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Abstract

In urban locales, the intricate dynamics of air quality indicators such as Particulate
Matter (PM2.5) and Carbon Monoxide (CO) necessitate sophisticated modeling for
precise prediction and monitoring. However, monitoring stations are sparse, and
effective placement is a key problem in the domain. This study explores a novel
approach utilizing Variational Multi-Task Gaussian Processes (VMTGP) endowed
with a Spectral Mixture (SM) kernel to model the spatiotemporal distribution
of these pollutants in Beijing, which beats the state-of-the-art Gaussian Process
techniques on this dataset in the exact MTGP case. However, our innovation
lies in an in-depth examination of the variational distribution of the inducing
points, which are critical for scalability and accurate approximations in GP models.
Through an empirical lens, we observe a pronounced clustering of inducing points
around certain monitoring stations, hinting at a higher information content in these
locales. Our findings underscore the inherent value in exploiting the clustering
phenomenon of inducing points, opening up new vistas for enhancing the efficacy
and interpretability of multi-task learning paradigms in air quality forecasting.
This insight holds promise for developing more robust and localized air quality
prediction models, crucial for urban planning and public health policy formulations,
and adaptively deciding the most effective locations for placing AQ monitoring
stations.

Gaussian Process, Explainability, Adaptive Deployment, Air Quality

1 Introduction

Urban air quality monitoring is a critical endeavor that directly impacts public health and informs
environmental policy [5] [6] [9]. The complex and interdependent nature of atmospheric pollutants
necessitates sophisticated modeling techniques to accurately predict their behavior over time and
space. Among the myriad of pollutants, Particulate Matter with a diameter of 2.5 micrometers or less
(PM2.5) and Carbon Monoxide (CO) are primary indicators of air quality and possess significant
health implications. PM2.5, due to its minute size, can infiltrate the respiratory system and engender
severe health issues [11], while CO, a colorless and odorless gas, can be lethal when inhaled in large
quantities [1]. The accurate prediction and monitoring of these pollutants are paramount for urban
planning, public health policy formulation, and environmental conservation [4].
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Multi-Output Gaussian Processes: The spatiotemporal dynamics of PM2.5 and CO concentrations
in urban settings like Beijing present a challenging prediction problem. The traditional single-output
Gaussian Processes (SOGP) often fall short in capturing the underlying correlations between these
pollutants. On the other hand, Multi-Output Gaussian Processes (MOGP) [3] offer a promising
avenue to encapsulate the inherent correlations between multiple tasks, in this case, predicting the
concentrations of PM2.5 and CO simultaneously. MOGPs, by design, allow for a shared representation
of the input space, thus enabling the model to learn and exploit the temporal and spatial correlations
between the tasks to improve prediction accuracy.

Variational Distribution: A key aspect of our methodology is the analytical examination of
the variational distribution of the inducing points [10], which are instrumental for scalability and
accurate approximations in GP models. Our empirical findings reveal a distinct clustering of inducing
points around certain monitoring stations, signifying higher information content in these locales. A
meticulous validation demonstrates that these information-rich stations, when utilized individually
for predictive tasks, exhibit a markedly lower Root Mean Square Error (RMSE) compared to their
less-sampled counterparts.

2 Dataset and Preprocessing

The dataset leveraged in this investigation encapsulates hourly recordings of PM2.5 and CO from
36 surveillance stations dispersed throughout Beijing, augmented by meteorological data from the
corresponding district, covering the duration from May 1, 2014, to April 30, 2015. The meteorological
data ensemble encompasses temperature, humidity, pressure, wind speed, wind direction, and weather
conditions, wherein wind direction and weather are designated as categorical variables. [2]

Data Preprocessing In addressing the challenge of missing data to ensure robust data integrity
for subsequent analyses, an extensive preprocessing routine was deployed. Upon initial scrutiny, a
marked lack of pressure data across various stations was observed, necessitating its omission from
the analysis. Moreover, five stations, identified by IDs: 1009, 1013, 1015, 1020, 1021, were excluded
due to the paucity of weather data. From these remaining stations, a random selection of four stations
was made for experimental purposes, each bearing 8760 time-stamps over the month of March.

3 SVMT Spectral Gaussian Process

In addressing the challenges associated with urban air quality monitoring, a robust model capable
of capturing the intricate dependencies between pollutants over time and space is imperative. Our
Gaussian Process chosen model leans on a variational approach, employing a Linear Model of
Coregionalization (LMC) [7], augmented with a Spectral Mixture (SM) kernel [8] and a Multitask
kernel.

3.1 Variational Approach

Variational methods provide a mechanism to approximate intractable posterior distributions by
optimizing a variational distribution to minimize the divergence from the true posterior. Mathe-
matically, given the observed data y, we aim to approximate the posterior p(f |y) by a variational
distribution q(f), where f denotes the latent functions. The optimization objective is to minimize the
Kullback-Leibler divergence between q(f) and p(f |y), given as:

KL[q(f)||p(f |y)] =
∫

q(f) log

(
q(f)

p(f |y)

)
df . (1)

Inducing points, denoted Z = {zm}Mm=1, where M is the number of inducing points, are introduced
to form a lower-rank approximation to the GP prior. The variational distribution over the inducing
points q(u) is optimized, where u = {f(zm)}Mm=1 represents the function values at the inducing
points. Typically, q(u) is chosen to be a multivariate Gaussian distribution with a mean vector m and
a covariance matrix S: q(u) = N (u|m,S).

The variational parameters m and S are optimized to minimize the KL divergence, and the inducing
points Z are either fixed a priori or optimized jointly with the variational parameters.
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3.2 Linear Model of Coregionalization (LMC)

LMC facilitates a joint analysis that leverages the correlations between these pollutants. LMC posits
that each task is a linear combination of shared latent functions. Let fd(x) denote the latent functions
for D outputs. The LMC model can be expressed as: gk(x) =

∑D
d=1 Bkdfd(x), where gk(x) is the

k-th output function, and B is a coregionalization matrix.

3.3 Spectral Mixture (SM) Kernel and Multitask Kernel

The SM kernel is instrumental in modeling the complex periodic patterns often inherent in air
quality data. The SM kernel is expressed as a sum of Q Gaussian mixtures: kSM (x, x′) =∑Q

q=1 wq exp
(
−2π2τ2q ∥x− x′∥2

)
cos (2πµq(x− x′)), where wq, τq, and µq are the weights,

lengthscales, and means of the mixtures, respectively.

The Multitask kernel allows for the modeling of correlations between tasks, extending the SM kernel
to a multi-task scenario. The Multitask kernel is expressed as a Kronecker product between the SM
kernel and a task covariance matrix Ktask: k(x, x′, k, k′) = kSM (x, x′)⊗Ktask(k, k

′).

3.4 Evaluation and Results

Model PM2.5 CO
Multi-Output Exact GP 26.79 0.46
Single Output Exact GP 27.67 0.63

Multi-Output Sparse GP (1000 Inducing Points) 45.76 0.71
Single Output Sparse GP (1000 Inducing Points) 47.27 0.81

Multi-Layer Perceptron 79.56 0.74
Table 1: RMSE for multitask forecasting over (latitude, longitude, temperature, humidity, wind speed)

On both PM2.5 and CO, our Multi-Output Exact GP with LMC and SM Kernel beats the other
state-of-the-art Single-Output Exact GP, which has been shown to beat neural-attention baselines
with the right choice of kernels. We leverage this and use the same MOGP with a variational strategy
for selecting inducing points to make sure we get a robust variational distribution that represents our
data very well.

3.5 Inspection of Variational Distribution

We inspect the variational distribution by considering the inducing points as a sampling from this
distribution. By plotting the latitude and longitude of these inducing points alongside the stations, we
observe the spatial relationship between the inducing points and the monitoring stations.

We employed the Euclidean distance to associate each inducing point with the nearest monitoring
station, thereby creating a mapping that reflects which stations capture which inducing points. For
longer distances, the Haversine distance, which takes into account the Earth’s curvature, would provide
a more accurate measure. We observe that certain stations are more adept at “capturing" inducing
points, indicative of these stations being proximal to regions where the variational distribution peaks.
This observation infers a measure of the information richness of different geographical locales with
respect to the modeled pollutants. The peaking of the variational distribution around particular
locations accentuates the regions of higher information content, which, in turn, highlights the critical
stations that significantly contribute to the accuracy and interpretability of the predictive model.

4 Discussion

The analysis of the variational distribution of inducing points in our Variational Spectral Multi-Task
Gaussian Processes model has unveiled regions of higher information richness, predominantly around
certain air quality monitoring stations. These regions, by virtue of being information-rich, provide a
robust basis for the model to learn and make accurate predictions concerning air quality indicators.
However, this also casts light on the concomitant regions that are less well-explored, and hence,
characterized by lower information richness.
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Figure 1: Left: The latitude/longitude indices of the inducing points sampled from the variational
distribution plotted with the location of the AQ monitors. Right: A Kernel Distribution Estimation
(KDE) plot of the inducing points, as an approximation of the variational distribution

Figure 2: Left: The inducing point sampling for an untrained Gaussian Process. Right: KDE plot
when the Gaussian process has been only trained on one station – the distribution peaks at that station.

Actively deploying additional air quality (AQ) monitoring stations in these less well-explored zones
is a strategic maneuver to bridge the information gap. This deployment could substantially enhance
the spatial coverage and granularity of the air quality monitoring network, thereby ameliorating the
model’s capability to capture the spatial heterogeneities in air pollutant concentrations.

4.1 Implications for Urban Planning and Public Health

From an urban planning and public health perspective, having a finely grained understanding of air
quality across the urban landscape is indispensable. The additional data collected from the newly
deployed AQ stations in the less well-explored zones would not only enrich the dataset but also
potentially unveil localized pollution sources or pollution hotspots.
Enhanced Predictive Performance The infusion of data from the less well-explored zones is likely
to enhance the predictive performance of our model. A more balanced representation of the urban
environment, encompassing both information-rich and information-poor regions, would furnish the
model with a holistic understanding of the spatial dynamics governing air pollutant concentrations.
Adaptive Monitoring Strategies This study also lays the groundwork for the development of
adaptive monitoring strategies. Adaptive deployment or re-deployment of AQ monitoring stations in
response to such shifts could ensure that the monitoring network remains optimally configured to
capture the evolving air quality dynamics.

In conclusion, the active deployment of AQ monitoring stations in less well-explored zones is a
prudent step towards achieving a comprehensive and nuanced understanding of urban air quality.
This understanding is instrumental for informed urban planning and policy formulation aimed at
ameliorating air quality and safeguarding public health.
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