
Reward-oriented Causal Representation Learning

Zirui Yan∗

Rensselaer Polytechnic Institute
yanz11@rpi.edu

Emre Acartürk∗

Rensselaer Polytechnic Institute
acarte@rpi.edu

Ali Tajer
Rensselaer Polytechnic Institute

tajer@ecse.rpi.edu

Abstract

Causal representation learning (CRL) is the process of disentangling the latent
low-dimensional causally-related generating factors underlying high-dimensional
observable data. Extensive recent studies have characterized CRL identifiability
and perfect recovery of the latent variables and their attendant causal graph. This
paper introduces the notion of reward-oriented CRL, the purpose of which is to
move away from perfectly learning the latent representation and instead learning
it to the extent needed for optimizing a desired downstream task (reward). In
reward-oriented CRL, perfectly learning the latent representation can be excessive;
instead, it must be learned at the coarsest level sufficient for optimizing the desired
task. Reward-oriented CRL is formalized as the optimization of a desired function
of the observable data over the space of all possible interventions and focuses
on linear causal and transformation models. To sequentially identify the optimal
subset of interventions, an adaptive exploration algorithm is designed that learns
the latent causal graph and the variables needed to identify the best intervention. It
is shown that for an n-dimensional latent space and a d-dimensional observation
space, over a horizon T the algorithm’s regret scales as Õ(d
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where u measures total uncertainty in the graph estimates. Furthermore, an almost-
matching lower bound is shown to scale as Ω(d
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T ), in which u is

replaced by p that counts the number of causal paths in the graph.

1 Introduction
Consider a data-generating process in which latent low-dimensional causally-related variables are
mapped to observational high-dimensional data through an unknown transformation. Causal repre-
sentation learning (CRL) is the process of using observational data to learn the latent, unobserved
generating factors, i.e., the latent variables and the latent causal graph that specifies their causal inter-
actions. CRL is considered a significant step toward understanding the world by learning appropriate
representations that support causal interventions, reasoning, and planning [1].

CRL literature. There exists rich recent literature on CRL identifiability analysis – the objective
of which is establishing conditions under which the latent space can be recovered uniquely – across
various models for the latent causal model (e.g., linear, parametric, and non-parametric) and the
unknown transformation (e.g., linear, parametric, and non-parametric). Some representative studies
include [2–13]. Aiming to establish possibility/impossibility results, the existing literature is primarily
focused on the asymptotic setting of access to an infinite number of observations, with limited studies
on finite-sample guarantees [4]. Specifically, we refer to [2–5] for the most closely related works in
terms of setting and methodology.
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Learning a unique, causal representation underlying the observed data is hypothesized to enable more
improved and robust reasoning for downstream tasks [1]. This is often encountered in technological,
social, and biological domains where the observed data often lack straightforward interpretations and
are generated by an unobserved data-generating mechanism with interpretable semantics.

Reward-oriented CRL. To understand the recovery limits in CRL, the existing literature has so
far decoupled the CRL from the downstream objectives. This decoupling means that CRL may
expend extra effort learning fine-grained details that do not contribute to the downstream objective,
or conversely, lack sufficient accuracy to be useful. To address this gap, we introduce the notion of
reward-oriented CRL, which directly integrates the downstream goal into the representation learning
pipeline. In this paper, we consider rewards that are functions of the latent variables. Since the latent
variables are not directly observable, efficient optimization of the reward may include, as a sub-task,
recovering these latent representations. In this case, one would only need to learn the latent variables
and graph to the coarsest level to optimize the downstream objectives. To formalize the objectives,
we define a utility function that maps the latent causal system to a downstream utility. This utility will
be subsequently optimized over the space of possible interventions in the causal system. For example,
consider a robotic arm with causally related joint variables. The arm’s movements are monitored
from camera images, and our downstream objective is to use these images to optimize the arm’s
movements for a specific task. In such a task, achieving high placement accuracy does not require
perfect recovery of all latent variables; instead, it suffices to capture the critical joint relationships
or to bound estimation errors below a level that leaves final task performance unaffected. Sending
commands to the arm to adjust its actions is the intervention model on the underlying causal system.

Table 1: Summary of results for reward-oriented CRL.
Intervention Latent variables Graph recovery Regret bounds
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1
2n

1
3u

2
3

HT
2
3 + uH

√
T )

Connection to causal bandits. Optimizing utility in the latent space faces uncertainties in several
ways, e.g., causal model, transformation, and probability models. Inevitably, an algorithm optimizing
utility needs to explore the system to resolve these uncertainties before committing to a decision.
A data-adaptive exploration of interventions is intimately related to the literature on causal bandit
(CB), albeit with two significant differences. First, in CB, the learner directly interacts with the
causal system and observes the causal variables, a premise that does not hold in reward-oriented CRL.
Second, in the CB literature, it is often assumed that the causal graph’s topology is known, which is not
the case in reward-oriented CRL. Some representative studies on various causal models (e.g., linear
and non-linear) and intervention models (do, stochastic hard, and stochastic soft) include [14–26].

Due to these two significant differences with CB, designing reward-oriented algorithms will differ
significantly from the CB algorithms by including a process that can perform CRL. This process has
to perform an accurate-enough CRL that facilitates identifying the best intervention. Hence, the CRL
process we need to design differs from the existing ones that aim for perfect latent recovery.

We focus on reward-oriented CRL with (i) linear structural equation models over an n-dimensional
latent causal system, (ii) linear transformations mapping to d-dimensional observations, and (iii)
linear utility functions. Table 1 summarizes the main guarantees on latent space recovery and regret
bounds until time T , where u measures total uncertainty and p counts the number of causal paths. We
defer the discussion of do intervention to Appendix I. Our key observations include the following.

• Finite-sample identifiability. We provide finite-sample identifiability for linear SEMs, accommo-
dating both stochastic soft and hard interventions. This is a critical step, since during exploration,
we have access to only a finite number of samples.

• Almost matching regret bounds. We establish upper and lower regret bounds for reward-oriented
CRL. These bounds are specified in terms of the topology of the causal graph. Under soft
interventions, these bounds match in their dependence on graph parameters and the time horizon T .

• Refined bounds for causal bandits. The reward-oriented CRL framework subsumes CB by setting
the latent to observation transformation to the identity function. We show that our algorithm also
improves the state-of-the-art regret bounds for the relevant CB settings.
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Notations. For n ∈ N, we define [n] ≜ {1, . . . , n}. Vectors are represented by lowercase bold letters,
and element i of vector v is denoted by v[i]. Matrices are represented by uppercase bold letters, and
we denote row i and element (i, j) of matrix A by [A]i and by A[i, j], respectively. Moore-Penrose
pseudoinverse of a matrix A is denoted by A†. For any matrix A we denote the rank, column and
null spaces of A by rank(A), col(A) and null(A), respectively. 1 denotes the indicator function.
Sets and events are denoted by calligraphic letters. The cardinality of the set A is denoted by |A|.
For a vector x and positive semidefinite matrix A, we define ∥x∥A =

√
x⊤Ax as the weighted ℓ2

norm. The ℓ2-norms of vector x ∈ Rd and matrix A are denoted by ∥x∥2 and ∥A∥2, respectively.
Finally, Õ is an order notation that ignores constant and poly-logarithmic factors.

2 Reward-oriented CRL Framework

Data-generating process. Consider a data-generating process that transforms high-level, low-
dimensional latent variables into low-level, high-dimensional observable data. Formally, consider a
causal system represented by an unknown directed acyclic graph (DAG) G with n nodes generating
causally-related latent random variables Z ≜ [Z[1], . . . , Z[n]]⊤. These latent variables are mapped
to a higher-dimensional observed data X ∈ Rd by an unknown linear transformation G ∈ Rd×n

according to X = G ·Z, where d ≥ n and G is full column rank. The set of parents and ancestors of
node i ∈ [n] are denoted by pa(i) and an(i), respectively. We denote the probability density function
(pdf) of Z by p and denote the conditional pdf of Z[i] given its parent variables by pi(z[i] | z[pa(i)]).
We call a permutation π = (π1, . . . , πn) of [n] a valid causal order if for all i, j ∈ [n], the membership
i ∈ pa(j) implies πi < πj . We denote the maximum in-degree of G by dG and the length of its
longest causal path by L. The latent causal variables are assumed to be related through a linear
structural equation model (SEM) specified by Z = B · Z + ε, where B ∈ Rn×n is the edge weight
matrix and ε ∈ Rn accounts for the exogenous noise, whose expected value is denoted by ν ≜ E[ε].
The weight matrix B directly models the causal relations in the sense that the element B[i, j] is
non-zero if and only if j ∈ pa(i).

Interventions. We consider two types of intervention mechanisms: stochastic hard and soft, the
distinction of which is how they impact the marginal distributions of the latent variables.

• Soft intervention: As the least restrictive form of intervention, when applied to node i ∈ [n], a soft
intervention changes the conditional distribution pi(z[i] | z[pa(i)]) to a distinct one. Equivalently,
this alters the observational linear causal mechanism to an alternative one as follows:

observational: Z[i] = [B]i · Z + ε[i] , interventional: Z[i] = [B∗]i · Z + ε∗[i] , (1)
where [B∗]i denotes the vector of post-intervention edge weights, and ε∗[i] denotes the post-
intervention noise with mean ν∗[i] ≜ E[ε∗[i]]. Consequently, we define the interventional weight
matrix B∗ as the composition of rows {[B∗]i : i ∈ [n]} and the mean vector as ν∗.

• Hard intervention: As a special case of soft interventions, a hard intervention on node i removes
its ancestral statistical dependence and changes pi(z[i] | z[pa(i)]) to a marginal distribution that is
only a function of z[i]. This mechanism is equivalent to setting B∗ = 0.

For simplicity of notations, throughout the analysis, we assume only one intervention mechanism per
node. However, this can be readily generalized to an arbitrary number as discussed in Appendix H.
We allow multiple nodes to be intervened on simultaneously and denote the space of possible
interventions by A ≜ 2[n]. We denote the probability measure induced by the set of interventions
a ∈ A and the associated expectation by Pa and Ea, respectively.

Reward-oriented CRL. In reward-oriented CRL, the objective is to identify the set of interventions
in A that maximizes an expected reward defined as a function of Z. In this paper, we focus on linear
reward functions specified by U(Z) ≜ θ⊤Z + εU , where θ ∈ Rn is an unknown reward parameter
and εU represents a utility noise term with mean 0. We denote the expected value of the utility U
under intervention a ∈ A by

µa ≜ Ea[U(Z)] . (2)
A learner’s objective is to identify the optimal intervention a∗, denoted by

a∗ ≜ argmax
a∈A

µa . (3)

All aspects of probability distributions, i.e., the topology of G, pre- and post-intervention matrices,
and noise distributions, are unknown. To identify a∗, the learner performs a sequence of interventions

3



and receives feedback consisting of the observed data X and reward U(Z). The objective is to
identify a∗ with the fewest number of interventions, which are selected adaptively based on the data
and the collected rewards. The sequence of interventions over time is denoted by {at ∈ A : t ∈ N}.
Accordingly, we denote the set of the latent variables, data, and reward collected up to t by

Zt ≜ [Z1, . . . , Zt] , Xt ≜ [X1, . . . , Xt] , and Ut ≜ [U(Z1), . . . U(Zt)] . (4)
To assess the efficiency of the learner in identifying a∗, we define the cumulative utility regret that it
incurs relative to an oracle with access to the best intervention a∗ as

RT ≜
T∑

t=1

(
Ea∗ [U(Z)]− Eat

[U(Z)]
)

= Tµa∗ −
T∑

t=1

µat
. (5)

We remark that using such a regret-based approach to identify a∗ can be naturally posed as a multi-
armed bandit problem in which each of the 2n possible interventions can be represented by one arm.
Applying a vanilla bandit algorithm results in a regret that scales exponentially in n, rendering a
regret that, even for a moderate-sized latent structure, can be highly inefficient. The objective in this
paper is to design algorithms that can break the exponential dependence on n by properly leveraging
the intricate causal structures among the latent variables.

Identifiability metrics. Circumventing the exponential dependence of the regret on dimension n,
and efficiently identifying a∗ hinge on properly recovering the latent variables Z and the underlying
causal graph G, both unobserved. These recoveries are the core objective of CRL. Recent studies
provide extensive identifiability guarantees for CRL – which specify conditions under which Z and
G can be uniquely recovered (up to some uncertainty) from the observed data X . These guarantees
are asymptotic, assuming access to an infinite number of samples of X . In the reward-oriented CRL,
however, the decisions at each time t must be based solely on t samples. To formalize the types
of identifiability guarantees needed in our framework, we first specify the known infinite-sample
identifiability guarantees that apply to the setting of this paper (linear SEMs and transformation),
followed by their finite-sample counterparts. For this purpose, given Xt, we define Ĝt, Ẑt, and Ht as
estimates of G, Zt, and G†, respectively. We also denote the transitive closure of G by Gtc.
Theorem 1. Under linear SEM, linear transformation, and one intervention per node, CRL is
endowed with the following infinite-sample identifiability guarantees.

(i) Hard intervention ([2, Theorem 2]): It is possible to perfectly recover G and recover Z up to
scaling, i.e., Ĝ∞ = G and Ẑ∞ ≜ H∞X∞ = CHZ∞ for some diagonal matrix CH ∈ Rn×n.

(ii) Soft intervention: It is possible to perfectly recover a transitive closure of G [2, Theorem 1] and
recover Z up to scaling and mixing with parents, i.e., Ĝ∞ = Gtc and Ẑ∞ = H∞X∞ = CSZ∞
for some matrix CS ∈ Rn×n such that for any given j, CS[i, j] = 0 for all i /∈ {j} ∪ pa(j).

See Appendix E.1 for details. Next, we specify finite-sample counterparts of these identifiability
statements in a probably approximately correct (PAC) sense similar to [4].
Definition 1 ((ϵ, δ)-PAC recovery). For a given t ∈ N, the finite-sample estimates Ĝt, Ẑt, and Ht are
said to achieve (ϵ, δ)–PAC recovery if the following statements hold with probability at least 1− δ

(i) Hard intervention: Ĝt = G and Ẑt = HtXt = (CH + Et) · Zt, where CH is a full-rank
diagonal matrix, and we have ∥Et∥2 ≤ ϵ.

(ii) Soft intervention: Ĝt = Gtc and Ẑt = HtXt = (CS + Et) · Zt, where CS is a full rank
matrix, for any given j, C[i, j] = 0 a for all i /∈ {j} ∪ pa(j), and ∥Et∥2 ≤ ϵ.

Assumptions. Next, we outline the assumptions adopted for the reward-oriented CRL framework.
First, we adopt the following CRL assumption (see, e.g., [2, Assumption 1(b)] and [3, Assumption 1]),
which ensures that the effects of an intervention can always be traced from the changes in the precision
matrix (inverse covariance) of latent variables Z.
Assumption 1. An intervention on any non-root node i changes row i of the weight matrix, i.e.,

if pa(i) ̸= ∅ then [B]i ̸= [B∗]i . (6)

This assumption automatically holds for hard and do interventions and is mild for soft interventions,
requiring that the effect of an intervention is not limited to the exogenous noise distributions. Similar
assumptions are common in the CRL literature and can effectively be interpreted as requiring that the
statistics we use be non-degenerate. Next, we provide SEM-related assumptions that are standard in
the causal bandit literature [21].
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Assumption 2 (Weight matrices). Matrices B and B∗ and the utility parameter θ are unknown
but have finite entries with known ranges. We denote the range of these entries by mB ∈ R+, i.e.,
|B[i, j]| ≤ mB , |B∗[i, j]| ≤ mB , and |θ[i]| ≤ mB for all i, j ∈ [n].

Assumption 3 (Noise model). We assume that the statistical models for the noise ν and ν∗ are
unknown and bounded. We define the mε ∈ R+ to specify the range of noise terms, i.e., |εt[i]| ≤ mε

for all i ∈ [n] and t ∈ [T ]. Finally, we assume the utility noise εU is 1-sub-Gaussian.

For simplicity in the presentation and without loss of generality, we set mB = mε = 1. An immediate
conclusion of Assumptions 2 and 3 is that Z is bounded, i.e., ∥Z∥ ≤ m for some m ∈ R+.
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Figure 1: Schematic Pipeline of RO-CRL

3 Reward-oriented CRL Algorithm

Now we introduce the Reward-oriented Causal Representation Learning algorithm (RO-CRL) for
hard and soft intervention. The pseudocode is provided in Algorithm 1 in Appendix A.

3.1 Algorithmic Overview & Key Properties

Identifying the best intervention a∗ defined in (3) requires estimating the expected utility under 2n
distinct statistical models associated with 2n possible intervention combinations a ∈ A. The key
to breaking the exponential dependence of the number of estimation routines we have to perform
on n is leveraging the intricate connection among all the 2n statistical models. Specifically, all the
models inherit their randomness from two sources of noise models, ν and ν∗. The algebraic forms
of the statistical models are shaped by the weight matrices B and B∗ and the utility parameters θ.
Hence, learning 2n distributions can be reduced to estimating two noise models and estimating the
entries of B, B∗, θ. Estimating these parameters, however, depends on access to the causal graph G
(informative about the sparsity structures of B and B∗) and the latent variables Zt, both of which are
not directly observable.

To address this, RO-CRL properly explores various intervention combinations to form reliable enough
estimates of G and Zt from observations Xt. Achieving the right level of exploration is critical to
avoid collecting excessive data Xt, which will compromise the regret. Attaining the right exploration,
therefore, depends on determining what the coarsest possible estimates of G and Zt are that ensure
reliable identification of the optimal intervention a∗. Hence, RO-CRL balances a trade-off that
involves an adaptive exploration schedule that focuses on recovering G and Zt to the extent needed
to find a∗. At each time t, RO-CRL constructs estimates for the graph Ĝt and inverse transform
Ht using differences between sample precision matrices with samples from the observational and
interventional data. Since CRL only recovers variables up to scaling factors, we compute robust
estimates of appropriately scaled B and B∗. After sufficient exploration of interventions, they are
subsequently selected according to the upper confidence bound (UCB) principle. The overall pipeline
of this process is illustrated in Figure 1.

Precision matrix differences. The main statistic we use to estimate the latent variables and graph
is the differences in precision matrices under various interventions. Denote the precision matrices
of Z and X under distribution Pa by ΘZ

a and Θa, respectively. Accordingly, define RZ
i and Ri as

the associated precision differences between observational (a = ∅) and single-node interventional
(a = {i}) data, i.e., RZ

i ≜ ΘZ
{i} −ΘZ

∅ and Ri ≜ Θ{i} −Θ∅. To specify the empirical counterparts
of these precision differences, we denote the number of times that a ∈ A is selected until time t by

Na,t ≜
∑

s∈[t] 1{as = a}. (7)
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Hence, the empirical sample mean and covariance of X for a ∈ A are given by

µa,t ≜
1

Na,t

∑
s∈[t]1{as = a}Xs , Σa,t ≜

1

Na,t

∑
s∈[t]1{as = a}XsX

⊤
s − µa,t · µ⊤

a,t . (8)

Accordingly, the empirical precision and precision differences are denoted by Θa,t ≜ (Σa,t)
† and

Ri,t ≜ Θ{i},t −Θ∅,t, respectively. We use the following properties of Ri,t to estimate G and Z.
Lemma 1. The non-zero rows of latent precision difference RZ

i describe the latent graph:∥∥[RZ
i

]
j

∥∥
2
̸= 0 =⇒ j ∈ {i} ∪ pa(i) . (9)

Furthermore, the observable precision difference Ri = (G†)⊤RZ
i G

† is subspace-constrained:

col(Ri) ⊆ span{[G†]j : j ∈ {i} ∪ pa(i)} . (10)

3.2 Key Processes in RO-CRL

RO-CRL consists of two main stages. It begins with a forced exploration phase, in which we
apply node-level atomic interventions on all nodes a fixed number of times. The purpose of forced
exploration is to establish initial estimates for the relevant statistics. This is followed by an adaptive
exploration stage, in which we dynamically select a sequence of interventions adaptively to the
observations and utilities. This stage itself consists of several inference processes, whose collective
objective is to specify a rule for translating observations into an intervention selection.

Stage 1 – Forced exploration. To construct initial estimates of Ri, the algorithm explores
the observational model along with each of the single-node atomic intervention models for T0

times. To formalize this, the set of interventions in this forced exploration phase is denoted by
A0 ≜ {∅, {1}, {2}, . . . , {n}}. The constant T0 is chosen such that the initial Ri are sufficiently
accurate to produce a reliable enough graph estimate for the latent causal graph G.

Stage 2 – Adaptive exploration. After forced exploration, at every t ≥ (N + 1)T0, we perform
three inference and decision procedures to identify the next intervention at+1.

1. CRL: First, we recover the latent variables and graph. This is initiated by first finding the estimate
Ht for the inverse of G, followed by using that to find estimates Ĝt.

2. UCB-based intervention selection: Subsequently, we introduce a UCB-based decision rule that
leverages the above estimates in conjunction with the reward Ut to specify at+1.

3. Under-sampling rule: Finally, we implement a process that ensures that single-node interventions
are explored sufficiently over time. When an intervention is deemed under-sampled, it will be
prioritized for sampling over the intervention. This process ensures that the estimates Ht and Ĝt
are updated incrementally, preventing total estimation error in Zt from growing linearly with t.

3.3 Inference & Decision Rules

The quality of the inference and decision rules in Stage 2 is critical for identifying the sequence of
interventions. In this subsection, we specify these rules.

1 – CRL rules. The CRL rules are implemented in two stages: baseline recovery and refined recovery.
The baseline recovery process serves two key roles: (i) it estimates the causal graph G and latent
variables Zt under soft interventions, and (ii) it acts as an intermediate step for estimating G and
Zt under hard interventions. The refined recovery stage is applied only when hard interventions
are present, with the specific goal of improving estimates produced by the baseline process. As
expected, hard interventions yield stronger recovery guarantees, with their advantage stemming from
this additional refinement step.

1.a – Baseline recovery steps. The baseline recovery of the latent space is based on the shared
properties of soft and hard interventions, such as Lemma 1, and it has three inference routines.

(i) Inverse transform Ht. We construct the baseline estimate Ht ∈ Rn×d row by row by assigning
[Ht]i ← the principal eigenvector of Ri,t , (11)

where principal eigenvector denotes the eigenvector associated with the largest absolute eigen-
value of a symmetric matrix. The intuition here is that, due to Lemma 1, with high probability,
the following property holds with a low error level.(

[Ht]i ·G
)
[j] ≈ 0 , ∀j ̸∈ {i} ∪ pa(i) . (12)
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(ii) Variables Ẑt. The estimated latent variables are subsequently estimated via

Ẑt = HtXt = (HtG) · Zt , (13)

and are approximately equal to the true latent variables Zt up to mixing with parent variables.
(iii) Graph Ĝ. To form a graph estimate, we first compute the estimated latent precision differences

R̂Z
i,t ≜ (H†

t)
⊤ ·Ri,t ·H†

t , ∀i ∈ [n] , (14)

and then assign the non-zero rows of these matrices as edges according to:

i→ j ∈ Ĝt ⇐⇒ i ̸= j and ∥[R̂i,t]j∥2 > γ . (15)

Next, we find the transitive closure of Ĝt as the estimated graph Ĝt. This procedure directly
mirrors the graph property in Lemma 1, and recovers the transitive closure of G with high
probability. We denote the parent set of node i in Ĝt by pat(i). In this rule, γ > 0 is a threshold
for determining if a row of the estimated latent precision differences is zero. To ensure that this
threshold can differentiate between true edges and non-edges, we need to select it carefully. We
show that choosing it in instance-dependent interval γ ∈ (0, γ∗) is necessary, where

γ∗ ≜ min{∥[R̂Z
i,∞]j∥2 : ∥[R̂Z

i,∞]j∥2 ̸= 0} . (16)

1.b – Refined recovery under hard interventions. When using hard interventions, the intervention
target becomes independent of its non-descendants in the latent space. We impose this independence
condition on the estimated latent variables by constructing minimum mean-squared-error (MMSE)
estimates of a node’s non-descendants in the estimated graph, which is equal to the transitive closure
of the true graph with high probability. Specifically, we do the following.

(i) Refined inverse transform Ht. Using the sample covariance matrices defined in (8), we first
compute the estimated latent sample covariance matrices via

Σ̂Z
a,t = Ht · Σa,t ·H⊤

t , ∀a ∈ A0 . (17)

We collect the MMSE estimates of node i on pat(i) in environment {i} in matrix Ξt∈Rn×n as

Ξt[i, pat(i)] ≜ Σ̂Z
{i},t[i, pat(i)] ·

(
Σ̂Z

{i},t[pat(i), pat(i)]
)−1

. (18)

Using these MMSE estimates, we update the estimate Ht as

Ht ← (I−Ξt) ·Ht . (19)

(ii) Variables refinement. We re-apply the relation Ẑt = HtXt. We show that this procedure
refines the estimates Ẑt to be approximately equal to the true variables Zt up to scaling.

(iii) Graph refinement. We refine the graph estimate Ĝt by applying (15) using the updated Ht.
Since the variables are now recovered up to scaling by Lemma 1, this step returns the latent
graph G exactly with high probability. Therefore, we do not take the transitive closure of Ĝt.

2 – UCB-based selection rule. After estimating the latent variables and the graph, we specify our
selection rule. Formalizing this rule involves characterizing confidence ellipsoids of the relevant
parameters under different interventions. To this end, we first estimate the graph parameters and
subsequently use the confidence ellipsoids of these estimates to construct the confidence ellipsoid of
the interventions, enabling a full description of the UCB-based selection of interventions.

2.a – Parameter estimation. We first estimate the SEM parameters B, B∗, and utility parameters
θ using the estimated variables Ẑt and the estimated graph Ĝt. To keep the notation compact, we
present the following algorithm and regret analysis as if the noise means after recovery are known,
i.e., ν̂a for a ∈ A are known. This can be readily relaxed to accommodate unknown mean setting by
using the same reparameterization technique as in [21], which involves adding a dummy node 1 to
the graph estimates Ĝt, along with the associated modifications to Ẑt and pat(i).

As we use finite samples Xt to estimate Zt, there will inevitably be an estimation error. Therefore, at
each time t ∈ N, we design the weighted ridge regression estimators At and A∗

t at time t for B and
B∗, respectively. To estimate the observational weights [A]i, we only use the samples in which node
i was not intervened. Conversely, to estimate the interventional weights [A∗]i, we use the samples in
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which node i was intervened. We encode these selection rules via diagonal weight matrices Wi,t and
W∗

i,t, which we will specify later. The i-th rows of the estimates At and A∗
t are specified as follows.

[At]i≜ [Vi,t]
−1[Ẑt]

⊤
pat(i)

Wi,t([Ẑt]i− ν̂[i]), and[A∗
t ]i≜ [V∗

i,t]
−1[Ẑt]

⊤
pat(i)

W∗
i,t([Ẑt]i− ν̂∗[i]) (20)

where we have defined weighted and doubly weighted Gram matrices as

Vi,t ≜ [Zt]
⊤
pat(i)

Wi,t[Zt]pat(i) + In , and Ṽi,t,s+1 ≜ Z⊤
i,t,sW

2
i,t[:s, :s]Zi,t,s + In , (21)

V∗
i,t ≜ [Zt]

⊤
pat(i)

W∗
i,t[Zt]pat(i) + In , and Ṽ∗

i,t,s+1 ≜ Z⊤
i,t,sW

∗2
i,t[:s, :s]Zi,t,s + In , (22)

where Zi,t,s ≜ Zt[pat(i), :s] and In is the identity matrix. An important consideration in the above
estimates is the design of the weight matrices. At each time t, we construct diagonal matrices
{Wi,t,W

∗
i,t : i ∈ [n]} to softly filter out the outlier samples that are likely to have higher estimation

error. The diagonal elements for s ∈ [t] are defined as

Wi,t[s, s] ≜ 1{i ̸∈ as}
1

ζt
min

{
1 , ∥Ẑt[pat(i), s]∥−1

[Ṽi,t,s]−1

}
, (23)

and W∗
i,t[s, s] ≜ 1{i ∈ as}

1

ζt
min

{
1 , ∥Ẑt[pat(i), s]∥−1

[Ṽ∗
i,t,s]

−1

}
. (24)

The designs of the diagonal weights are inversely proportional to ζt, which is a bound on the
cumulative estimation error. This design uses smaller weights when ζt is higher. The weights are also
inversely proportional to a weighted ℓ2 norm, often referred to as the weighted exploration bonus. A
higher exploration bonus means lower confidence in the sample and hence, lower weights.

Similarly, with Zθ,t,s ≜ Zt[:, :s], we define the estimate for θ at time t ∈ N as follows.

θt ≜ [Vθ,t]
−1Ẑ⊤

t Wθ,tUt , Wθ,t[s, s] ≜
1

ζt
min

{
1, ∥Ẑt[:, s]∥−1

[Ṽθ,t,s]−1

}
, (25)

Vθ,t ≜ Ẑ⊤
t Wθ,tẐt + In , Ṽθ,t,s ≜ Ẑ⊤

θ,t,sW
2
θ,t[:s, :s]Ẑθ,t,s + In . (26)

2.b – Confidence ellipsoids and decision rule. After estimating the SEM and utility parameters, we
use a UCB-based rule for sequential selection of interventions. The UCB under intervention a ∈ A
is defined as the maximum value of expected utility when the weights are in the confidence ellipsoids
of a, denoted by Ca,t. In order to construct the confidence ellipsoid for a, we first form the following
confidence ellipsoids for the estimated parameters, i.e., At,A

∗
t and θt:

Ci,t ≜
{
ξ :
∥∥ξ − [At]i

∥∥
Vi,t[Ṽi,t,t]−1Vi,t

≤ βi,t(δt)
}
, (27)

C∗i,t ≜
{
ξ :
∥∥ξ − [A∗

t ]i
∥∥
V∗

i,t[Ṽ
∗
i,t,t]

−1V∗
i,t

≤ βi,t(δt)
}
, (28)

and Cθ,t ≜
{
ξ :
∥∥ξ − θt

∥∥
Vθ,t[Ṽθ,t,t]−1Vθ,t

≤ βt(δt)
}
, (29)

where {βi,t(δt) ∈ R+, t ∈ N, i ∈ [n]} and {βt(δt) ∈ R+, t ∈ N} are sequences of confidence radii
that control the size of confidence ellipsoids and δt is the tolerance of wrong estimates at time t.
Accordingly, we define the relevant confidence ellipsoid for node i under intervention a ∈ A as

Ci,a,t ≜ 1{i ∈ a} C∗i,t + 1{i /∈ a} Ci,t , and Ca,t ≜ {∪i∈[n]Ci,a,t} ∪ Cθ,t . (30)

Based on these, at time t, our algorithm selects the intervention that maximizes the UCB. Let Lt be
the length of the longest causal path of Ĝt. Due to the linear structure in SEMs, it is defined as

UCBa,t ≜ max
{Ã,θ̃}∈Ca,t

〈
θ̃ ,
∑Lt

ℓ=0Ã
ℓ · ν̂a

〉
∀ a ∈ A , and at+1 = argmax

a∈A
UCBa,t . (31)

3 – Under-sampling rule. RO-CRL iteratively update various estimates. The performance of the
UCB step is contingent on the performance of the CRL step producing increasingly accurate estimates
Ĝt and Ht. To ensure such accuracy, we impose a rule requiring that single-node interventions be
sufficiently explored over time. Such interventions are needed to construct the necessary statistics for
the CRL step. To formalize this, we define the set of under-explored interventions as

AUE
t ≜ {a ∈ A0 | Na,t < ft(Ĝt)} , (32)

where the function ft(Ĝt) is a non-decreasing term that controls the adaptive exploration to collect
observations Xt when necessary. If AUE

t ̸= ∅, the algorithm is forced to random sample from AUE
t .
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4 Regret Analysis for RO-CRL

In this section, we present the node-level instance-dependent regret results for RO-CRL. We also
present algorithm-independent regret lower bounds to complement RO-CRL’s achievable regret.

As an intermediate step toward regret analysis, we first provide PAC identifiability guarantees for
recovering G and Zt. These results depend on the least frequently selected single-node intervention
up to time t, denoted by st ≜ mina∈A0 Na,t.
Theorem 2 (Sample complexity). For any instant t of RO-CRL that satisfies st ≥ N(ϵ, δ), where

N(ϵ, δ) ≜ C2 max{ϵ−2 , ϵ−2
max}

(
d+ log(1/δ)

)
, (33)

under Assumption 1, the estimate Ht constructed in (11) (or (19)) and estimate Ĝt constructed in (15)
ensure (ϵ, δ)–PAC recovery of Zt and G under soft (or hard) interventions specified in Definition 1.
This implies that with probability at least 1 − δ, the error term Et specified in Definition 1 under
both hard and soft interventions satisfies

∥Et∥22 ≤ C2
(
d+ log(1/δ)

)
/st . (34)

The regret bounds have delicate differences under hard and soft interventions captured by the constants
u ∈ {uS, uH}. Let m ∈ {S,H} indicate the intervention type, and Hm(i) ∈ {HS(i),HH(i)} such
thatHH(i) = pa(i) andHS(i) = an(i). Then u is defined as

um,i =

{
0 if i is a root node∑

j∈Hm(i) um,j +
√
|Hm(i)| otherwise

, and um =

n∑
i=1

um,i +
√
n . (35)

By setting δt = 6δ
π2t2 for confidence radii and controlling T0 to satisfy T0 ≥ N(ϵmax, δnT0), we

ensure that with probability at least 1− 4δ, the choice of ft defined in (32), ζt for weights design and
β’s for confidence radii will be equal to or in the order of

ft(Ĝt) = max{d 1
3n− 2

3u
2
3 t

2
3 , N(ϵmax, δt)} , ζt = O

(
t

√(
d+ log(1/δt)

)
/ft(Ĝt)

)
, (36)

βi,t(δt) =

{Õ(√|pa(i)|) Hard intervention
Õ(
√
|an(i)|) Soft intervention

, βt(δt) = Õ(
√
n) , (37)

where under soft intervention u = uS and under soft intervention u = uH.
Theorem 3 (Regret upper bound). Under Assumptions 1–3, with probability at least 1 − 4δ , the
average cumulative regret of RO-CRL is upper bounded by

RT ≤ Õ
(
d

1
3n

1
3u

2
3T

2
3 + u

√
T
)
, (38)

When the noise means ν̂a for a ∈ A are unknown, the impact on the regret upper bound order is
reflected in the parameter u, where the value will be set to 1 if i is a root node instead of 0.

Next, we establish a lower bound on the regret in the unknown mean setting. As no finite-sample lower
bound for CRL is known in the literature, we provide the lower bound by fixing the estimation error
as in Theorem 2. As the reward depends on how noise terms cumulatively contribute to the utility,
the lower bound depends on the number of paths in the G. Denote mi,j as the number of causal paths
from node i to node j in Gtc, and denote the number of paths p as p ≜ n+ 1 +

∑n
i=1

∑n
j=1 mi,j .

Theorem 4 (Lower bound under soft intervention). For any CRL-based algorithm that satisfies
Theorem 2, there exist instances of a causal model on Gtc and estimation error Et such that the
expected cumulative regret of any algorithm is at least

RT ≥ Ω
(
d

1
3n

1
3 p

2
3T

2
3 + p

√
T
)
. (39)

Remark 1 (Tightness or the bounds). When comparing the upper bound in Theorem 3 and the
lower bound in Theorem 4, we observe that both bounds show similar behavior with respect to
graph-dependent parameters and the time horizon T . The only discrepancy comes from uS and p,
where uS has an extra factor to count the dimension of graph connectivity in transitive closure.
Remark 2 (Causal bandits). Our reward-oriented CRL reduces to the standard causal bandit setting
if we set G = In and the utility function to U(Z) = Z[n]. By these choices, our regret bounds
immediately provide regret bounds for causal bandits. Specifically, our upper and lower bounds
simplify to Õ(uH

√
T ) and Ω(p

√
T ), respectively, where p is defined on G instead of Gtc. These

bounds match at Θ̃(dLG
√
T ) for graph-independent regret bounds, eliminating the gap d in previous

results [24].
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Figure 2: Results of regret of RO-CRL . Left: soft intervention. Right: hard intervention. Yellow
shading denotes the exploration phase.

5 Experiments

In this section, we evaluate the empirical performance of RO-CRL. We report the regret of RO-
CRL under both soft and hard interventions. Additional experiments, including CRL recovery,
scaling behavior, comparison to baselines, and assumption violations, are deferred to Appendix C.2

Latent graph. We generate a random acyclic graph on n nodes by enforcing a strictly lower-
triangular weight matrix. To ensure that the UCB in RO-CRL is computable for any randomly
generated graph, we force all weights and noises to be positive (See Appendix B). Specifically,
observational weights are drawn from [0.25, 1] and interventional weights are set 0.1 times the
corresponding observational weights for soft interventions and to 0 for hard interventions. Noise
terms are sampled i.i.d. from the uniform distribution U [0, 1]. We set n = 5 for these experiments
and repeat the experiments 50 times.

Figure 2 illustrates the cumulative regret of RO-CRL under two types of interventions: soft inter-
ventions (left) and hard interventions (right). In both cases, we observe an initial phase of forced
exploration (highlighted in yellow), during which the algorithm collects sufficient interventional
data to estimate the underlying causal structure and variables. After this phase, the regret curves
begin to flatten, indicating that RO-CRL effectively identifies near-optimal interventions and achieves
sublinear regret.

6 Conclusion

In this paper, we have introduced the framework for formalizing and analyzing reward-oriented
causal representation learning, the objective of which is to optimize a downstream task over the
space of possible interventions in the causal system. The key difference between reward-oriented and
conventional CRL is that CRL’s objective of perfectly recovering the latent graph and variables can
be excessive for optimizing a downstream task. Specifically, for reward-oriented CRL, one needs
to learn the latent graph and variables at the coarsest level that enable the identification of optimal
interventions. To resolve uncertainties associated with the latent causal graph and the latent probability
distributions, we have adopted a sequential framework to explore different interventions and identify
the optimal one with as few time instances as possible. We have designed an adaptive exploration
algorithm that learns only the coarsest representation necessary to optimize the downstream reward.
We have provided finite-sample latent recovery guarantees for the causal graph and its variables, and
regret bounds for different types of interventions. In the standard causal bandit setting, these bounds
simplify and match, even improve upon previous results.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Sections 4 establish the results claimed in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The major limitations of the work is the linear assumption on SEMs, transfor-
mations and utility functions. We discuss these in detail in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide a full set of assumptions at the end of Section 2 and referenced in
the theorem statemnts. All proofs are included in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See the details in the experiments section in the Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We release the code with instructions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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A Pseudocode

Algorithm 1 Reward-oriented CRL (RO-CRL)

1: Forced exploration. Sample T0 times for each intervention a ∈ A0.
2: for t = (n+ 1)T0, . . . do
3: ▷ Latent recovery
4: Update the inverse transform estimate Ht via (11)
5: Estimate Ẑt according to Ẑt = HtXt

6: Update the graph estimate Ĝt via (15)
7: if hard interventions then
8: Update the inverse transform estimate again using (19)
9: Update Ẑt according to Ẑt = HtXt

10: Update the graph estimate again Ĝt via (15)
11: ▷ Under-sampling rule
12: if AUE

t ̸= ∅ then
13: Pull at random sample from AUE

t
14: else
15: ▷ Parameter estimation
16: Set weight matrix Wi,s, W∗

i,s and Wθ,s for s ∈ [t] according to (23)–(25)
17: Update At, A∗

t and θt according to (20) and (26)
18: Set A∗

t = 0 under hard intervention
19: ▷ UCB selection
20: Compute UCBa,t according to (31) for a ∈ A
21: Pull at+1 = argmaxa∈A UCBa,t

22: Observe Xt and U(Zt)

B Computational complexity of RO-CRL

The computational cost of RO-CRL per step can be broken down into two parts:

1. CRL: CRL routine depends on matrix inversions (O(d3)), which can be expensive for large
d. However, since the transformation is linear, we can detect the supporting subspace and
project the samples to it, effectively reducing the observation dimension d to n, and yielding
an overall per-step complexity of O(n4).

2. UCB-based selection: The computational bottleneck is the intervention-selection step:
the UCB is intractable on general causal graphs [26, Section 3.3]. To make the algorithm
practical, [26] proposes techniques that efficiently compute an upper bound on the UCB,
which we can incorporate into our approach. However, the upper bound is loose, and its
robustness to imperfect latent recovery is unknown.

In the experiments, we use the following modification to ensure efficiency in the intervention selection
step for RO-CRL.

Non-negative edge weights and noise (shifted system): We investigate the setting where all weights
and noises are positive. A general system can be linearly transformed into such a non-negative system.
A key property of such systems is that all variables are monotone in their parents. To calculate the
UCB, we can therefore maximize nodes sequentially in causal order and use the closed form in linear
bandits. The resulting complexity is O

(∑
i∈[n] |pat(i)|3 + n3

)
for UCB selection in (31), where n is

the number of latent dimensions.

C Additional Experiments

Latent Recovery Figure 3 shows the variations of the graph recovery rate versus the sample size
st. As expected, it is observed that the recovery improves with more samples st. Furthermore,
the hard interventions, the stronger special case, consistently yield higher recovery rates than soft
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Figure 3: Results of graph recovery on different value of st for soft intervention (Gtc) and hard
intervention (G). Left: d = 10. Right: d = 75.

interventions. Figures 4 and 5 show the norm of the error term Et and the average estimation error
on latent variables Z for varying st. We can see both terms decay, which conforms to the theoretical
decay

√
1/st rate established in Theorem 2.
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Figure 4: Results of the error term Et on different value of st. Left: d = 10. Right: d = 75.
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Figure 5: Results of average estimation error of Z on different value of st. Left: d = 10. Right:
d = 75.

Performance of CRL when varying n and d. In Table 2, we provide additional experiments
to evaluate the performance of CRL across different n, d, and intervention types, plotted against
sample size st. These results show that the CRL performance of our RO-CRL algorithm is mostly
consistent across variations in system parameters: Variable recovery errors decay with increasing
number of samples st consistently with the theoretical rate of 1/st (Theorem 2) across all settings.
Observation dimension d does not affect results thanks to a dimensionality reduction step. Finally,
increasing n from 5 to 8 does not lead to a significant drop in variable recovery performance. However,
graph recovery performance significantly degrades for n = 8 under soft interventions, which can
be explained by noting that the “true” graph under soft interventions is the transitive closure, which
includes a high number of indirect edges. Such indirect effects are hard to track from the precision
matrices, which makes the graph recovery for soft interventions more difficult.

22



Table 2: CRL performance versus n, d and intervention type.

(a) Latent recovery (MSE).

n d Int. type st=1000 2000 4000 8000 16000

5 5 Soft 0.067 0.052 0.034 0.026 0.018
5 25 Soft 0.201 0.189 0.170 0.162 0.156
8 8 Soft 0.136 0.092 0.069 0.047 0.035
5 5 Hard 0.218 0.165 0.069 0.047 0.017
5 25 Hard 0.378 0.320 0.232 0.186 0.147
8 8 Hard 0.246 0.176 0.099 0.047 0.034

(b) Graph recovery rate.

n d Int. type st=1000 2000 4000 8000 16000

5 5 Soft 0.00 0.22 0.80 0.94 1.00
5 25 Soft 0.02 0.10 0.64 0.80 0.94
8 8 Soft 0.00 0.04 0.00 0.00 0.00
5 5 Hard 0.02 0.10 0.68 0.84 1.00
5 25 Hard 0.00 0.08 0.50 0.82 0.98
8 8 Hard 0.00 0.08 0.50 0.96 1.00

Varying observation dimension d: Thanks to dimensionality reduction techniques and the forced-
exploration schedule, CRL’s regret remains essentially unchanged as we increase the feature dimen-
sion d from 5 to 100 while keeping the latent dimension at n = 5. This observation is consistent
with some previous findings in CRL under linear transformations [3] that the performance of CRL is
not that sensitive to the feature dimension d, and this behavior does not contradict our lower bound
analysis, which is derived under the error bounds from CRL. Table 3 reports the corresponding
runtime for different dat a fixed time horizon T , and the additional computational cost introduced by
higher d remains well within practical limits.

Table 3: Average runtime (in minutes) with varying d when n = 5

d 5 10 25 50 75 100

soft 48.55 47.19 53.85 48.01 48.11 48.55
hard 63.12 65.83 67.66 67.24 67.54 68.32

Varying latent dimension n: (which also affects the ut) for fixed d = 10. From Table 4, we
observe that the cumulative regret grows by increasing n. We note the increase stems from two
factors: (i) exploration cost for CRL varies with n, and (ii) the reward range becomes larger as n
increases. These trends will be more clearly visualized in the figures to be included in the final
version.

Table 4: Cumulative regret with different latent dimensions n when d = 10

n 3 5 7 9

soft 1524 4832 13298 37787
hard 1789 5382 14677 37830

Table 5: Cumulative regret across different algorithms
Algo RO-CRL UCB modified RO-CRL

hard 5382 15690 10132
soft 4832 16320 9726
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Baselines. We compare RO-CRL with two baselines: vanilla UCB and a modified version of
RO-CRL, where CRL is performed for a fixed fraction of the sample budget, after which the bandit
proceeds without accounting for latent recovery error. Table 5 reports the cumulative regret at the
given final horizon T for different algorithms. As shown, both baselines perform significantly worse
than RO-CRL. The performance gap between RO-CRL and Modified RO-CRL will continue to
increase with longer time horizons.

Assumption Violations.

• Assumption 1: We run experiments where Assumption 1 is violated and provide the regret
and variable recovery results in Tables 6–7. First, we note that graph recovery consistently
fails (the graph recovery rate is exactly 0) in this setting. However, Table 6 shows that
latent variable recovery still works: Indeed, its analysis is independent of Assumption 1. In
Table 7, we evaluate cumulative regret versus time, and observe that the bandit algorithm
does not achieve a sublinear regret after the forced exploration phase (t ≥ 18000 in this
case), meaning that the RO-CRL algorithm requires Assumption 1 to appropriately capture
the true uncertainties and make good decisions.

Table 6: Cumulative regret under Assumption 1 violation (n = d = 5)
t 3000 6000 9000 12000 15000 18000 21000 24000

Regret 0 2000 4000 4000 6000 6000 11000 16000

Table 7: Latent variable recovery MSE under Assumption 1 violation (n = d = 5)
st 1000 2000 4000 8000 16000

MSE 0.134 0.123 0.104 0.097 0.092

• Boundedness violations We conduct experiments that deliberately violate two key assump-
tions: bounded noise and known parameter bounds. The specific violations are as follows: -
Noise violation: We replace the bounded noise with unbounded Gaussian noise. - Parameter
violation: Instead of properly rescaling the system, we multiply all parameters by a factor of
10 to simulate the violation. Note that such a scaling can be offset by properly scaling the
latent variables. Therefore, in these experiments, we explicitly set a fixed scale of the latent
variables.
As shown in Table 8, both violations result in linearly growing regret after the forced
exploration phase (t ≥ 18000 in this case). This result aligns with theoretical expectations:
violating the noise boundedness or known-parameter assumptions leads to confidence radii
that no longer appropriately capture the true uncertainty, thereby causing increasingly poor
decisions.

Table 8: Cumulative regret under bound violation (n = d = 5)
t 6000 12000 15000 18000 19000 20000 21000

noise 1909 4272 5382 5382 7176 8970 10764
parameters 421447 505197 516290 516290 685092 857133 1029174

D Additional Notations

In this section, we present the notations that will be useful in our analyses.

Given a symmetric matrix A ∈ Rd×d, we denote the vector of eigenvalues of A ordered in descending
order by λ(A) ∈ Rd and the matrix of eigenvectors by Q(A) ∈ Rd×d such that A = Q(A) ·
diag(λ(A)) ·Q(A)⊤.
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Table 9: Table of Notations in Main Body
Notation Description
Z Latent variable
B, B∗ Observational/Interventional weight matrices
ε noises
ν/ν∗ mean of noises
X Observable variable
U(Z) = θ⊤Z + εU Observable reward
G Transforms
Z[i], X[i] i-th random variables
Zt, Xt data vector at time t
a ∈ A Interventions
Ht Estimate of G† at time t

Ẑt = HtXt Estimate of sample Zt at time t
A0 Set of null and atomic intervention
At,A

∗
t Estimates of A,A∗ at time t

ζt Cumulative estimation error at time t

D.1 Precision Matrices

In this paper, we will consider precision matrix differences as our learning signal for CRL, similarly
to [2]. The precision matrix of a distribution is the inverse of its covariance matrix. In case of the
latent variables, Z, let us denote the pre-intervention precision matrix by Θ. Note that the implicit
linear SEM can also be written explicitly as

Z = (I−B)−1 · ε . (40)

Let us denote the vector v as the variances of entries of ε, and v∗ as its interventional counterpart ε∗.
Using this formulation, the precision matrix is given by

ΘZ = (I−B)⊤ · diag(1/v) · (I−B) =
∑
i∈[n]

(v[i])−1([I−B]i)
⊤[I−B]i . (41)

Let us construct two matrices K,K∗ ∈ RN×N row by row as

[K]i ≜ (v[i])−1/2[I−B]i , [K∗]i ≜ (v∗[i])−1/2[I−B∗]i , (42)

such that term i in (41) is equal to ([Ki])
⊤[K]i. Since this is only a function of the generation

mechanism of node i, the precision matrix of the latent variables under action a ∈ A, denoted by ΘZ
a ,

is given by
ΘZ

a =
∑
i ̸∈a

([K]i)
⊤[K]i +

∑
i∈a

([K∗]i)
⊤[K∗]i . (43)

Therefore, K,K∗ fully parameterize the precision matrices of the latent variables under any action
a ∈ A. Finally, note that the precision matrices of observed variables, denoted by Θa for action
a ∈ A, are given by

Θa = G†⊤ΘZ
aG

† . (44)
Thus, defining Q = KG† and Q∗ = K∗G†, both in RN×D, the observed precision matrices are
given by

Θa =
∑
i ̸∈a

([Q]i)
⊤[Q]i +

∑
i∈a

([Q∗]i)
⊤[Q∗]i . (45)

Similarly to the latent case, Q and Q∗ fully parameterize the observed precision matrices {Θa : a ∈
A}. In this paper, the CRL algorithms we design solely depend on estimates of Q and Q∗.

D.2 Causal Bandit Notations

We define the row of weights under intervention as

[Ba]i = 1{i ∈ at} [B∗]i + 1{i /∈ at} [B]i . (46)
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First, we provide notations that are useful in our analyses. We denote the singular values of a matrix
A ∈ RM×N , where M ≥ N , by

σ1(A) ≥ σ2(A) ≥ · · · ≥ σN (A) . (47)

In the proofs, we often work with zero-padded vectors and corresponding matrices. As a result, the
matrices that contain these vectors have non-trivial null space leading to zero singular values. In such
cases, we use the effective smallest singular value that is non-zero. We denote the effective largest
and smallest eigenvalues that correspond to effective dimensions of a positive semidefinite matrix A
with rank k by

σmax (A) ≜ σ1(A) , and σmin (A) ≜ σk(A) . (48)

For a square matrix U = AA⊤ ∈ RN×N , we denote the effective largest and smallest eigenvalues
by

λmax (U) ≜ λmax

(
AA⊤) = σ2

max(A) , (49)

and λmin (U) ≜ λmin

(
AA⊤) = σ2

min(A) . (50)

Then we construct data matrices that are closely related to Gram matrices. At time t ∈ N and for any
node i ∈ [n], the data matrices Ui,t ∈ Rn×t and U∗

i,t ∈ Rn×t consist of the weighted observational
and interventional data, respectively. Specifically, we define

Ui,t ≜ [Ẑt]pat(i)
√

Wi,t , and
[
U∗

i,t

]
s
≜ [Ẑt]pat(i)

√
W∗

i,t , (51)

where we denote
√
A as the square root of the matrix A.

We denote the relevant data matrices for node i ∈ [n] under intervention a ∈ A by

Ui,a,t ≜ 1{i /∈ a}Ui,t + 1{i ∈ a}U∗
i,t , and Vi,a,t ≜ 1{i /∈ a}Vi,t + 1{i ∈ a}V∗

i,t . (52)

Combining (51) and (52), we have

Vi,a,t = Ui,a,tU
⊤
i,a,t + In . (53)

Similarly we define the data matrices that are related to Ṽi,a,t as

Ũi,t ≜ [Ẑt]pat(i) Wi,t , and Ũ∗
i,t ≜ [Ẑt]pat(i) W

∗
i,t . (54)

The relevant data matrices for node i ∈ [n] under intervention a ∈ A are

Ũi,a,t ≜ 1{i /∈ a}Ũi,t + 1{i ∈ a}Ũ∗
i,t , (55)

and Ṽi,a,t = Ũi,a,tŨ
⊤
i,a,t + In . (56)

Define N∗
i,t as the number of times that node i ∈ [n] is intervened, and Ni,t as its complement, i.e.,

N∗
i,t ≜

t∑
s=1

1{i ∈ as} , and Ni,t ≜ t−N∗
i,t . (57)

Accordingly, for any i ∈ [n], t ∈ N and a ∈ A, define

Ni,a,t ≜ 1{i ∈ a}N∗
i,t + 1{i /∈ a}Ni,t , (58)

To proceed, we define the second-moment matrices and their effective largest and smallest eigenvalues
as

Σi,a,t ≜ EaẐ[pat(i)] Ẑ[pat(i)]
⊤ , (59)

κmin,t ≜ min
i∈[n],a∈A

σmin (Σi,a,t) , (60)

κmax,t ≜ max
i∈[n],a∈A

σmax (Σi,a,t) , (61)

where κmin > 0 is guaranteed since there is no deterministic relation between nodes and their patients.
These variables are inherent to the system and remain unknown to the learner.

26



Lastly, we define Ãa,t and θ̃a,t as the weights that attains UCBa,t, i.e.,

(Ãa,t, θ̃a,t) = argmax
{Ã,θ̃}∈Cat+1,t

〈
θ̃ ,
∑Lt

ℓ=0Ã
ℓ · ν̂at+1

〉
. (62)

Accordingly, we define the auxiliary variable Z̃t generated according to the following SEM

Z̃t = Ãat,tZ̃t + εt , (63)

with the exact same realization of the noise εt and the UCB is calculated as

Ũ(Z̃t) ≜ UCBa,t = θ̃⊤a,tZ̃t + ϵU,t . (64)

E Analysis of CRL Steps

In this section, we first prove the high probability error bounds for recovering the latent variables and
graph using finite samples. For notational clarity, we drop∞ from infinite-sample estimators and use
these forms without a t subscript as infinite sample limits.

E.1 Proof of Infinite-sample Guarantees

In the infinite sample limit st →∞, covariance and precision matrix estimates converge to their true
values. This enables us to derive identifiability guarantees without additional error terms. First, let us
start by proving the main motivating property of precision differences.

Proof of Lemma 1. Using the expansion (43), we note that the precision difference between null
and single-node interventional distributions is very structured.

RZ
i ≜ ΘZ

∅ −ΘZ
{i} = ([K]i)

⊤[K]i − ([K∗]i)
⊤[K∗]i . (65)

Using the definition of K,K∗ in (42), row i of either of these matrices have non-zero entries only in
coordinates i or pa(i). Therefore, only the principal submatrix at coordinates ({i}∪pa(i), {i}∪pa(i))
can be non-zero in RZ

i , therefore, for any row j, the norm ∥[RZ
i ]j∥2 ̸= 0 implies j ∈ {i} ∪ pa(i).

Using this fact, we can prove the second part of the lemma. Since Ri = (G†)⊤ RZ
i (G†), row

sparsity of RZ
i immediately implies that

col(Ri) ⊆ col((G†)⊤ RZ
i ) ⊆ span{[G†]j : j ∈ {i} ∪ pa(i)} . (66)

Rank-2 assumption. Next, let us investigate RZ
i and Ri under Assumption 1. This assumption

simply ensures that [K]i and [K∗]i have different directions for all i ∈ [n] that is not the root node,
which implies the following.
Lemma 2. Under Assumption 1, the precision matrix difference RZ

i has rank 1 if and only if i is a
root node, and has rank 2 otherwise. The rank of Ri is equal to the rank of RZ

i .

Proof: Assumption 1, that is, [B]i ̸= [B∗]i is used directly with the definitions of [K]i =
(v[i])−1/2[I −B]i, and [K∗]i = (v∗[i])−1/2[I −B∗]i. If i is a root node, both [B]i = [B∗]i = 0,
but we must change the noise variance, which yields a rank-1 update to the matrix, with only the
(i, i)-th element being non-zero. If i is not a root node, then Assumption 1 ensures that ei − [B]i
and ei − [B∗]i have different directions, thus the overall difference of outer products yields a rank-2
matrix.

Soft interventions. Proof of the soft intervention inverse transform estimation results are identical
to [3, Lemma 4]. For graph estimation, we follow closely to proof of [3, Lemma 5] as follows.

In the infinite sample regime, using soft interventions, we recover the latent variables up to mixing
with parent nodes, i.e.,

Ẑ = HX = CSZ , (67)
where CS = HG with CS[i, j] ̸= 0 only if j ∈ {i} ∪ pa(i). The “estimated latent” precision matrix
difference is computed via

R̂Z
i = [H]†⊤Ri[H]† = [CS]

−⊤RZ
i [CS]

−1 . (68)
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Using [3, Lemma 13], the up-to-parents mixing in CS results in a up-to-descendants mixing in
[CS]

−⊤, that is, [CS]
−⊤[i, j] ̸= 0 only if j ∈ {i} ∪ de(i). On the other hand, using Lemma 1, only

non-zero rows of RZ
i are j ∈ {i} ∪ pa(i). This implies that all rows and columns j ̸∈ {i} ∪ an(i)

will be zero in R̂Z
i . Therefore, the estimated graph Ĝ is at worst a supergraph of the transitive closure

of the true graph G.

Hard interventions. Proof of the hard intervention post-processing steps in the infinite sample
regime is identical to [3, Proof of Theorem 3].

E.2 Proof of Finite-sample Guarantees

In this section, we start by defining the error bounds for sample covariance and precision matrix
estimation [27].
Lemma 3. With probability 1− δ, the maximum error term in sample covariance matrices Σa,t for
a ∈ A0 is bounded by

max
a∈A0

∥Σa,t − Σa∥ ≤ CΣ ·
(
d+ log(1/δ)

st

)1/2

. (69)

Similarly, for a bounded condition number for covariance matrices, the maximum error in the sample
precision difference matrices Ri for i ∈ [n] is upper bounded by

max
i∈[n]
∥Ri,t −Ri∥ ≤ CR ·

(
d+ log(1/δ)

st

)1/2

. (70)

The proof strategy for finite-sample guarantees follows closely to [4]: We first show that infinite-
sample guarantees can be recovered with low error if the estimation errors are low enough. Next, we
use the error bounds of the specific precision difference estimator to derive overall error bounds for
the overall CRL procedure.

Inverse transform estimation. In inverse transform estimation, the estimate Ht is constructed
row by row as the principal eigenvectors from finite-sample precision differences Ri,t. We have the
following result on the stability of this estimation procedure.
Lemma 4. Denote the principal eigenvector of Ri by Hi and that of Ri,t as Hi,t. Denote the
minimum separation of the top two eigenvalues of Ri by η∗, that is,

η∗ = min
i∈[n]

λ(Ri)1 − λ(Ri)2 . (71)

Using Davis–Kahan symmetric sin θ theorem [28], when ∥Ri −Ri,t∥ ≤ η∗/2, we have

∥Hi,t
⊤Hi,t −Hi

⊤Hi∥ ≤
2

η∗
∥Ri −Ri,t∥ . (72)

Following [4, Lemma 17], the inverse transform estimation is upper bounded by

∥Ht −H∥ ≤ 2
√
n

η∗
max
i∈[n]
∥Ri −Ri,t∥ , (73)

and the overall transformation error Et in Definition 1 is upper bounded by

∥Et∥ ≤
2
√
n

η∗
max
i∈[n]
∥Ri −Ri,t∥ . (74)

Graph estimation. The graph estimation procedure consists of two steps: Computing the estimated
latent precision difference matrices and thresholding them to recover edges. Let’s first focus on the
error bounds on the computation side, which then yield error upper bounds in order to achieve perfect
graph recovery.

The equation for computing the estimated latent precision differences is

R̂Z
i = H†⊤RiH

† , (75)
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and similarly for finite-sample counterparts. A perturbative error bound on the pseudoinverse term is
given by, when ∥Ht −H∥ ≤ 1/(2∥H†∥),

∥H†
t −H†∥ ≤ 4∥H†∥2∥Ht −H∥ . (76)

Therefore, a bound on the estimation error in R̂Z
i,t is given by, when ∥H†

t −H†∥ ≤ ∥H†∥,

∥R̂Z
i,t − R̂Z

i ∥ ≤ 4∥H†∥(∥H†∥∥Ri,t −Ri∥+ ∥H†
t −H†∥∥Ri∥) . (77)

The spectral norm bound is a natural upper bound on the ℓ2 norm of any row of a matrix. In other
words, under the same circumstances, we have, for any j ∈ [n],

∥(R̂Z
i,t − R̂Z

i )j∥ ≤ 4∥H†∥(∥H†∥∥Ri,t −Ri∥+ ∥H†
t −H†∥∥Ri∥) . (78)

Since the minimum nonzero entry of R̂Z
i is γ∗, it suffices for the error to be below

max
i∈[n]

4∥H†∥(∥H†∥∥Ri,t −Ri∥+ ∥H†
t −H†∥∥Ri∥) ≤ γ∗/2 (79)

to estimate all the edges in Ĝ correctly, i.e., to ensure Ĝt = Ĝ. By shifting constants, this means

max
i∈[n]
∥Ri,t −Ri∥ ≲

η∗γ∗

∥H†∥2 (80)

is sufficient for (i) correct (soft) graph recovery, and (ii) for the error bound in (74) to hold.

Hard interventions. For the post-processing in hard interventions, we use the linear minimum
mean square error estimator, which is defined via a linear algebraic equation

Ξt[i, p̂at(i)] = (Σ̂Z
{i},t[i, p̂at(i)]) · (Σ̂Z

{i},t[p̂at(i), p̂at(i)])
−1 . (81)

This part has three possible sources of error: Estimation of Ht/Ẑt, finite sample estimation of
covariance matrices, and incorrect graph estimation. Since with bounded error the graph will be
correctly estimated, we focus on the other two. Specifically, Σ̂Z

{i},t is actually defined via

Σ̂Z
{i},t = HtΣ{i},tH

⊤
t , (82)

which, whenever ∥Σ{i},t − Σ{i}∥ ≤ ∥Σ{i}∥, has an error upper bound

∥Σ̂Z
{i},t − Σ̂Z

{i}∥ ≤ 4∥H∥(∥Σ{i}∥∥Ht −H∥+ ∥H∥∥Σ{i},t − Σ{i}∥) . (83)

Given that (Σ̂Z
{i}[p̂a(i), p̂a(i)]) has bounded condition number, collecting constants, we get

Ξt[i, p̂at(i)] ≲ max
i∈[n]
∥Ri,t −Ri∥ , (84)

and therefore, after update Ht ← (In −Ξt)Ht, the inverse transform estimate error becomes

∥Et∥ ≲ max
i∈[n]
∥Ri,t −Ri∥ . (85)

If we use the error bound in Lemma 3, with probability 1− δ, we have

∥Et∥ ≲
(
d+ log(1/δ)

st

)1/2

, (86)

Since the order of the error did not change, the required error level for graph recovery also remains in
the same order.

In summary, ensuring that the precision difference estimation error is upper-bounded by

max
i∈[n]
∥Ri,t −Ri∥ ≲

η∗γ∗

∥H†∥2 (87)

ensures that (i) the graph can be correctly identified, and (ii) the variables to be recovered with error
term in the same order as the precision difference errors, under both hard and soft interventions. This
means that we can simply unify the constants by choosing the worst case, and use Lemma 3 to prove
Theorem 2, which is restated here for the sake of completeness.
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Theorem 5 (Sample complexity). For any instant t of RO-CRL that satisfies st ≥ N(ϵ, δ), where

N(ϵ, δ) ≜ C2 max{ϵ−2 , ϵ−2
max}

(
d+ log 1/δ

)
, (88)

under Assumption 1, the estimate Ht constructed in (11) (or (19)) and estimate Ĝt constructed in (15)
ensure (ϵ, δ)–PAC recovery of Zt and G under soft (or hard) interventions specified in Definition 1.
This implies that with probability at least 1 − δ, the error term Et specified in Definition 1 under
both hard and soft interventions satisfies

∥Et∥22 ≤ C2
(
d+ log(1/δ)

)
/st . (89)

Proof: Note that many intermediary results require the precision difference estimation errors to be
upper-bounded. As such, we provide error bounds where the error is required to be below a certain
threshold. Then, the error bounds in Lemma 3 can be mapped to sample complexity statements to be
used in our setting: With probability 1− δ, the maximum error term in the sample covariance and
precision matrices is bounded by ϵ if the instance satisfies

st ≥ Csc max{ϵ−2 , ϵ−2
max}(d+ log(1/δ)) (90)

That is, if st satisfies the above, for any (ϵ, δ), the following error bounds hold with probability at
least 1− δ.

∥Ri,t −Ri∥ ≤ ϵ , ∥Σi,t − Σi∥ ≤ ϵ . (91)

Then, given that ϵmax corresponds to the maximum tolerable error level of analysis provided in this
section, we get the error bounds and sample complexity statements for the CRL objectives provided
in the theorem statement.

F Proof of Regret Upper Bound (Theorem 3)

In this section, we prove the regret upper bound in Theorem 3 in three parts. For simplicity in
notations, we provide the analysis for the setting in which the noise mean is known. The regret
bounds for the more realistic setting in which the noise mean is unknown follow the same steps
in a straightforward way by padding a dummy node to the graph and latent variables and noises,
introducing one extra degree of freedom.

Part 1. we provide a decomposition of node-level utilities in Section F.2, which provides the intuition
behind our UCB construction in (31).

Part 2. Then we establish a more general bound than Theorem 3 as Theorem 6, which holds under
mild under-sampling conditions. Its proof consists of four steps:

1. We show the system and its estimation error remain bounded in Section F.1, and there is a
transformed linear SEM that Ẑ∞ satisfies.

2. We show high probability ellipsoidal confidence sets for the parameter estimates At, A∗
t

and θt in Section F.3.

3. We quantify how these uncertainties propagate along the causal paths in Section F.4.

4. Combining the above, we provide the high probability regret bounds in Section F.5.

Part 3. Finally, leveraging Theorem 6 in Part 2, we complete the proof of Theorem 3 by choosing an
appropriate ft(Ĝt) to balance exploration and exploitation.

We will first prove all parts under known transformed mean setting, that is ν̂a for a ∈ A, and then
discuss how it generalizes to unknown transformed mean setting. We emphasize that, although
our proof follows the high-level structure of [23], it departs crucially in how we define the utility
function and account for uncertainty in both Z[pa[i]] and Z[i], a direct use of their formulation leads
to suboptimal bounds. Moreover, we derive instance-dependent regret upper bounds that generalize
those in [23]. Such refined bounds are essential in the transitive closure setting, where the maximum
in-degree can be of the same order as n.
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F.1 Bounded System and Error Bound

F.1.1 Known Transformed Mean

Transformed SEM. As CRL, even in the infinite sample regime, only recovers the variables up
to scaling, the estimates Ẑ∞ do not obey the original SEM Z = BZ + ε. Instead, we obtain the
following system.

Lemma 5. As a result of Theorem 1, the estimated latent variables Ẑ∞ are Markov with respect to
the estimated graph Ĝ∞. Specifically, there exist weight matrices A,A∗ ∈ Rn×n such that

A = In − Λ(In −B)C−1 , and A∗ = In − Λ(In −B∗)C−1 , (92)

where Λ is a diagonal matrix chosen so that A and A∗ share the same support as B and B∗. As
a result, A[i, j] and A∗[i, j] are non-zero only if j ∈ pa∞(i). Finally, there exist exogenous-noise
vectors ε̂∞, ε̂∗∞ (with independent entries) such that Ẑ∞ follows a linear SEM. For any time t ∈ [N]
and i ̸∈ at, the estimated variables follows the following linear SEM

Ẑ∞[i, t] = [A]i · Ẑ∞[:, t] + ε̂∞[i, t] , (93)

Similarly, i ∈ at alters the generating mechanism for node i to

Ẑ∞[i, t] = [A∗]iẐ∞[i, t] + ε̂∞[i, t] , (94)

where we have at each time t ∈ N, the mean of the noises satisfies E[ε̂∞[:, t]] = ν̂t under observation
and E[ε̂∞[:, t]] = ν̂∗t under intervention. And we use the term

νa[i] = 1{i ∈ a} ν∗[i] + 1{i /∈ at} ν[i] . (95)

Proof: Similar to (40), we know SEM follows

Z = (In −B)−1ε . (96)

So under the infinite sample estimate and under t ∈ N with i ̸∈ at, we have the following relations

Ẑ∞[:, t] = H∞X∞[:, t] (97)
= CZ∞[:, t] (98)

= C(In −B)−1ε (99)

≜ (In −A)−1Λε . (100)

So that we have the relation
In −A = Λ(In −B)C−1 . (101)

Rearrange (101) that we get
A = In − Λ(In −B)C−1 . (102)

And we know that ε̂ = Λε. Similarly, the result holds for A∗ under i ∈ at.

Similarly, the utility can be calculated as

U(Z) = θ̂⊤Ẑ + εU , with θ̂ ≜ θC−1 . (103)

As A and A∗ are problem dependent constant matrices with finite element, there exists mA ∈ R+

such that |A[i, j]| ≤ mA and |A∗[i, j]| ≤ mA and |θ̂[i]| ≤ mA for i, j ∈ [n].

To simplify notation, we omit redefining other quantities (e.g. the intervention mean µa), which
remain almost unchanged.

Cumulative estimation error. In Theorem 2 we characterized high-probability bounds on Et,
which captures the error in estimating Zt. Recall that we have scheduled δt =

6δ
π2t2 as in Section 4

and impose the following condition on forced exploration T0 and ft(Ĝt) for general regret upper
bound.

T0 ≥ N
(
ϵmax, δnT0

)
, and ft(Ĝt) ≥ N(ϵmax, δt) . (104)

We note that the setting we adopt for Theorem 3 later satisfies the above condition.
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We know that at time t, Algorithm 1 uses the estimates Ht to estimate Ẑt only when there are no
under-explored interventions. That is, we have for a ∈ A0 the following condition holds

Na,t ≥ ft(Ĝt) ≥ N(ϵmax, δt) . (105)

Then according to Theorem 2, we have with probability at least 1− 6δ
π2t2 , the following error bound

∥Et∥ ≤ C

√
d+ log(1/δt)

ft(Ĝt)
. (106)

Define the error of estimating Ẑt, ∆t ∈ Rn×t by

∆t ≜ (Ht −H∞)Xt . (107)

For each s ∈ [t], we have the following 2-norm bound for the error bound for the estimates for Zs at
time t as follows.

∥∆t[:, s]∥2 ≤ ∥Et∥2∥Zs∥2 ≤ mC

√
d+ log(1/δt)

ft(Ĝt)
, (108)

where the first inequality holds is due to the triangle inequality for norm, and the second inequality
holds is due to (106) and the boundedness of latent variables Z.

We define the estimation error of sample s ∈ [t] at time t ∈ N as

Ẑt[:, s] = Ẑ∞[:, s] + ∆t[:, s] . (109)

Plugging (109) into the SEM in (93) and (94), We obtain at time s ∈ [t]

Ẑt[:, s] = Aas
Ẑ∞[:, s] + (In −Aas

)∆t[:, s] + ε̂∞[:, s] . (110)

Hence the error term et ∈ Rn×t in the finite sample SEM is defined as

et[:, s] ≜ (In −Aas)∆t[:, s] . (111)

We can bound the above error for i ∈ [n] and s ∈ [t] as

|et[i, s]| ≤
∥∥[In+1 −Aas ]i ∆t[:, s]

∥∥
2

(112)

≤ ∥[In+1 −Aas
]∥2∥∆t[:, s]∥2 (113)

≤ mC ′
√

d+ log(1/δt)

ft(Ĝt)
, (114)

where we set C ′ = C ·maxa∈A maxi∈[n] ∥[In+1 −Aas ]i∥2, which is an instant-dependent constant.

We define the cumulative estimation error bound ζt at time t ≥ nT0 as

ζt = tmC ′
√

d+ log(1/δt)

ft(Ĝt)
, (115)

where C ′ is an instance-dependent constant. This choice allows the following condition to hold.

ζt ≥
t∑

s=1

|et[i, s]| , ∀i ∈ [n] . (116)

Remark 3. For the efficient RO-CRL , we need to set the cumulative estimation error bound ζt as

ζ ′t =
∑
s∈[t]

mC ′
√

d+ log(1/δs)

fs(Ĝt)
(117)

Or one can do more adaptive based on when you reset the whole estimates. The regret order of
efficient RO-CRL will be the same as RO-CRL but with a larger constant multiplier.
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Bounded variables. We have the following for the estimates for t ∈ N

∥Ẑ∞[:, t]∥ = ∥CZ∞[:, t]∥ ≤ ∥C∥2∥Z∞[:, t]|2 ≤ ∥C∥2 m , (118)

where the last inequality is due to the bounded variable ∥Z∥ ≤ m

Similarly, for all s ∈ [t] , we have the following bound for Ẑt[:, s] as

∥Ẑt[:, s]∥ ≤ ∥Ẑ∞[:, s] + ∆t[:, s]∥ ≤ ∥Ẑt∥+ ∥∆t[:, s]∥ ≤ m̃ , (119)

where we have defined

m̃ =

(
∥C∥2 + C ′

√
d+ log(1/δt)

ft(Ĝt)

)
m = Õ

((
1 +

√
d

ft(Ĝt)

)
m

)
. (120)

Recall from (104) that
ft(Gt) ≥ N(ϵmax, δt) = Õ(d) . (121)

Hence, we have
m̃ = Õ(m) . (122)

F.1.2 Generalization to Unknown Mean Setting

To handle an unknown post-transform noise mean, we augment the graph Ĝt with a dummy node,
prepend a 1 to each variable and noise vector, and adjust the weight matrices accordingly. In such a
case, we define

Zp =

[
1
Z

]
. (123)

Subsequently, the estimate at time t is given by

Ẑp
t =

[
1t

Ẑt

]
. (124)

Analogous to Lemma 5, for all t ∈ N with at = ∅, the padded variables satisfy

Ẑp
∞[:, t] = Ap · Ẑp[:, t] + ε̂p∞[:, t] , (125)

where we have defined Ap ∈ R(n+1)×(n+1)

Ap =

[
1 0
ν̂ A

]
, and ε̂p∞[:, t] =

[
1

ε̂∞[:, t]− ν̂

]
. (126)

Similarly, we can define the weights and noises under intervention as

A∗p =

[
1 0
ν̂∗ A∗

]
, and ε̂p∞[:, t] =

[
1

ε̂∞[:, t]− ν̂∗

]
, (127)

where the estimated mean values are

E[ε̂p∞[:, t]] =

[
1
0

]
. (128)

The weights for the utility parameter can be appended as

θ̂ =

[
0

θC−1

]
. (129)

Since the dummy node requires no estimation, the choice of ζt and the cumulative estimation error
bounds remain valid. Consequently, identical order bounds apply to both Ẑ∞ and Ẑt, as only an
extra dimension of 1 has been added.
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F.2 Decomposition of Node-level Utility

Similar to [21, Lemma 1], we present the following decomposition for the expected utility value. Our
design of the mean value estimator in the UCB definition in (31) is based on this lemma.

Corollary 1. When ν̂a is known, for intervention a ∈ A, the expected utility is related to the noise
vector ε via

µa =
〈
θ̂ ,

L∑
ℓ=0

Aℓ
a · νa

〉
, (130)

where Aℓ denotes the ℓ-th power of matrix A.

Proof. We first show the results for the expected value of Z under intervention a ∈ A as follows. We
know from the linear SEMs that

Ẑ∞ = (In −Aa)
−1

ε∞ . (131)

So, in linear SEMs, each latent random variable Zi can be specified as a linear function of the
exogenous noise variables ε via recursive substitution of the structural equations. And the inverse has
a simple expansion since Aa is strictly lower triangular. Specifically,

(In −Aa)
−1

=

(
In +

∞∑
ℓ=0

Aℓ
a

)
(132)

=

(
L∑

ℓ=0

Aℓ
a

)
, (133)

where (133) holds due to L is the maximum path length and Aℓ becomes a zero matrix for ℓ ≥ L+1.
Define the variable Ẑ ≜ H∞X = AaẐ + ε Hence, we obtain

Ẑ =

L∑
ℓ=0

Aℓ
a · ε . (134)

Since ε and a are independent, the expectation of each εi is 0 for i ∈ [n], and dummy noise. Then,
we obtain the following results for the mean value

E[Ẑ] =

L∑
ℓ=0

E
[
Aℓ

a · ε
]

(135)

=

L∑
ℓ=0

n∑
i=1

Aℓ
a[:, i]E [εi] (136)

=

L∑
ℓ=0

Aℓ
a · νa . (137)

Then, by the definition of expected mean of utility in (2), we have

µa = Ea[U(Z)] (138)

= Ea[θ
⊤Z + εU ] (139)

= Ea[θ̂
⊤Ẑ + εU ] (140)

= θ̂⊤Ea[Ẑ] (141)

=
〈
θ̂ ,

L∑
ℓ=0

Aℓ
a · νa

〉
. (142)
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Under unknown transformed mean. Under unknown transformed mean, we are working with
Ap and A∗p, we define the transformed weight matrix with padding as

Ap
a = 1{i ∈ at}A∗p + 1{i /∈ at}+Ap . (143)

For the expected utility value under an unknown transformed mean, we have the following lemma.
Lemma 6. Given intervention a ∈ A, the expected utility value depends to the noise vector ε via

µa =
〈
θ̂ ,

L+1∑
ℓ=0

Apℓ
a [:, 0]

〉
, (144)

where Aℓ denotes the ℓ-th power of matrix A.

Proof: The first few steps for the proof of Lemma 1 still hold, with Ap
a, and maximum length L+ 1

instead of L due to the dummy node, the changes in the proof start from (137), where we have

E[Ẑp] =

L+1∑
ℓ=0

n∑
i=1

Apℓ
a [:, i]E [εi] (145)

=

L+1∑
ℓ=0

Apℓ
a [:, 0] . (146)

Then, as the expected mean of utility defined in (2), we have

µa = Ea[U(Z)] (147)

= Ea[θ
⊤Z + εU ] (148)

= Ea[θ̂
⊤Ẑp + εU ] (149)

= θ̂⊤Ea[Ẑ] (150)

=
〈
θ̂,

L+1∑
ℓ=0

Apℓ[:, 0]
〉
. (151)

F.3 Proof of Concentration Inequality

In this section, we provide the concentration inequality and then note how to extend it to the unknown
noise mean setting. We notice that certain parts of the proof can be replaced by a non-time-uniform
argument (which does not improve the rate), so we keep the same flow as previous results while
focusing on the essential difference. We note we always work on the SEM associated with (93)
and (94).

As the estimation quality is related to the degrees of freedom, we begin by introducing the in-degree
of our graph estimates. We denote di,t as the number of parents of node i in Ĝt. Then, by Theorem
2 together with our choice of the confidence levels {δt}, it holds with probability at least 1 − δ,
di,t = |pa(i)| under hard intervention and di,t = |an(i)| under soft intervention with all i ∈ [n] and
t ∈ [N].
Lemma 7 (Confidence ellipsoids). With probability at least 1− 3δ, for any node i ∈ [n] and t ≥ 1,
we have

∥[At]i − [A]i∥Vi,t[Ṽi,t,t]−1Vi,t
≤ βi,t(δt) , (152)

∥[A∗
t ]i − [A∗]i∥V∗

i,t[Ṽ
∗
i,t,t]

−1V∗
i,t
≤ βi,t(δt) , (153)

and ∥θt −C−1θ∥Vθ,t[Ṽθ,t,t]−1Vθ,t
≤ βt(δt) , (154)

where m̃ = Õ
(
(1 +

√
d/ft(Ĝt))m

)
and

βi,t(δt) ≜ 1 +
√

di,t +
√
2 log (n/δt) + di,t log (1 + m̃2t/di,tζ2t ) (155)

and βt(δt) ≜ 1 +
√
n+

√
2 log (1/δt) + n log (1 + m̃2t/nζ2t ) . (156)
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Proof: We observe that regressing [Ẑt]i − [et]i on [Ẑt]pat(i), restricted to time indices under
the observational mechanism, yields an unbiased estimator of A. This connects the proof of our
concentration lemma to prior results in robust causal bandits [23]. However, a key distinction lies
in the fact that both random variables on the node i and its parent nodes pat(i) have estimation
errors. This introduces two sources of noise, which, if treated using previous techniques that assume
noiseless anchors using regression [Z]i on [Z]pat(i), would result in a multiplicative increase in the
error. To avoid this, we use the regression of [Ẑt]i− [et]i on [Ẑt]pat(i) as our anchor instead of relying
on the true variables. A technic based on [29]

We will provide the proof corresponding to the observational weights [At]i, while the proof for the
interventional weights [A∗

t ]i and the utility parameters θ follows similarly.

We prove it by first establishing it for a given time t ∈ Z. For any node i ∈ [n], we decompose the
error in estimation ∥[At]i −Ai∥Vi,t[Ṽi,t,t]−1Vi,t

for s ∈ [t] as follows.

∥[At]i −Ai∥Vi,t[Ṽi,t,t]−1Vi,t
(157)

=

∥∥∥∥[Vi,t]
−1[Ẑt]

⊤
pat(i)

Wi,t

(
[Ẑt]i − ν̂

)
−Ai

∥∥∥∥
Vi,t[Ṽi,t,t]−1Vi,t

(158)

=

∥∥∥∥[Vi,t]
−1[Ẑt]

⊤
pat(i)

Wi,t

(
[Ẑt]i − [et]i − ν̂ + [et]i

)
−Ai

∥∥∥∥
Vi,t[Ṽi,t,t]−1Vi,t

(159)

≤
∥∥∥∥[Ât]i −Ai

∥∥∥∥
Vi,t[Ṽi,t,t]−1Vi,t︸ ︷︷ ︸

I1: Stochastic and regularization error

+

∥∥∥∥[Ẑt]
⊤
pat(i)

Wi,t[et]i

∥∥∥∥
[Ṽi,t,t]−1︸ ︷︷ ︸

I2: Fluctuation error

. (160)

where Ât refers to the auxiliary estimators which correspond to the ridge regression estimator when
knowing the estimation error et on Ẑt, i.e.,

[Ât]i = [Vi,t]
−1[Ẑt]pat(i)Wi,t

(
[Ẑt]i − [et]i − ν̂

)
. (161)

Next, we bound the two error terms I1 and I2.

Bounding I1. The stochastic and regularization errors can be bounded by the following lemma. We
notice we do not need the time uniform bounds, but non-time uniform bounds will not improve the
regret order (See [30, Section 20] for a related example).
Lemma 8. For all node i ∈ [n], for given t ∈ [T ] with probability at least 1− δt, we have

I1 =
∥∥∥[Ât]i −Ai

∥∥∥
Vi,t[Ṽi,t,t]−1Vi,t

≤
√

di,t +

√
2 log

( n
δt

)
+ di,t log

(
1 +

m̂2t

di,tζ2t

)
. (162)

Proof: This lemma follows the result from [23], which is based on [31, Theorem 1].

Based on Lemma 8 and our scheduling of δt such that
∑

t∈N δt = δ, we immediately have the
following lemma
Lemma 9. For all node i ∈ [n], with probability at least 1− δ, for all t ∈ N, we have

I1 =
∥∥∥[Ât]i −Ai

∥∥∥
Vi,t[Ṽi,t,t]−1Vi,t

≤
√

di,t +

√
2 log

( n
δt

)
+ di,t log

(
1 +

m̂2t

di,tζ2t

)
. (163)

Bounding I2. Now we need to bound the fluctuation error I2, which can be decomposed as

I2 =
∥∥∥[Ṽi,t,t]

−1/2[Ẑt]pat(i)Wi,t[et]i

∥∥∥ (164)

=
∥∥∥[Ṽi,t,t]

−1/2
∑

s∈[t],i/∈as

Wi,t[s, s] Ẑt[pat(i), s] et[i, s]
∥∥∥ (165)

≤
∑

s∈[t],i/∈as

Wi,t[s, s]
∥∥∥[Ṽi,t,t]

−1/2Ẑt[pat(i), s] et[i, s]
∥∥∥ (166)
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=
∑

s∈[t],i/∈as

Wi,t[s, s]
∥∥∥[Ṽi,t,t]

−1/2Ẑt[pat(i), s]
∥∥∥|et[i, s]| (167)

≤
∑

s∈[t],i/∈as

Wi,t[s, s]|et[i, s]|
∥∥∥Ẑt[pat(i), s]

∥∥∥
[Ṽi,t,t]−1

(168)

≤
∑

s∈[t],i/∈as

Wi,t[s, s]|et[i, s]|
∥∥∥Ẑt[pat(i), s]

∥∥∥
[Ṽi,t,s]−1

(169)

≤ 1 , (170)

where (164) and (165) follow the definition of weighted norm and weight matrix, (166) and
(167) hold due to the triangle inequality and weights are non-negative, (169) holds due to
∥x∥[Ṽi,t]−1 ≤ ∥x∥[Ṽi,s]−1 , and (170) is obtained using the definition of the weights and the property

ζt ≥
∑t

s=1 |et[i, s]| in (116).

Finally, substituting the results of Lemma 9 and (170), with probability at least 1− δ, for all t ≥ 0,
we have

∥[At]i −Ai∥Vi,t[Ṽi,t,t]−1Vi,t
≤ 1 +

√
di,t +

√
2 log

(
1

nδt

)
+ di,t log

(
1 +

m̂2t

diζ2t

)
. (171)

Similarly, for the estimators for interventional weights, with probability at least 1− δ, for all t ≥ 0,
we have

∥[A∗
t ]i −A∗

i ∥V∗
i,t[Ṽ

∗
i,t,t]

−1V∗
i,t
≤ 1 +

√
di,t +

√
2 log

(
1

nδt

)
+ di log

(
1 +

m̂2t

di,tζ2t

)
. (172)

A similar proof can be get for the utility U where the in-degree is n and only one concentration bound
instead of n is needed, hence, with probability at least 1− δ, for all t ≥ 0, we have

∥θt − θ̂∥Vθ,t[Ṽθ,t,t]−1Vθ,t
≤ 1 +

√
n+

√
2 log

(
1

δ

)
+ n log

(
1 +

m̂2t

nζ2t

)
. (173)

Combining the results in (171), (172) and (173) we complete the proof.

Finally, in the unknown noise mean setting one simply replaces each di by di + 1 (to account for the
dummy node) and adjusts m̃ accordingly.

F.4 Cumulative Estimation Error

Lemma 7 in the previous section provides high-probability error bounds on our estimators. Due to
the causal structure, these errors accumulate and propagate along the causal paths, leading to the
estimation error in the utility. So we provide the following optimistic cumulative estimation error for
utility U . To start with, we define the detailed cumulative uncertainty uβ,t ∈ {uβ,S, uβ,H}.

uβ,i,t =

{
0 if i is a root node
mA

∑
j∈pat(i)

uβ,j + βi,t otherwise
, and uβ,t = mA

n∑
i=1

uβ,i,t + βt .

(174)

Lemma 10. If Ĝt = G or Ĝt = Gtc for all t ∈ [N], and [A]i ∈ Ci,t and [A∗]i ∈ C∗i,t for all t ∈ N
and i ∈ [n] and θt ∈ Cθ,t for all t ∈ N, then we have

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣Ũ(Z̃t)− U(Ẑt[:, t])
∣∣∣ ≤ 2m̂B uβ,T , (175)

where u = uH if Ĝt = G and u = uS if Ĝt = Gtc, and we define the term

B =
4
√
m̂κmax

κmin

√
T +

8

κmin

4

√
3T

2
+ E1 (176)
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+
4m̂

κmin
log

(
κmin

m̂

√
T

2
+ αm̂2

)
ζT , (177)

where τ = α2m̂6

κ2
min

, α =
√

16
3 log((maxi∈[n] di + 1)T 5/2(T + 1)) and

E1 = 4

√
m̂κmax

κmin

√
τ log

(√
T

2
+
√
τ

)
(178)

+ 4

√
αm̂5

κ3
min

log


√

1
τ

4

√
T
2 + 4
√
4 + 1√

1
τ

4

√
T
2 + 4
√
4− 1

 (179)

+ 8τ

(
1

ζ(n+1)T0

√
κmaxτ + αm̂2

√
τ + 1

)
(180)

+
m̂

ζ(n+1)T0
T

+
2m̂

3ζnT0

+ 1 . (181)

Proof: This proof is a cumulative estimation error at the node level of [23]. We first prove that when
the conditions of the lemma hold, the latent variables i ∈ [n] have a cumulative estimation error as
follows.
Lemma 11. If Ĝt = G or Ĝt = Gtc for all t ∈ [N], and [A]i ∈ Ci,t and [A∗]i ∈ C∗i,t for all t ∈ N
and i ∈ [n] and θt ∈ Cθ,t for all t ∈ N, then for i ∈ [n] we have

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣Z̃t[i]− Ẑt[i, t]
∣∣∣ ≤ 2m̂B uβ,i,T , (182)

where ui = ui,H if Ĝt = G and ui = ui,S if Ĝt = Gtc that is defined in (35).

Proof: We establish (182) via induction on the causal depth. We define the causal depth of node i as
the length of the longest directed causal path that ends at node i ∈ [n] in Ĝt and denote it by Li.

Base step: Li = 1. This is according to the same proof in [23] with a change on m̂, and using the
bounds for cumulative error that ζnT0

≤ ζt ≤ ζT for nT0 ≤ t ≤ T .

Induction Step. Assume that the property holds for causal depths up to Li = k. We show that it will
also be satisfied for Li = k + 1.

For this purpose, we start with the following expansion and apply the triangular inequality to find an
upper bound for it.

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣Z̃t[i]− Ẑt[i, t]
∣∣∣ (183)

=

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣[Ãat,t]iZ̃t[pat(i)]− [Aat
]iẐt[pat(i), t]

∣∣∣ (184)

=

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣[Ãat,t]i

(
Z̃t[pat(i)]− Ẑt[pat(i), t]

)∣∣∣
+

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣([Ãat,t]i − [Aat
]i
)
Ẑt[pat(i), t]

∣∣∣ (185)

≤ mA

∑
j∈pat(i)

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣Z̃t[j]− Ẑt[j, t]
∣∣∣+ 2m̂βi,TB . (186)

where the transition to (185) holds due to the triangular inequality via adding and subtracting terms
[Ãat,t]Ẑt[pat(i), t]; and (186) holds since the triangle inequality of L2 norm and |Ãat,t[i, j]| ≤ mA

and similar proof as in the base step.
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Next, we find an upper bound on the first summand in (186). We notice that the summation is taken
over all parents of node i. Thus, we aim to find an upper bound for the error bound for each parent.
Based on the induction assumption, for each node j ∈ pat(i), we have

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣Z̃t[j]− Ẑt[j, t]
∣∣∣ ≤ 2m̂Buβ,j,T . (187)

Subsequently, plugging (187) into (186), we obtain

T∑
t=1

1{AUE
t = ∅}

∑
j∈pat(i)

Eat

∣∣∣Z̃t[j]− Ẑt[j, t]
∣∣∣ ≤ ∑

j∈pat(i)

2m̂Buβ,j,T , (188)

Combining the results in (186) and (188), we conclude

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣Z̃[i]− Zt[i, t]
∣∣∣ ≤ 2m̂βTBuβ,i,T , (189)

which proved the desired results in (182).

Now we are ready to prove the final result for the utility function.

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣Ũt(Z̃t)− U(Ẑt[:, t])
∣∣∣ (190)

=

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣θ̃⊤t Z̃t − θ⊤Ẑt[:, t]
∣∣∣ (191)

=

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣θ̃⊤t (Z̃t − Ẑt[:, t]
)∣∣∣

+

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣(θ̃t − θ
)⊤

Ẑt[:, t]
∣∣∣ (192)

≤ mA

n∑
i=1

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣Z̃t[i]− Ẑt[i, t]
∣∣∣+ 2m̂βθ,TB (193)

≤ 2m̂Buβ,T . (194)

Here we conclude the proof.

F.5 Proof of General Regret Bounds

Theorem 6 (General Regret upper bound). By setting confidence radius βi,t(δt) and βt(δt) according
to Lemma 7, ft(Ĝt) and T0 satisfy the condition in (104). If we define fT = maxt∈[T ] ft(Ĝt), then
with probability at least 1− 4δ, the average cumulative regret of RO-CRL is upper bounded by

RT ≤ Õ
(
nfT + u

(√
T + d

1
2Tf

− 1
2

T

))
. (195)

Proof: We start by defining the event in which, over T rounds, all confidence sets Ci,t contain the
ground truth parameters fi. Specifically, Now define the error events Ei and E∗i for i ∈ [n] for each
estimator

ECRL ≜

{
∀t ∈ [T ] : Thorem 2 holds at time t

}
, (196)

Ei ≜
{
∀t ∈ [T ] : [A]i ∈ Ci,t

}
, (197)

E∗i ≜

{
∀t ∈ [T ] : [A∗]i ∈ C∗i,t

}
, (198)
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Eθ ≜

{
∀t ∈ [T ] : θ̂ ∈ Cθ,t

}
, (199)

where the βi,t(δt) and βt(δt) is chosen as in (155) and (156). Accordingly, define the event that at
least one of the confidence ellipsoids of estimators does not contain the true parameters at at least one
time index

E ≜ ECRL

⋂( n⋂
i=1

Ei
)⋂( n⋂

i=1

E∗i
)⋂

Eθ . (200)

By invoking the union bound on probability and Lemma 7, we have

P(Ec) ≤ P(EcCRL) +

n∑
i=1

(
P(Eci ) + P(E∗ci ) + P(Ecθ)

)
(201)

≤
∑
t∈Z

δt +

n∑
i=1

∑
t∈Z

(δt
n

+
δt
n

+
δt
n

)
= 4δ . (202)

Next, we decompose the regret defined in (5) under the events E .

E[RT ] =

T∑
t=1

Ea∗
[
U(Zt)− Eat

U(Zt)
]

(203)

=

T∑
t=1

[
1{AUE

t ̸= ∅} · 2m+ 1{AUE
t = ∅}

(
UCBat −Eat [U(Zt)]

)]
(204)

≤ nfT +

T∑
t=1

1{AUE
t = ∅}E

[
UCBat

−Eat
[U(Zt)]

]
(205)

≤ nfT +

T∑
t=1

1{AUE
t = ∅}E

[
Eat

[Ũ(Z̃t)]− Eat
[U(Zt)]

]
, (206)

where we have used the set of inequalities

Ea∗ [U(Zt)] ≤ UCBa∗(t) ≤ UCBat
(t) = Eat

[Ũ(Z̃t)] . (207)

Then using the lemma 10 and cumulative estimation ζt defined in (115), we have

RT ≤ nfT + 2m̂Buβ,T (208)

= Õ
(
nfT + u(

√
T + d

1
2Tf

− 1
2

T )
)
. (209)

We note that the same results can be obtained for the unknown transformed mean setting.

F.6 Proof of Trade-off Upper Bounds (Theorem 3)

Proof: Based on the Theorem 6, the remaining is to balancing the two terms

nfT + ud
1
2Tf

− 1
2

T . (210)

while satisfying the condition
ft(Ĝt) ≥ N(ϵmax, δt) . (211)

Hence, by setting
ft(Ĝt) = max{d 1

3n− 2
3u

2
3
t t

2
3 , N(ϵmax, δt)} , (212)

where ut is defined as

ui,t =

{
0 if i is a root node∑

j∈pat(i)
uj,t +

√
|pat(i)| otherwise

, and ut =

n∑
i=1

ui,t +
√
n , (213)

which establishes the desired result.

We note that the same proof steps work for the unknown transformed mean setting with the change in
u.
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F.7 Refined Upper Bound for Causal Bandit

Graph-dependent Bound Under the causal bandit setting, since U(Z) = Z[n], we eliminate all
uncertainty in estimating the n-dimensional parameter θ. In fact, we have ζt = 0 for all t ∈ [N],
so no forced exploration is needed. If we set ζt = 1 (or set weight matrices to be In), by applying
Lemma 11 in Section F.4 together with the concentration inequality in Lemma 7, we immediately
obtain our regret upper bound with high probability. From (209), we have with probability at least
1− 2δ, the regret bound of modified RO-CRL for CB is

RT ≤ Õ
(
uH,n

√
T
)
. (214)

Graph-independent Bound To get a graph-independent bound that corresponds to the maximum
in-degree dG and the maximum length of a causal path L. To match the corresponding lower bound
that is in the unknown transformed mean setting, we show the bound for uH,N in this region. In
particular, we have

uH,n = dLG +

L∑
ℓ=1

d
2L−1

2

G = dLG +

√
dG(dLG − 1)

dG − 1
. (215)

As we have the fact √
dG(dLG − 1)

dG − 1
≤ dLG . (216)

So we obtain
uH,n = O(dLG ) . (217)

Hence, the regret bound for the modified RO-CRL for CB is

RT ≤ Õ
(
dLG
√
T
)
. (218)

G Proofs of Lower Bounds

Equivalent definition of p. An alternative definition of p is p = 1 +
∑n

i=1(pi + 1) and pi is the
number of causal path from noises to node i, which is defined recursively as follows (on Gtr).

• On G:

pi =

{
1 if i is the root node∑

j∈an(i) pj + 1 otherwise
. (219)

• On Gtr:

pi =

{
1 if i is the root node∑

j∈an(i) pj + 1 otherwise
. (220)

G.1 Graph-dependent Lower Bound for Causal Bandit

Theorem 7. For any given graph G there exists a causal bandit instance on G such that the expected
regret of any causal bandit algorithm is at least

RT ≥ Ω(pn
√
T ) , (221)

where pn is defined in (219) on G.

Let Π be the set of all policies on the set of stochastic bandit environments I, which contains all the
possible bandit instances sharing the same DAG G and satisfying the conditions. The minimax regret
is defined as

inf
π∈Π

sup
I0∈I

[RT | π, I0] , (222)
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where [RT | π, I0] denotes the expected regret of policy π on the bandit instance I0. We will consider
a set Ĩ, instead of I, that contains two bandit instances. By definition of minimax regret, a lower
bound for the regret of any policy on Ĩ is also a lower bound for the minimax regret since

inf
π∈Π

sup
I0∈I

[RT | π, I0] ≥ inf
π∈Π

sup
I0∈Ĩ

[RT | π, I0] . (223)

Following this property, the central idea of the proof is as follows. Consider two linear SEM causal
bandit instances that differ by a small fraction and are hard to distinguish. At the same time, we
can construct them to have different optimal interventions, indicating that a selection policy cannot
incur small regret for both at the same time under the same data realization. Note that the difference
of the rewards, or equivalently the regrets, observed by these two bandit instances under the same
intervention can be computed by tracing the effect of the differing edge parameter over all the paths
that end at the reward node.

We consider two linear SEM causal bandit instances I, Ī ∈ I0 that is parameterized by I ≜
{B,B∗, ε} and by Ī ≜ {B,B∗, ε̄}. We note here that we assume the mean of the noise is condi-
tionally independent, that is, it can be dependent on the intervention. We note that the algorithm
discussed previously can work under this setting without any modifications. For each node i ∈ [n] in
I, we have

εi =

{
Bern(1/2 + δ) if i ̸∈ a

Bern(1/2) if i ∈ a
, (224)

where Bern(q) denotes the Bernoulli random distribution with probability q. The noise is reversed in
the second bandit instance Ī , which is

ε̄i =

{
Bern(1/2) if i ̸∈ a

Bern(1/2 + δ) if i ∈ a
. (225)

This is where the difference between the two bandit instances lies: if (i→ j) is an edge in the graph,
we have

[B]i,j = [B∗]i,j = 1 . (226)
Except for this, all the rest are the same. Next, consider a fixed bandit policy π that generates the
following filtration over time

Ft ≜ {a1, Z1, . . . ,at, Zt} . (227)

The decision of π at time t is Ft−1-measurable. Accordingly, define Pt and P̄t as the probability
measures induced by Ft by t rounds of interaction between π and the two bandit instances I and Ĩ .
When it is clear from context, we use the shorthand terms P and P̄ for PT and P̄T , respectively. We
will show that π cannot suffer small regret in both instances at the same time and under the same
filtration FT .

By Lemma 1, since all the elements of observational and interventional weights are non-negative, the
optimal intervention is the one that maximizes the expected value of each noise. The optimal action
between two bandit instances only differs. This means optimal intervention for I is a = ∅ and that
for Ī is a = [n]. Define E ilb as the event in which the decision on node i is sup-optimal at least T

2
times after T rounds on bandit instance I , i.e.,

E ilb ≜

{
N∗

i,t ≥
T

2

}
, for i ∈ [n] . (228)

We note that the event E ilb is defined on the σ-algebra defined by the filtration Ft, that induces both Pt

and P̄t. We compute the expected instantaneous regret when node i is chosen sub-optimal in the first
bandit instance, and the total regret is the summation over these nodes. Note that each path passes a
node that node i contributes to the expected regret. Furthermore, since every weight is positive, in I,
when a suboptimal action is chosen, the impact on average regret is determined by the number of
paths that start from the node i and end at the reward node n. Then, by the definition of Elb, we have

[Rt | P] = EP

[
T∑

t=1

µ∅ − µat

]
(229)
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= EP

 T∑
t=1

∑
i∈[n]

1{i ̸∈ at}δ(mi,n + 1)

 (230)

≥
∑
i∈[n]

P(E ilb)
T

2
δ(mi,n + 1) , (231)

where (230) holds as we break down the regret and (231) holds due to the definition of Ejlb in (228).

Similarly, for Ī , each node i that is not intervened, it will occur at least δ(mi,n + 1) regret. Applying
the same steps as in (229),-(231), we obtain

[Rt | P̄] = EP̄

[
T∑

t=1

µ[n] − µat

]
(232)

≥ EP̄

∑
t∈[T ]

∑
i∈[n]

1{i ∈ at}δ(mi,n + 1)

 (233)

≥
∑
i∈[n]

P̄(E i,clb )
T

2
δ(mi,n + 1) . (234)

By combining (231) and (234) we have

[Rt | P] + [Rt | P̄] ≥
T

2
δ
∑
i∈[n]

pi,n[P(E ilb) + P̄(E i,clb )] . (235)

Next, we characterize a lower bound on P(E ilb) + P̄(E i,clb ) for i ∈ [n], which involves the Kullback-
Leibler (KL) divergence between P and P̄, denoted by DKL(P ∥ P̄). For this purpose, we leverage
the following theorem.
Theorem 8 (Bretagnolle-Huber inequality). Let P and P̄ be probability measures on the same
measurable space (Ω,F) and let A ∈ F be an arbitrary event. Then,

P(A) + P̄(Ac) ≥ 1

2
exp(−DKL(P ∥ P̄)) . (236)

By invoking Theorem 8, from (235) we obtain

[Rt | P] + [Rt | P̄] ≥
T

2
δ
∑
i∈[n]

(mi,n + 1)[P(E ilb) + P̄(E i,clb )] (237)

≥ T

4
δ
∑
i∈[n]

(mi,n + 1) exp(−DKL(P ∥ P̄)) , (238)

=
T

4
δpn exp(−DKL(P ∥ P̄)) , (239)

It remains to compute exp(−DKL(P ∥ P̄)) to conclude our proof, for which we leverage the following
result.
Lemma 12. The KL divergence between P and P̄, the probability measures induced by Ft on I and
Ĩ , is equal to

DKL(P ∥ P̄) =
nT

2
log

(
1

(1 + 2δ)(1− 2δ)

)
. (240)

Proof: Note that a Bayesian network factorizes as

P(Z[1], . . . , Z[n]) =

n∏
i=1

pi(Z[i] | Z[pa(i)]) . (241)
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Additionally, the two bandit instances differ only in the mechanism of the first layer. Then,
DKL(P ∥ P̄) can be decomposed as

DKL(P ∥ P̄) =
N∑
i=1

DKL

(
P(Z[i] | Z[pa(i)]

)
∥ P̄(Z[i] | Z[pa(i)])) . (242)

By noting that the KL-divergence between two Bernoulli random variables with probabilities p and q
is given by

DKL(Bern(r) ∥ Bern(q)) = r log
(r
q

)
+ (1− r) log

(1− r

1− q

)
. (243)

Since give Z[pa(i)], the Z[i] under P and P̄ are both shifted Bernoulli random variables. From the
above, we obtain for node i ∈ [n]

DKL(P(Z[i] | Z[pa(i)]) ∥ P̄(Z[i] | Z[pa(i)]))

=
∑

t∈[T ]:i̸∈at

DKL(Bern(1/2 + δ) ∥ Ber(1/2)) (244)

+
∑

t∈[T ]:i∈at

DKL(Bern(1/2) ∥ Ber(1/2 + δ)) (245)

=

T∑
s=1

1{i ̸∈ at}
[(

1

2
+ δ

)
log(1 + 2δ) +

(
1

2
− δ

)
log(1− 2δ)

]
(246)

+

T∑
s=1

1{i ∈ at}
1

2
log

(
1

(1 + 2δ)(1− 2δ)

)
(247)

<
T

2
log

(
1

(1 + 2δ)(1− 2δ)

)
, (248)

where the last inequality holds since ( 12+δ) log(1+2δ)+( 12−δ) log(1−2δ) < 1
2 log

(
1

(1+2δ)(1−2δ)

)
for 0 < δ < 1/2. And hence we have

DKL(P ∥ P̄) = n
T

2
log

(
1

(1 + 2δ)(1− 2δ)

)
. (249)

If we choose δ = 1√
T

to balance the terms in the lower bound, we obtain

max{[RT | P], [RT | P̄]} ≥
1

2

(
[RT | P] + [RT | P̄]

)
(250)

(238)
≥ T

8
pnδ exp(−DKL(P ∥ P̄)) (251)

(248)
≥ T

8
pnδ[(1 + 2δ)(1− 2δ)]Tn/2 (252)

=
1

8
pn
√
T ×

(
1− 4

T

)Tn/2

. (253)

for T ≥ 5, the term
(
1 − 4

T

)Tn/2

is an increasing function of T . Hence, for T ≥ 5, we have the

lower bound
(
1− 4

T

)Tn/2

≥ 0.22.5. By setting c = 1
8 × 0.22.5, we have

max{[RT | P], [RT | P̄]} ≥ cpn
√
T . (254)

G.2 Graph-independent Lower Bound for Causal Bandit

To get a graph-independent bound that corresponds to the maximum in-degree dG and the maximum
length of a causal path L. When L ̸= 0 and d > 1, we have

pn =

L∑
ℓ=0

dℓG =
dL+1
G − 1

dG − 1
. (255)
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As we have the fact that
dL+1
G − 1

dG − 1
≤ 2dLG . (256)

So we obtain
pn = O(dLG ) . (257)

Hence, the regret bound for the modified RO-CRL for CB is

max{[RT | P], [RT | P̄]} ≥ c′dLG
√
T . (258)

G.3 Proof of Reward-oriented CRL Lower Bound (Theorem 4)

In Section G.1, we have shown a lower bound of Ω(pn
√
T ) for the causal bandit. A similar result

can be obtained for reward-oriented CRL as follows.

Corollary 2. When having the knowledge of G and H∞, there exists a causal model instance on Gtc
such that the expected regret of any algorithm is at least

RT ≥ Ω(p
√
T ) , (259)

where now p is defined on transitive closure Gtc.

Proof: We set θ = 1n for both instances I and Ī . The proof then proceeds almost the same as
for Theorem 7, with the only modification being the way interventions affect the utility. In this
setting, each path terminating at node j ∈ [n] contributes to the overall utility. Hence, selecting the
suboptimal intervention at node

∑
j∈[n](mi,j + 1). As a counterpart of (237), we have

[Rt | P] + [Rt | P̄] ≥
T

2
δ
∑
i∈[n]

∑
j∈[n]

(mi,j + 1)[P(E ilb) + P̄(E i,clb )] (260)

≥ T

4
δ
∑
i∈[n]

∑
i∈[n]

(mi,j + 1) exp(−DKL(P ∥ P̄)) , (261)

=
T

4
δp exp(−DKL(P ∥ P̄)) , (262)

where the last formulation provides the p in the lower bound

Now we have shown the regret lower bound under the perfect scenario on the error Et = 0. Now we
construct two more instances of causal models with Et occurring adversarially. We construct two
instances of the causal model on Gtc and demonstrate that under specific deviations, no algorithm can
distinguish between them and the initial stage.

Let us examine the parameterization of the two causal models, referred to as I ′ = {B,B∗, ε} and
Ī ′ = {B,B∗, ε̄}. For the existing edges in graph Gtc, (i, j) for i < j and i, j ∈ [n], we define

[B]i,j = [B∗]i,j = 1 . (263)

For the noises, for I ′ and Ī ′ we define

[εi | I ′] ∼
{

ε0 if i ∈ a

0 if i /∈ a
, and [εi | Ī ′]

{
0 if i ∈ a

ε0 if i /∈ a
, (264)

where ε0 is a constant that is defined later. And we define the parameters θ = 1n for both. Thus, the
only difference between the two bandit instances lies in the mean of the noises. In the first causal
model, the optimal action is when all the nodes are intervened. In contrast, in the second causal graph
model, the best action is associated with all the nodes being not intervened.

We first consider any algorithm with forced exploration (or an under-sampling rule). Consider for
time horizon T that the algorithm forced each intervention inA0 to perform NT times, the Theorem 2
provides the upper bound for the estimation error

∥Et∥2 = O
(√

d

NT

)
. (265)
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We notice ε0 controls the scaling of the system, and hence, controls the scaling of estimates and

constants. By setting ε0 such that ∥C∥2 = ∥Et∥ = O
(√

d
NT

)
, we have ε0 = O

(√
d

NT

)
. We can

set Et adversarially as
Et = −C . (266)

In such cases Ht = 0, so that all estimates Ẑt = 0, no information is posted to the learner, and
the learner cannot distinguish between these two instances. Consequently, there must exist a bandit
instance at which the algorithm plays the sub-optimal choice on each node i at least T/2 times. We
note the sub-optimal intervention blocks the causal flow from an(i) to de(i) ∪ {i} to the reward.
Hence, we have the following reward decomposition

[RT | I ′] =
T∑

t=(n+1)NT

∑
i∈[n]

1{i ̸∈ at}
∑

j∈an(i)

(
mj,i+1+

∑
k∈de(i)

1{k ∈ at}(mj,k+1)
)
ε0 . (267)

where de(i) is the descendants set of node i and we note the term 1{k ̸∈ at} is used to avoid counting
any path more than once. By dropping the non-negative term associated with the 1{k ̸∈ at}, we can
lower bound the regret by

[RT | I ′] ≥
T∑

t=(n+1)NT

∑
i∈[n]

1{i ̸∈ at}
∑

j∈an(i)

(mj,i + 1)ε0 . (268)

Similarly, we have

[RT | Ī ′] ≥
T∑

t=(n+1)NT

∑
i∈[n]

1{i ∈ at}
∑

j∈an(i)

(mj,i + 1)ε0 . (269)

By combining (268) and (269), we obtain

[RT | I ′] + [RT | Ī ′] = pTε0 , (270)

Hence, among these two causal graph instances, there will be at least one instance that incurs a regret
of

RT ≥ Ω(pT
√
d/NT ) . (271)

At the same time, the forced exploration period will incur a regret of order nNT . Combining the two
we have

RT ≥ Ω(nNT + pT
√

d/NT ) , (272)

Lastly, we need a trade-off between the two. By setting NT to be on the order

NT = d1/3n−2/3p2/3T 2/3 . (273)

This balances the two terms and provides the result.

RT ≥ Ω
(
d

1
3n

1
3 p

2
3T

2
3

)
. (274)

We note that the reward-oriented CRL method without forced exploration cannot leverage Theorem 2
to obtain meaningful regret bounds, as at all times we can have Ht = 0 and the regret scales linearly
with T under the setting that ε0 = 1.

Finally, combining the results in (259) and (274), we know that there exist a causal graph instance in
I , Ī , I ′ and Ī ′ such that

RT ≥ Ω
(
d

1
3n

1
3 p

2
3T

2
3 + p

√
T
)
. (275)

H Multiple Interventions

In this section, we state what changes are needed to adapt RO-CRL for multiple interventions per
node. We focus on soft interventions, where hard interventions can be viewed as a special case of
this. To maintain consistency, we redefine several key terms.
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H.1 Latent Data-generating Process and Intervention

Consider the case where there are s possible distinct intervention mechanisms on each node i ∈ [n].
We denote [Bk]i as the weight for intervention k at node i, and define Bk as {Bk = {[Bk]i | i ∈ [n]},
the full set of such weights. We reserve B0 = B for observational weights. Similarly, we can define
νk for k ∈ {0}∪[s]. And we define the intervention as a vector a ∈ R[n] in this case as a[i] ∈ {0}∪[s].
The intervention space has cardinality of |A| = (s+ 1)n instead of 2n. Under intervention a ∈ A,
the Z follows the SEM

Z = BaZ + ε , (276)

where we have
[Ba]i = Ba[i] . (277)

H.2 Algorithm Modification

Theorem 2 requires only one intervention per node, and its sample-complexity and error bounds
remain unchanged. Hence, the CRL component of the algorithm requires no modification.

For UCB selection,*we let** [Ak
t ]i **denote the robust estimate for each intervention k ∈ {0} ∪ [s]

as
[Ak

t ]i ≜ [Vk
i,t]

−1[Ẑt]
⊤
pat(i)

Wk
i,t[Ẑt]i − ν̂k[i] , ∀k ∈ {0} ∪ [s] . (278)

where we have defined the weighted and doubly weighted Gram matrices as

Vk
i,t ≜ [Ẑt]

⊤
pat(i)

Wk
i,t[Ẑt]pat(i) + In , and Ṽk

i,t ≜ [Ẑt]
⊤
pat(i)

Wk2
i,t [Ẑt]pat(i) + In . (279)

Weight designs. The diagonal elements for weight matrices are defined as

Wk
i,t[s, s] ≜ 1{at[i] = k}min

{
1

ζt
,

1

ζt∥Ẑs[pat(i)]∥[Ṽk
i,t]

−1

}
, (280)

Confidence ellipsoids. After performing estimation in each round, we construct the following
confidence ellipsoids for k ∈ [s]

Cki,t ≜
{
ξ :
∥∥ξ − [Ak

t−1]i
∥∥
Vk

i,t−1[Ṽ
k
i,t−1]

−1Vk
i,t−1

≤ βi,t(δ)
}
, (281)

H.3 Changes in the Regret Bounds

Theorem 9 (Regret upper bound). Under Assumptions 1–3, with probability at least 1 − 4δ , the
average cumulative regret of RO-CRL is upper bounded by

RT ≤ Õ
(
s

2
3 d

1
3n

1
3u

2
3T

2
3 + u(

√
sT +

4
√
s3T )

)
, (282)

where we set u = uS for soft interventions and u = uH for hard interventions..

The estimates θt for θ and the confidence ellipsoids Cθ,i remain the same. We will skip some
unimportant parts and focus on the changes under this setting. We refer the reader to [23] for detailed
steps. We notice the change mainly due to the changes in the following lemma and how we choose
the confidence levels. We note that when m = 1, the theorem reduces to the setting discussed in the
main paper.

Now we discuss the changes needed for the proof steps discussed in Section F.

First, Lemma 6 and the discussion in Section F.1 still hold. Second, Lemma 7 in Section F.3 holds for
all k ∈ [s] with mild change of

βi,t(δt) ≜ 1 +
√

di,t +
√

2 log (kn/δt) + di,t log (1 + m̃2t/di,tζ2t ) . (283)

Now, we modify Lemma 10 to the following lemma.
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Algorithm 2 Reward-oriented CRL (RO-CRL) for multiple interventions

1: Forced exploration. Sample T0 times for each intervention a ∈ A0.
2: for t = (n+ 1)T0, . . . do
3: ▷ Under-sampling rule
4: if AUE

t ̸= ∅ then
5: Pull at random sample from AUE

t
6: else
7: ▷ Latent recovery
8: Update the inverse transform estimate Ht via (11)
9: Estimate Ẑt according to Ẑt = HtXt

10: Update the graph estimate Ĝt via (15)
11: if hard interventions then
12: Update the inverse transform estimate again using (19)
13: Update Ẑt according to Ẑt = HtXt

14: Update the graph estimate again Ĝt via (15)
15: ▷ Parameter estimation
16: Set weight matrix Wk

i,t according to (280) and Wθ,t according to (25).
17: Update Ak

t and θt according to (278) and (26), respectively
18: Set A0

t = 0 under hard intervention.
19: ▷ UCB selection
20: Compute UCBa,t according to (31) for a ∈ A.
21: Pull at+1 = argmaxa∈A UCBa,t

22: Observe Xt and U(Zt)

Lemma 13. If Ĝt = G or Ĝt = Gtc for all t ∈ [N], and [A]i ∈ Ci,t and [A∗]i ∈ C∗i,t for all t ∈ N
and i ∈ [n] and θt ∈ Cθ,t for all t ∈ N, then we have

T∑
t=1

1{AUE
t = ∅}Eat

∣∣∣Ũ(Z̃t)− U(Ẑt[:, t])
∣∣∣ ≤ 2m̂B uβ,T ×

√
s . (284)

Proof: The changes to the proof are mainly in the Base step, where we aim to prove the following.

For node i ∈ [n] with causal depth Li = 1, we show that

T∑
t=1

Eat

∣∣∣Z̃t[i]− Ẑt[i]
∣∣∣ ≤ 2muβ,iB′ , (285)

where B′ is defined as

B′ ≤ 4
√
mκmax

κmin

√
T (s+ 1) +

8

κmin

4

√
3(s+ 1)3T

2
+ E1 (286)

+ (s+ 1)
4m

κmin
log

(
κmin

m

√
T

s+ 1
+ αm2

)
ζT . (287)

and E1 is defined as

E1 = (s+ 1)

(
4

√
mκmax

κmin

√
τ log

(√
T

s+ 1
+
√
τ

)
(288)

+ 4

√
αm5

κ3
min

log


√

1
τ

4

√
T

s+1 + 4
√
4 + 1√

1
τ

4

√
T

s+1 + 4
√
4− 1

 (289)

+ 8τ

(
1

ζ1

√
κmaxτ + αm2

√
τ + 1

)
(290)
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+
m

ζ(n+1)T0
T

+
2m

3ζ(n+1)T0

+ 1

)
. (291)

When the causal path of a node is Li = 1, according to SEM defined in (93), we have the following
expansion:

T∑
t=1

Eat

∣∣∣Z̃t[i]− Ẑt[i]
∣∣∣ = T∑

t=1

Eat

∣∣∣[Ãat,t]
⊤
i Ẑt[pa(i)]− [Aat ]

⊤
i Ẑt[pa(i)]

∣∣∣ (292)

≤
T∑

t=1

Eat
sup

b1,b2∈Ci,at,t

∥b1 − b2∥Vi,at,t[Ṽi,at,t]
−1Vi,at,t

(293)

×
∥∥∥Ẑt[pa(i)]

∥∥∥[
Vi,at,t[Ṽi,at,t]

−1Vi,at,t

]−1 (294)

≤ 2m̂βi,T ×
T∑

t=1

λi,t , (295)

where we define

λi,t ≜

√
λmax

(
Ṽi,at,t

)
λmin (Vi,at,t)

, (296)

Then, the weights we defined are bounded in the range [ 1
ζtm̂

, 1
ζt
] for t ∈ N. Leverage these bounds

if we define the following constants. Note, we drop the index t for these constants, but they are a
variable of time.

κ′
min ≜

1

ζtm̂
κmin and κ′

max ≜
1

ζt
κmax , (297)

κ̃min ≜
1

ζ2t m̂
2
κmin and κ̃max ≜

1

ζ2t
κmax , (298)

m′ ≜
1√
ζt
m̂ and m̃ ≜

1

ζt
. (299)

In order to proceed, we need upper and lower bounds for the maximum and minimum singular values
of Ui,at,t. These bounds depend on the number of non-zero rows of Ui,at,t matrices, which equals
the values of the random variable Ni,at,t. Let us define the constant

γn ≜ max
{
αm2
√
n, α2m2

}
, (300)

γ′
n ≜ max

{
αm′2√n, α2m′2} , (301)

γ̃n ≜ max
{
αm̃2
√
n, α2m̃2

}
, ∀n ∈ [T ] . (302)

Then for every t ∈ [T ], and n ∈ [t], we define the error events corresponding to the maximum and
minimum singular values of Ui,t and Ũi,t as

Ei,n,t ≜
{
Ni,t = n and

{
σmin (Ui,t) ≤

√
max {0, nκ′

min − γ′
n}

or σmax (Ui,t) ≥
√

nκ′
max + γ′

n

}}
, (303)

Ẽi,n,t ≜
{
Ni,t = n and

{
σmin

(
Ũi,t

)
≤
√

max {0, nκ̃min − γ̃n}

or σmax

(
Ũi,t

)
≥
√

nκ̃max + γ̃n

}}
, (304)
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Similarly, we can define E∗i,n,t and Ẽ∗i,n,t by replacing Ni,t and Ui,t (or Ũi,t) by N∗
i,t and Ũi,t (or

Ũ∗
i,t), respectively.

As a result of [23, Lemma 8], if we define the union error event Ei,∪ as

Ei,∪ ≜ {∃ (t, n) : t ∈ [T ], n ∈ [t], Ei,n,t or E∗i,n,t} . (305)

We have

P(Ei,∪) ≤ 2NT (T + 1)(di + 1) exp

(
−3α2

16

)
. (306)

Bounding term E
[
1{Ei,∪}

∑T
t=1 λi,t

]
. Same as [23], we use the fact that ζt increase with time t

and obtain

E

[
1{Ei,∪}

T∑
t=1

√
m2t+ 1

]
<

m

ζ(n+1)T0
T

+
2m

3ζ(n+1)T0

+ 1 . (307)

Bounding E
[
1{Eci,∪}

∑T
t=1 λi,t

]
. We define the function h(x) as

h(x) ≜

√
xκ̃max + γ̃n + 1

max {0, xκ′
min − γ′

n}+ 1
, x > 0 . (308)

And we define the g function when x > τ as follows.

g(x, ζt) ≜

√
xκmax + αm̂2

√
x

xκmin/m̂− αm̂2
√
x
+

ζt
xκmin/m̂− αm̂2

√
x
. (309)

We have the following theorem to show the monotonicity and relation of h(x) and g(x).

Lemma 14. [23, Lemma 10] h(x, ζt) and g(x, ζt) are both decreasing functions of x when x > τ

and h(x) < g(x), where τ is defined as α2m̂6

κ2
min

.

Now we are ready to bound the last term

E

[
1{Eci,∪}

T∑
t=1

λi,t

]
≤ E

T∑
t=1

h(Ni,at,t) . (310)

We define the set of time indices at which the chosen actions are under-explored as

Hi ≜ {t ∈ [T ] | Ni,at,t ≤ 4τ} . (311)

It can be readily verified that |Hi| ≤ 8τ . Furthermore, when x ∈ Hi, we have

h(x) ≤ 1

ζ(n+1)T0

√
κmaxτ + αm̂2

√
τ + 1 , x ≤ τ . (312)

Then we can bound the summation whenHi occurs as follows.

E
T∑

t=1

1{t ∈ Hi}h(Ni,at(t)) ≤ 8τ

(
1

ζ(n+1)T0

√
κmaxτ + αm̂2

√
τ + 1

)
. (313)

Now we only need to bound the remaining part when t ̸∈ Hi

E
T∑

t=1

1{t ∈ Hc
i}h(Ni,at,t) . (314)

Note that when t ∈ Hc
i , we have Ni,at,t > τ and

h(Ni,at,ζt) ≤ g(Ni,at,t, ζt) . (315)
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Now we discuss the major changes. We define the number of times that node i is under mechanism
k ∈ {0} ∪ [s] at time t ∈ [N] as

Ni,k,t =

t∑
s=1

1{as[i] = k} (316)

Using the above results and noting thatHc
i excludes those samples from initial rounds, we obtain

T∑
t=1

1{t ∈ Hc
i}h(Ni,at,t) ≤

T∑
t=1

1{t ∈ Hc
i}g(Ni,at,t) (317)

≤
∑
k∈[s]

Ni,k,T∑
n=4τ+1

g(n, ζt) . (318)

We bound the discrete sums through integrals and define

Gτ (y) =

∫ y

x=4τ

g(x)dx , y ≥ 4τ . (319)

Since g(x) is a positive, decreasing function, for any k ∈ N, k ≥ 4τ + 1 we have

k∑
n=4τ+1

g(n) ≤
∫ k

x=4τ

g(x)dx = Gτ (k) . (320)

Then, the summation in (318) is upper bounded by

∑
k∈[s]

Ni,k,t∑
n=4τ+1

g(n) ≤
∑
k∈[s]

Gτ (Ni,k,T ) . (321)

Since g(x) is positive and decreasing, and G(y) is defined as an integral of the g function with a
positive first derivative and negative second derivative, it can be deduced that G is a concave function.
Thus, we have ∑

k∈[s]

Gτ (Ni,k,T ) ≤ (s+ 1)Gτ

( T

s+ 1

)
. (322)

Next, we proceed to establish an upper bound for the function G, which can be upper bounded as

Gτ

(
T

s+ 1
+ 4τ

)
=

∫ T
s+1+4τ

x=4τ

g(x)dx (323)

≤
∫ T

s+1+4τ

x=4τ

√
m2κmax

κmin

1√
xκmin −

√
τκmin

dx

+

∫ T
s+1+4τ

x=4τ

√
αm2(1 +

mκmax

κmin
)

x1/4

xκmin/m− αm2
√
x
dx

+

∫ T
s+1+4τ

x=4τ

ζT
xκmin/m− αm2

√
x
dx (324)

≤ 2

√
mκmax

κmin

(√
T

s+ 1
+
√
τ log

(√
T

s+ 1
+
√
τ

))

+
4

κmin

4

√
T

s+ 1
+ 2

√
αm5

κ3
min

log


√

1
τ

4

√
T

s+1 + 4
√
4 + 1√

1
τ

4

√
T

s+1 + 4
√
4− 1


+

2m log
(

κmin

m

√
T

s+1 + αm2
)

κmin
ζT . (325)
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where (324) is due to the inequality
√
x+ y ≤ √x +

√
y and

√
x− y ≥ √x − y√

x
when x ≥ y,

and we use closed-form integral and discard positive terms in (325). Combining the results in (307),
(313), and (325), let E1 denote the accumulation of terms that exhibit at most logarithmic growth
rates with respect to T and ζT .

E1 = (s+ 1)

(
4

√
mκmax

κmin

√
τ log

(√
T

s+ 1
+
√
τ

)
(326)

+ 4

√
αm5

κ3
min

log


√

1
τ

4

√
T

s+1 + 4
√
4 + 1√

1
τ

4

√
T

s+1 + 4
√
4− 1

 (327)

+ 8τ

(
1

ζ1

√
κmaxτ + αm2

√
τ + 1

)
(328)

+
m

ζ(n+1)T0
T

+
2m

3ζ(n+1)T0

+ 1

)
. (329)

Therefore, the final result for the bound is

E

[
T∑

t=1

λi,t

]
≤ 4
√
mκmax

κmin

√
T (s+ 1) +

8

κmin

4

√
3(s+ 1)3T

2
+ E1 (330)

+ (s+ 1)
4m

κmin
log

(
κmin

m

√
T

s+ 1
+ αm2

)
ζT . (331)

And the rest of the proof remains almost the same, with only a difference in confidence constants.

I Remark on do interventions

In this section, we discuss the results for do interventions, a further restricted type of intervention. It
is a subclass of hard interventions in which intervention on node i removes both ancestral connections
and the randomness of Z[i] and sets the noise variable ε∗[i] to a fixed known value.
Remark 4 (do interventions). Under do interventions, there exists a set of n+ 1 interventions such
that getting one sample from each suffices to construct H∞ for which H∞G is a full-rank diagonal
matrix. The resulting regret bounds depend on the causal model assumptions. For instance, in the
standard setting where each latent variable Z[i] ∈ [k] for i ∈ [k] with intervention space A = [k]n

and the conditional distributions pi(Z[i] | Z[pa[i]]) are arbitrary, all latent variables contribute to
the utility node. In this case, the problem reduces to a multi-armed bandit, with a matching regret
bounds scale as Θ(

√
knT ) even without the latent recovery.

J Broader impacts, Limitations and Further Discussions

This paper is purely theoretical, and the experiments only use synthetic data, so we are not aware of
any negative societal impacts. Our principal limitation is the assumption of linearity. Specifically, we
assume linear structural-equation models, linear transformation models, and linear utility functions.
However, these assumptions are standard in both causal bandit and causal representation learning
work under soft interventions, with the non-linear setting remaining largely unexplored. Extending
reward-oriented CRL beyond linear models, therefore, remains an important avenue for future
research.

We note that even in the simpler contexts (e.g., CRL or CB), the linear versus nonlinear models are
investigated extensively. Here, we outline how each component can be individually generalized. To
provide a concrete methodology for extensions, we first note that our current analysis consists of
two parts: (i) analyzing finite-sample guarantees of a CRL algorithm, and (ii) analyzing how the
CRL guarantees translate to reward guarantees. We discuss how the same decomposition can address
nonlinear models as well:
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• Latent SEM: It is possible to generalize the algorithms and performance guarantees to
nonlinear SEMs. While the overall RO-CRL framework and pipeline remain intact, such a
generalization has two distinct implications: one for the CRL guarantees and another for the
CB guarantees. On the CRL side, the subroutine can be replaced with methods designed
for general SEMs that also provide finite-sample guarantees (e.g., [4]). As a result, the
performance guarantees stated in Theorem 2 would need to be adjusted accordingly. On
the bandit side, the UCB rule and reward estimators can similarly be replaced with their
counterparts developed for nonlinear causal bandits (e.g., [20, 24]). Such generalization,
however, is highly non-trivial and even in the simpler contexts (e.g., standalone CRL and
CB), the linear and nonlinear settings are investigated separately, each with its exclusive
technical challenges.

• Transformation: There are existing results for CRL under nonlinear transformations [10–
12]. However, finite-sample analysis of CRL under general transformations is still an
open problem. Nevertheless, we note that any future finite-sample result can be integrated
into our RO-CRL framework to extend it to nonlinear transformations: Given that the
estimator provides a graph and variables recovery error bound similar to Theorem 2, these
estimates and error bounds can be used by the robust causal bandit algorithm. Similar to
SEM generalization, as long as the setting does not violate the CB assumptions, the overall
pipeline would work.

• Utility: Our utility-function assumption is a direct extension of the latent SEM one. Specif-
ically, the framework can be modularly generalized to accommodate non-linear utilities
when adopting the robust non-linear estimates in bandit settings. The key open question,
therefore, is the same one that arises for latent-SEM causal-bandit methods: How robust are
these algorithms to violations in the underlying variable?

In all three cases, the structure of the analysis, error control in CRL, followed by robust bandit
optimization, remains valid. The main requirement is that the substituted components provide
compatible error guarantees.

Potential use cases for RO-CRL . Finally, we list some domains where latent interventions are
plausible and RO-CRL could be applied.

• Robotics: Consider a robot operating in an environment and observed through high-
dimensional sensory data such as images. Interventional CRL enables recovery of in-
terpretable latent factors (e.g., joint angles) that causally generate visual data. CRL is
particularly suitable for robotics in vision-based contexts because high-dimensional obser-
vations (images) obscure the causal variables and robots have known or assumed causal
structure (e.g., a joint causes an end-effector position). In robotics, interventions on the
latent variables can be achieved physically or via simulation. Physical interventions include,
for instance, directly changing a joint angle or velocity (e.g., move joint 3 by +5◦) and
moving the robot gripper to a fixed position while leaving other joints free. In this context,
an example downstream objective could be moving the robot arm to a specific configuration
using only the utility values and learned latent factors as control input.

• Genomics: In gene regulatory networks, we observe high-dimensional expression data,
typically measured from bulk or single-cell RNA sequencing. These arise from lower-
dimensional latent variables representing unobserved biological drivers such as transcription
factor activities, regulatory protein states, or signaling pathway activations. CRL is a natural
fit for gene regulatory analysis because gene expression is influenced by a structured, latent
causal process involving transcriptional and post-transcriptional regulation. Standard repre-
sentation learning techniques fail to recover biologically meaningful variables, often mixing
causal and non-causal factors. Node-level interventions in the CRL framework correspond
to perturbing individual latent regulatory variables. In gene networks, such interventions
are biologically realizable via gene knockouts or CRISPR interference to silence specific
genes or transcription factors and overexpression systems to activate regulators, to name a
few. In this context, an example downstream objective could be to optimize a certain type of
biological response over the set of some possible genetic modifications.
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