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ABSTRACT

Existing methods, such as concept bottleneck models (CBMs), have been success-
ful in providing concept-based interpretations for black-box deep learning models.
They typically work by predicting concepts given the input and then predicting the
final class label given the predicted concepts. However, (1) they often fail to cap-
ture the high-order, nonlinear interaction between concepts, e.g., correcting a pre-
dicted concept (e.g., “yellow breast”) does not help correct highly correlated con-
cepts (e.g., “yellow belly”), leading to suboptimal final accuracy; (2) they cannot
naturally quantify the complex conditional dependencies between different con-
cepts and class labels (e.g., for an image with the class label “Kentucky Warbler”
and a concept “black bill”, what is the probability that the model correctly pre-
dicts another concept “black crown”), therefore failing to provide deeper insight
into how a black-box model works. In response to these limitations, we propose
Energy-based Concept Bottleneck Models (ECBMs). Our ECBMs use a set
of neural networks to define the joint energy of candidate (input, concept, class)
tuples. With such a unified interface, prediction, concept correction, and condi-
tional dependency quantification are then represented as conditional probabilities,
which are generated by composing different energy functions. Our ECBMs ad-
dress both limitations of existing CBMs, providing higher accuracy and richer
concept interpretations. Empirical results show that our approach outperforms the
state-of-the-art on real-world datasets.

1 INTRODUCTION

Black-box models, while powerful, are often unable to explain their predictions in a way that is
comprehensible to humans (Rudin, 2019). Concept-based models aim to address this limitation.
Unlike traditional end-to-end models (Zhang et al., 2021) predicting output directly from input,
concept-based models first predict intermediate concepts from input and then predict the final class
labels from the predicted concepts (Koh et al., 2020; Kazhdan et al., 2020). These models aim
to emulate humans’ cognitive process of distinguishing between different objects (e.g., zoologists
classifying birds according to their heads, wings, and tails) by generating concepts that are visually
comprehensible to humans as intermediate interpretations for their predictions.

Concept Bottleneck Models (CBMs) (Koh et al., 2020), as a representative class of models, operate
by firstly generating concepts given the input and then using these concepts to predict the final
label. The vanilla CBMs often fall short in final prediction accuracy compared to black-box models,
creating a potentially unnecessary performance-interpretability trade-off (Rudin et al., 2022). To
improve on such trade-off, Concept Embedding Models (CEMs) (Zarlenga et al., 2022) improve
CBMs by including positive and negative semantics, while Post-hoc Concept Bottleneck Models
(PCBMs) (Yuksekgonul et al., 2022) make use of residual fitting to compensate for limitations in
concept learning. Despite recent advances, existing CBM variants (including CEMs and PCBMs)
still suffer from the following key limitations:
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1. Interpretability: They cannot effectively quantify the intricate relationships between various
concepts and class labels (for example, in an image labeled “Kentucky Warbler”, what is the
likelihood that the model accurately identifies the concept “black crown”). As a result, they
fall short of offering deeper understanding into the workings of a black-box model.

2. Intervention: They often struggle to account for the complex interactions among concepts.
Consequently, intervening to correct a misidentified concept (e.g., “yellow breast”) does not
necessarily improve the accuracy of closely related concepts (e.g., “yellow belly”). This
limitation results in suboptimal accuracy for both individual concepts and the final class label.

3. Performance: Current CBM variants suffer from a trade-off (Zarlenga et al., 2022) between
model performance and interpretability. However, an ideal interpretable model should har-
ness the synergy between performance and interpretability to get the best of both worlds.

In response to these limitations, we propose Energy-based Concept Bottleneck Models (ECBMs).
Our ECBMs use a set of neural networks to define the joint energy of the input x, concept c, and
class label y. With such a unified interface, (1) prediction of the class label y, (2) prediction of
concepts c-k (i.e., all concepts except for ck) after correcting concept ck for input x, and (3) condi-
tional interpretation among class label y, concept ck, and another concept ck′ can all be naturally
represented as conditional probabilities p(y|x), p(c-k|x, ck), and p(ck|y, ck′), respectively; these
probabilities are then easily computed by composing different energy functions.

We summarize our contributions as follows:

• Beyond typical concept-based prediction, we identify the problems of concept correction and
conditional interpretation as valuable tools to provide concept-based interpretations.

• We propose Energy-based Concept Bottleneck Models (ECBMs), the first general method to
unify concept-based prediction, concept correction, and conditional interpretation as condi-
tional probabilities under a joint energy formulation.

• With ECBM’s unified interface, we derive a set of algorithms to compute different conditional
probabilities by composing different energy functions.

• Empirical results show that our ECBMs significantly outperform the state-of-the-art on real-
world datasets. Code is available at https://github.com/xmed-lab/ECBM.

2 RELATED WORK

Concept Bottleneck Models (CBMs) (Koh et al., 2020; Kumar et al., 2009; Lampert et al., 2009)
use a feature extractor and a concept predictor to generate the “bottleneck” concepts, which are fed
into a predictor to predict the final class labels. Concept Embedding Models (CEMs) (Zarlenga
et al., 2022) build on CBMs to characterize each concept through a pair of positive and negative
concept embeddings. Post-hoc Concept Bottleneck Models (PCBMs) (Yuksekgonul et al., 2022)
use a post-hoc explanation model with additional residual fitting to further improve final accuracy.
Probabilistic Concept Bottleneck Models (ProbCBMs) (Kim et al., 2023) incorporate probabilistic
embeddings to enable uncertainty estimation of concept prediction. There are a diverse set of CBM
variants (Barbiero et al., 2023; 2022; Havasi et al., 2022; Ghosh et al., 2023a;b; Yang et al., 2023;
Sarkar et al., 2022; Oikarinen et al., 2023), each addressing problems from their unique perspectives.
This diversity underscores the vitality of research within this field.

Here we note several key differences between the methods above and our ECBMs. (1) These ap-
proaches are inadequate at accounting for the complex, nonlinear interplay among concepts. For
example, correcting a mispredicted concept does not necessarily improve the accuracy of related
concepts, leading suboptimal final accuracy. (2) They cannot effectively quantify the complex con-
ditional dependencies (detailed explanations in Appendix C.4) between different concepts and class
labels, therefore failing to offer conditional interpretation on how a black-box model works. In
contrast, our ECBMs address these limitations by defining the joint energy of candidate (input, con-
cept, class) tuples and unify both concept correction and conditional interpretation as conditional
probabilities, which are generated by composing different energy functions.

Energy-Based Models (LeCun et al., 2006; Tu et al., 2020; Deng et al., 2020; Nijkamp et al., 2020)
leverage Boltzmann distributions to decide the likelihood of input samples, mapping each sample to
a scalar energy value through an energy function. The development of energy-based models have
been signficantly influenced by pioneering works such as (Xie et al., 2016) and (Xie et al., 2018).
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Beyond classification (Li et al., 2022; Grathwohl et al., 2019), energy-based models have also been
applied to structured prediction tasks (Belanger & McCallum, 2016; Rooshenas et al., 2019; Tu &
Gimpel, 2019). Xie et al. and Du et al. use energy-based models for the distribution of data
and labels, which also capture concepts. These methods use energy functions to improve prediction
performance, but cannot provide concept-based interpretations. In contrast, our ECBMs estimate
the joint energy of input, concepts, and class labels, thereby naturally providing comprehensive
concept-based interpretations that align well with human intuition.

Unsupervised Concept-Based Models, unlike CBMs, aim to extract concepts without concept an-
notations. This is achieved by introducing inductive bias based on Bayesian deep learning with
probabilistic graphical models (Wang et al., 2019; Wang & Yeung, 2016; 2020; Wang & Yan, 2023;
Xu et al., 2023), causal structure (Lin et al., 2022), clustering structure (Chen et al., 2019; Ma
et al., 2023), generative models (Du et al., 2021; Liu et al., 2023a) or interpretability desiderata (Al-
varez Melis & Jaakkola, 2018).

3 ENERGY-BASED CONCEPT BOTTLENECK MODELS

In this section, we introduce the notation, problem settings, and then our proposed ECBMs in detail.

Notation. We consider a supervised classification setting with N data points, K concepts, and M

classes, namely D = (x(j), c(j),y(j))
N

j=1, where the j-th data point consists of the input x(j) ∈ X ,
the label y(j) ∈ Y ⊂ {0, 1}M , and the concept c(j) ∈ C = {0, 1}K ; note that Y is the space of
M -dimensional one-hot vectors while C is not. We denote as ym ∈ Y the M -dimensional one-hot
vector with the m-th dimension set to 1, where m ∈ {1, . . . ,M}. c(j)k denotes the k-th dimension of
the concept vector c(j), where k ∈ {1, . . . ,K}. We denote [c(j)i ]i ̸=k as c(j)-k for brevity. A pretrained
backbone neural network F : X → Z is used to extract the features z ∈ Z from the input x ∈ X .
Finally, the structured energy network Eθ(·, ·) parameterized by θ, maps the (x,y), (x, c), or (c,y)
to real-valued scalar energy values. We omit the superscript (j) when the context is clear.

Problem Settings. For each data point, we consider three problem settings:

1. Prediction (p(c,y|x)). This is the typical setting for concept-based models; given the input
x, the goal is to predict the class label y and the associated concepts c to interpret the pre-
dicted class label. Note that CBMs decompose p(c,y|x) to predict p(c|x) and then p(y|c).

2. Concept Correction/Intervention (e.g., p(c-k|x, ck)). Given the input x and a corrected
concept ck, predict all the other concepts c-k.

3. Conditional Interpretations (Wang et al., 2019) (e.g., p(c|y) or p(ck|y, ck′)). Interpret the
model using conditional probabilities such as p(ck|y, ck′) (i.e., given an image with class
label y and concept ck′ , what is the probability that the model correctly predicts concept ck).

3.1 STRUCTURED ENERGY-BASED CONCEPT BOTTLENECK MODELS

Overview. Our ECBM consists of three energy networks collectively parameterized by θ: (1) a
class energy network Eclass

θ (x,y) that measures the compatibility of input x and class label y,
(2) a concept energy network Econcept

θ (x, c) that measures the compatibility of input x and the K

concepts c, and (3) a global energy network Eglobal
θ (c,y) that measures the compatability of the

K concepts c and class label y. The class and concept energy networks model class labels and
concepts separately; in contrast, the global energy network model the global relation between class
labels and concepts. For all three energy networks, lower energy indicates better compatibility.
ECBM is trained by minimizing the following total loss function:

Lall
total = E(x,c,y)∼pD(x,c,y)[Ltotal(x, c,y)] (1)

Ltotal(x, c,y) = Lclass(x,y) + λcLconcept(x, c) + λgLglobal(c,y), (2)
where Lclass, Lconcept, and Lglobal denote the loss for training the three energy networks
Eclass

θ (x,y), Econcept
θ (x, c), and Eglobal

θ (c,y), respectively. λc and λg are hyperparameters. Fig. 1
shows an overview of our ECBM. Below we discuss the three loss terms (Eqn. 1) in detail.

Class Energy Network Eclass
θ (x,y). In our ECBM, each class m is associated with a trainable

class embedding denoted as um. As shown in Fig. 1(top), given the input x and a candidate label
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Figure 1: Overview of our ECBM. Top: During training, ECBM learns positive concept embed-
dings v

(+)
k (in black), negative concept embeddings v

(−)
k (in white), the class embeddings um

(in black), and the three energy networks by minimizing the three energy functions, Eclass
θ (x,y),

Econcept
θ (x, c), and Eglobal

θ (c,y) using Eqn. 1. The concept c and class label y are treated as con-
stants. Bottom: During inference, we (1) freeze all concept and class embeddings as well as all
networks, and (2) update the predicted concept probabilities ĉ and class probabilities ŷ by minimiz-
ing the three energy functions using Eqn. 1.

y, the feature extractor F first compute the features z = F (x). We then feed y’s associated class
label embedding u along with the features z into a neural network Gzu(z,u) to obtain the final
Eclass

θ (x,y). Formmaly we have,

Eclass
θ (x,y) = Gzu(z,u), (3)

where Gzu(·, ·) is a trainable neural network. To train the class energy network, we use the Boltz-
mann distribution to define the conditional likelihood of y given input x:

pθ(y|x) =
exp(−Eclass

θ (x,y))∑M
m=1 exp(−Eclass

θ (x,ym))
, (4)

where the denominator serves as a normalizing constant. ym ∈ Y a one-hot vector with the m-th
dimension set to 1. The class energy network Eclass

θ (x,y) is parameterized by θ; it maps the input-
class pair (x,y) to a real-valued scalar energy. Our ECBM uses the negative log-likelihood as the
loss function; for an input-class pair (x,y):

Lclass(x,y) = − log pθ(y|x) = Eclass
θ (x,y) + log

(∑M

m=1
e−Eclass

θ (x,ym)
)
. (5)

Concept Energy Network Econcept
θ (x, c). Our concept energy network Econcept

θ (x, c) consists
of K sub-networks, Econcept

θ (x, ck) where k ∈ {1, . . . ,K}. Each sub-network Econcept
θ (x, ck)

measures the compatibility of the input x and the k-th concept ck ∈ {0, 1}. Each concept k is
associated with a positive embedding v

(+)
k and a negative embedding v

(−)
k . We define the k-th

concept embedding vk as a combination of positive and negative embeddings, weighted by the
concept probability ck, i.e., vk = ck ·v(+)

k +(1−ck) ·v(−)
k . As shown in Fig. 1(top), given the input

x and an concept ck, the feature extractor F first compute the features z = F (x). We then feed ck’s
associated concept embedding (v(+)

k ) if ck = 1 and (v(−)
k ) if ck = 0 along with the features z into
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a neural network to obtain the final Econcept
θ (x, ck). Formally, we have

Econcept
θ (x, ck) = Gzv(z,vk), (6)

where Gzv(·, ·) is a trainable neural network. Similar to the class energy network (Eqn. 5), the loss
function for training the k-th sub-network Econcept

θ (x, ck) is

L(k)
concept(x, ck) = Econcept

θ (x, ck) + log
(∑

ck∈{0,1}
e−Econcept

θ (x,ck)
)
. (7)

Therefore, for each input-concept pair (x, c), the loss function for training Econcept
θ (x, c) is

Lconcept(x, c) =
∑K

k=1
L(k)
concept(x, ck). (8)

Global Energy Network Eglobal
θ (c,y). The class energy network learns the dependency between

the input and the class label, while the concept energy network learns the dependency between the
input and each concept separately. In contrast, our global energy network learns (1) the interaction
between different concepts and (2) the interaction between all concepts and the class label.

Given the class label y and the concepts c = [ck]
K
k=1, we will feed y’s associated class label em-

bedding u along with c’s associated K concept embeddings [vk]
K
k=1 (vk = v

(+)
k ) if ck = 1 and

(vk = v
(−)
k ) if ck = 0 into a neural network to compute the global energy Eglobal

θ (c,y). Formally,
we have

Eglobal
θ (c,y) = Gvu([vk]

K
k=1,u), (9)

where Gvu(·, ·) is a trainable neural network. [vk]
k
k=1 denotes the concatenation of all concept

embeddings. For each concept-class pair (c,y), the loss function for training Eglobal
θ (c,y) is

Lglobal(c,y) = Eglobal
θ (c,y) + log

(∑M

m=1,c′∈C
e−Eglobal

θ (c′,ym)
)
, (10)

where c′ enumerates all concept combinations in the space C. In practice, we employ a negative
sampling strategy to enumerate a subset of possible combinations for computational efficiency.

Inference Phase. After training ECBM using Eqn. 1, we can obtain the feature extractor F and
energy network parameters θ (including class embeddings [um]Mm=1, concept embeddings [vk]

K
k=1,

as well as the parameters of neural networks Gzu(·, ·), Gzv(·, ·), and Gvu(·, ·)). During inference, we
will freeze all parameters F and θ to perform (1) prediction of concepts and class labels (Sec. 3.2),
(2) concept correction/intervention (Sec. 3.3), and (3) conditional interpretations (Sec. 3.4). Below
we provide details on these three inference problems.

3.2 PREDICTION

To predict c and y given the input x, we freeze the feature extractor F and the energy network
parameters θ and search for the optimal prediction of concepts ĉ and the class label ŷ as follows:

argminĉ,ŷ Lclass(x, ŷ) + λcLconcept(x, ĉ) + λgLglobal(ĉ, ŷ), (11)

where Lclass(·, ·), Lconcept(·, ·), and Lglobal(·, ·) are the instance-level loss functions in Eqn. 5,
Eqn. 8, and Eqn. 10, respectively. Since the second term of these three loss functions remain constant
during inference, one only needs to minimize the joint energy below:

Ejoint
θ (x, c,y) ≜ Eclass

θ (x,y) + λcE
concept
θ (x, c) + λgE

global
θ (c,y). (12)

Therefore Eqn. 11 is simplified to argminĉ,ŷ Ejoint
θ (x, ĉ, ŷ). To make the optimization tractable,

we relax the support of ĉ from {0, 1}K to [0, 1]K ; similarly we relax the support of ŷ from Y ⊂
{0, 1}M to [0, 1]M (with the constraint that all entries of ŷ sum up to 1). We use backpropagation
to search for the optimal ĉ and ŷ. After obtaining the optimal ĉ and ŷ, we round them back to the
binary vector space {0, 1}K and the one-hot vector space Y as the final prediction. More details are
provided in Algorithm 1 of Appendix B. Comprehensive details about the hyperparameters used in
this work can be found in Appendix B.1. Additionally, we present an ablation study that analyzes
hyperparameter sensitivity in Table 5 of Appendix C.2.
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3.3 CONCEPT INTERVENTION AND CORRECTION

Similar to most concept-based models, our ECBMs also supports test-time intervention. Specifi-
cally, after an ECBM predicts the concepts c and class label y, practitioners can examine c and y
to intervene on some of the concepts (e.g., correcting an incorrectly predicted concept). However,
existing concept-based models do not capture the interaction between concepts; therefore correcting
a concept does not help correct highly correlated concepts, leading to suboptimal concept and class
accuracy. In contrast, our ECBMs are able to propagate the corrected concept(s) to other correlated
concepts, thereby improving both concept and class accuracy. Proposition 3.1 below shows how our
ECBMs automatically correct correlated concepts after test-time intervention and then leverage all
corrected concepts to further improve final classification accuracy.
Proposition 3.1 (Joint Missing Concept and Class Probability). Given the ground-truth values of
concepts [ck]K−s

k=1 , the joint probability of the remaining concepts [ck]Kk=K−s+1 and the class label
y can be computed as follows:

p([ck]
K
k=K−s+1,y|x, [ck]K−s

k=1 ) = e−E
joint
θ

(x,c,y)∑M
m=1

∑
[ck]K

K−s+1
∈{0,1}s (e

−E
joint
θ

(x,c,ym))
, (13)

where Ejoint
θ (x, c,y) is the joint energy defined in Eqn. 12.

3.4 CONDITIONAL INTERPRETATIONS

ECBMs are capable of providing a range of conditional probabilities that effectively quantify the
complex conditional dependencies between different concepts and class labels. These probabilities
can be represented by energy levels. For example, Proposition 3.2 below computes p(ck|y) to
interpret the importance of the concept ck to a specific class label y in an ECBM.
Proposition 3.2 (Marginal Class-Specific Concept Importance). Given the target class y, the
marginal concept importance (significance of each individual concept) can be expressed as:

p(ck|y) ∝
∑

c-k

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(e−
∑K

k′=1
E

concept
θ

(x,c
k′ ))·p(x)

∑
x e−Eclass

θ
(x,y)·p(x)

,
(14)

where c represents the full vector of concepts and can be broken down into [ck, c−k].

Proposition 3.2 above interprets the importance of each concept ck separately. In contrast, Proposi-
tion 3.3 below computes the joint distribution of all concepts p(c|y) to identify which combination
of concepts c best represents a specific class y.
Proposition 3.3 (Joint Class-Specific Concept Importance). Given the target class y, the joint
concept importance (significance of combined concepts) can be computed as:

p(c|y) ∝

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(e−
∑K

k=1 E
concept
θ

(x,ck))·p(x)

∑
x e−Eclass

θ
(x,y)·p(x)

.
(15)

ECBMs can also provide interpretation on the probability of a correct concept prediction ck, given
the class label and another concept ck′ . This is computed as p(ck|ck′ ,y) using Proposition 3.4
below. This demonstrates our ECBM’s capability to reason about additional concepts when we have
knowledge of specific labels and concepts.
Proposition 3.4 (Class-Specific Conditional Probability among Concepts). Given a concept la-
bel ck′ and the class label y, the probability of predicting another concept ck is:

p(ck|ck′ ,y) ∝

∑
[cj ]

K
j ̸=k,k′∈{0,1}K−2

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(e−
∑K

l=1 E
concept
θ

(x,cl))·p(x)

∑
[cj ]

K
j ̸=k

∈{0,1}K−1

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(e−
∑K

l=1
E

concept
θ

(x,cl))·p(x)

.

Proposition 3.5 computes the conditional probability of one concept given another concept p(ck|ck′),
which interprets the interaction (correlation) among concepts in an ECBM.
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Table 1: Accuracy on Different Datasets. We report the mean and standard deviation from five runs
with different random seeds. For ProbCBM (marked with “*”), we report the best results from the
ProbCBM paper (Kim et al., 2023) for CUB and AWA2 datasets.

Model
Data CUB CelebA AWA2

Metric Concept Overall
Concept Class Concept Overall

Concept Class Concept Overall
Concept Class

CBM 0.964 ± 0.002 0.364 ± 0.070 0.759 ± 0.007 0.837 ± 0.009 0.381 ± 0.006 0.246 ± 0.005 0.979 ± 0.002 0.803 ± 0.023 0.907 ± 0.004
ProbCBM* 0.946 ± 0.001 0.360 ± 0.002 0.718 ± 0.005 0.867 ± 0.007 0.473 ± 0.001 0.299 ± 0.001 0.959 ± 0.000 0.719 ± 0.001 0.880 ± 0.001

PCBM - - 0.635 ± 0.002 - - 0.150 ± 0.010 - - 0.862 ± 0.003
CEM 0.965 ± 0.002 0.396 ± 0.052 0.796 ± 0.004 0.867 ± 0.001 0.457 ± 0.005 0.330 ± 0.003 0.978 ± 0.008 0.796 ± 0.011 0.908 ± 0.002

ECBM 0.973 ± 0.001 0.713 ± 0.009 0.812 ± 0.006 0.876 ± 0.000 0.478 ± 0.000 0.343 ± 0.000 0.979 ± 0.000 0.854 ± 0.000 0.912 ± 0.000

Proposition 3.5 (Class-Agnostic Conditional Probability among Concepts). Given one concept
ck, the conditional probability of another concept ck′ can be compuated as:

p(ck|ck′ ) ∝

∑M
m=1

∑
[cj ]

K
j ̸=k,k′∈{0,1}K−2

∑
x

 e
−E

global
θ

(c,y)∑M
m=1 E

global
θ

(c,ym)

·(e−
∑K

l=1 E
concept
θ

(x,cl))·p(x)·p(ym)

∑M
m=1

∑
[cj ]

K
j ̸=k

∈{0,1}K−1
∑

x

 e
−E

global
θ

(c,y)∑M
m=1 E

global
θ

(c,ym)

·(e−
∑K

l=1
E

concept
θ

(x,cl))·p(x)·p(ym)

.

Besides global interpretation above, ECBMs can also provide instance-level interpretation. For ex-
ample, Proposition A.2 in Appendix A shows how ECBMs reason about the conditional probability
of the class label y given the input x and a known concept ck. More ECBM conditional interpre-
tations and all related proofs are included in Appendix A.

4 EXPERIMENTS

In this section, we compare our ECBM with existing methods on real-world datasets.

4.1 EXPERIMENT SETUP

Datasets. We evaluate different methods on three real-world datasets:

• Caltech-UCSD Birds-200-2011 (CUB) (Wah et al., 2011) is a fine-grained bird classification
dataset with 11,788 images, 200 classes and 312 annotated attributes. Following CBM (Koh
et al., 2020), ProbCBM (Kim et al., 2023) and CEM (Zarlenga et al., 2022), we select 112
attributes as the concepts and use the same data splits.

• Animals with Attributes 2 (AWA2) (Xian et al., 2018) is a a zero-shot learning dataset con-
taining 37,322 images and 50 animal classes. We use all 85 attributes as concepts.

• Large-scale CelebFaces Attributes (CelebA) (Liu et al., 2015) contains 200, 000 images, each
annotated with 40 face attributes. Following the setting in CEM (Zarlenga et al., 2022), we use
the 8 most balanced attributes as the target concepts and 256 classes for the classification task.

Baselines and Implementation Details. We compare our ECBM with state-of-the-art methods, i.e.,
concept bottleneck model (CBM) (Koh et al., 2020), concept embedding model (CEM) (Zarlenga
et al., 2022), post-hoc concept bottleneck model (PCBM) (Yuksekgonul et al., 2022), and proba-
bilistic concept bottleneck model (ProbCBM) (Kim et al., 2023). We use ResNet101 (He et al.,
2016) as the feature extractor F for all evaluated methods. We use the SGD optimizer during the
training process. We use λc = 0.3 and λg = 0.3. For the propositions, we have implemented a hard
version (yielding 0/1 output results) for computing probabilities. See Appendix B for more details.

Evaluation Metrics. With {x(j), c(j),y(j)}Nj=1 as the dataset, we denote as {ĉ(j), ŷ(j)}Nj=1 the

model prediction for concepts and class labels. c(j)k and ĉ
(j)
k is the k-th dimension of c(j) and ĉ(j),

respectively. We use the following three metrics to evaluate different methods.

Concept Accuracy evaluates the model’s predictions for each concept individually:

Cacc =
∑N

j=1

∑K
k=1 1(c

(j)
k =ĉ

(j)
k )/(KN), (16)

where 1(·) is the indicator function.

Overall Concept Accuracy evaluates the model’s ability to correctly predict all concepts for each
input x(j). Higher overall concept accuracy indicates the model’s ability to mine the latent correla-
tion between concepts for a more accurate interpretation for each concepts. It is defined as:

Coverall =
∑N

j=1 1(c
(j)=ĉ(j))/N. (17)
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Figure 2: Performance with different ratios of intervened concepts on three datasets (with error
bars). The intervention ratio denotes the proportion of provided correct concepts. We use CEM with
RandInt. CelebA and AWA2 do not have grouped concepts; thus we adopt individual intervention.

Black Footed Albatros Sooty Albatros Black and White Warbler Kentucky WarblerClass 

Image

Concept

Importance

Eye color::black (Ours)

Eye color::black (Oracle)

Breast pattern::solid (Ours)

Breast pattern::solid (Oracle)

Belly pattern::solid (Ours)

Belly pattern::solid (Oracle)

1.00

1.00

0.95

1.00

0.95

1.00

Eye color::black (Ours)
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Belly pattern::solid (Ours)

Belly pattern::solid (Oracle)

Back pattern::solid (Ours)
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Eye color::black (Ours)
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Under tail color::black (Ours)
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Bill color::black (Oracle)
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1.00

1.00

1.00

1.00

1.00

Breast color::yellow (Ours)

Breast color::yellow (Oracle)

Belly color::yellow (Ours)
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Upperparts color::yellow (Ours)

Upperparts color::yellow (Oracle)

1.00

1.00

1.00

1.00

1.00

1.00

Figure 3: Marginal concept importance (p(ck = 1|y)) for top 3 concepts of 4 different classes com-
puted using Proposition 3.2. ECBM’s estimation (Ours) is very close to the ground truth (Oracle).

Class Accuracy evaluates the model’s prediction accuracy for the class label:

Aacc =
∑N

j=1 1(y
(j)=ŷ(j))/N. (18)

4.2 RESULTS

Concept and Class Label Prediction. Table 1 shows different types of accuracy of the evaluated
methods. Concept accuracy across various methods is similar, with our ECBM slightly outper-
forming others. Interestingly, ECBM significantly outperforms other methods in terms of overall
concept accuracy, especially in CUB (71.3% for ECBM versus 39.6% for the best baseline CEM);
this shows that ECBM successfully captures the interaction (and correlation) among the concepts,
thereby leveraging one correctly predicted concept to help correct other concepts’ prediction. Such
an advantage also helps improve ECBM’s class accuracy upon other methods. We have conducted
an ablation study for each component of our ECBM architecture (including a comparison with tra-
ditional black-box models) in Table 4 of Appendix C.2, verifying our design’s effectiveness.

Concept Intervention and Correction. Problem Setting 2 in Sec. 3 and Proposition 3.1 introduce
the scenario where a practitioner (e.g., a clinician) examine the predicted concepts (and class labels)
and intervene on (correct) the concept prediction. An ideal model should leverage such intervention
to automatically correct other concepts, thereby improving both interpretability and class prediction
accuracy. Additional experiments (for the background shift dataset (Koh et al., 2020)) in the Ap-
pendix C.3 demonstrate the potential of our ECBM to enhance the robustness of CBMs. Fig. 2 shows
three types of accuracy for different methods after intervening on (correcting) different proportions
of the concepts, i.e., intervention ratios. In terms of both concept accuracy and overall concept
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(a) Joint class-specific concepts (b) Conditional class-specific concepts (c) Conditional class-agnostic concepts
Prediction (L1 Error: 0.0033) Prediction (L1 Error: 0.0096) Prediction (L1 Error: 0.0017)
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Figure 4: We selected the class “Black and White Warbler” in CUB for illustration. (a) Joint class-
specific concept importance p(ck′ = 1, ck = 1|y) for ECBM’s prediction and ground truth derived
from Proposition 3.3. (b) Class-specific conditional probability among concepts p(ck = 1|ck′ =
1,y) for ECBM’s prediction and ground truth derived from Proposition 3.4. (c) Class-agnostic
conditional probability among concepts p(ck = 1|ck′ = 1) for ECBM’s prediction and ground truth
derived from Proposition 3.5.
accuracy, we can see that our ECBM outperforms the baselines across all intervention ratios. In
terms of class accuracy, ECBM underperforms the vanilla CBM and the state-of-the-art CEM (with
RandInt); this is because they have strict concept bottlenecks, and therefore even very few correct
concepts can significantly improve class accuracy. Note that the primary focus of our ECBM is not
class accuracy enhancement (detailed explanations and individual intervention on the CUB dataset
(Fig. 12) can be found in Appendix C.5). We also provide further evidence demonstrating how our
model can mitigate concept leakage in Fig. 11 of Appendix C.5.

Conditional Interpretations. Fig. 3 shows the marginal concept importance (p(ck|y)) for top 3
concepts of 4 different classes, computed using Proposition 3.2. Our ECBM can provide interpre-
tation on which concepts are the most important for predicting each class. For example, ECBM
correctly identifies “eye color::black” and “bill color::black” as top concepts for “Black and White
Warble”; for a similar class “Kentucky Warble”, ECBM correctly identifies “breast color::yellow”
and “belly color::yellow” as its top concepts. Quantitatively, ECBM’s estimation (Ours) is very
close to the ground truth (Oracle).

Fig. 4(a) and Fig. 4(b) show how ECBM interprets concept relations for a specific class. We show
results for the first 20 concepts in CUB (see Table 3 in Appendix C for the concept list); we include
full results (ECBM, CBM and CEM) on all 112 concepts in Appendix C. Specifically, Fig. 4(a)
shows the joint class-specific concept importance, i.e., p(ck′ = 1, ck = 1|y) (with y as “Black and
White Warble”), computed using Proposition 3.3 versus the ground truth. For example, ECBM cor-
rectly estimates that for the class “Black and White Warble”, concept “belly color” and “under tail
color” have high joint probability; this is intuitive since different parts of a bird usually have the same
color. Similarly, Fig. 4(b) shows class-specific conditional probability between different concepts,
i.e., p(ck = 1|ck′ = 1,y) (with y as “Black and White Warble”), computed using Proposition 3.4.
Besides class-specific interpretation, Fig. 4(c) shows how ECBM interprets concept relations in gen-
eral using conditional probability between concepts, i.e., p(ck|ck′), computed using Proposition 3.5.
Quantitatively, the average L1 error (in the range [0, 1]) for Fig. 4(a-c) is 0.0033, 0.0096, and 0.0017,
respectively, demonstrating ECBM’s accurate conditional interpretation.

5 CONCLUSION AND LIMITATIONS

In this paper, we go beyond typical concept-based prediction to identify the problems of concept
correction and conditional interpretation as valuable tools to provide concept-based interpretations.
We propose ECBM, the first general method to unify concept-based prediction, concept correction,
and conditional interpretation as conditional probabilities under a joint energy formulation. Fu-
ture work may include extending ECBM to handle uncertainty quantification using Bayesian neural
networks (Wang & Wang, 2023), enable unsupervised learning of concepts (Ma et al., 2023) via
graphical models within the hierarchical Bayesian deep learning framework (Wang & Yeung, 2016;
2020), and enable cross-domain interpretation (Wang et al., 2020; Xu et al., 2022; Liu et al., 2023b).
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A ADDITIONAL CONDITIONAL INTERPRETATIONS AND PROOFS

Given the input x and label y, we propose to use the Boltzmann distribution to define the conditional
likelihood of label y given x:

pθ(y|x) =
exp(−Eclass

θ (x,y))∑M
m=1 exp(−Eclass

θ (x,ym))
, (19)

where ym ∈ Y a one-hot vector with the m-th dimension set to 1.
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We use the negative log-likelihood as the loss function for an input-class pair (x,y), and the ex-
panded form is:

Lclass(x,y) = − log pθ(y|x)

= − log
exp(−Eclass

θ (x,y))∑M
m=1 exp(−Eclass

θ (x,ym))

= − log
(
exp

(
−Eclass

θ (x,y)
))

+ log

(
M∑

m=1

exp
(
−Eclass

θ (x,ym)
))

= Eclass
θ (x,y) + log

(
M∑

m=1

e−Eclass
θ (x,ym)

)
.

(20)

Thus, we can have:
p(y|x) ∝ e−Eclass

θ (x,y), (21)
which connect our energy function Eclass

θ (x,y) to the conditional probability p(y|x).
Similarly, we denote the local concept energy of the energy network parameterized by θ between
input x and the k-th dimension of concept ck as Econcept

θ (x, ck). We can obtain:

p(ck|x) ∝ e−Econcept
θ (x,ck). (22)

We denote the global concept-class energy of the energy network parameterized by θ between input
c and the label y as Eglobal

θ (c,y). Similarly, we then have:

p(y|c) = e−E
global
θ

(c,y)∑M
m=1 e−E

global
θ

(c,ym)
. (23)

Similarly, with the joint energy in Eqn. 12, we have

p(x, c,y) = e−E
joint
θ

(x,c,y)∑M
m=1 e−E

joint
θ

(x,c,ym)
. (24)

Proposition 3.1 (Joint Missing Concept and Class Probability). Given the ground-truth values of
concepts [ck]K−s

k=1 , the joint probability of the remaining concepts [ck]Kk=K−s+1 and the class label
y can be computed as follows:

p([ck]
K
k=K−s+1,y|x, [ck]K−s

k=1 ) = e−E
joint
θ

(x,c,y)∑M
m=1

∑
[ck]K

K−s+1
∈{0,1}s (e

−E
joint
θ

(x,c,ym))
, (13)

where Ejoint
θ (x, c,y) is the joint energy defined in Eqn. 12.

Proof. By definition of joint energy, we have that

p([ck]
K
k=K−s+1,y|x, [ck]K−s

k=1 ) ∝ e−Ejoint
θ (x,c,y). (25)

Therefore by Bayes rule, we then have

p([ck]
K
k=K−s+1,y|x, [ck]K−s

k=1 ) = e−E
joint
θ

(x,c,y)∑M
m=1

∑
[ck]K

K−s+1
∈{0,1}s (e

−E
joint
θ

(x,c,ym))
, (26)

concluding the proof.

We initially establish the Joint Class-Specific Concept Importance (Proposition 3.3), which we sub-
sequently employ to marginalize ck and demonstrate the Marginal Class-Specific Concept Impor-
tance (Proposition 3.2).
Proposition 3.3 (Joint Class-Specific Concept Importance). Given the target class y, the joint
concept importance (significance of combined concepts) can be computed as:

p(c|y) ∝

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(e−
∑K

k=1 E
concept
θ

(x,ck))·p(x)

∑
x e−Eclass

θ
(x,y)·p(x)

.
(15)
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Proof. Given Eqn. 21, Eqn. 22 and Eqn. 23, we have

p(c|y) = p(y|c)·p(c)
p(y)

=
∑

x p(y|c)·p(c|x)·p(x)
p(y)

=
∑

x p(y|c)·(
∏K

k=1 p(ck|x))·p(x)
p(y)

=

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(
∏K

k=1 p(ck|x))·p(x)∑
x p(y|x)·p(x)

∝

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(e−
∑K

k=1 E
concept
θ

(x,ck))·p(x)

∑
x e−Eclass

θ
(x,y)·p(x)

,

(27)

where
p(y) =

∑
x

p(x,y)

=
∑
x

p(y|x) · p(x)

=
∑
x

e−Eclass
θ (x,y) · p(x),

or

=
∑
c

p(y|c) · p(c)

=
∑
c

( e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)
) · p(c),

(28)

concluding the proof.

Proposition 3.2 (Marginal Class-Specific Concept Importance). Given the target class y, the
marginal concept importance (significance of each individual concept) can be expressed as:

p(ck|y) ∝
∑

c-k

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(e−
∑K

k′=1
E

concept
θ

(x,c
k′ ))·p(x)

∑
x e−Eclass

θ
(x,y)·p(x)

,
(14)

Proof. Given Eqn. 21, Eqn. 22, Eqn. 23 and Proposition 3.3, marginal class-specific concept impor-
tance is marginalize ck ∈ c of Proposition 3.3, we have

p(ck|y) =
∑
c-k

p(ck, c-k|y)

∝
∑
c-k

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(e−
∑K

k′=1
E

concept
θ

(x,c
k′ ))·p(x)

∑
x e−Eclass

θ
(x,y)·p(x)

,

(29)

concluding the proof.

Proposition 3.4 (Class-Specific Conditional Probability among Concepts). Given a concept la-
bel ck′ and the class label y, the probability of predicting another concept ck is:

p(ck|ck′ ,y) ∝

∑
[cj ]

K
j ̸=k,k′∈{0,1}K−2

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(e−
∑K

l=1 E
concept
θ

(x,cl))·p(x)

∑
[cj ]

K
j ̸=k

∈{0,1}K−1

∑
x

 e−E
global
θ

(c,y)∑M
m=1 Eglobal

θ (c,ym)

·(e−
∑K

l=1
E
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Proof. Given Eqn. 22, Eqn. 23, and Proposition 3.3, we have

p(ck|ck′ ,y) = p(ck,ck′ |y)
p(ck′ |y)

=

∑
[cj ]

K
j ̸=k,k′∈{0,1}K−2 p(c|y)∑

[cj ]
K
j ̸=k

∈{0,1}K−1 p(c|y)

=

∑
[cj ]

K
j ̸=k,k′∈{0,1}K−2 p(ck,ck′ ,[cj ]

K
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[cj ]
K
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θ
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∑
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θ
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θ
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(x,cl))·p(x)

,

(30)

concluding the proof.

Proposition 3.5 (Class-Agnostic Conditional Probability among Concepts). Given one concept
ck, the conditional probability of another concept ck′ can be compuated as:

p(ck|ck′ ) ∝

∑M
m=1

∑
[cj ]

K
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.

Proof. Given Proposition 3.3 and Propostion 3.4, we have
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k′ )
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(31)

concluding the proof.

Proposition A.1 (Missing Concept Probability). Given the ground-truth values of concepts
[ck]

K−s
k=1 , the joint probability of the remaining concepts ck′ can be computed as follows:

p([ck]
K
k=K−s+1|x, [ck]K−s

k=1 ) =
∑M

m=1 e−E
joint
θ

(x,c,ym)∑M
m=1

∑
[ck]K

K−s+1
∈{0,1}s (e

−E
joint
θ

(x,c,ym))
, (32)

where Ejoint
θ (x, c,y) is the joint energy defined in Eqn. 12.

Proof. This follows directly after marginalizing y out from p([ck]
K
k=K−s+1,y|x, [ck]

K−s
k=1 ) in Propo-

sition 3.1.
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Proposition A.2 (Conditional Class Probability Given a Known Concept). Given the input x
and a concept ck, the conditional probability of label y is:

p(y|x, ck) ∝

∑
c-k

e−E
joint
θ

(x,c,y)∑M
m=1 e−E

joint
θ

(x,c,ym)

e−E
concept
θ

(x,ck)
.

(33)

Proof. Given Eqn. 22 and Eqn. 24, marginalize ck ∈ c of Eqn. 24, we have

p(y|x, ck) = p(y,x,ck)
p(x,ck)

=
∑

c-k
p(y,x,c)

p(x,ck)

=
∑
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p(y,x,ck,c-k)

p(x,ck)

=

∑
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e−E
joint
θ

(x,c,y)∑M
m=1 e−E

joint
θ

(x,c,ym)

p(ck|x)·p(x)

∝
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e−E
joint
θ

(x,c,y)∑M
m=1 e−E

joint
θ

(x,c,ym)

e−E
concept
θ

(x,ck)
,

(34)

concluding the proof.

B IMPLEMENTATION DETAILS

B.1 HYPERPARAMETERS

For a fair comparison, we use ResNet101 (He et al., 2016) as the backbone and 299 × 299 as the
input size for all evaluated methods, except CelebA with 64 × 64. We use the SGD optimizer to
train the model. We use λc = 0.3, λg = 0.3, batch size 64, a learning rate of 1× 10−2, and at most
300 epochs. In the gradient inference process, we use the Adam optimizer, λc = 0.49, λg = 0.004
(this is equivalent to applying a ratio of 1:1:0.01 for the class, concept and global energy terms,
respectively) , batch size 64, and a learning rate of 1×10−1. We run all experiments on an NVIDIA
RTX3090 GPU. In order to enhance the robustness of the c-y energy head, we deployed perturbation
augmentation when training ECBMs. Specifically, we perturbed 20% of noisy pairs at probability
p = 0.2 at the input of c-y energy head during the training phase. These are not incorporated during
the phases of inference and intervention.

Regarding hyperparameter λc = 0.49, this is because in our implementation, we introduce λl to Eq
(12) in the paper, resulting in: λlE

class
θ (x,y) + λcE

concept
θ (x, c) + λgE

global
θ (c,y). We then set

λl = 1, λc = 1 and λg = 0.01. This is therefore equivalent to setting λc = 1/(1+1+0.01) = 0.49

for the original Eq (12) without λl: Eclass
θ (x,y) + λcE

concept
θ (x, c) + λgE

global
θ (c,y).
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Algorithm 1 Gradient-Based Inference Algorithm

1: Input: Image x, positive and negative concept embedding [v
(+)
k ]Kk=1 and [v

(−)
k ]Kk=1, label em-

bedding [um]Mm=1, weight parameters λc, λg , learning rate η, concept and class number K, M .

2: Output: Concept and label probability ĉ, ŷ.
3: Initialize un-normalized concept probability c̃.
4: Initialize un-normalized class probability ỹ.
5: while not converge do
6: ĉ← Sigmoid(c̃)
7: ŷ ← Softmax(ỹ)
8: for k ← 1 To K do
9: v

′

k ← ĉk × v
(+)
k + (1− ĉk)× v

(−)
k

10: end for
11: for m← 1 To M do
12: u

′

m ← ŷm × um

13: end for
14: Calculate Lclass(x, ŷ) based on Eqn. 5.
15: Calculate Lconcept(x, ĉ) based on Eqn. 8.
16: Calculate Lglobal(ĉ, ŷ) based on Eqn. 10.
17: Ltotal = Lclass + λcLconcept + λgLglobal

18: c̃← c̃− η∇Ltotal

19: ỹ ← ỹ − η∇Ltotal

20: end while
21: ĉ← Sigmoid(c̃)
22: ŷ ← Softmax(ỹ)
23: return ĉ, ŷ

B.2 ENERGY MODEL ARCHITECTURES

Table 2 shows the neural network architectures for different energy functions.

Table 2: Energy Model Architecture.

(a) x-y energy network.

z = FeatureExtractor(x)

z = FC(Input, hidden) (z)

z = Dropout(p=0.2) (z)

u = Embedding(y)

z = z * Norm2(u) + z

z = Relu (z)

energy = FC(hidden, 1) (z)

(b) x-c energy network.

z = FeatureExtractor(x)

z = FC(Input, hidden) (z)

z = Dropout(p=0.2) (z)

v = Embedding(c)

z = z * Norm2(v) + z

z = Relu (z)

energy = FC(hidden, 1) (z)

(c) c-y energy network.

v = Embedding(c)

u = Embedding(y)

cy = u * Norm2(v) + u

cy = Relu (cy)

energy = FC(hidden, 1) (cy)

C MORE RESULTS

C.1 VISUALIZATION RESULTS

We selected the ground truth and prediction results of the class “Black and White Warbler” in CUB
dataset as a representative case for visualization. We provide the complete 112 concepts heatmaps
of joint class-specific of concepts importance (p(ck′ = 1, ck = 1|y)), class-specific conditional
probability among concepts p(ck = 1|ck′ = 1,y) and class-agnostic conditional probability among
concepts (p(ck = 1|ck′ = 1)) in Fig. 5, Fig. 6 and Fig. 7, respectively. Note that p(ck′ = 1, ck =
1|y) = 1 leads to p(ck = 1|ck′ = 1,y); since most entries (p(ck′ = 1, ck = 1|y)) in Fig. 4(a) are
close to 1, so is Fig. 4(b). Table 3 shows the 20 specific concept names used in Fig. 4.
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(a) Ground Truth
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(b) Prediction

Figure 5: Joint class-specific of concepts importance heatmap (p(ck′ = 1, ck = 1|y)) for ECBM’s
ground truth and prediction derived from Proposition 3.3.
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(b) Prediction

Figure 6: Class-specific conditional probability among concepts heatmap p(ck = 1|ck′ = 1,y) for
ECBM’s ground truth and prediction derived from Proposition 3.4.
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(b) Prediction

Figure 7: Class-agnostic conditional probability among concepts heatmap (p(ck = 1|ck′ = 1)) for
ECBM’s ground truth and prediction derived from Proposition 3.5.
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Table 3: 20 concepts shown in Fig. 4.

Index Concept Name

1 has bill shape::curved (up or down)

2 has bill shape::dagger

3 has bill shape::hooked

4 has bill shape::needle

5 has bill shape::hooked seabird

6 has bill shape::spatulate

7 has bill shape::all-purpose

8 has bill shape::cone

9 has bill shape::specialized

10 has wing color::blue

11 has wing color::brown

12 has wing color::iridescent

13 has wing color::purple

14 has wing color::rufous

15 has wing color::grey

16 has wing color::yellow

17 has wing color::olive

18 has wing color::green

19 has wing color::pink

20 has wing color::orange

We further provide two baseline results (CBM and CEM) on the complete 112 concepts heatmaps
in Fig. 8, Fig. 9 and Fig. 10, respectively.
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(a) CBM’s Prediction
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(b) CEM’s Prediction

Figure 8: Joint class-specific of concepts importance heatmap (p(ck′ = 1, ck = 1|y)) for CBM’s
and CEM’s predictions.

19



Published as a conference paper at ICLR 2024

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

110 0.0

0.2

0.4

0.6

0.8

1.0

(a) CBM’s Prediction
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(b) CEM’s Prediction

Figure 9: Class-specific conditional probability among concepts heatmap p(ck = 1|ck′ = 1,y) for
CBM’s and CEM’s predictions.
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(a) CBM’s Prediction
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(b) CEM’s Prediction

Figure 10: Class-agnostic conditional probability among concepts heatmap (p(ck = 1|ck′ = 1)) for
CBM’s and CEM’s predictions.

C.2 ABLATION STUDY

Table 4 shows the performance of single-branch ECBMs and the black-box model. Table 5 shows
the sensitivity of ECBM to its hyperparameters.

Table 4: Ablation study on single-branch ECBMs and the black-box model.

Model
Data CUB CelebA AWA2

Metric Concept Overall
Concept Class Concept Overall

Concept Class Concept Overall
Concept Class

ECBM (x− y only) - - 0.825 - - 0.265 - - 0.909
ECBM (x− c− y only) 0.968 0.680 0.726 0.870 0.464 0.175 0.979 0.864 0.905

ECBM 0.973 0.713 0.812 0.876 0.478 0.343 0.979 0.854 0.912

CBM 0.964 0.364 0.759 0.837 0.381 0.246 0.979 0.803 0.907
CEM 0.965 0.396 0.796 0.867 0.457 0.330 0.978 0.796 0.908

Black-box - - 0.826 - - 0.291 - - 0.929
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Table 5: Hyperparameter Sensitivity Analysis.

Hyperparameter
Data CUB CelebA AWA2

Metric Concept Overall
Concept Class Concept Overall

Concept Class Concept Overall
Concept Class

λl = 0.01 0.971 0.679 0.756 0.872 0.456 0.166 0.979 0.854 0.907
λl = 0.1 0.971 0.680 0.795 0.872 0.456 0.322 0.979 0.854 0.908
λl = 1 0.973 0.713 0.812 0.876 0.478 0.343 0.979 0.854 0.912
λl = 2 0.971 0.679 0.808 0.872 0.455 0.327 0.979 0.854 0.911
λl = 3 0.971 0.679 0.808 0.872 0.455 0.326 0.979 0.854 0.911
λl = 4 0.971 0.679 0.806 0.872 0.455 0.327 0.979 0.854 0.911

λc = 0.01 0.971 0.679 0.799 0.872 0.456 0.329 0.979 0.854 0.912
λc = 0.1 0.971 0.679 0.799 0.872 0.456 0.166 0.979 0.864 0.912
λc = 1 0.973 0.713 0.812 0.876 0.478 0.343 0.979 0.854 0.912
λc = 2 0.971 0.679 0.798 0.872 0.455 0.329 0.979 0.854 0.912
λc = 3 0.971 0.679 0.798 0.872 0.455 0.329 0.979 0.854 0.912
λc = 4 0.971 0.679 0.798 0.872 0.455 0.329 0.979 0.854 0.912

λg = 0.0001 0.971 0.679 0.805 0.872 0.455 0.326 0.979 0.854 0.911
λg = 0.001 0.971 0.679 0.805 0.872 0.455 0.326 0.979 0.854 0.911
λg = 0.01 0.973 0.713 0.812 0.876 0.478 0.343 0.979 0.854 0.912
λg = 0.1 0.971 0.680 0.795 0.872 0.456 0.322 0.979 0.854 0.909
λg = 1 0.971 0.680 0.756 0.872 0.456 0.166 0.979 0.854 0.907

C.3 ROBUSTNESS

We believe our ECBMs do potentially enjoy stronger robustness to adversarial attacks compared
to existing CBM variants. Specifically, our ECBMs are designed to understand the relationships
between different concepts, as well as the relationships between concepts and labels. As a result,
during inference, ECBMs can leverage these relationships to automatically correct concepts that may
be influenced by adversarial attacks. Our preliminary results suggest that our ECBM can potentially
improve the robustness against adversarial attacks compared to existing CBM variants.

Table 6: Accuracy on TravelingBirds (Koh et al., 2020) (background shift). We report the CBM
results using Table 3 of (Koh et al., 2020).

Model Concept Overall
Concept Class

Standard - - 0.373
Joint (CBM) 0.931 - 0.518

Sequential (CBM) 0.928 - 0.504
Independent (CBM) 0.928 - 0.518

ECBM 0.945 0.416 0.584

Furthermore, we conducted additional experiments on the TravelingBirds dataset following the ro-
bustness experiments of CBM (Koh et al., 2020) concerning background shifts. The results (Table 6)
reveal that our ECBM significantly outperforms CBMs in this regard. These findings underscore our
model’s superior robustness to spurious correlations.

C.4 THE NOTION OF COMPLEX CONDITIONAL RELATIONS

Previous concept-based methods do not allow one to understand “complex” conditional depen-
dencies (as mentioned in the abstract), such as p(c|y), p(ck|y, ck′), and p(c−k,y|x, ck). Post-
hoc CBMs and vanilla CBMs, with their interpretative linear layers, provide a way to understand
concept-label relationships. In fact, in PCBMs, the weights can indicate each concept’s importance
for a given label (p(ck|y)). However, these existing CBM variants cannot provide more complex
conditional dependencies such as p(ck|y, ck′) and p(c−k,y|x, ck). In contrast, our model, which
relies on the Energy-Based Model (EBM) structure, can naturally provide such comprehensive con-
ditional interpretations.

C.5 INTERVENTION

Leakage in Models. We conducted experiments that address the leakage problem as described in
(Havasi et al., 2022). When fewer concepts were given in the training process, the model should
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not learn as good as the one with all concepts known because of less conceptual information. If
the model holds strong performance regardless of concept quantities, it is more likely to suffer from
information leakage, i.e., learning concept-irrelevant features directly from image input. This will
potentially detriment the accountability of the model interpretation. During training, we provide
different quantities of concept groups available for model to learn, and then test the models based
on these available concepts. Fig. 11 shows the results. We found that our model performs gradually
better when more concept groups are given during training process, instead of intervention-invariant
high performances. This indicates that our model suffers less from information leakage, hence
providing more reliable interpretations.
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Figure 11: The predictive performance of CEM and hard ECBM on the CUB dataset. The horizontal
axis denotes the ratio of concept groups given during the training process, and the vertical axis
denotes the “Class Accuracy”.

Individual Intervention on the CUB dataset. We intervened our model based on individual con-
cepts of the CUB dataset. Fig. 12 shows the intervention results.
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Figure 12: Individual intervention on the CUB dataset (with error bars). The horizontal axis denotes
the ratio of the concept group’s ground truth given during the inference process.
We have several observations based on these intervention results.

1. Our ECBM underperforms CEM with RandInt in terms of class accuracy. This is expected
since CEM is a strong, state-of-the-art baseline with RandInt particularly to improve inter-
vention accuracy. In contrast, our ECBM did not use RandInt. This demonstrates the effec-
tiveness of the RandInt technique that the CEM authors proposed.

2. Even without RandInt, our ECBM can outperform both CBM and CEM in terms of “concept
accuracy” and “overall concept accuracy”, demonstrating the effective of our ECBM when it
comes to concept prediction and interpretation.

3. We would like to reiterate that ECBM’s main focus is not to improve class accuracy, but
to provide complex conditional interpretation (conditional dependencies) such as p(c|y),
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p(ck|y, ck′), and p(c−k,y|x, ck). Therefore, our ECBM is actually complementary to sem-
inal works such as CBM and CEM which focus more on class accuracy and intervention
accuracy.
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