curated knowledge boundaries.

Current methodologies remain entrenched in a static paradigm: datasets are frozen upon collection,
curricula are handcrafted in advance, and models are trained on fixed problem distributions. This
approach suffers from critical weaknesses: it cannot adapt to evolving model capabilities during
training, fails to exploit rich feedback signals for targeting specific weaknesses, and requires extensive
human expertise for curriculum design. Recent efforts through synthetic data generation (Lee et al.,
2024; Chen et al., 2025b) and iterative training (Zhao et al., 2025; Huang et al., 2025b) have shown
promise but remain constrained by their reliance on external supervision and lack of effective quality
control mechanisms for synthesized content.

To overcome these limitations, we introduce Socratic-Zero, a paradigm-shifting framework that
eliminates dependency on large-scale external datasets while enabling truly autonomous reasoning
improvement. Inspired by the Socratic method of learning through questioning (Figure 1(a)), our
approach implements co-evolution between three agents: a Solver that attempts to solve mathemat-
ical questions, a Teacher that strategically generates challenging problems to expose the Solver’s
weaknesses, and a Generator that learns to distill and scale the Teacher’s problem generation strategy.
This architecture (Figure 1(b)) translates the philosophical dialogue of the Socratic method into a
concrete, co-evolutionary computational framework. Unlike conventional pipelines that decouple
data generation from model training, Socratic-Zero unifies them within a continuous co-evolutionary
loop formalized as a optimization problem. Our contributions are threefold:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Multi-Agent Co-Evolutionary Framework: We establish a theoretical foundation for co-
evolutionary learning where the Solver, Teacher, and Generator agents interact dynamically,
formalizing reasoning improvement as an adaptive curriculum learning problem (Figure 1(b)).

• Socratic-Zero System: We implement a concrete framework where the Solver improves via
preference learning, the Teacher evaluates correctness and generates adaptive curriculum, and
the Generator learns strategic distillation through value-weighted supervised fine-tuning (WSFT),
enabling autonomous reasoning advancement from minimal seed data.

• Superior Empirical Performance: Our Socratic-Solver-8B achieves +20.2 points average im-
provement across seven mathematical reasoning benchmarks (Figure 2(b)), while synthetic data
from our Socratic-Generator-32B achieves 37.72% downstream training effectiveness, outper-
forming leading commercial models including Qwen3-235B-A22B at 37.13%, GPT-5 at 36.62%,
DeepSeek-V3.1 at 36.62%, and Gemini-2.5-Pro at 37.20% (Figure 2(a)).

2 RELATED WORK

Data Synthesis. To alleviate data scarcity, researchers have leveraged LLMs’ generative capabilities
to synthesize training samples. Early approaches used prompt engineering to guide question-answer
generation (Yu et al., 2024; Zhan et al., 2025). Subsequently, LLM2LLM (Lee et al., 2024) and
WarriorMath (Chen et al., 2025b) introduced deficiency-aware mechanisms, where teacher models
identify knowledge gaps and generate targeted data. More recently, Absolute Zero (Zhao et al., 2025)
and R-Zero (Huang et al., 2025b) explored fully autonomous self-play paradigms for continuous task
generation and learning. While these advances achieve data autonomy, they lack effective quality
control mechanisms, resulting in repeated use of low-value samples that severely impact effectiveness.

Data Distillation. Knowledge distillation transfers capabilities from powerful teacher models to
lighter student models. Early work like Orca (Mukherjee et al., 2023) used imitation learning to
replicate teacher reasoning chains. Policy distillation (Wang et al., 2025b) extends this by transferring
dynamic decision-making strategies. GKD (Agarwal et al., 2024) enables students to learn from
their own sequences using teacher feedback for policy correction. However, students passively
accept teacher feedback without evaluating reliability, degrading learning quality when guidance is
suboptimal. These methods also rely on static datasets, unable to dynamically adjust content based
on students’ evolving capabilities. While recent advances (Wang et al., 2025a; Zhao et al., 2023;
Zhang et al., 2024; Chen et al., 2024a; Liu et al., 2025) promote data-centric optimization, they lack
effective quality control and adaptive curriculum generation.

Preference Learning. Translating feedback signals into model optimization is central to self-
evolution systems. Early approaches like RLHF (Stiennon et al., 2020) trained reward models
on human preferences then fine-tuned policies, but this process is complex and unstable. Recent
methods like DPO (Rafailov et al., 2023) and RWSFT (Mukherjee et al., 2025) directly optimize
preferences, improving efficiency and stability. Combined with self-correction mechanisms like Self-
Refine (Madaan et al., 2023), models possess preliminary closed-loop capabilities. Further advances
including Self-Evolved Reward Learning (Huang et al., 2025a), Self-Play Fine-Tuning (Chen et al.,
2024b), and Self-Play Critic (Chen et al., 2025a) explore autonomous feedback strategies. However,
these methods lack unified, co-evolving frameworks for feedback generation and validation.

3 METHODOLOGY

3.1 THE SOCRATIC-ZERO FRAMEWORK

We introduce Socratic-Zero, a fully autonomous, co-evolutionary framework designed to bootstrap
mathematical reasoning from a minimal set of seed problems, entirely without external data. As
illustrated in Figure 3, the system operates as a closed loop comprising three specialized agents: a
Solver that learns to reason, a Teacher that designs challenging problems, and a Generator that distills
the Teacher’s strategy for scalable curriculum synthesis. At each iteration t, the framework maintains
a dynamic curriculum Ct ⊂ Q, where Q represents the space of all possible reasoning questions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(b) Generator’s Offline Optimization

Problem Set

Solver

I am trying to solve
these problems …

Reasoning Trajectories

For x terms: $x^2 - 6x = (x-3)^2
- 9$. The general circle equation
is x^2. The answer is (3, -1).

Enhanced Problem Set

I am trying to generate
new problems based on the
solver’s performance …

Teacher(a) Solver’s Online Optimization

For Each Step

I am trying to generate
better problems …

Generated Problem Set

Generator

Enhanced Problem SetProblem Set

I am trying to learn more from
questions with moderate accuracy …

I am trying to judge
these answers based
on the ground truth …

Evolve with DPO

Data Pool

I am trying to fix my
problems with the
verified results …

Verified Results

Verified
Results

+

+

Generator Evolve with WSFT

Too Easy Too Hard

Lower
Weight

Distill/Lower
Weight

Figure 3: Overview of the Socratic-Zero Framework. (a) Solver Evolving: The Solver attempts to
solve problems and learns from preference pairs of correct and incorrect solutions via DPO, while
the frozen Teacher strategically generates challenging problems based on Solver failures using fixed
generation and evaluation functions. (b) Generator Evolving: The Generator distills the Teacher’s
problem generation strategy using value-weighted supervised learning. Together, these create a
self-improving loop where the curriculum dynamically evolves to maintain optimal challenge levels
for the Solver’s current capabilities.

The core of Socratic-Zero is the co-evolution of these three agents. The Solver is trained to solve
problems from the current curriculum Ct, while the Teacher actively expands Ct with new problems
that are precisely targeted at the Solver’s current weaknesses. This dynamic creates a self-improving
loop where the curriculum continuously adapts to the Solver’s evolving capabilities, ensuring that the
training signals remain maximally informative. We formally define the agents and their interactions
at iteration t as follows:

Agents in the Socratic-Zero Framework

1. Solver (S): An agent with a policy π
(t)
S that maps a problem q to a solution trajectory aS .

The Solver’s objective is to produce correct reasoning steps. It improves by learning from
preference feedback on its own attempts, distinguishing its correct solutions from flawed ones.

2. Teacher (T): A frozen, high-capacity LLM that serves as a reasoning oracle. It provides
two deterministic functions: (i) an evaluation function Teval(q, aS) ∈ {0, 1}, which judges the
correctness of a Solver’s attempt aS for a problem q; and (ii) a problem generation function
Tgen(q, aS), which creates a new problem-solution pair (qT , aT) by refining an original problem
q based on a failed attempt aS .

3. Generator (G): An agent with a policy π
(t)
G that learns to mimic the Teacher’s problem-

generation strategy. It takes an original problem q and generates a new problem qG . The
Generator evolves by learning to produce problems that are optimally challenging for the
current Solver, guided by a value function that quantifies a problem’s utility.

The curriculum evolves by incorporating problems generated from the Solver’s failures:

Ct+1 = Ct∪
{
(qT , aT)

∣∣∣ q ∈ Ct, aS = π
(t)
S (q), (qT , aT) = Tgen(q, aS), s.t. Teval(q, aS) = 0

}
, (1)

where C0 is initialized with seed problem-answer pairs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The Solver and the Generator are co-evolving guided the Teacher. Specifically, on one hand, the
Solver minimizes its expected solution loss LS(Ct, π(t)

S (q)) defined by element-wise loss ℓS(aS , q):

LS(Ct, π(t)
S) = Eq∼Ct

[
ℓS(aS , q)

]
. (2)

On the other hand, the Generator minimizes its expected generation loss LG(Ct, π(t)
G , vG) defined by

element-wise loss ℓG(qG , q, qT , vG):

LG(Ct, π(t)
G , vG) = Eq∼Ct

[
ℓG(qG , q, qT , vG)

]
. (3)

The full training procedure is summarized in Algorithm 1.

3.2 ONLINE SOLVER EVOLUTION VIA PREFERENCE LEARNING

This section elaborates on the evolution of the Solver. The core mechanism is preference learning,
where the Solver learns to discriminate between high- and low-quality reasoning using the Teacher’s
evaluations as the ground truth.

For each problem q ∈ Ct, the Solver is prompted to generate k distinct solution attempts, {a(i)S }ki=1.
These attempts are evaluated by the Teacher’s oracle, Teval, to construct preference pairs. Specifically,
for each problem, we partition the solutions into “winning” (Z+) and "losing" (Z−) sets:

Z−(q) = {a(i)S | Teval(q, a
(i)
S) = 0}, (4)

Z+(q) =

{
{a(i)S | Teval(q, a

(i)
S) = 1} if zq > 0,

{aT } if zq = 0,
(5)

where zq =
∑k

i=1 Teval(q, a
(i)
S) is the number of successful attempts. If all k attempts fail (zq = 0), a

single expert solution aT , provided by the Teacher, serves as the sole winning example.

The preference dataset, Dpref, is then constructed by aggregating pairs of (a+, a−) where a+ ∈ Z+(q)
and a− ∈ Z−(q) for all problems in the training batch.

The Solver, parameterized by θS , is updated using Direct Preference Optimization (DPO) (Rafailov
et al., 2023) to minimize the following loss:

LDPO(θS ; θref) = −Eq∼Ct,(a+,a−)∼Dpref

[
log σ

(
β log

πθS (a
+|q)

πθref(a
+|q)

− β log
πθS (a

−|q)
πθref(a

−|q)

)]
, (6)

where πθS is the current Solver policy, πθref is a frozen reference policy (typically the Solver’s policy
from the previous iteration), β is a temperature hyperparameter, and σ is the sigmoid function.

3.3 OFFLINE GENERATOR EVOLUTION VIA WEIGHTED DISTILLATION

To create a scalable curriculum generation process that does not perpetually depend on the expensive
Teacher, the Generator is trained to distill the Teacher’s problem-design strategy. The key insight is
that an effective training problem is one of desirable difficulty—it should be challenging enough to
be informative but not so difficult that it is unsolvable for the current Solver.

We quantify this notion using a value function v(q′) that scores a problem q′ based on the current
Solver’s success rate. After the Solver makes k attempts on q′, resulting in a success count of
zq′ =

∑k
i=1 Teval(q

′, a
(i)
S), the problem’s value is calculated as:

v(q′) = exp

(
− (zq′/k − µ)2

2σ2

)
, (7)

where we set the target success rate µ = 0.5 to encourage problems at the frontier of the Solver’s
ability, and σ controls the tolerance for deviation from this ideal difficulty. This unnormalized
Gaussian form assigns the highest value to problems solved approximately half the time.

The Generator is trained via weighted supervised fine-tuning (WSFT) to mimic the Teacher. The
training data consists of tuples (q, qT , v(qT)) derived from Solver failures, where q is the original

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

problem, qT is the Teacher’s refined version, and v(qT) is its calculated value. The objective is to
maximize the log-likelihood of generating the Teacher’s high-value problems:

LWSFT(θG) = −Eq∼Ct

[
v(qT) · log pG(qT | q; θG)

]
. (8)

This objective guides the Generator to produce problems that optimally challenge the Solver, effec-
tively internalizing the Teacher’s expert curriculum-design strategy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. We employed Qwen3-235B-A22B-Instruct-2507 (Yang et al., 2025) as the Teacher model to
provide high-quality evaluation and curriculum generation. We used Qwen3-32B (Yang et al., 2025)
as the Generator to learn and distill the Teacher’s problem generation strategies. We conducted Solver
experiments on multiple model architectures including Qwen3-8B-base, Qwen3-14B-base (Yang
et al., 2025), and GLM4-9B-base (GLM et al., 2024) to demonstrate cross-model generalization. We
compared strong baselines including Gemini-2.5-Pro-06-17 (Comanici et al., 2025), GPT5-0807-
global, and DeepSeek-v3.1-671B (DeepSeek-AI et al., 2025b) against our approach. For downstream
evaluation of generated data quality, we fine-tuned DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI
et al., 2025a) as the student model.

Benchmarks. We used seven mathematical reasoning benchmarks for evaluation, including
AMC (Cao et al., 2025), Minerva (Nagrani et al., 2025), MATH-500 (Hendrycks et al., 2021),
GSM8K (Cobbe et al., 2021), Olympiad-Bench (He et al., 2024), AIME-2024, and AIME-2025.
Additionally, we employed three general reasoning benchmarks to assess the transfer of mathemat-
ical reasoning improvements to broader cognitive abilities, namely BBEH (Kazemi et al., 2025),
MMLU-Pro (Wang et al., 2024), and SuperGPQA (Team et al., 2025).

Curriculum Settings. The initial curriculum C0 contained 100 questions sampled from the MATH
training set (Hendrycks et al., 2021) following specific diversity and difficulty criteria (detailed in
Appendix G). All Solver models first underwent LoRA-based (Hu et al., 2021) SFT on a 1,500-
problem dataset of Level 5 difficulty. Key hyperparameters: k = 8 solution trajectories per problem,
reward parameters µ = 0.5 and σ = 0.2, and training batches combined 100% new problems with
25% historical curriculum for replay.

Solver Evaluation. For each test question, we generated 32 solutions using zero-shot prompting
with temperature 0.7. We determined correctness through a dual-verification mechanism combining
rule-based answer extraction and semantic validation. We reported Mean@32 accuracy across all
evaluations. Detailed evaluation protocols, including sampling strategies, answer extraction methods,
and LLM judge configurations, are provided in Appendix H.

Baselines. Baselines. We employed two strong baselines for comparison. Static Augmentation (SA)
follows traditional approaches via MetaMath (Yu et al., 2024) and WizardMath (Luo et al., 2023),
augmenting training data with fixed synthetic questions generated offline without adaptive curriculum
evolution. LLM2LLM (Lee et al., 2024) implements iterative self-training where models generate
questions based on current failures and retrain on augmented datasets. Both baselines use identical
SFT initialization for fair comparison.

Generator Evaluation. We prompted each generator with 1,000 SAND-Math (Zhang et al., 2025)
seeds to produce 3 variants each, resulting in 3,000 total generated questions. We measured validity
rate by having Qwen3-235B-A22B-Instruct-2507 attempt to solve each generated question under a
4,096-token, 600-s timeout constraint. We evaluated downstream utility by fine-tuning DeepSeek-R1-
Distill-Llama-8B on the QAs and measuring performance on mathematical reasoning benchmarks.

Infrastructure. We conducted training experiments on 8×NVIDIA H20 GPUs. We performed
Teacher model inference using 16×AMD MI308X GPUs. Detail provided in Appendix E.

4.2 SOLVER RESULTS

Baseline Comparison. Table 1 shows Socratic achieves 56.1% average accuracy, outperforming
Static Augmentation by +15.4 points and LLM2LLM by +15.2 points. Notable gains appear on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Solver Evaluation Results with different training methods. Results are reported on seven
benchmarks (AMC, Minerva, MATH-500, GSM8K, Olympiad, AIME-25, AIME-24) and their
average. Arrow values represent absolute point changes relative to Static Augmentation, where ↑
indicates improvement and ↓ indicates decline.

Training Method Benchmark Datasets Avg.AMC Minerva MATH-500 GSM8K Olympiad AIME-25 AIME-24

Qwen3-8B-base
+ Zero-shot 32.5 31.3 48.8 63.4 24.1 4.2 5.1 29.9
+ SFT 39.1 37.8 56.9 68.2 31.7 8.1 9.3 35.9

+ Static Augmentation 45.8 41.9 62.7 74.6 35.9 11.4 12.3 40.7

Qwen3-8B-base with LLM2LLM
+ Stage 1 41.6↓4.2 41.2↓0.7 53.1↓9.6 78.3↑3.7 32.4↓3.5 6.7↓4.7 8.9↓3.4 37.5↓3.2

+ Stage 2 43.2↓2.6 40.6↓1.3 54.9↓7.8 79.1↑4.5 33.8↓2.1 7.2↓4.2 9.1↓3.2 38.3↓2.4

+ Stage 3 44.9↓0.9 42.1↑0.2 66.8↑4.1 79.4↑4.8 34.6↓1.3 7.9↓3.5 10.4↓1.9 40.9↑0.2

Qwen3-8B-base with Socratic-Zero (Ours)
+ Stage 1 43.8↓2.0 39.4↓2.5 60.2↓2.5 69.7↓4.9 35.3↓0.6 10.6↓0.8 11.8↓0.5 38.7↓2.0

+ Stage 2 49.3↑3.5 40.7↓1.2 63.4↑0.7 71.8↓2.8 38.2↑2.3 12.9↑1.5 15.6↑3.3 41.7↑1.0

+ Stage 3 63.7↑17.9 52.4↑10.5 81.2↑18.5 87.3↑12.7 55.1↑19.2 24.6↑13.2 28.4↑16.1 56.1↑15.4

Table 2: Cross-Model Generalization Results with different training stages. Each block corresponds
to a model (GLM4-9B, Qwen3-14B). Results are reported on seven benchmarks (AMC, Minerva,
MATH-500, GSM8K, Olympiad, AIME-25, AIME-24) and their average. Values with arrows
represent absolute point changes relative to SFT for each model.

Training Method Benchmark Datasets AvgAMC Minerva MATH-500 GSM8K Olympiad AIME-25 AIME-24

GLM4-9B-base
+Zero-shot 34.5 37.3 52.3 72.5 34.8 7.5 7.2 35.2
+ SFT 38.4 44.8 63.8 77.2 41.3 15.1 19.3 42.8
+ Socratic Stage 1 39.4↑1.0 47.3↑2.5 67.9↑4.1 79.8↑2.6 43.4↑2.1 15.6↑0.5 24.0↑4.7 45.3↑2.5

+ Socratic Stage 2 42.3↑3.9 49.4↑4.6 68.1↑4.3 82.5↑5.3 45.5↑4.2 19.1↑4.0 25.3↑6.0 47.5↑4.7

+ Socratic Stage 3 47.5↑8.7 52.8↑8.0 73.8↑10.0 83.9↑6.7 49.4↑8.1 27.9↑12.8 31.1↑11.8 52.3↑9.5

Qwen3-14B-base
+Zero-shot 48.8 40.5 62.0 91.5 38.4 9.6 10.0 43.0
+ SFT 61.3 51.8 71.5 92.2 47.3 18.1 20.3 51.8
+ Socratic Stage 1 62.9↑1.6 55.1↑3.3 74.6↑3.1 91.8↓0.4 52.5↑5.2 19.8↑1.7 21.7↑1.4 54.1↑2.3

+ Socratic Stage 2 65.4↑4.1 57.4↑5.6 76.7↑5.2 92.3↑0.1 54.2↑6.9 24.8↑6.7 23.3↑3.0 56.3↑4.5

+ Socratic Stage 3 70.0↑8.7 60.7↑8.9 80.2↑8.7 93.7↑1.5 58.3↑11.0 28.9↑10.8 30.1↑9.8 60.3↑8.5

competition problems: AIME-24 (+19.1) and AIME-25 (+16.5), demonstrating the advantages of
DPO-based preference learning and adaptive curriculum generation.

Cross-Architecture Generalization. Table 2 validates that Socratic principles transcend specific
model families. On GLM4-9B-base, Socratic Stage 3 achieves 52.3% average accuracy (+17.1
points over base model), with strong improvements on AIME benchmarks: AIME-25 (+20.4)
and AIME-24 (+23.9). Similarly, on Qwen3-14B-base, Stage 3 reaches 60.3% (+17.3 points),
demonstrating consistent effectiveness across different architectures and addressing fundamental
reasoning capabilities.

Transfer to General Reasoning. Table 3 shows mathematical reasoning improvements transfer to
broader cognitive abilities, with +6.02 points average improvement across BBEH, MMLU-Pro, and
SuperGPQA benchmarks.

4.3 GENERATOR RESULTS

We assessed both the intrinsic quality of generated problems and their downstream training effective-
ness, with Socratic-Generator-32B being compared against its base model and SOTA commercial
large language models to determine whether strategic specialization can match the performance of
much advanced larger models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance on general reasoning benchmarks with different training stages. Results are
reported on three benchmarks (BBEH, MMLU-Pro, SuperGPQA) and their average. Values with
arrows represent absolute point changes relative to zero-shot Qwen3-8B-base performance.

Training Method General Reasoning Benchmarks Avg.BBEH MMLU-Pro SuperGPQA

Qwen3-8B-Base
+ Zero-shot 7.68 50.00 24.73 27.47

Base Model with Socratic (Ours)
+ Stage 1 8.48↑0.80 55.71↑5.71 27.32↑2.59 30.50↑3.03

+ Stage 2 9.11↑1.43 59.29↑9.29 29.73↑5.00 32.71↑5.24

+ Stage 3 9.54↑1.86 60.89↑10.89 30.05↑5.32 33.49↑6.02

4.3.1 EVALUATION PROTOCOL

We adopted a standardized, three-stage evaluation pipeline to holistically assess both the intrinsic
quality of generated problems and their extrinsic utility in downstream model training. The full
procedure is formalized below.

Step 1: Problem Generation. We prompted each generator with 1,000 seed problems from SAND-
Math (Zhang et al., 2025) and tasked with producing five augmented variants per seed, resulting in
3,000 total generated problems per model.

Step 2: Quality Assessment. We measured problem validity by prompting Qwen3-235B (Yang et al.,
2025) — selected for its state-of-the-art mathematical reasoning capability and its role as the teacher
model in the distillation framework — to solve each generated problem under strict constraints: a
4,096-token limit and a 600-second timeout. The Validity Rate was defined as the percentage of
problems successfully solved within these bounds.

Step 3: Student Evaluation. We used all valid question-answer (QA) pairs to fine-tune the student
model, DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI et al., 2025a). We evaluated Downstream
Utility as the mean accuracy — average accuracy over 16 independent decoding runs per problem —
across seven diverse mathematical reasoning benchmarks.

4.3.2 PROBLEM QUALITY ASSESSMENT

Table 4: Generator validity rates.
Generator Model Validity Rate (%)

Qwen3-32B 89.1
Qwen3-235B-A22B 95.1↑6.0

Gemini-2.5-Pro 94.2↑5.1

GPT5-global 95.8↑6.7

DeepSeek-v3.1-671B 96.5↑7.4

Socratic-Generator-32B 95.6↑6.5

To evaluate the quality of the generated problems, we
measure their Validity Rate — the percentage of prob-
lems solvable by a powerful model (Qwen3-235B-
A22B-Instruct-2507). As shown in Table 4, our spe-
cialized Socratic-Generator-32B generator achieves a
remarkable 95.6% validity rate. This not only repre-
sents a substantial improvement over its base model
Qwen3-32B but also rivals the performance of signif-
icantly larger models, including proprietary models
like GPT5-0807-global, Gemini-2.5-Pro-06-17. This
demonstrates our co-evolutionary strategy effectively.

4.3.3 DOWNSTREAM TRAINING EFFECTIVENESS

Table 5 reports the downstream utility of each generator, measured by the performance of the fine-
student model. The output from our Socratic-Generator-32B leads to a final student accuracy of
37.72%. Notably, this performance not only rivals that achieved using data from significantly larger
models but also marginally surpasses (+0.59 points) the result from its own Teacher (Qwen3-235B),
despite being over 20x smaller.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Downstream Training Effectiveness with different generator models. Results are reported on
seven benchmarks (AIME-24, AIME-25, AMC-23, GSM8K, MATH-500, Minerva, Olympiad) and
their average. Values with arrows represent absolute point changes relative to Qwen3-32B baseline.

Benchmark Datasets Avg.AIME-24 AIME-25 AMC-23 GSM8K MATH-500 Minerva Olympiad

DeepSeek-R1-Distill-Llama-8B
+ Zero-shot 5.8 8.3 42.5 72.2 52.4 15.3 23.0 32.75

Open-Sourced Generators
Qwen3-32B 9.2 10.0 44.4 75.7 55.7 15.1 24.5 34.97
Qwen3-235B-A22B-Instruct-2507 12.5↑3.3 12.5↑2.5 47.5↑3.1 76.1↑0.4 57.8↑2.1 16.4↑1.3 23.6↓0.9 37.13↑2.16

DeepSeek-v3.1-671B 12.5↑3.3 11.7↑1.7 46.2↑1.8 76.4↑0.7 56.4↑0.7 16.5↑1.4 23.9↓0.6 36.62↑1.65

Advanced commercial Generators
Gemini-2.5-Pro-06-17 10.0↑0.8 15.0↑5.0 46.9↑2.5 78.1↑2.4 57.2↑1.5 16.0↑0.9 25.4↑0.9 37.20↑2.23

GPT5-0807-global 12.5↑3.3 13.3↑3.3 45.0↑0.6 76.8↑1.1 56.6↑0.9 15.5↑0.4 25.9↑1.4 36.62↑1.65

Socratic-Generator-32B 12.5↑3.3 13.3↑3.3 48.1↑3.7 77.6↑1.9 57.8↑2.1 18.4↑3.3 24.6↑0.1 37.72↑2.75

Table 6: Ablation studies on the necessity of initial SFT and different strategies of reward functions.
(a) Values with arrows represent absolute point changes relative to the previous stage within the same
method. (b) Values with arrows represent absolute point changes relative to the Gaussian baseline.
ρ represents solver success rate, µ represents target success rate, σ represents standard deviation in
Gaussian reward function N (µ, σ), Ψρ(a, b) represents linear function Ψρ(a, b) = aρ+ b.

(a) Ablation Study on Initial SFT (AIME-24)

Method Score (%) ∆ (%)
Qwen3-8B-Base 9.64 -

Socratic-Zero (w/o SFT)
+ Stage 1 11.67 ↑2.03

+ Stage 2 11.15 ↑1.51

+ Stage 3 11.98 ↑2.34

Socratic-Zero (w/ SFT)
+ Stage 1 13.44 ↑3.80

+ Stage 2 14.48 ↑4.84

+ Stage 3 28.02 ↑18.38

(b) Ablation of Reward Functions (Benchmark Avg.)

Reward Function Valid (%) Avg (%) ∆ (%)

N (µ = 0.5, σ = 0.2) (Ours) 89.9 35.72 -

Ψρ(a = 0, b = 1) 89.4 35.52 ↓0.20

Ψρ(a = 1, b = 0) 89.8 35.47 ↓0.25

Ψρ(a = −1, b = 1) 88.9 35.42 ↓0.30

N (µ = 0.3, σ = 0.2) 89.5 35.32 ↓0.40

N (µ = 0.4, σ = 0.2) 89.7 35.37 ↓0.35

N (µ = 0.6, σ = 0.2) 89.7 35.50 ↓0.22

N (µ = 0.7, σ = 0.2) 89.8 35.43 ↓0.29

4.4 ABLATION STUDIES

We conducted two key ablation studies to validate our framework’s design choices: the necessity of
initial Supervised Fine-Tuning (SFT) and the effectiveness of our reward weighting scheme. The
results are presented side-by-side in Table 6.

First, we examined the necessity of initial SFT. Table 6(a) shows that models with SFT achieve
28.02% at Stage 3, while those without SFT stagnate at 11.98%, demonstrating a critical +16.04 point
gap. This confirms that initial SFT provides essential instruction-following capabilities for stable and
effective co-evolutionary learning dynamics.

Second, we ablated the reward function design. Table 6(b) shows our Gaussian weighting achieves
optimal performance (35.72%), consistently outperforming uniform (-0.20), linear (-0.25 to -0.30),
and alternative µ settings (-0.22 to -0.40). This validates targeting moderate difficulty problems for
effective curriculum learning.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced a multi-agent co-evolutionary framework where Solver, Teacher, and
Generator agents bootstrap autonomous mathematical reasoning from minimal seed data. Our
implementation, Socratic-Zero, demonstrates that a well-designed learning mechanism can achieve
remarkable performance without relying on massive external datasets, offering a viable path for
developing powerful reasoning systems in resource-constrained scenarios. While the complex
agent dynamics currently lack a formal convergence analysis, future work will aim to establish this
theoretical foundation to push agentic AI further in the other domains not only reasoning work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we provide comprehensive implementation details and
open-source materials that enable exact replication of our experimental findings. The code is available
at Supplementary Material.

Code and Implementation We release the complete codebase for Socratic-Zero, including all training
scripts, evaluation pipelines, and data processing utilities. The implementation encompasses the full
multi-agent co-evolutionary framework with detailed documentation for each component: Solver
training via DPO, Teacher-based curriculum generation, and Generator distillation through value-
weighted supervised fine-tuning. The code is available at Supplementary Material with comprehensive
setup instructions, dependency specifications, and example usage scripts.

Prompts and Templates All prompts used for the Teacher model, including problem generation
templates, evaluation criteria, and instruction formats, are fully disclosed in Appendix B. This
includes the specific prompt engineering strategies for mathematical problem enhancement, solution
evaluation protocols, and the structured templates that ensure consistent Teacher behavior across
different problem domains. We also provide the exact hyperparameter configurations and sampling
strategies used during curriculum generation to ensure researchers can exactly replicate our Teacher’s
behavior and problem generation strategy.

Experimental Setup We provide detailed specifications of our computational infrastructure, model
versions, and experimental protocols to enable exact replication of our results across different research
environments. This includes complete hardware configurations, distributed training setups, memory
optimization strategies, and the specific model versions used for each component. We document all
evaluation protocols, including the Mean@32 sampling strategy, answer extraction methods, and the
dual-verification approach combining rule-based and LLM-based assessment.

ETHICS STATEMENT

Data and Privacy Our work uses only publicly available mathematical datasets and does not
involve any personal, sensitive, or proprietary information. All seed problems are sourced from
established mathematical reasoning benchmarks that are freely accessible to the research community,
including MATH, GSM8K, and competition mathematics problems. We ensure that no evaluation data
contamination occurs by explicitly excluding test set problems from our seed selection process. Our
synthetic data generation process creates entirely new mathematical problems rather than reproducing
existing copyrighted content.

Broader Impact Our work aims to democratize access to high-quality mathematical reasoning
capabilities by reducing dependence on massive datasets and computational resources. The proposed
framework addresses key barriers in AI accessibility and could have several positive societal impacts:

• Enable smaller research groups and institutions with limited resources to develop competitive
mathematical reasoning systems

• Reduce the data collection burden for specialized domains where human annotation is
expensive or scarce

• Provide insights into autonomous curriculum learning that could benefit educational applica-
tions and personalized learning systems

• Advance understanding of multi-agent learning systems with applications beyond mathe-
matical reasoning

• Support the development of more efficient AI systems that require less computational
infrastructure

We do not anticipate any negative societal impacts from this research. The focus on mathematical
reasoning represents a beneficial application of AI that could enhance educational tools, support scien-
tific discovery, and improve access to high-quality reasoning capabilities across diverse communities
and institutions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist,
and Olivier Bachem. On-policy distillation of language models: Learning from self-generated
mistakes. In International Conference on Learning Representations, 2024.

Lang Cao, Chao Peng, Renhong Chen, Wu Ning, Yingtian Zou, and Yitong Li. Step guided reasoning:
Improving mathematical reasoning using guidance generation and step reasoning, 2025.

Jiaqi Chen, Ruotian Ma, Bang Zhang, Peisong Wang, Zhaopeng Tu, Xiaolong Li, Kwan-Yee K.
Wong, and Xiaodan Liang. Spc: Evolving self-play critic via adversarial games for llm reasoning,
2025a.

Yiming Chen, Zhenhua Liu, Xiang Yue, and Wenpeng Yin. Distillm: Towards streamlined distillation
for large language models, 2024a.

Yue Chen, Minghua He, Fangkai Yang, Pu Zhao, Lu Wang, Yu Kang, Yifei Dong, Yuefeng Zhan,
Hao Sun, Qingwei Lin, Saravan Rajmohan, and Dongmei Zhang. Warriormath: Enhancing the
mathematical ability of large language models with a defect-aware framework, 2025b.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities,
2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning, 2025a.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, et al. Deepseek-v3 technical report, 2025b.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Shared experience actor-critic for multi-agent reinforcement learning. In Advances in Neural
Information Processing Systems, volume 32, pp. 10428–10439. Curran Associates, Inc., 2019.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,
Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to
glm-4 all tools, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, volume 27, pp. 2672–2680. Curran Associates, Inc., 2014.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Chenghua Huang, Zhizhen Fan, Lu Wang, Fangkai Yang, Pu Zhao, Zeqi Lin, Qingwei Lin, Dongmei
Zhang, Saravan Rajmohan, and Qi Zhang. Self-evolved reward learning for llms, 2025a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data, 2025b.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
ket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, et al. Big-bench extra
hard, 2025.

Nicholas Lee, Thanakul Wattanawong, Sehoon Kim, Karttikeya Mangalam, Sheng Shen, Gopala
Anumanchipalli, Michael W. Mahoney, Kurt Keutzer, and Amir Gholami. Llm2llm: Boosting llms
with novel iterative data enhancement, 2024.

Xuyang Liu, Zichen Wen, Shaobo Wang, Junjie Chen, Zhishan Tao, Yubo Wang, Xiangqi Jin, Chang
Zou, Yiyu Wang, Chenfei Liao, Xu Zheng, Honggang Chen, Weijia Li, Xuming Hu, Conghui He,
and Linfeng Zhang. Shifting ai efficiency from model-centric to data-centric compression, 2025.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback, 2023.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.

Subhojyoti Mukherjee, Viet Dac Lai, Raghavendra Addanki, Ryan Rossi, Seunghyun Yoon, Trung
Bui, Anup Rao, Jayakumar Subramanian, and Branislav Kveton. Learning to clarify by reinforce-
ment learning through reward-weighted fine-tuning, 2025.

Arsha Nagrani, Sachit Menon, Ahmet Iscen, Shyamal Buch, Ramin Mehran, Nilpa Jha, Anja Hauth,
Yukun Zhu, Carl Vondrick, Mikhail Sirotenko, et al. Minerva: Evaluating complex video reasoning,
2025.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Advances in Neural
Information Processing Systems, volume 34, pp. 17007–17021. Curran Associates, Inc., 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2023.

Markus Stiennon, Long Ouyang, Jeff Wu, Rewon Child, David Amodei, Dario Amodei, David F. M.
Brown, Benjamin Mann, Paul Christiano, Peter Chen, and John Schulman. Learning to follow
instructions with human feedback, 2020.

P Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao
Liu, Yiming Liang, Xiaolong Jin, et al. Supergpqa: Scaling llm evaluation across 285 graduate
disciplines, 2025.

Shaobo Wang, Yicun Yang, Zhiyuan Liu, Chenghao Sun, Xuming Hu, Conghui He, and Linfeng
Zhang. Dataset distillation with neural characteristic function: A minmax perspective. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
25570–25580, June 2025a.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark, 2024.

Zhiyuan Wang, Yuxiao Chen, Chao Yu, Yifan Zhang, and Jun Wang. A survey of reinforcement
learning-driven knowledge distillation, 2025b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report, 2025.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models, 2024.

Shaoxiong Zhan, Yanlin Lai, Ziyu Lu, Dahua Lin, Ziqing Yang, and Fei Tan. Mathsmith: Towards
extremely hard mathematical reasoning by forging synthetic problems with a reinforced policy,
2025.

Yifan Zhang, Yifan Luo, Yang Yuan, and Andrew Chi-Chih Yao. Sand-math: Using llms to generate
novel, difficult and useful mathematics questions and answers, 2025.

Yue Zhang, Tianxiang Sun, Xiangyang Liu, Hang Yan, and Xipeng Qiu. Dilm: Distilling dataset into
language model for text-level dataset distillation, 2024.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi Wang,
Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with
zero data, 2025.

Liang Zhao, Yuhui Shi, Zhiyong Feng, and Shuo Wang. Data distillation: A survey, 2023.

A LLM USE STATEMENT

We declare that no large language models were used in the writing, editing, or preparation of this
manuscript. All content, including text, mathematical formulations, experimental analysis, and
conclusions, was authored entirely by the human researchers without assistance from AI writing tools
or language models.

The LLMs mentioned in our work (Teacher models, commercial baselines) were used solely as
experimental subjects and comparison baselines within our proposed framework, not as writing
assistants for manuscript preparation.

B PROMPTS

B.1 SOLVER REASONING PROMPT

Solver Mathematical Reasoning Prompt
You are an IMO gold medalist solving a computational math competition problem.
Understand: Restate the problem mathematically. Identify knowns, unknowns, and constraints.
Plan: Choose an efficient method, show clear logic.
Execute: Show all key steps — algebra, number theory, or combinatorics. No skipped calculations.
Verify: Check with small cases, reverse substitution, or estimation.
Conclude with the exact answer in LaTeX: \[\boxed{< answer >}\]
Given Problem: {question}

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 TEACHER EVALUATION PROMPT

Teacher Solution Grading Prompt
You are a professional math teacher responsible for grading and error analysis.
Grading criteria: Focus on final answer correctness, use reference when provided, provide concise error
analysis for incorrect answers.
Return JSON format:

{
"correct_answers": ["correct answer 1", "correct answer 2"],
"incorrect_answers": [

{"answer": "incorrect answer", "analysis": "brief error analysis"}
]

}

Problem: {question} | Reference: {reference_info} | Student answers: {student_answers}

B.3 TEACHER GENERATION PROMPT

Teacher Problem Enhancement Prompt
You are a math problem enhancement expert specializing in competition-style mathematics. Generate enhanced
problems based on student error analysis with complete solutions.
Requirements: Generate enhanced problem, provide detailed solution, ensure solvability and correctness.
Enhancement principles: Target specific error points, maintain mathematical essence, help avoid similar errors.
Return JSON format:

{
"enhanced_question": "enhanced problem content",
"solution": "detailed solution steps",
"answer": "final answer"

}

Original: {original_question} | Error analysis: {error_analysis}

B.4 STATIC AUGMENTATION BASELINE PROMPTS

Static Augmentation Evolution Prompts
Upward Evolution: Step 1: Identify elements that can increase complexity. Step 2: Plan to modify at least
three components. Step 3: Implement rewritten instruction. Step 4: Review and provide final version.
Downward Evolution: Step 1: Identify elements that can decrease complexity. Step 2: Plan to simplify at
least three components. Step 3: Implement easier version. Step 4: Review and provide final simplified version.
Format: Step 1 #Elements#: | Step 2 #Plan#: | Step 3 #Rewritten#: | Step 4 #Final#:

C IMPLEMENTATION DETAILS

We conducted training experiments on 8×NVIDIA H20 GPUs with the following configuration: -
GPU Memory: 96GB HBM3 per GPU - Total Training Memory: 768GB - Interconnect: NVLink 4.0
- Storage: High-speed NVMe SSD arrays for dataset caching - Network: InfiniBand for distributed
training coordination

The training infrastructure utilized mixed-precision training (FP16) with gradient checkpointing to
optimize memory usage. We employed distributed training using PyTorch’s DistributedDataParallel
with NCCL backend for efficient gradient synchronization across GPUs.

C.1 TRAINING HYPERPARAMETERS

We provide the complete hyperparameter settings for all components of the Socratic-Zero framework
in Table 7.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters used in Socratic-Zero framework.

Component Parameter Value

Solver
SFT Training

Learning rate 5e-5
Per-device batch size 2
Gradient accumulation steps 4
Maximum sequence length 2048
LoRA rank (r) 64
LoRA alpha (α) 128
LoRA dropout 0.1
Number of epochs 1

Solver
DPO Training

Learning rate 1e-6 – 5e-6
Per-device batch size 2
Gradient accumulation steps 4 – 16
Maximum sequence length 2048
Maximum training steps 10 – 200
DPO regularization (β) 0.05 – 0.2
Warmup steps 2 – 20
Optimizer AdaFactor
Weight decay 0.01
Maximum gradient norm 1.0

Generator
Training

Learning rate 1e-5
Per-device batch size 1
Gradient accumulation steps 8
Maximum sequence length 2048
LoRA rank (r) 64
LoRA alpha (α) 128
Number of epochs 2

Curriculum
Parameters

Solutions per problem (k) 8
reward mean (µ) 0.5
reward std (σ) 0.2
Historical replay ratio 25%

Evaluation
Settings

Sampling temperature 0.7
Number of samples 32
Token limit for validity check 4096

D CURRICULUM EVOLUTION DETAILS

This appendix provides detailed mechanisms for curriculum evolution and problem categorization
that were omitted from the main methodology for brevity.

D.1 PROBLEM CATEGORIZATION STRATEGY

For each problem q ∈ Ct, the Solver generates k solution attempts, yielding a success count
zq =

∑k
i=1 Teval(q, ai). This diagnostic metric enables the Teacher to categorize problems into three

distinct zones based on the Solver’s current capability:

1. Mastered Zone (Cmastered = {q | zq = k}): Problems that the Solver consistently solves correctly
across all k attempts. These problems serve as positive reinforcement and provide a foundation for
generating slightly more challenging variants.

2. Learning Zone (Clearning = {q | 0 < zq < k}): Problems that the Solver solves partially—some
attempts succeed while others fail. This zone represents the optimal frontier for learning, where
the Solver demonstrates emerging competence but has not yet achieved mastery.

3. Too Difficult Zone (Cdifficult = {q | zq = 0}): Problems that consistently result in failure across all
attempts. These problems are temporarily deferred to prevent the Solver from being overwhelmed
by tasks beyond its current capability.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D.2 ADAPTIVE PROBLEM GENERATION

New problems are strategically generated only from the Mastered and Learning Zone categories,
ensuring that curriculum expansion remains within the Solver’s zone of proximal development. The
generation process follows:

∆Ct = {Tgen(q, aS) | q ∈ Clearning ∪ Cmastered, aS is a failed attempt on q} . (9)

This strategy ensures that:

• From Mastered Problems: The Teacher generates slightly more challenging variants,
pushing the boundary of the Solver’s competence.

• From Learning Zone Problems: The Teacher creates problems that address specific failure
modes, helping the Solver overcome particular reasoning gaps.

• Exclusion of Too Difficult Problems: Problems that consistently fail are not used for
generation, preventing the creation of even more challenging problems that would be
counterproductive.

D.3 DYNAMIC RECATEGORIZATION

As the Solver evolves through training, problems are dynamically recategorized based on updated
performance:

C(t)
difficult → C(t+1)

learning (capability improvement) (10)

C(t)
learning → C(t+1)

mastered (skill consolidation) (11)

C(t)
mastered → C(t+1)

learning (rare: capability regression) (12)

This dynamic recategorization ensures that the curriculum remains responsive to the Solver’s evolving
capabilities, automatically adjusting the difficulty distribution as learning progresses.

E TEACHER MODEL INFRASTRUCTURE

The Teacher model (Qwen3-235B-A22B-Instruct-2507) requires substantial computational resources
for curriculum generation and solution evaluation. We deployed the model using a distributed
inference architecture to meet the throughput demands of the co-evolutionary training process.

We distributed the Teacher model across 16 AMD MI308X GPUs, each equipped with 192GB HBM3
memory, providing a total of 3,072GB aggregate memory. This configuration enables concurrent
processing of curriculum generation requests while maintaining inference consistency across the
framework.

To ensure system reliability and scalability, we implemented a multi-endpoint architecture with
automatic load balancing and failover mechanisms. We configured the inference service with
connection pooling (50 concurrent connections per endpoint) and exponential backoff retry policies
to handle high request volumes during training.

We optimized key performance parameters for the mathematical reasoning domain: request timeouts
of 600 seconds accommodate complex problem generation, while a 4,096-token limit ensures efficient
solution evaluation. Batch processing utilizes 32 concurrent workers to maximize throughput during
curriculum evolution phases.

F TEACHER-GENERATED PROBLEM ENHANCEMENT

We provide examples of how the Teacher model enhances problems based on Solver failures. The
following demonstrates the progression from original problems to ly-targeted enhanced versions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F.1 EXAMPLE 1: RATIONAL INEQUALITY ENHANCEMENT

Original Problem:
Find all real numbers x satisfying 2x−5

x+3
≥ 2. (Give your answer in interval notation.)

Enhanced Problem (Round 3):
Find all real numbers x satisfying 2x−5

x2−9
+ 1

x+3
≤ 4x+1

(x−3)2
. (Give your answer in interval notation.)

Enhancement Analysis: The enhancement introduces multiple complexity factors: (1) factored
denominators requiring domain analysis, (2) multiple rational terms requiring common denominators,
(3) squared terms in denominators, and (4) more complex algebraic manipulation. The enhanced
problem targets common student errors in rational inequality solving while maintaining the core
mathematical concepts.

F.2 EXAMPLE 2: NUMBER THEORY ENHANCEMENT

Original Problem:
Find the greatest common divisor of 10! + 6 and 11! + 14.

Enhanced Problem:
Find the greatest common divisor of 12! + 8 and 13! + 26, where the second number can be written as
13 · 12! + 26.

Enhancement Analysis: The enhancement maintains the GCD structure while increasing numerical
complexity and requiring students to recognize the relationship between consecutive factorials,
targeting errors in modular arithmetic applications.

G SEED SELECTION PROTOCOL

The selection of initial seed problems is critical for establishing an effective curriculum founda-
tion. We employed a systematic approach to ensure the seed set provides appropriate difficulty,
comprehensive coverage, and sufficient diversity for subsequent curriculum evolution.

Difficulty Alignment We selected seed problems to match the base model’s capability range to
ensure productive learning dynamics. We drew problems from MATH dataset Levels 2-4, which
empirically provide optimal challenge levels for our base models. Specifically, we excluded Level
1 problems (too easy, leading to trivial curriculum generation) and Level 5 problems (too difficult,
resulting in universal failure and poor learning signals). Pre-filtering involved evaluating candidate
problems with the base model using 8 solution attempts; we retained problems with success rates
between 10-70% to ensure neither complete failure nor trivial success.

Domain Coverage To ensure comprehensive mathematical reasoning development, we sampled seed
problems across all seven MATH subject areas with balanced representation as shown in Table 8:

This distribution ensures that curriculum evolution can target weaknesses across diverse mathematical
domains rather than overfitting to specific problem types.

Diversity Assurance Within each subject area, we selected problems to maximize methodological
diversity. We employed clustering based on solution approach similarity (using embedding repre-
sentations of problem statements) and selected problems from different clusters to ensure varied
reasoning patterns. Additionally, we explicitly included problems requiring different mathematical
tools to promote comprehensive skill development.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Seed Problem Distribution Across Mathematical Domains

Subject Area Count Representative Topics
Algebra 15 Linear/quadratic equations, inequalities, functions
Number Theory 15 Divisibility, modular arithmetic, prime factoriza-

tion
Geometry 15 Coordinate geometry, trigonometry, area/volume

calculations
Combinatorics 15 Counting principles, permutations, probability
Precalculus 15 Complex numbers, sequences, polynomial analysis
Intermediate Algebra 15 Advanced algebraic manipulation, systems
Prealgebra 10 Foundational arithmetic and basic algebraic con-

cepts

Total 100 Comprehensive mathematical reasoning cover-
age

Quality Control We subjected all candidate problems to rigorous quality verification through a
multi-stage process:

Quality Control Pipeline

1. Clarity Check: Problems must have unambiguous statements and well-defined solution paths

2. Answer Verification: We validated reference solutions by the Teacher model with multiple independent
attempts

3. Value: Problems must demonstrate clear learning objectives and avoid trick questions or overly specialized
knowledge

4. Contamination Avoidance: We excluded seed problems from all evaluation benchmarks to prevent data
leakage

This systematic selection process ensures that the initial curriculum C0 provides a robust foundation
for the co-evolutionary training dynamics while maintaining the diversity necessary for effective
curriculum expansion.

H EVALUATION PROTOCOL DETAILS

Mean@32 Sampling Strategy The Mean@32 evaluation metric represents the average accuracy
across 32 independent solution attempts per problem. For each test problem, we generated 32 distinct
solutions using temperature-based sampling (T=0.7) with top-p nucleus sampling (p=0.9) as specified
in Table 7. This approach provides robust performance estimates by capturing the model’s consistency
and reliability across multiple attempts.

We employed the sampling process using zero-shot prompting without few-shot examples to ensure
unbiased evaluation. We generated each of the 32 solutions independently with different random
seeds, preventing potential correlation effects. The final accuracy is computed as the proportion
of correct solutions among the 32 attempts, providing a more stable performance measure than
single-shot evaluation.

MathRule Answer Extraction MathRule is a rule-based tool designed to extract and standardize final
numerical answers from mathematical solution text. The tool employs pattern matching to identify
answer indicators such as “Therefore,” “Thus,” “The answer is,” and LaTeX boxed expressions like
\boxed{}.

The extraction process involves: (1) Locating answer indicators within the solution text, (2) Parsing
mathematical expressions using regex patterns for common formats (fractions, decimals, integers,
algebraic expressions), (3) Standardizing representations (e.g., converting 1

2 to 0.5 when appropriate),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(4) Handling multiple answer formats and selecting the most confident extraction based on contextual
cues.

MathRule achieves high precision in answer extraction while maintaining robustness to variations in
solution formatting and mathematical notation styles.

LLM Judge Configuration The Teacher model (Qwen3-235B-A22B-Instruct-2507) serves as an
LLM judge for semantic validation when rule-based extraction is insufficient or ambiguous. The
judge evaluates both numerical correctness and reasoning validity using structured prompts.

We instructed the evaluation prompt to: (1) Verify the final numerical answer against the expected
result, (2) Assess the logical coherence of the reasoning steps, (3) Identify any mathematical errors or
invalid assumptions, (4) Provide binary correctness judgments with brief justification.

We ensured judge reliability through temperature 0.1 sampling for consistent evaluations and vali-
dation against human expert annotations on a subset of problems. The dual-verification approach
(MathRule + LLM judge) provides reliable automated assessment for large-scale evaluation.

I PROBLEM QUALITY CONTROL MECHANISM

To ensure curriculum integrity and prevent the propagation of erroneous problems, we implemented a
comprehensive quality control mechanism that monitors problem validity through Solver performance
feedback and automated verification.

Teacher Self-Verification Protocol When the Teacher model evaluates Solver attempts and finds that
all k = 8 solutions for a given problem are incorrect (success rate jp = 0), this triggers an automatic
quality verification process. The system recognizes that universal failure may indicate either: (1)
the problem exceeds current Solver capability (expected behavior), or (2) the problem itself or its
reference solution contains errors (quality issue).

The Teacher model performs self-verification by re-examining both the problem statement and its
originally provided reference solution. This involves: (1) Re-solving the problem independently
with temperature 0.1 for consistency, (2) Cross-validating the reference solution against the new
solution attempt, (3) Checking for mathematical consistency, ambiguous problem statements, or
computational errors, (4) Verifying that the problem has a unique, well-defined solution.

Problem Filtering and Exclusion We immediately flagged and excluded problems that fail the
self-verification process from further curriculum evolution. Specifically, we discarded problems if:
(1) The Teacher cannot reproduce its own reference solution, (2) Multiple valid interpretations of
the problem statement exist, (3) Computational errors are detected in the reference solution, (4) The
problem lacks sufficient information for a unique solution.

We removed discarded problems from the active curriculum Ct and they do not contribute to subse-
quent Solver training or Generator learning. This prevents the accumulation of low-quality problems
that could degrade training effectiveness or introduce systematic biases.

MathRule Integration for Contamination Minimization The integration of MathRule answer
extraction serves as an additional quality control layer by providing objective, rule-based verification
independent of LLM judgment. When MathRule successfully extracts a clear numerical answer from
the Solver’s solution, this extraction is compared against the reference answer using standardized
formats.

This dual-verification approach (MathRule + Teacher evaluation) minimizes contamination from: (1)
LLM judge inconsistencies or biases, (2) Format-related misinterpretations, (3) Numerical precision
issues, (4) Ambiguous answer representations.

Problems where MathRule and Teacher evaluations consistently disagree trigger additional quality
review, as such disagreements often indicate underlying issues with problem clarity or reference
solution accuracy.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Solver Mean Reward Evolution Across Training Stages

Stage S1 S2 S3 Trend

Mean Reward (%) 52.1 48.7 50.1 ↓ then ↑

Table 10: Generator Reward Distribution Analysis

Stage S1 S2 S3 Stability

High Reward Problems (%) 50.7 49.4 50.2 Stable
Target Range (45-55%) ✓ ✓ ✓ Maintained

Feedback-Driven Quality Monitoring The system continuously monitors curriculum quality through
Solver performance patterns. We flagged problems that consistently produce anomalous results—such
as sudden performance drops across multiple Solver variants or inconsistent difficulty ratings—for
manual review or automatic exclusion.

This feedback-driven approach ensures that quality control adapts to emerging issues and maintains
curriculum integrity throughout the co-evolutionary training process, preventing the accumulation of
problematic content that could compromise learning effectiveness.

J CURRICULUM STABILITY AND DIVERSITY ANALYSIS

We analyzed the curriculum evolution dynamics across two dimensions: difficulty progression and
problem diversity preservation.

Solver Performance Evolution Table 9 tracks the Solver’s mean reward (correctness rate) across
training rounds, revealing adaptive curriculum difficulty.

Solver Performance Evolution Table 9 tracks the Solver’s mean reward (correctness rate) across
training stages, revealing adaptive curriculum difficulty.

The Solver exhibits characteristic performance decline from Stage 1 (52.1%) to Stage 2 (48.7%)
followed by recovery in Stage 3 (50.1%) as shown in Table 9. This pattern reflects adaptive curriculum
generation where the Teacher progressively increases difficulty faster than Solver capability initially
improves, then the Solver begins adapting to enhanced curriculum complexity.

Generator Stability Table 10 examines reward distribution in Generator training.

As demonstrated in Table 10, the Generator maintains remarkable stability with high-reward problems
consistently around 50%, fluctuating within only 1.3% range. This indicates successful learning of
the optimal difficulty zone defined by the Gaussian reward function with parameters µ = 0.5 and
σ = 0.2 as specified in Table 7.

Generator Stability Table 10 examines reward distribution in Generator training.

As demonstrated in Table 10, the Generator maintains remarkable stability with high-reward problems
consistently around 50%, fluctuating within only 1.3% range. This indicates successful learning of
the optimal difficulty zone defined by the Gaussian reward function with parameters µ = 0.5 and
σ = 0.2 as specified in Table 7.

Problem Diversity Three key mechanisms ensure curriculum diversity throughout training:

Multi-domain initialization: The 100 seed problems span all 7 MATH subjects (Algebra, Number
Theory, Geometry, etc.) across difficulty levels 2-4 as detailed in Table 8, providing diverse starting
points for curriculum evolution.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

High-temperature sampling: We employed temperature 0.8-0.9 sampling at three critical stages: (1)
Solver trajectory generation during curriculum advancement, (2) Teacher error analysis for varied
failure interpretation, and (3) Teacher problem generation for diverse enhancement strategies.

Compounding diversity effects: Multi-domain seeds combined with stochastic sampling create diverse
failure patterns, while high-temperature generation ensures varied problem formulations even from
similar error patterns.

K THEORETICAL CONVERGENCE ANALYSIS

Establishing formal convergence guarantees for Socratic-Zero presents significant theoretical chal-
lenges that stem from the intersection of multi-agent game theory, non-stationary optimization,
and curriculum learning dynamics. We provide a detailed analysis of these challenges and their
implications for system stability.

K.1 PROBLEM FORMULATION AS MULTI-AGENT GAME

The Socratic-Zero framework can be formalized as a three-player game with asymmetric objectives
and sequential updates. Let ΘS , ΘG , and ΘT denote the parameter spaces for Solver, Generator, and
Teacher respectively, where ΘT is frozen.

Player Objectives The system involves three distinct optimization objectives aligned with Equations 2
and 3:

Solver: min
π
(t)
S

Eq∼Ct

[
ℓS(π

(t)
S (q), q)

]
(13)

Generator: min
π
(t)
G

E
(q,qT)∼D(t)

G

[
ℓG(qG , qT)

]
(14)

Teacher: Fixed oracle providing Tgen and Teval (15)

where ℓS is the Solver’s solution loss, ℓG incorporates the value-weighted generation loss from
Equation 8, and Ct represents the curriculum at iteration t.

Game-Theoretic Complexity Unlike traditional two-player zero-sum games analyzed in Generative
Adversarial Networks (Goodfellow et al., 2014), our system exhibits several complicating factors.
Both Solver and Generator minimize their respective losses, creating a cooperative learning dynamic
rather than competition. However, their objectives are interdependent: the Solver’s performance
affects the Generator’s value function v(q′) from Equation 7, while the Generator’s output influences
the Solver’s training curriculum. Players update sequentially rather than simultaneously, violating
assumptions of classical game theory convergence results. The Teacher’s fixed strategy creates an
asymmetric power structure where two players adapt while one remains static.

K.2 MULTI-AGENT REINFORCEMENT LEARNING CHALLENGES

The framework exhibits characteristics of cooperative multi-agent reinforcement learning (MARL),
where agents must coordinate to achieve system-wide objectives. However, as noted in recent MARL
literature (Papoudakis et al., 2021), such systems face fundamental theoretical limitations.

Non-Stationarity Problem Each agent faces a non-stationary environment due to the simultaneous
adaptation of other agents. The Solver’s learning environment changes as new problems are added
to Ct through Equation 1, while the Generator’s value signal v(q′) depends on the evolving Solver
capabilities. The curriculum Ct grows dynamically, creating a moving target for both agents. This vio-
lates the stationarity assumptions required for standard RL convergence theorems, making traditional
analysis frameworks inapplicable.

Curriculum-Induced Complexity The curriculum evolution mechanism from Equation 1 introduces
additional theoretical challenges:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Ct+1 = Ct ∪
{
(qT , aT) | q ∈ Ct, aS = π

(t)
S (q), Teval(q, aS) = 0, (qT , aT) = Tgen(q, aS)

}
(16)

This creates a feedback loop where current Solver performance determines curriculum expansion,
curriculum expansion affects future performance, and historical problems remain in the curriculum,
introducing memory effects that further complicate theoretical analysis.

K.3 OPTIMIZATION LANDSCAPE ANALYSIS

Non-Convex Value Function The exponential value function from Equation 7 creates a non-convex
optimization landscape:

v(q′) = exp

(
− (zq′/k − µ)2

2σ2

)
(17)

This function exhibits a single global maximum at zq′/k = µ = 0.5, but the landscape shifts as Solver
capabilities θS evolve, creating a moving optimization target for the Generator. The exponential
decay creates vanishing gradients for problems far from the target difficulty, potentially leading to
slow convergence for the WSFT objective in Equation 8.

Preference Learning Instability The Solver’s DPO training from Equation 6 operates on preference
pairs (a+, a−) where the "winning" solutions depend on current performance:

Z+(q) =

{
{a(i)S | Teval(q, a

(i)
S) = 1} if zq > 0,

{aT } if zq = 0
(18)

This adaptive preference construction creates discontinuities in the loss landscape when zq transitions
between 0 and positive values, potentially causing training instability. The injection of Teacher
solutions aT when all attempts fail provides a stabilizing mechanism but introduces distribution shift
in the preference data.

Weighted Distillation Dynamics The WSFT objective in Equation 8 introduces additional complexity
through its value-dependent weighting:

LWSFT(θG) = −E(q,qT)∼DG

[
v(qT) · log pG(qT | q; θG)

]
(19)

The time-varying nature of v(qT) based on current Solver performance creates a non-stationary
supervised learning problem, where the importance weights of training examples change as the
system evolves.

K.4 MULTI-AGENT OSCILLATORY DYNAMICS

Despite theoretical intractability, our empirical observations reveal consistent oscillatory convergence
patterns that align with established phenomena in multi-agent systems. Recent theoretical work on
multi-agent reinforcement learning has demonstrated that oscillatory behavior is not merely a transient
phenomenon but can represent stable equilibria in complex multi-agent environments (Foerster et al.,
2019).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 1 Theoretical Challenge Framework

1: Input: Multi-agent system with asymmetric objectives
2: Challenge 1: Establish conditions for stable oscillatory behavior vs. chaotic dynamics
3: Challenge 2: Derive bounds on oscillation amplitude around target performance levels
4: Challenge 3: Analyze how reward functions affect convergence properties
5: Challenge 4: Determine curriculum evolution rates that ensure system stability
6: Output: Theoretical framework for co-evolutionary learning systems

Empirical Oscillatory Patterns

Solver Performance Evolution: The system exhibits stable oscillatory behavior around target performance
levels, with Solver performance oscillating within ±2% of target values after initial rounds as shown in
Table 9.
Generator Stability: Generator reward distribution remains stable around µ = 0.5, with high-reward
problems consistently maintained at approximately 50% across training rounds as demonstrated in Table 10.
Curriculum Growth Stabilization: The curriculum growth rate stabilizes after initial expansion phase,
indicating dynamic equilibrium between curriculum difficulty and solver capability.
Cross-Architecture Consistency: These patterns remain consistent across different model architectures
and initializations as evidenced in Table 1, suggesting robust system-level properties.

In multi-agent settings with interdependent learning objectives, agents often exhibit coupled os-
cillations where individual performance metrics fluctuate while maintaining system-level stability.
This occurs because each agent’s optimal strategy depends on the current strategies of other agents,
creating a dynamic landscape where static equilibria may not exist or may be suboptimal.

Our empirical observations exemplify this phenomenon: the Solver’s performance temporarily
decreases as the Generator produces more challenging problems, but subsequently recovers as the
Solver adapts to the increased difficulty. This creates a natural rhythm where curriculum difficulty
and solver capability co-evolve through bounded oscillations. The stability of these oscillations
suggests that the system has found a dynamic equilibrium where the rate of curriculum advancement
matches the rate of solver improvement.

Unlike static convergence, this oscillatory equilibrium allows for continuous adaptation and prevents
the system from becoming trapped in suboptimal fixed points. The bounded nature of the oscillations
indicates that the multi-agent interactions have self-regulating properties that prevent divergent
behavior. This oscillatory stability is particularly valuable in educational contexts, as it mirrors
natural learning processes where students alternate between periods of struggle and mastery.

K.5 THEORETICAL IMPLICATIONS AND OPEN PROBLEMS

The convergence analysis reveals several fundamental theoretical challenges that require novel
frameworks capable of simultaneously handling multi-agent games with asymmetric objectives,
non-stationary optimization with curriculum evolution, preference-based learning with adaptive
targets, and memory effects from historical curriculum retention.

While formal convergence guarantees remain elusive, the consistent empirical performance across
multiple architectures and domains suggests that the system reaches practically useful dynamic
equilibria. Oscillatory convergence may be preferable to static convergence for continuous learning
scenarios, and empirical monitoring of key metrics such as performance bounds and reward stability
provides sufficient guidance for practical deployment.

The theoretical analysis highlights that Socratic-Zero operates in a regime where traditional optimiza-
tion theory provides limited guidance, necessitating novel theoretical frameworks for multi-agent
co-evolutionary learning systems. The system’s ability to maintain productive challenge levels
through dynamic adjustment represents a form of emergent curriculum regulation that static ap-
proaches cannot achieve.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

L GENERALIZABILITY OF PROBLEM GENERATION CAPABILITIES

A key question emerging from our work is whether the Generator’s learned problem creation abilities
can transfer to domains beyond mathematical reasoning. The value function and curriculum evolution
mechanisms developed in Socratic-Zero are domain-agnostic in principle, suggesting potential for
broader applicability.

The Generator learns fundamental skills in difficulty calibration, error pattern recognition, and
targeting that may generalize across reasoning domains. For instance, the ability to identify when a
problem is “appropriately challenging” (around 50% success rate as shown in Table 10) represents
a meta-cognitive skill applicable to logical reasoning, scientific problem-solving, or even creative
tasks. The Gaussian reward function with µ = 0.5 and σ = 0.2 (Table 7) creates a transferable
framework for difficulty calibration that could adapt to other domains by adjusting the target success
rate parameter.

Our Generator’s superior performance compared to much larger models, achieving 37.72% down-
stream utility versus 37.13% from Qwen3-235B-A22B (Table 5), demonstrates that strategic spe-
cialization can outperform raw parameter scaling. This suggests that domain-specific Generator
training could be effective across various reasoning domains without requiring massive computational
resources.

However, domain transfer would require careful adaptation of the Teacher’s evaluation capabilities and
problem generation templates. Mathematical reasoning benefits from relatively objective correctness
criteria with our dual-verification approach (MathRule + LLM judge) achieving 94.2% agreement
with human experts, while other domains may require more nuanced evaluation frameworks. The seed
selection protocol detailed in Table 8, which ensures balanced coverage across seven mathematical
domains, provides a template for systematic domain expansion that could be adapted to physics,
computer science, or other reasoning areas.

Future work should investigate whether a Generator trained on mathematical problems can effectively
create challenging problems in adjacent domains like physics or computer science, potentially
through few-shot adaptation or domain-specific fine-tuning leveraging the value learning mechanisms
demonstrated in our framework.

M FRAMEWORK SCALABILITY AND EXTENSIBILITY

The modular architecture of Socratic-Zero demonstrates strong potential for scalability and extension
across multiple dimensions. The clear separation between Solver, Teacher, and Generator roles
enables independent scaling and optimization of each component, as evidenced by our successful
deployment across different computational configurations detailed in Table 7.

The framework’s extensibility is particularly evident in its ability to accommodate different model
architectures and scales. Our cross-model validation demonstrates consistent performance improve-
ments: Qwen3-8B achieves 56.1% average accuracy (+20.2 points), while similar gains are observed
on GLM4-9B and Qwen3-14B architectures (Table 1). This cross-architecture consistency sug-
gests the co-evolutionary principles transcend specific model families and could readily incorporate
emerging architectures or specialized reasoning models.

The curriculum evolution mechanism shows robust scalability properties. Starting from just 100 seed
problems (Table 8), the system generates thousands of ly valuable problems while maintaining quality,
with our Generator achieving 95.6% validity rate compared to 89.1% from the base Qwen3-32B
model (Table 4). This demonstrates that the framework can scale curriculum generation without
proportional increases in seed data requirements.

Multi-domain extension represents another promising direction supported by our balanced seed
distribution across seven mathematical domains. The current mathematical focus could expand to
encompass multiple reasoning domains simultaneously, with domain-specific Teachers providing
specialized curriculum generation while sharing the underlying co-evolutionary dynamics. The
reward distribution analysis (Table 10) shows stable performance across training rounds, indicating
the framework’s robustness to curriculum expansion.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The framework also supports hierarchical scaling, where multiple Solver-Generator pairs could
operate at different difficulty levels or specialization areas, coordinated by higher-level meta-learning
mechanisms. The oscillatory convergence patterns observed in Table 9 suggest natural synchroniza-
tion points where multiple agents could coordinate their learning phases.

N CONVERGENCE AND THEORETICAL FOUNDATIONS

The theoretical understanding of multi-agent co-evolutionary learning remains an open challenge
with significant implications for system reliability and predictability. Our empirical observations
provide crucial insights into the convergence behavior of such systems.

The oscillatory convergence patterns documented in Table 9 reveal characteristic dynamics: Solver
performance declines from R1 (60.12%) to R4 (48.7%) followed by recovery in R5 (50.1%). This
pattern reflects adaptive curriculum generation where the Teacher progressively increases difficulty
faster than Solver capability initially improves, then the Solver adapts to enhanced curriculum
complexity. These bounded oscillations suggest the system reaches dynamic equilibria rather than
static optima.

Complementing this, the Generator maintains remarkable stability with high-reward problems con-
sistently around 50%, fluctuating within only 1.3% range across training rounds (Table 10). This
stability indicates successful learning of the optimal difficulty zone defined by the Gaussian reward
function with µ = 0.5 and σ = 0.2 (Table 7), providing empirical evidence for convergence to ly
meaningful equilibria.

The cross-architecture consistency observed in Table 1, where similar improvement patterns emerge
across Qwen3-8B, GLM4-9B, and Qwen3-14B models, suggests robust system-level properties that
transcend specific model architectures. This consistency provides evidence that the convergence
behavior represents fundamental properties of the co-evolutionary dynamics rather than architecture-
specific artifacts.

Future theoretical work should investigate conditions under which the system exhibits stable con-
vergence versus chaotic dynamics. Key questions include: What curriculum evolution rates ensure
stable learning? How do different value functions affect convergence properties? Can we establish
bounds on the oscillation amplitude around target performance levels observed in our empirical data?

The intersection of curriculum learning, preference optimization, and multi-agent dynamics presents
rich opportunities for theoretical development. The DPO training parameters (Table 7) and their
interaction with curriculum evolution rates could inform theoretical models of multi-agent prefer-
ence learning. Establishing convergence guarantees would enable more principled hyperparameter
selection and provide confidence bounds for practical deployment.

O LIMITATIONS AND FUTURE DIRECTIONS

Several limitations of the current framework point toward important future research directions,
informed by our comprehensive experimental analysis.

The reliance on mathematical reasoning as the primary domain limits our understanding of cross-
domain applicability. While our seed distribution covers seven mathematical areas (Table 8), ex-
pansion to physics, computer science, or natural language reasoning would require developing
domain-specific evaluation frameworks and Teacher capabilities. The 94.2% agreement between our
dual-verification approach and human experts provides a benchmark for developing similar evaluation
protocols in other domains.

The computational cost of multi-round co-evolution, while justified by substantial performance
gains (+20.2 points average improvement as shown in Table 1), may limit practical adoption in
resource-constrained settings. Our Teacher model deployment requires 16 AMD MI308X GPUs
with 3,072GB aggregate memory, representing a significant computational investment. However,
the superior performance of our 32B Generator compared to much larger models (Table 5) suggests
pathways for computational efficiency improvements.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The framework’s dependence on high-quality initial Teacher models creates a bootstrapping challenge
for domains lacking strong foundation models. Our systematic seed selection protocol requiring
30-70% success rates for problem inclusion demonstrates the importance of capability-aligned
initialization, but this requirement may be difficult to satisfy in emerging domains without established
evaluation benchmarks.

Current evaluation focuses primarily on accuracy metrics, potentially missing important aspects
of reasoning quality such as explanation coherence or value from a human perspective. While our
Mean@32 evaluation protocol provides robust performance estimates, the framework would benefit
from more comprehensive evaluation frameworks that assess reasoning process quality, not just final
answer correctness.

The oscillatory convergence patterns observed in Tables 9 and 10, while empirically stable, lack
formal theoretical guarantees. Understanding the conditions that ensure stable oscillatory behavior
versus potential chaotic dynamics remains an open theoretical challenge with practical implications
for system reliability.

Future work should address these limitations through: (1) domain expansion studies leveraging the
value learning mechanisms, (2) computational efficiency optimizations building on our Generator
distillation success, (3) development of more comprehensive evaluation frameworks that capture
reasoning process quality, and (4) theoretical analysis of multi-agent co-evolutionary dynamics to
establish formal convergence guarantees.

26

	Introduction
	Related Work
	Methodology
	The Socratic-Zero Framework
	Online Solver Evolution via Preference Learning
	Offline Generator Evolution via Weighted Distillation

	Experiments
	Experimental Setup
	Solver Results
	Generator Results
	Evaluation Protocol
	Problem Quality Assessment
	Downstream Training Effectiveness

	Ablation Studies

	Conclusion and Future Work
	LLM Use Statement
	Prompts
	Solver Reasoning Prompt
	Teacher Evaluation Prompt
	Teacher Generation Prompt
	Static Augmentation Baseline Prompts

	Implementation Details
	Training Hyperparameters

	Curriculum Evolution Details
	Problem Categorization Strategy
	Adaptive Problem Generation
	Dynamic Recategorization

	Teacher Model Infrastructure
	Teacher-Generated Problem Enhancement
	Example 1: Rational Inequality Enhancement
	Example 2: Number Theory Enhancement

	Seed Selection Protocol
	Evaluation Protocol Details
	Problem Quality Control Mechanism
	Curriculum Stability and Diversity Analysis
	Theoretical Convergence Analysis
	Problem Formulation as Multi-Agent Game
	Multi-Agent Reinforcement Learning Challenges
	Optimization Landscape Analysis
	Multi-Agent Oscillatory Dynamics
	Theoretical Implications and Open Problems

	Generalizability of Problem Generation Capabilities
	Framework Scalability and Extensibility
	Convergence and Theoretical Foundations
	Limitations and Future Directions

