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ABSTRACT

We present an information-theoretic framework to learn fixed-dimensional embed-
dings for tasks in reinforcement learning. We leverage the idea that two tasks are
similar if observing an agent’s performance on one task reduces our uncertainty
about its performance on the other. This intuition is captured by our information-
theoretic criterion which uses a diverse agent population as an approximation for
the space of agents to measure similarity between tasks in sequential decision-
making settings. In addition to qualitative assessment, we empirically demonstrate
the effectiveness of our techniques based on task embeddings by quantitative
comparisons against strong baselines on two application scenarios: predicting an
agent’s performance on a new task by observing its performance on a small quiz of
tasks, and selecting tasks with desired characteristics from a given set of options.

1 INTRODUCTION

Embeddings are widely used to represent data points as vectors in a space that captures meaningful
relations between them (Sun et al., 2014; Sung et al., 2018; Athar et al., 2020; Mikolov et al.,
2013; Pennington et al., 2014; Cer et al., 2018; Zhang et al., 2021). They could also be utilized as
representations for tasks, as studied in various areas such as multi-task learning (Zhang et al., 2018),
meta-learning (Achille et al., 2019), and domain-adaptation (Peng et al., 2020).

In reinforcement learning (RL), task embeddings could be used to understand the shared structure
in sequential decision-making problems if similar tasks are embedded in close proximity. Such
embeddings could enable efficient, one-shot computation of task similarity, eliminating the need for
time-consuming policy rollouts. Essentially, there is an underlying notion of skills required to solve
sequential tasks, and several of these tasks require some skills in common. For instance, consider the
tasks shown in Fig. 1. Each requires the agent to pick-up certain keys to unlock the door. The door in
task s1 requires the green key and the blue key, while the door in task s2 requires the yellow key and
the blue key. Thus, these tasks require the common skills of navigation, and picking the blue key.

Despite the potential benefits, prior work on learning task embeddings in RL (Qin et al., 2022; Schäfer
et al., 2022; Arnekvist et al., 2018; Yoo et al., 2022; Rakelly et al., 2019; Bing et al., 2023; Gupta
et al., 2018; Fu et al., 2020; Li et al., 2021; Lan et al., 2019; Walke et al., 2022; Sodhani et al., 2021b;
Vuorio et al., 2019) does not explicitly optimize for task similarity. This could primarily be attributed
to the lack of a general framework to measure (and reason about) similarities among sequential tasks.

To this end, we introduce an information-theoretic framework to learn fixed-dimensional embeddings
for tasks in RL; the inner product in the embedding space captures similarity between tasks, and the
norm of the embedding induces an ordering on the tasks based on their difficulties (see Fig. 1). A
critical component of the framework is a population of agents exhibiting a diverse set of behaviors,
which serves as an approximation for the space of agents. Our framework leverages the idea that
two sequential tasks are similar to each other if observing the performance of an agent from this
population on one task significantly decreases our uncertainty about its performance on the other.
Concretely, we introduce an information-theoretic criterion to measure task similarity (Section 4.1),
and an algorithm to empirically estimate it (Section 4.2). Through this, we construct a set of ordinal
constraints on the embeddings (with each such constraint asserting the relative similarity between a
triplet of tasks), and propose a training scheme for an embedding network to learn them (Section 4.3).
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Figure 1: Schematics of our approach. We learn a task embedding function fϕ(.) that maps a task s
to its fixed-dimensional representation E. In this illustration, we show the properties of the learned
embeddings using the MULTIKEYNAV environment in which tasks require the agent (shown as a
black circle) to pick-up certain keys (from the gray segments) to unlock the door (the right-most
segment) that has certain requirements (shown in color in the form of gates). A possible solution
trajectory is depicted using dotted lines. Keys on this trajectory correspond to the ones that the
agent possesses at that point in time. For instance, in task s2, the agent starts off with the yellow
key in possession already. ⟨E1,E2⟩ is greater than ⟨E1,E3⟩, since tasks s1 and s2 have a common
requirement of picking the blue key, and thus, are similar. Additionally, ∥E2∥2 is less than both
∥E1∥2 and ∥E3∥2, since task s2 requires picking a single key, while tasks s1 and s3 require picking
two keys, which makes them harder than s2.

Besides assessing the learned embedding spaces through visualizations (Section 5), we ground our
framework in two downstream scenarios that are inspired by real-world applications (Section 6).
Firstly, we show the utility of our framework in predicting an agent’s performance on a new task
given its performance on a small quiz of tasks, which is similar to assessing a student’s proficiency in
adaptive learning platforms via a compact quiz (He-Yueya & Singla, 2021). Secondly, we demonstrate
the application of our framework in selecting tasks with desired characteristics from a given set of
options, such as choosing tasks that are slightly harder than a reference task. This is analogous to
selecting desired questions from a pool for a personalized learning experience in online education
systems (Ghosh et al., 2022). Through comparisons with strong baselines on a diverse set of
environments, we show the efficacy of our techniques based on task embeddings.

To summarize, our work makes the following key contributions:

I. We introduce an information-theoretic framework to learn task embeddings in RL. As part of
the framework, we propose a task similarity criterion which uses a diverse population of agents
to measure similarity among sequential tasks (Sections 4.1 and 4.2).

II. We propose a scheme to learn task embeddings by leveraging the ordinal constraints imposed
by our similarity criterion (Section 4.3).

III. To assess our framework, we perform visual assessments of the learned embedding spaces,
and introduce two quantitative benchmarks: (a) agent’s performance prediction, and (b) task
selection with desired characteristics (Sections 5 and 6).

2 RELATED WORK

Task embeddings in RL. Several works in the meta-learning and multi-task learning literature
have explored the use of task embeddings to model relationships between sequential tasks, where
embeddings are either learned explicitly through objectives such as reconstruction (Arnekvist et al.,
2018; Yoo et al., 2022; Bing et al., 2023) and trajectory-based contrastive learning (Fu et al., 2020;
Li et al., 2021), or implicitly to aid generalization to new tasks (Lan et al., 2019; Walke et al.,
2022; Sodhani et al., 2021b; Vuorio et al., 2019). While these methods integrate task embeddings
with policies solely to improve performance, we propose a framework to learn general-purpose
embeddings that can be used to quantify and analyze task similarities. Furthermore, in our framework,
embedding computation is a one-shot operation, unlike prior work that relies on experience data from
the policy for the task. These distinctions position our work as complementary to existing methods.
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Population-based techniques. Our framework requires a diverse agent population. This is inline
with (Furuta et al., 2021; Tylkin et al., 2021; Vinyals & et al., 2019; Jaderberg & et al., 2019; Parker-
Holder et al., 2020), which use agent populations in the RL setting. For instance, Furuta et al. (2021)
use a randomly generated agent population to empirically estimate policy information capacity, an
information-theoretic measure of task difficulty in RL.

3 PROBLEM SETUP

MDP and Tasks. We use the Markov Decision Process (MDP) framework to define an environment.
An MDP M is defined as a 6-tuple (S,A,R, T ,Sinit, γ), where S is the state space, A is the action
space, R : S ×A → R is the reward function, T : S × S ×A → [0, 1] is the transition dynamics,
and Sinit ⊆ S is the set of initial states. Each state s ∈ Sinit corresponds to a goal-based task (for
example, the goal could be to reach a specific destination in a navigation task) where the reward
is 0 on all transitions but those on which a task gets completed. On task completion, the reward is
1. As an alternative to discounting, at each time step, there is a failure probability of 1− γ, which
incentivises the agent to solve the task quickly. This ensures that the cumulative reward is binary.

Population of agents and task solvability. p(θ) represents a distribution over the population of
agents. Concretely, it is a distribution over the agents’ policy parameters. We use Θ to represent the
random variable that takes on the value θ. Os,Θ ∈ {0, 1} is a Bernoulli random variable that takes on
the value 1 if, on a rollout, an agent sampled from p(θ) could successfully solve the task s ∈ Sinit

(i.e., the cumulative reward is 1), and 0 otherwise. We call Os,Θ the optimality variable for task s.
POS(s) := E[Os,Θ] denotes the probability of success on s, and is the complement of task difficulty.

Task embedding space. Formally, we wish to learn a task embedding function (parameterized by ϕ)
fϕ : Sinit → Rn, for an MDP M and a prior over the population of agents p(θ), that maps tasks to
n-dimensional representations. The range of fϕ(.) is the task embedding space.

Objective. Our objective is to learn embeddings for sequential tasks with the following properties:
(a) the inner product in the embedding space captures task similarity, where the realizations of
optimality variables are similar for tasks that are embedded in close proximity, and (b) the norm
of the embedding induces an ordering on the tasks based on their difficulties. We formalize these
objectives in Section 4.

4 LEARNING FRAMEWORK

In Sections 4.1 and 4.2, we formally define our information-theoretic criterion to measure task
similarity in RL and describe an algorithm to empirically estimate it. In Section 4.3, we view the
problem of learning task embeddings through the lens of ordinal constraint satisfaction.

4.1 INFORMATION-THEORETIC MEASURE OF TASK SIMILARITY

Our goal is to measure similarity between sequential tasks. To this end, we propose the mutual
information between task optimality variables as a measure of task similarity. This metric captures
the intuition that two tasks are similar to each other if observing an agent’s performance on one
task reduces our uncertainty about its performance on the other. We begin by formally defining
performance uncertainty. Thereafter, we provide a formal definition of our task similarity criterion.
Definition 1 (Performance Uncertainty). The entropy of the population with prior p(θ) solving a
task s is defined as:

H(Os,Θ) = −
∑

o∈{0,1}

P(Os,Θ = o) log P(Os,Θ = o),

where Os,Θ is the optimality variable for s.

Thus, we could measure the similarity between two tasks si, sj ∈ Sinit as the reduction in H(Osi,Θ)
by observing Osj ,Θ.
Definition 2 (Task Similarity). Given a prior over the population of agents p(θ), we measure the
similarity between two tasks si, sj ∈ Sinit as the mutual information I(.; .) between their optimality
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variables Osi,Θ, Osj ,Θ:

I(Osi,Θ;Osj ,Θ) = H(Osi,Θ)−H(Osi,Θ | Osj ,Θ).

It quantifies the information obtained about Osi,Θ by observing Osj ,Θ.

4.2 EMPIRICAL ESTIMATION OF I Algorithm 1 Learn the Task Embedding Function (fϕ)

1: procedure TRAIN(Set of tasks Sinit, MDPM, Policy π, Prior
distribution of the agent parameters p(θ), Number of samples
N, Hyperparameter λ, Number of iterations M)

2: Initialize ϕ.
3: for i ∈ {1, . . . , M} do
4: Sample task s1, s2, s3 ∼ Sinit.
5: E1,E2,E3 ← fϕ(s1), fϕ(s2), fϕ(s3)

6: Î12 ← ESTIMATE(s1, s2,M, π, p(θ), N)

7: Î13 ← ESTIMATE(s1, s3,M, π, p(θ), N)

8: if Î12 > Î13 then
9: loss← log(1 + exp(⟨E1,E3⟩ − ⟨E1,E2⟩))

10: else
11: loss← log(1 + exp(⟨E1,E2⟩ − ⟨E1,E3⟩))
12: Sample task s4, s5 ∼ Sinit.
13: E4,E5 ← fϕ(s4), fϕ(s5)
14: if POS(s4) > POS(s5) then
15: loss← loss + λ log(1 + exp(∥E4∥2 − ∥E5∥2))
16: else
17: loss← loss + λ log(1 + exp(∥E5∥2 − ∥E4∥2))
18: Update ϕ to minimize loss.
19: return ϕ

We now outline an algorithm to em-
pirically estimate I. A comprehen-
sive pseudocode detailing the compu-
tation of the criterion is provided in
Appendix B. Given an MDP M and
a prior distribution of the agent pa-
rameters p(θ), our algorithm uses N
samples to estimate I(Osi,Θ;Osj ,Θ).
For each sample, the algorithm ran-
domly samples θl ∼ p(θ), and per-
forms rollouts of πθl from si and sj
to obtain estimates of the probability
mass functions required for the com-
putation of I. The estimation proce-
dure can be invoked with the signature
ESTIMATE(si, sj , M, π, p(θ), N).

4.3 LEARNING
TASK EMBEDDINGS

With the criterion to measure task sim-
ilarity defined, we are interested in learning a task embedding function fϕ : Sinit → Rn (conse-
quently, an embedding space) that satisfies the desiderata introduced in Section 3. To this end, we
pose the problem of learning fϕ(.) as an ordinal constraint satisfaction problem. Essentially, the task
similarity criterion I imposes a set CMI of triplet ordinal constraints on the task embeddings. POS(.)
imposes another set CNORM of pairwise ordinal constraints.

Concretely, CMI is a collection of ordered triplets of tasks s.t. for each (s1, s2, s3) ∈ CMI,
I(Os1,Θ;Os2,Θ) > I(Os1,Θ;Os3,Θ). Consequently, we would like to satisfy the constraint
⟨fϕ(s1), fϕ(s2)⟩ > ⟨fϕ(s1), fϕ(s3)⟩. Likewise, CNORM is a collection of ordered tuples of tasks
s.t. for each (s1, s2) ∈ CNORM, POS(s1) > POS(s2). Consequently, we would like to satisfy the
constraint ∥fϕ(s2)∥2 > ∥fϕ(s1)∥2 (embeddings for easier tasks have smaller norm).

We learn the task embedding function fϕ(.), for an MDP M and a prior over the agent population
p(θ), by optimizing the parameters ϕ to maximize the log-likelihood of the ordinal constraints under
the Bradley-Terry-Luce (BTL) model (Luce, 1959). Concretely, given a triplet of tasks (s1, s2, s3),
we define:

P
(
(s1, s2, s3) ∈ CMI

)
:=

exp
(
⟨fϕ(s1), fϕ(s2)⟩

)
exp

(
⟨fϕ(s1), fϕ(s2)⟩

)
+ exp

(
⟨fϕ(s1), fϕ(s3)⟩

) .
Similarly, given a tuple of tasks (s1, s2), we define:

P
(
(s1, s2) ∈ CNORM

)
:=

exp
(
∥fϕ(s2)∥2

)
exp

(
∥fϕ(s1)∥2

)
+ exp

(
∥fϕ(s2)∥2

) .
Hence, the task embedding function fϕ(.) is learned by solving the following optimization problem:

min
ϕ

[
E

(s1,s2,s3)∼CMI

log

(
1+exp

(
⟨E1,E3⟩ − ⟨E1,E2⟩

))
+ λ E

(s4,s5)∼CNORM

log

(
1+exp

(
∥E4∥2 − ∥E5∥2

))]
,

where Ei denotes fϕ(si), and λ is a hyperparameter. The pseudocode for the proposed algorithm to
learn the task embedding function fϕ(.) is given in Algorithm 1.
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Environment Task Variability Action State Number of Tasks

MULTIKEYNAV Reward Function 7 R× {0, 1}6 Infinite
CARTPOLEVAR Dynamics 2 R5 × {0, 1} × [200] Infinite

POINTMASS Dynamics R2 R7 Infinite
KAREL Reward Function + Dynamics 52 {0, 1}51840 73688

BASICKAREL Reward Function + Dynamics 6 {0, 1}88 24000

(a) Comparison of environments’ complexity

(b) Illustrations

Figure 2: We evaluate our framework on a diverse set of environments. (a) compares the characteristics
of these environments. (b) illustrates these environments for a better understanding of the tasks.

5 EXPERIMENTS: VISUALIZATION OF EMBEDDING SPACES

In this section, we visualize the embedding spaces to gather qualitative insights, addressing the fol-
lowing research questions: (i) Can distinct clusters of tasks be identified by visualizing the embedding
space? (ii) How does regularization through CNORM affect the embedding space? (iii) What influence
do agent population and environment specification have on the embedding space? We begin by
discussing the rationale for environment selection, describing these environments. Subsequently, we
provide an overview of the embedding networks’ training process, followed by the qualitative results.

5.1 ENVIRONMENTS

We evaluate our framework on environments with diverse characteristics to demonstrate its generality
and scalability to different sequential decision-making problems (see Fig. 2). As the running example,
we use MULTIKEYNAV (based on (Devidze et al., 2021)) because of its compositional nature in
which the agent needs to compose different actions for picking keys (with four distinct key types,
each requiring a specific action to be picked) in a task-specific manner to unlock the door. This also
makes it suitable for ablation experiments. Task variability comes from the agent’s initial position,
the keys that it possesses initially, and the door type (with each type requiring a unique set of keys).

Given that task variability in MULTIKEYNAV comes from the reward function, we use CARTPOLE-
VAR to highlight our framework’s applicability to environments where it comes from the dynamics
instead. This environment is a variation of the classic control task from OpenAI gym (Brockman
et al., 2016), and also takes inspiration from (Sodhani et al., 2021a) in which the forces applied by
each action could be negative as well. Tasks in this environment require keeping a pole attached by
an unactuated joint to a cart upright for 200 timesteps by applying forces to the left (action 0) or to
the right (action 1) of the cart. Task variability comes from the force F applied on the cart by each
action, and the TaskType ∈ {0, 1}. Tasks of Type 0 involve “Pulling” with action 0 pulling the cart
from the left and action 1 pulling the cart from the right, while tasks of Type 1 involve “Pushing”.

We select POINTMASS (introduced in (Klink et al., 2020)) to test if our framework can handle
continuous action spaces. In this environment, the agent applies forces to control a point mass inside
a walled square. Tasks require reaching a fixed goal position through a gate, with task variability
arising from the gate width and position, along with the coefficient of kinetic friction of the space.

Finally, to investigate our framework’s scalability, we use the real-world environment KAREL from
(Bunel et al., 2018), which is a challenging environment with applications in programming education.
Tasks in this environment require the agent to synthesize a program, potentially containing control flow
constructs such as loops and conditionals, satisfying a given specification comprising input-output
examples. This program serves as a controller for an avatar navigating a grid, where each cell could
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Goal Type 1
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Goal Type 3
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(a) MULTIKEYNAV

Action 0 : Left Action 0 : Right

(b) CARTPOLEVAR

Left Right Straight

(c) POINTMASS

Basic Actions Loops Conditionals

(d) KAREL

Pick Marker(s) Navigation Put Marker(s)

(e) BASICKAREL

Figure 3: Visualization of the task embedding spaces learnt through our framework. Each point
represents a task, and the size of the points is proportional to the norm of the embeddings.

contain marker(s), correspond to a wall, or be empty. The avatar can traverse the grid and manipulate
it by picking or placing markers. Thus, an example in the specification comprises the Pre-Grid and
the corresponding Post-Grid. In addition, we evaluate our framework on BASICKAREL (Tzannetos
et al., 2023), which is a simpler variant of KAREL that excludes control flow constructs.

5.2 TRAINING PROCESS

To learn the task embedding function, we first obtain the agent population by taking snapshots while
training a neural network policy using either behavioral cloning (Bain & Sammut, 1995) or policy
gradient methods (Sutton et al., 1999). Concretely, a snapshot is recorded if the average performance
on a validation set of tasks (denoted as Ssnap) improves by δsnap compared to the previously recorded
snapshot. A snapshot of the untrained policy is recorded by default. Different subpopulations,
obtained by either masking actions or by using biased task distributions during training, are combined
to form the final population. Here, masking a certain action corresponds to setting its logit to a large
negative number. Using biased task distribution during training is another way to inject diversity into
the population. In MULTIKEYNAV, for instance, using a biased task distribution could correspond
to assigning low probability mass to tasks with certain types of doors in the initial state distribution
during training. Finally, we parameterize the task embedding function fϕ(.) with a neural network,
optimizing its parameters as described in Algorithm 1. We provide additional details in Appendix E.

5.3 VISUALIZATIONS AND QUALITATIVE RESULTS

We visualize the embedding spaces on a 2-dimensional map using t-SNE (van der Maaten & Hinton,
2008) to identify distinct clusters of tasks. Although t-SNE preserves the local structure, it does not
necessarily preserve the embeddings’ norm. For this reason, we scale the points in proportion to the
norm of the embeddings. Additionally, we provide PCA plots in Appendix G.

Visualizations. For MULTIKEYNAV (Fig. 3a), our framework discovers distinct clusters of tasks,
with each cluster corresponding to a unique set of keys that need to be picked. The norm of the
embeddings is in accordance with the number of keys that need to be picked (with tasks requiring
navigation only having the smallest norm). Additionally, tasks in clusters adjacent to each other
share a common key requirement. For CARTPOLEVAR (Fig. 3b), our framework discovers that each
task exhibits one of two types of underlying dynamics. In one (+ve F and Type 0, or −ve F and
Type 1), action 0 moves the cart to the left, while in the other (−ve F and Type 0, or +ve F and Type
1), action 0 moves the cart to the right. For POINTMASS (Fig. 3c), our framework discovers three
clusters of tasks based on the behavior that the agent needs to exhibit near the gate. The first cluster
includes tasks in which the agent need not steer to cross the gate, while the second and third clusters
contain tasks in which the agent must steer left or right to cross the gate, respectively. For KAREL
and BASICKAREL (Fig. 3d and 3e), our framework discovers different clusters of tasks based on
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(Pick A)
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(d)

Figure 4: Task embedding spaces for the MULTIKEYNAV environment: (a) without CNORM, (b)
pickKey actions masked, (c) all doors require KeyA, KeyB, and (d) all doors require KeyA.

whether the solution code requires loops or conditionals, and whether the agent needs to pick or put
markers in the grid, respectively.

Ablation w.r.t. CNORM. Fig. 4a shows the task embedding space learned without the norm ordinal
constraints CNORM (i.e., λ is set to 0). As expected, the norm of the embeddings is not proportional
to the number of keys that need to be picked. Instead, the points are nearly uniform in size.

Ablation w.r.t. population specification. To understand the effect of population on the task
embedding space, we learn the embedding function fϕ(.) for MULTIKEYNAV using an agent
population in which pickKey actions are masked (Fig. 4b). In this case, we obtain two distinct
clusters of tasks – one of the clusters contains tasks that cannot be solved (these tasks require picking
key(s)), and the other contains tasks that require navigation only. These results emphasize the
importance of the population’s quality in learning a good task embedding space.

Ablation w.r.t. environment specification. In this ablation experiment, we change the environment
specification and check its impact on the task embedding space. Concretely, we learn the embedding
space for the following variants of MULTIKEYNAV: (a) each door requires KeyA and KeyB (Fig. 4c),
i.e., all the doors have identical key requirements, and (b) each door requires KeyA only (Fig. 4d).
Modifying the environment specification changes the task semantics, thereby impacting the task
embedding space. Thus, these results are inline with our intuition.

5.4 COMPARISON WITH EXISTING WORK

Environment RandomModel PredModel Ours

MULTIKEYNAV 0.036± 0.048 −0.037± 0.003 0.753± 0.001

CARTPOLEVAR 0.015± 0.016 0.242± 0.007 0.325± 0.009

POINTMASS 0.104± 0.026 −0.010± 0.004 0.380± 0.019

BASICKAREL −0.058± 0.007 −0.002± 0.003 0.811± 0.019

Figure 5: Comparison of silhouette scores (higher is better) based
on intuitively identified clusters of tasks in the learned embedding
spaces. The scores for our models are consistently better.

To compare our framework with
existing methods, we introduce
PredModel baseline (inspired by
prior work) and use silhouette
scores based on the intuitively
identified clusters of tasks to
measure clustering quality in the
learned embedding spaces. We
also compare our method against
embedding networks with ran-
dom weights (RandomModel).

Most existing methods (e.g., PEARL (Rakelly et al., 2019)) utilize variational inference to learn
latent context from task-specific experience data, where the inference network could be trained to
reconstruct the MDP for the task through predictive models of reward and dynamics. To adapt this
approach to our setting, we connect our formalism of tasks as initial states to the contextual MDP
setting (Hallak et al., 2015), where each context (e.g., MULTIKEYNAV’s context: agent’s initial
position, possessed keys initially, door type) corresponds to a distinct task represented by a separate
MDP with context-dependent transitions and rewards. This set of MDPs can be converted into an
equivalent MDP by including context variables as part of the state. In this converted MDP, each initial
state represents a task, as it determines the context for the entire episode. The context is observable.

The modifications needed for the PredModel baseline are as follows: Firstly, since context is
observable in our setup, we condition the approximate posterior over the embeddings on the initial
state, eliminating the need for experience data. Secondly, we train the predictive models on states
with context variables removed, ensuring the utilization of the task embedding that the model is
conditioned on. We provide additional technical details in Appendix D.
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Results. Fig. 5 reports the silhouette scores, averaged across 3 random seeds, with 1000 tasks per seed
(5000 for BASICKAREL). The scores for the models learned through our framework are consistently
better. While the PredModel baseline clusters similar tasks together in the embedding space for
CARTPOLEVAR, it fails to do so in rest of the environments. In contrast to CARTPOLEVAR, where
task variability comes from dense differences in the dynamics, task variability in other environments
comes from sparse differences in the reward function and/or dynamics. Therefore, we hypothesize
that the PredModel baseline fails on environments with sparse variability across tasks.

6 EXPERIMENTS: APPLICATION SCENARIOS

In this section, we evaluate our framework on two application scenarios: performance prediction, and
task selection. We conduct this evaluation on MULTIKEYNAV and CARTPOLEVAR, as they cover
two distinct sources of task variability, namely reward function and dynamics.

6.1 PERFORMANCE PREDICTION

First, we assess the learned task embeddings by using them to predict an agent’s performance on a
task stest ∈ Sinit after observing its performance on a quiz Squiz ⊆ Sinit. Specifically, we seek to
answer the following research question: Would an agent show similar performance on tasks that are
close to each other in the learned task embedding space? We begin by creating a benchmark for this
application scenario, and then compare our technique against various baselines.
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Figure 6: Results for performance prediction using
task embeddings. Our technique (listed as Ours) is
competitive with the OPT baseline, which is the
best one could do on this benchmark.

Benchmark. Formally, given the realizations
of the task optimality variables of a set of tasks
for an agent θ, we are interested in predicting
the most probable realization of the task opti-
mality variable of a new task for the same agent
without observing θ. To create benchmarks for
this scenario, we generate datasets for quiz sizes
ranging from 1 to 20, with 5000 examples for
both training and testing. Each example is gen-
erated by randomly sampling a quiz Squiz of
desired size, along with a task stest from Sinit,
and then recording the performance of an agent
θ, sampled from the population, on these tasks.
Performance prediction techniques are evaluated
on this benchmark by measuring prediction ac-
curacy on the test examples. The techniques are evaluated on each dataset by partitioning it into 10
folds and reporting the mean prediction accuracy across the folds along with the standard error.

Our approach. Our prediction technique performs soft-nearest neighbor matching of stest with
Squiz in the task embedding space to predict performance on stest. Concretely, given the embedding

function fϕ(.), the prediction is 1c>0.5, where c equals
∑

s∈Squiz
os exp(−β∥fϕ(s)−fϕ(stest)∥2

2
)∑

s∈Squiz
exp(−β∥fϕ(s)−fϕ(stest)∥2

2
)

, os is

the realization of the task optimality variable for task s, and β is a hyperparameter.

Baselines. Besides PredModel, we compare against different levels of oracle knowledge: (i) Random:
Randomly predicts the agent’s performance. (ii) IgnoreTask: Predicts the agent to succeed on stest iff
the probability that it succeeds on a random task exceeds 0.5. (iii) IgnoreAgent: Predicts the agent to
succeed on stest iff the probability that a random agent succeeds on it exceeds 0.5. (iv) OPT: Predicts
the agent to succeed on stest iff the probability that it succeeds on stest exceeds 0.5.

Results. Fig. 6 shows the prediction accuracies of various techniques. Our method is competitive
with the OPT baseline, which provides an upper-bound on the prediction accuracy but relies on the
unrealistic assumption of full observability of both the agent and task.

6.2 TASK SELECTION

Next, we assess the learned embeddings by using them to select tasks with desired characteristics.
Specifically, we seek to answer the following research questions: (i) Does the inner product in the
learned task embedding space capture task similarity according to our information-theoretic criterion?
(ii) Does the norm of the embedding learned by our framework induce an ordering on the tasks

8
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Figure 7: Results for task selection using task embeddings (dark bars represent Top-3 accuracy and
light bars represent Top-1). Our technique (listed as Ours) is competitive with ÔPT 50 . Further, it
outperforms OurswoNorm on Type-2 queries, highlighting the significance of CNORM in our framework.

based on their difficulties? We begin by creating a benchmark for this application scenario, and then
compare our technique for task selection using task embeddings against various baselines.

Benchmark. Amongst several options of tasks Soptions, we are interested in choosing the task that
best matches the desired characteristics, which we categorize into two query types: Type-1 : Select
the task that is the most similar to a given reference task sref . The ground-truth answer to this
query is argmaxs∈Soptions

I(Osref ,Θ;Os,Θ). Type-2 : Select the task that is the most similar to (but
harder than) a given reference task sref . Out of all the tasks in Soptions that are harder than sref , the
ground-truth answer to this query is the task most similar to it. To create benchmarks for this scenario,
we generate a dataset of 50 examples. Each example consists of a randomly sampled sref and 10 tasks
that form Soptions. Additionally, each benchmark includes 5 easy tasks for reference (determined by
ranking a randomly sampled pool of 500 tasks). We evaluate task selection techniques by reporting
mean selection accuracy across 4 randomly sampled datasets, along with the standard error.

Our approach. We use task embeddings to rank the options according to similarity and/or difficulty,
based on which the selection is made. We additionally compare our technique based on task
embeddings learned without CNORM (listed as OurswoNorm).

Baselines. Besides PredModel, we compare against the following baselines: (i) Random: Randomly
selects answers from Soptions. (ii) StateSim: Measures task similarity based on state representation
distances. For queries of type 2, it considers a task s1 to be harder than s2 iff the similarity
between s1 and the task most similar to it in the set of easy reference tasks, is less than that for
s2. (iii) TrajectorySim: Measures task similarity using the edit distance between expert trajectories.
(iv) OPT : Estimates task similarity and difficulty using the entire agent population. Given the
variance in the estimation process, this is the best one could do on this benchmark. (v) ÔPT 50 :
Estimates task similarity and difficulty using a randomly sampled 50% of the population.

Results. Fig. 7 compares different techniques’ selection accuracies on the task selection benchmark.
Our technique outperforms Random, StateSim, TrajectorySim, and PredModel, and is competitive
with ÔPT 50 . This suggests that the inner product in the learned task embedding space successfully
captures similarity between tasks. Notably, our technique significantly outperforms OurswoNorm on
Type-2 queries, indicating that the norm of the embedding effectively orders tasks by difficulty.

7 CONCLUSION

In this work, we introduced an information-theoretic framework for learning task embeddings in
sequential decision-making settings. Through experiments on diverse environments, we empirically
demonstrated that the inner product in the embedding space captures task similarity, and the norm of
the embedding induces an ordering on the tasks based on their difficulties. A limitation of our current
framework is the requirement for tasks to be goal-based, which we plan to address in future work. This
could involve using the difference between the cumulative reward obtained during the rollout and the
maximum achievable cumulative reward for the given task to parameterize the Bernoulli optimality
variable. Additionally, the agent population plays a crucial role in our framework, and it would be
interesting to explore more principled methods for construction that explicitly optimize for diversity.
Further, empirically estimating the proposed similarity criterion by directly estimating the underlying
mass functions could be sample-inefficient for some environments. Therefore, a promising direction
is to construct sample-efficient estimators for it. Moreover, evaluation in multi-agent settings, where
the task embedding could encode the behavior of non-ego agents, is another interesting direction.
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A TABLE OF CONTENTS

In this section, we briefly describe the content provided in the paper’s appendices.

• Appendix B provides the pseudocode for our algorithm to empircally estimate I.
• Appendix C provides detailed descriptions of the environments used for experimental evaluation.
• Appendix D provides additional technical details of the PredModel baseline.
• Appendix E provides additional implementation details for experimental evaluation.
• Appendix F provides annotated visualization of the task embedding spaces.
• Appendix G provides PCA plots of the task embedding spaces.
• Appendix H provides additional results examining the embedding function’s generalization ability.
• Appendix I provides additional results examining the validity of task correlations for new agents.

B PSEUDOCODE FOR EMPIRICAL ESTIMATION OF TASK SIMILARITY

The pseudocode for the proposed algorithm to empirically estimate I is given in Algorithm 2. Given
an MDP M and a prior distribution of the agent parameters p(θ), the algorithm uses N samples
to estimate I(Osi,Θ;Osj ,Θ). For each sample, the algorithm randomly samples θl ∼ p(θ), and
performs rollouts of πθl from si and sj to obtain estimates of the probability mass functions required
for the computation of I. Note that Hb(p) computes the entropy of a Bernoulli random variable X
s.t. X takes the value 1 with probability p.

Algorithm 2 Empirically Estimate Task Similarity (I)

1: procedure ESTIMATE(Task si, Task sj , MDPM, Policy π, Prior distribution of the agent parameters p(θ),
Number of samples N)

2: n_i← 0 ▷ #successes on si
3: n_j← 0 ▷ #successes on sj
4: n_i_j_1← 0 ▷ #successes on si given success on sj
5: n_i_j_0← 0 ▷ #successes on si given failure on sj
6: for l ∈ {1, . . . , N} do
7: Sample agent parameters θl ∼ p(θ) and set it to π.
8: Perform a rollout of πθl from si onM.
9: Perform a rollout of πθl from sj onM.

10: if rollout from si is a success then
11: n_i← n_i+ 1
12: if rollout from sj is a success then
13: n_i_j_1← n_i_j_1+ 1
14: else
15: n_i_j_0← n_i_j_0+ 1

16: if rollout from sj is a success then
17: n_j← n_j+ 1

18: Î ← Hb(
n_i
N
)− ( n_j

N
)Hb(

n_i_j_1
n_j )− (1− n_j

N
)Hb(

n_i_j_0
N−n_j )

19: return Î

C ENVIRONMENT DETAILS

C.1 MULTIKEYNAV

This environment corresponds to a navigation task in a one-dimensional line segment [0, 1], where
the agent has to pick certain keys using appropriate pickKey actions (one action for each key type)
and unlock the door located towards the right. A task in this environment is considered to be solved
if the agent successfully unlocks the door. The environment used in our experiments is based on the
work of Devidze et al. (2021); however, we adapted it to have multiple keys that need to be picked.

More concretely, there are four keys, KeyA, KeyB, KeyC, and KeyD, located on the segments [0, 0.1],
[0.2, 0.3], [0.4, 0.5], [0.6, 0.7], respectively. A door is located on the segment [0.9, 1]. The door could
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be of the following 4 types: Type 1 (00), Type 2 (01), Type 3 (10), or Type 4 (11). Doors of Type 1
require KeyA and KeyB, doors of Type 2 require KeyA and KeyC, doors of Type 3 require KeyB and
KeyD, and doors of Type 4 require KeyC and KeyD.

The set of initial states, Sinit, is the same as the set of states S. Each state s ∈ S corresponds to a 7-
tuple (Location, KeyStatusA, KeyStatusB, KeyStatusC, KeyStatusD, doorBit1, doorBit2).
Here, Location denotes the agent’s location on the line segment, and KeyStatusA, KeyStatusB,
KeyStatusC, KeyStatusD are flags for whether the agent has picked up the corresponding key. Task
variability in this environment comes from the agent’s initial position, the keys that it possesses
initially, and the door type (with each type requiring a unique set of keys).

The action space is A = {moveLeft, moveRight, pickKeyA, pickKeyB, pickKeyC, pickKeyD,
finish}. moveLeft and moveRight move the agent across the environment with step size 0.075+ϵ,
where ϵ ∼ U (−0.01, 0.01). If pickKeyA is executed at a location that lies on the segment
containing KeyA, KeyStatusA becomes True, else the environment crashes. Likewise for pickKeyB,
pickKeyC, and pickKeyD. The agent gets a reward of 1 on executing finish if it is at a location
that lies on the segment containing the door and possesses the required keys; finish results in a
crash otherwise. The horizon length is 40 and γ is 0.999.

C.2 CARTPOLEVAR

This environment is a variation of the classic control task from OpenAI gym (Brockman et al., 2016),
and also takes inspiration from (Sodhani et al., 2021a) in which the forces applied by each action
could be negative as well. It consists of a pole (mass: 0.1 kg, length: 1 m) attached by an unactuated
joint to a cart (mass: 1 kg), which moves along a track. The agent controls the cart in the presence of
gravity (g: 9.8 m/s2) by applying forces to the the left (action 0) or to the right (action 1) of the cart.
A task is considered to be solved if the agent keeps the pole upright for 200 timesteps.

Each state s ∈ S corresponds to a tuple (x, v, θ, ω, F, TaskType, NumSteps). Here, x denotes the
position of the cart, v denotes the velocity of the cart, θ denotes the angle that the pole makes with
the vertical, ω denotes the angular velocity of the pole, F ∈ [−15N,−5N] ∪ [5N, 15N] denotes
the force applied on the cart by each action, TaskType ∈ {0, 1} denotes the type of the task, and
NumSteps denotes the number of steps passed since the beginning of the episode.

Task variability in this environment comes from the force F applied on the cart by each action, and
the TaskType ∈ {0, 1}. Tasks of Type 0 involve “Pulling” with action 0 pulling the cart from the left
and action 1 pulling the cart from the right, while tasks of Type 1 involve “Pushing”. At any timestep,
if θ /∈ [−12◦, 12◦], the pole is not upright and consequently, the environment crashes. The horizon
length is 200 and γ is 1.

C.3 POINTMASS

This environment was introduced by Klink et al. (2020). We provide details here for completeness.

The agent applies forces to control a point mass inside a square space [−4, 4]× [−4, 4] surrounded
by walls. The space exhibits friction, with the coefficient of kinetic friction µk ∈ [0, 4]. Additionally,
there is a gate of width wg ∈ [−4, 4] at position pg ∈ [0.5, 8], effectively spanning the segment
[pg − 0.5wg, pg + 0.5wg]. The agent always starts off from the fixed initial position [0, 3]. A task in
this environment is considered to be solved if the point mass reaches the fixed goal position [0,−3],
which requires crossing the gate.

Each state s ∈ S corresponds to a tuple (x, vx, y, vy). Here, [x, y] denotes the position of the point
mass, while [vx, vy] denotes the velocity. The actions are [Fx, Fy] ∈ [−10, 10]× [−10, 10], where
Fx and Fy correspond to forces applied along the x and the y axis, respectively. Task variability in
this environment comes from the width wg and the position pg of the gate, along with the coefficient
of kinetic friction µk of the space. At any timestep, if the point mass crashes into the wall, the
environment crashes. The horizon length is 100 and γ is 0.99.
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C.4 KAREL

This is the Karel program synthesis environment from (Bunel et al., 2018). Karel is an educational
programming language widely used in introductory CS courses. The environment consists of an
avatar (characterized by its position and orientation) inside an 18× 18 grid in which each cell could
contain up to 10 markers, correspond to a wall, or be empty. The avatar can move inside the grid and
modify it by picking or placing markers. The objective of each task is to synthesize the program π∗

(which is a controller for the avatar) in the Karel domain-specific language (DSL) given 5 input-output
examples for it in the form of Pre-Grid and its corresponding Post-Grid. A task is considered to
be solved if the synthesized program π generalizes to a held-out test example for π∗.

The Karel DSL is shown in Figure 8. Task variability in this environment comes from the set of
input-output examples. The state in this environment comprises of the program specification (i.e.,
the input-output examples) and the partial program synthesized so far. The tokens of the DSL form
the action space. The horizon length is 24 and γ is 1. We use a set of 73688 tasks (with the number
of tokens in π∗ ranging between 10 and 14) sampled from the dataset used in (Bunel et al., 2018)
(accessible at https://msr-redmond.github.io/karel-dataset/).

Figure 8: The Karel domain-specific language (DSL) (Bunel et al., 2018).

C.5 BASICKAREL

This environment, introduced by Tzannetos et al. (2023), is a variant of KAREL that excludes control
flow constructs such as loops and conditionals, and only includes basic actions. We provide the
details here for completeness.

The environment consists of an agent inside a 4× 4 grid. Each cell in the grid could contain a marker,
correspond to a wall, or be empty. The objective of each task is to generate a sequence of actions
that transforms a pre-grid to a post-grid. The BASICKAREL dataset has 24000 training tasks and
2400 validation tasks. The set of initial states, Sinit, is the same as the training set of tasks provided
in the BASICKAREL dataset. Each state s ∈ S corresponds to a tuple (Curr-Grid, Post-Grid),
where Curr-Grid and Post-Grid correspond to the bitmap representation of the current-grid and
the post-grid, respectively.

The action space is A = {move, turnLeft, turnRight, pickMarker, putMarker, finish}. move
moves the agent in the facing direction. turnLeft and turnRight turn the agent left and right,
respectively. The agent can pick and put a marker using pickMarker and putMarker, respectively.
The agent gets a reward of 1 on executing finish if Curr-Grid matches Post-Grid (i.e., it has
successfully transformed the pre-grid to the post-grid); finish results in a crash otherwise. The
horizon length is 20 and γ is 0.999.

D TECHNICAL DETAILS OF THE PREDMODEL BASELINE

Method. We begin by constructing a dataset D comprising transitions (s0, s̄t, at, rt+1, s̄t+1), ob-
tained from NR rollouts (with each rollout comprising multiple transitions) of the expert multi-task
policy in the MDP from randomly sampled tasks, where s0 represents a task, and s̄ denotes state s
with context variables removed. The task embedding z is inferred through variational inference.
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More concretely, we train an inference network qϕ(z | s0), parameterized by ϕ, which is modeled
as a diagonal Gaussian approximate posterior over z. This network is trained to reconstruct the
MDP through predictive models of reward f

(r)
θr

and dynamics f (s)
θs

, both parameterized by θr and θs,
respectively. Essentially, we solve the following optimization problem:

min
ϕ,θr,θs

[
E

(s0,s̄t,at,rt+1,s̄t+1)∼D

[
βDKL(qϕ(z|s0)∥p(z))

+ E
z∼qϕ(z|s0)

[
αr∥f (r)

θr
(s̄t, at, z)− rt+1∥22 + αs∥f (s)

θs
(s̄t, at, z)− st+1∥22

]]]
,

where p(z) is a standard normal prior over z, and αr, αs, and β are hyperparameters.

Implementation details. For each environment, NR is set to 10000, and the inference network, as
well as the predictive models, are implemented as feedforward neural networks with 2 hidden layers
(128 neurons in each layer) and ReLU activations. The predictive models share weights, except
for the final layer. We set αr, αs, and β, to 1, 1, and 0.01, respectively. The networks are jointly
trained for 500 epochs using the Adam optimizer with 0.001 learning rate and a batch size of 512.
The embedding dimensionalities are set to 6, 3, 3, and 8, for MULTIKEYNAV, CARTPOLEVAR,
POINTMASS, and BASICKAREL, respectively.

E IMPLEMENTATION DETAILS

Compute resources. All the experiments were conducted on a cluster of machines with Intel
Xeon Gold 6134M CPUs (clocked at 3.20 Ghz) and Nvidia Tesla V100 GPUs (32 GB VRAM
configuration). We would like to highlight that learning the task embedding function is a one-time
process, which could be compute intensive. However, once the training is completed, computing the
embeddings or utilizing them to measure task similarity is a one-shot operation.

Training process. For all the environments, we set δsnap to 0.01 (0.1 for KAREL) in our experiments.
The average performance on Ssnap is determined by performing 10 rollouts on each task in the
set. We implement each embedding network using a succession of several fully connected layers
with ReLU activations, trained for 300 epochs (500 epochs for CARTPOLEVAR and 10 epochs for
KAREL) using the Adam optimizer with 1e− 3 (1e− 4 for KAREL) learning rate, and batch size 128
(512 for KAREL). We sample 5000 (80000 for KAREL and 10000 for BASICKAREL) constraints
from CMI and CNORM each to train the network, the Î values of which are approximated using 100
samples from each agent in the population. p_success(.) is approximated using 10 samples from
each agent in the population. The hyperparameters β and λ are set to 1000 and 0.4, respectively. In
addition, we use a validation set and a test set, consisting of 1000 (16000 for KAREL and 2000 for
BASICKAREL) constraints from CMI and CNORM each, for early stopping and to determine the final
model parameters. We vary the embedding dimensionality from 1 to 10 and choose the one after
which the test loss does not decrease much. Below we provide environment-specific details:

• MULTIKEYNAV: Ssnap includes all combinations of the locations {0.05, 0.45, 0.85}, key
statuses, and door types. We combine the subpopulations obtained by masking no action,
masking each pickKey action individually, and masking all pickKey actions, to obtain an
agent population of size 100. The embedding network has two hidden layers (32 neurons in
each layer). The embedding dimensionality is 5 without CNORM, and 6 with CNORM.

• CARTPOLEVAR: Ssnap consists of 1000 tasks sampled from Sinit. We combine the
subpopulations obtained by using all tasks in Sinit, tasks in Sinit with +ve F and Type 0,
tasks in Sinit with +ve F and Type 1, tasks in Sinit with −ve F and Type 0, and tasks in Sinit

with −ve F and Type 1, to obtain an agent population of size 95. The embedding network
has two hidden layers (64 neurons in the first layer and 32 neurons in the second). The
embedding dimensionality is 2 without CNORM, and 3 with CNORM.

• POINTMASS: Ssnap consists of 100 tasks sampled from Sinit. We combine subpopulations
obtained by using all the tasks in Sinit, tasks in Sinit that satisfy the condition pg+0.5wg < 0,
and tasks in Sinit that satisfy the condition pg + 0.5wg ≥ 0, to obtain an agent population of
size about 25. The embedding network has two hidden layers (32 neurons in each layer).
The embedding dimensionality is 3 with CNORM.
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(a) MULTIKEYNAV

(b) CARTPOLEVAR (c) POINTMASS

(d) KAREL

(e) BASICKAREL

Figure 9: Annotated visualization of the task embedding spaces with example tasks for each cluster.

• KAREL: Ssnap consists of 14681 tasks sampled from the Karel dataset. We combine
subpopulations obtained by using all the tasks in Sinit, tasks in Sinit that do not require
synthesizing token for loops, tasks in Sinit that do not require synthesizing tokens for
conditionals, and tasks in Sinit that do not require synthesizing tokens for both loops and
conditionals, to obtain an agent population of size about 135. We use the official codebase of
(Bunel et al., 2018) to train the agents. The embedding network consists of an input-output
encoder (which is the same as that in (Bunel et al., 2018)) followed by a feedforward network
with a single hidden layer (256 neurons). The embedding dimensionality is 2 with CNORM.

• BASICKAREL: Ssnap consists of all the 2400 validation tasks. We combine the subpopu-
lations obtained by masking no action, masking pickMarker, masking putMarker, and
masking both pickMarker and putMarker, to obtain an agent population of size about 55.
The embedding network has two hidden layers (32 neurons in each layer). The embedding
dimensionality is 1 with CNORM.
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Figure 10: PCA projections of the task embedding spaces learned through our framework. Each point
represents a task, and the size of the points is proportional to the norm of the embeddings.

Basic Actions Loops Conditionals

(a) Training Set

Basic Actions Loops Conditionals

(b) Validation Set

Figure 11: Task embedding spaces obtained using the training and validation sets of tasks for the
KAREL environment. This visualization shows that an embedding function learned using a training
set of tasks generalizes to a validation set of tasks.

Performance prediction benchmark. We use 500 samples to estimate the IgnoreTask baseline, 10
samples from each agent in the population to estimate the IgnoreAgent baseline, and 10 samples to
estimate the OPT baseline. β is tuned using the training examples.

Task selection benchmark. We use 100 samples from each agent in the population to estimate task
similarity, and 10 samples from each agent to estimate task difficulty.

F ANNOTATED VISUALIZATION OF EMBEDDING SPACES

In Fig. 9, we visualize the learned embedding spaces annotated with an example task for each cluster.

G PCA PLOTS

Fig. 10 visualizes the learned task embedding spaces through 2D PCA projections.

H GENERALIZATION EXPERIMENT

We present a generalization experiment in which we assess if the embedding function (learned using a
training set of tasks) produces a consistent embedding space for a validation set of tasks. We conduct
this evaluation on the KAREL environment by partitioning the tasks into training and validation sets
of size 59007 and 14681, respectively. Fig. 11 visualizes the task embedding spaces for these sets
and shows the generalization ability of the learned task embedding function.
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Figure 12: Performance prediction results for new agents using task embeddings. Our technique is
competitive with the OPT baseline, which is the best one could do on this benchmark.

I PERFORMANCE PREDICTION – NEW AGENTS

To assess if the correlations captured by our similarity criterion remain valid for new agents, we
evaluate the learned task embedding network in the performance prediction application scenario
for new agents. For MULTIKEYNAV, the new population of agents is created using biased task
distributions instead of action masking. More concretely, we combine the subpopulations obtained by
using all tasks, tasks with doors of Type 1, tasks with doors of Type 2, tasks with doors of Type 3,
and tasks with doors of Type 4. For CARTPOLEVAR, we use the Proximal Policy Optimization (PPO)
algorithm (Schulman et al., 2017) instead of behavioral cloning to create the new agent population.

Fig. 12 shows the prediction accuracies of various techniques. Our method is competitive with OPT,
demonstrating the efficacy of task embeddings in predicting the performance of new agents.
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