

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MITIGATING FORGETTING IN CONTINUAL LEARNING WITH SELECTIVE GRADIENT PROJECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

As neural networks are increasingly deployed in dynamic environments, they face the challenge of catastrophic forgetting, the tendency to overwrite previously learned knowledge when adapting to new tasks, resulting in severe performance degradation on earlier tasks. We propose Selective Forgetting-Aware Optimization (SFAO), a dynamic method that regulates gradient directions via cosine similarity and per-layer gating, enabling controlled forgetting while balancing plasticity and stability. SFAO selectively projects, accepts, or discards updates using a tunable mechanism with efficient Monte Carlo approximation. Experiments on standard continual learning benchmarks show that SFAO achieves competitive accuracy with markedly lower memory cost, a 90% reduction, and improved forgetting on MNIST datasets, making it suitable for resource-constrained scenarios.

1 INTRODUCTION

Deep neural networks exhibit remarkable proficiency under static environments but degrade significantly in non-stationary learning environments, where the input-output distribution evolves over time (Parisi et al., 2019). In Continual Learning (CL), where models must learn a sequence of tasks without revisiting previous data, this degradation manifests as catastrophic forgetting (Goodfellow et al., 2013). The root cause lies in gradient-induced interference, whereby updates for new tasks disrupt previously consolidated knowledge, causing subspace collapse in the parameter space and destabilizing learned representations (Lopez-Paz & Ranzato, 2022).

This challenge is particularly acute in safety critical domains such as autonomous driving, medical diagnostics, and cybersecurity, where models must adapt to emerging patterns such as evolving traffic scenarios, novel disease classes, or new malware signatures without compromising prior expertise (Hamed et al., 2025). Failure to maintain stability in such contexts leads to diminished reliability, costly retraining, and large computational overhead (Armstrong & Clifton, 2022; Lesort, 2020). Consequently, mitigating forgetting while preserving adaptability remains a foundational objective in CL research.

We introduce SFAO, an approach that selectively regulates gradient updates. On each layer, SFAO either accepts, projects, or discards a step based on the cosine alignment with previously stored directions. This provides a lightweight and tunable mechanism, which can be used for controlling updates without requiring a large memory buffers or fixed regularization.

1.1 CONTRIBUTIONS

1. A simple per-layer gating rule that accepts, projects, or discards updates based on cosine similarity, offering a controllable way to manage gradient updates.
2. A gradient filtering mechanism that discards conflicting or uninformative updates, enhancing knowledge retention and improving generalization across sequential tasks.
3. A conceptually simple optimizer that achieves strong memory-forgetting trade-offs without relying on state-of-the-art accuracy.

054 **2 PRELIMINARIES**
 055

056 **2.1 CONTINUAL LEARNING**
 057

058 In continual learning (CL), a model is trained on a sequence of T tasks

059 $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_T,$
 060

061 where each task $\mathcal{D}_t = \{(x_i^{(t)}, y_i^{(t)})\}_{i=1}^{n_t}$ is sampled from a distribution $\mathcal{P}_t(x, y)$. Unlike classi-
 062 cal i.i.d. training, the distributions $\{\mathcal{P}_t\}$ are non-stationary and past data $\mathcal{D}_1, \dots, \mathcal{D}_{t-1}$ is typically
 063 inaccessible when training on \mathcal{D}_t .

064 The model parameters θ are updated using stochastic gradient-based optimization techniques

065 $g_t = \nabla_{\theta} \mathcal{L}_t(\theta),$
 066

067 where \mathcal{L}_t is the loss for task t . A central challenge is *catastrophic forgetting*: learning new tasks
 068 degrades performance on earlier tasks. Formally, the forgetting on task i after all T tasks is

069 $F_i = \max_{t \leq T} a_{i,t} - a_{i,T},$
 070

071 where $a_{i,t}$ denotes accuracy on task i after training task t . To better quantify the ability for a model
 072 to remain robust to new tasks, we use *average forgetting*, defined as $F = \frac{1}{T-1} \sum_{i=1}^{T-1} F_i$. Additional
 073 measures include *Average Accuracy* (mean accuracy across all tasks at the end of training),
 074 *Backward Transfer* (BWT), and the *Plasticity–Stability Measure* (PSM), which together capture the
 075 tradeoff between learning new knowledge and retaining old knowledge.

076 **2.2 GRADIENT INTERFERENCE: A GEOMETRIC AND FIRST-ORDER VIEW**
 077

078 Let $\{\mathcal{D}_i\}_{i=1}^{t-1}$ denote previously learned tasks with losses $\{\mathcal{L}_i\}$ and let \mathcal{L}_t be the current task. Write
 079 $g_i(\theta) = \nabla_{\theta} \mathcal{L}_i(\theta)$ and $g_t(\theta) = \nabla_{\theta} \mathcal{L}_t(\theta)$. For a small step $\theta^+ = \theta - \eta u$ (learning rate $\eta > 0$ and
 080 update direction u), a first-order Taylor expansion gives the instantaneous change on a past task i :

081 $\Delta \mathcal{L}_i \triangleq \mathcal{L}_i(\theta^+) - \mathcal{L}_i(\theta) = -\eta g_i^T u + O(\eta^2). \quad (1)$
 082

083 **Interference** on task i occurs when $g_i^T u < 0$ (loss increases); **synergy** occurs when $g_i^T u > 0$ (loss
 084 decreases). Define the *interference risk* of an update u against a set $\mathcal{G} \subset \mathbb{R}^d$ of stored directions by

085 $\mathcal{R}(u; \mathcal{G}) = \max_{g \in \mathcal{G}} (-g^T u)_+, \quad (x)_+ := \max\{x, 0\}. \quad (2)$
 086

087 Minimizing risk, \mathcal{R} , encourages $g^T u \geq 0$ for all $g \in \mathcal{G}$ in the small-step regime, which by equation 1
 088 eliminates first-order forgetting on the represented directions.

089 Let $\mathcal{S} = \text{span}(\mathcal{G})$ and $P_{\mathcal{S}}$ be the *orthogonal* projector onto \mathcal{S} . Consider the feasibility cone

090 $\mathcal{C} = \{u \in \mathbb{R}^d : g^T u \geq 0 \ \forall g \in \mathcal{G}\}. \quad (3)$
 091

092 An interference-safe step can be posed as the inequality-constrained Euclidean projection

093 $\min_{u \in \mathbb{R}^d} \frac{1}{2} \|u - g_t\|_2^2 \quad \text{s.t.} \quad g^T u \geq 0 \quad \forall g \in \mathcal{G}. \quad (4)$
 094

095 Problem equation 4 projects g_t onto the polyhedral cone \mathcal{C} and its solution *need not* be orthogonal
 096 to \mathcal{S} .

097 A stricter surrogate is the equality-constrained projection

098 $\min_{u \in \mathbb{R}^d} \frac{1}{2} \|u - g_t\|_2^2 \quad \text{s.t.} \quad g^T u = 0 \quad \forall g \in \mathcal{G}, \quad (5)$
 099

100 which enforces $u \in \mathcal{S}^\perp$ and whose solution is obtained by solving the Lagrangian (Appendix C):

101 $u^* = (I - P_{\mathcal{S}}) g_t. \quad (6)$
 102

103 **Proposition 2.1 (First-order safety for represented tasks)** *If $u = (I - P_{\mathcal{S}}) g_t$, then $g^T u = 0$ for
 104 all $g \in \mathcal{S}$, and thus for any past task i whose gradient $g_i \in \mathcal{S}$ we have $\Delta \mathcal{L}_i = O(\eta^2)$. Hence
 105 orthogonal projection removes first-order forgetting on tasks whose gradients are represented in \mathcal{S} .*

106 *Proof.* For $g \in \mathcal{S}$ we have $P_{\mathcal{S}} g = g$, so $g^T (I - P_{\mathcal{S}}) g_t = (P_{\mathcal{S}} g)^T g_t - g^T g_t = 0$. Plug into
 107 equation 1.

108 2.3 ORTHOGONAL GRADIENT DESCENT (OGD)
109110 Orthogonal Gradient Descent (OGD) (Farajtabar et al., 2019) is a geometry-based continual learning
111 method which addresses gradient interference by constraining updates to directions orthogonal to
112 past gradients. Let $\mathcal{S} = \text{span}\{g_1, \dots, g_N\}$ be the subspace of stored gradients. OGD projects a new
113 gradient g_t onto the orthogonal complement of \mathcal{S} :

114
115
$$g_t^\perp = \text{Proj}_{\mathcal{S}^\perp}(g_t) = g_t - \sum_{i=1}^N \frac{g_t^\top g_i}{\|g_i\|^2} g_i.$$

116
117

118 This guarantees that the update does not interfere with previously learned directions, thereby pre-
119 serving earlier task performance. OGD’s geometric clarity makes it an appealing baseline, but it is
120 computationally costly: storing all or a large subset of past gradients requires $O(Nd)$ memory
121 (for d -dimensional gradients), and each update involves $O(Nd)$ dot products. Subsequent works
122 have sought to approximate this projection using low-rank subspaces or memory buffers to improve
123 scalability.124 3 SELECTIVE FORGETTING-AWARE OPTIMIZER
125126 3.1 SIMILARITY-GATED UPDATE RULE (SFAO)
127128 Let $\theta_t \in \mathbb{R}^d$ denote the parameters at step t and $g_t = \nabla_{\theta} \mathcal{L}_t(\theta_t)$ the mini-batch gradient. We
129 maintain a buffer of past gradients with $\text{span } \mathcal{S} = \text{span}\{g_1, \dots, g_N\}$ and orthogonal projector $P_{\mathcal{S}}$.130 Let $Q \in \mathbb{R}^{d \times r}$ be an *orthonormal* basis for \mathcal{S} (e.g., incremental Gram–Schmidt or compact SVD),
131 so $P_{\mathcal{S}} = QQ^\top$.132 Given a Monte Carlo subset $\mathcal{C} \subseteq \{1, \dots, N\}$ of size $k \ll N$, define the sampled maximum cosine
133 alignment

134
135
$$s_t = \max_{i \in \mathcal{C}} \frac{g_t^\top g_i}{\|g_t\| \|g_i\|}. \quad (7)$$

136
137

138 Because $\mathcal{C} \subseteq \{1, \dots, N\}$, s_t is a deterministic *lower bound* on the true maximum alignment over
139 the buffer.140 Choose thresholds $\lambda_{\text{proj}} \leq \lambda_{\text{accept}}$ in $[-1, 1]$ and, if one wishes to accept only synergistic updates, set
141 $\lambda_{\text{accept}} \geq 0$. Then the SFAO *gated direction* u_t is

142
143
$$u_t = \begin{cases} g_t, & \text{if } s_t > \lambda_{\text{accept}} \text{ (accept)} \\ (I - P_{\mathcal{S}}) g_t = (I - QQ^\top) g_t, & \text{if } \lambda_{\text{proj}} < s_t \leq \lambda_{\text{accept}} \text{ (project)} \\ 0, & \text{if } s_t \leq \lambda_{\text{proj}} \text{ (discard)}, \end{cases} \quad (8)$$

144
145
146
147

148 followed by the SGD-style parameter update

149
150
$$\theta_{t+1} = \theta_t - \eta u_t. \quad (9)$$

151

152 **Recovering special cases (corrected).**
153154 • **SGD**: empty buffer or $\lambda_{\text{accept}} = -1 \Rightarrow u_t = g_t$.
155 • **Always-project (OGD behavior)**: set $\lambda_{\text{proj}} = -1$, $\lambda_{\text{accept}} = 1$ so every step falls in the
156 project region, yielding $u_t = (I - P_{\mathcal{S}})g_t$.
157 • **Hard reject**: $\lambda_{\text{proj}} = 1$ discards all updates ($u_t = 0$).158 **With momentum / weight decay.** With momentum $m_t = \beta m_{t-1} + (1 - \beta)u_t$ and weight decay
159 λ ,

160
$$\theta_{t+1} = (1 - \eta\lambda) \theta_t - \eta m_t. \quad (10)$$

161

162 3.2 MONTE CARLO APPROXIMATION
163164 Computing $\cos \theta$ against all stored gradients is prohibitively expensive when the buffer size B is
165 large. To mitigate this, we maintain a buffer $\{g_i\}_{i=1}^B$ of past gradients and randomly sample $k \ll B$
166 directions at each update:

167
$$\hat{\cos \theta} = \max_{j=1, \dots, k} \frac{g_t^\top g_{i_j}}{\|g_t\| \cdot \|g_{i_j}\|}, \quad g_{i_j} \sim \mathcal{S}.$$

168
169

170 This approximation reduces the dot-product complexity from $O(Bd)$ to $O(kd)$ per step, offering a
171 substantial computational savings. Importantly, the sampled maximum is a *conservative* estimate:
172 because only k candidates are considered, $\hat{\cos \theta}$ tends to underestimate the true maximum alignment.
173 While downward-biased in expectation, this bias is benign and even advantageous in practice, as it
174 favors projection or rejection over direct acceptance. Empirically, this conservative tendency aligns
175 with the observed stability gains of our method, providing both efficiency and robustness at no
176 additional cost.177 3.3 SUPPRESSING GRADIENT INTERFERENCE WITH SELECTIVE PROJECTION
178179 Building on Section 2.2, recall that interference occurs when $g_i^\top u < 0$ for a past gradient g_i . GEM
180 (Lopez-Paz & Ranzato, 2022) prevents such interference by solving a quadratic program with *in-*
181 *equality constraints* $g^\top u \geq 0$ for stored directions (Eq. 4), projecting g_t onto the corresponding
182 feasible cone. By contrast, OGD (Farajtabar et al., 2019) and GPM (Saha et al., 2021) adopt the
183 stricter *equality-constrained* view, removing all components in the stored subspace $\mathcal{S} = \text{span}(\mathcal{B})$
184 via the orthogonal update $u = (I - P_{\mathcal{S}})g_t$ (Eq. 6), which minimizes first-order forgetting for tasks
185 whose gradients lie in \mathcal{S} .186 SFAO extends these ideas by introducing a *similarity-gated rule* that selects among accept, project,
187 and discard operations. To analyze its guarantees, define the sampled interference risk
188

189
$$\hat{\mathcal{R}}(u; \mathcal{C}) = \max_{g \in \mathcal{C}} (-g^\top u)_+,$$

190

191 for a subset $\mathcal{C} \subseteq \mathcal{B}$ of stored directions.
192193 **Project region.** If $u = (I - P_{\mathcal{S}})g_t$, then $g^\top u = 0$ for all $g \in \mathcal{B}$, hence $\hat{\mathcal{R}}(u; \mathcal{C}) = 0$. This recovers
194 the first-order safety guarantees of OGD/GPM for tasks represented in \mathcal{S} .
195196 **Accept region.** If $\hat{s}_t > \lambda_{\text{accept}} \geq 0$, then even the worst sampled cosine similarity is nonnegative.
197 For the sampled g^* attaining \hat{s}_t we have $(g^*)^\top g_t \geq 0$, so $\hat{\mathcal{R}}(g_t; \mathcal{C}) = 0$. (The restriction $\lambda_{\text{accept}} \geq 0$
198 is essential; otherwise negative-alignment directions could still be accepted.)
199200 **Discard region.** If $u = 0$, the update is null and trivially safe.
201202 **Conservativeness under sampling.** Since $\hat{s}_t = \max_{g \in \mathcal{C}} \cos(g_t, g) \leq s_t^* = \max_{g \in \mathcal{B}} \cos(g_t, g)$,
203 sub-sampling provides a deterministic lower bound on the true maximum alignment. Therefore,
204 relative to full-buffer decisions, SFAO with finite k can only *increase* the likelihood of projection or
205 discarding (never reduce it), making the method conservative in suppressing interference.
206207 **Discard region.** $u = 0$ is trivially safe.
208209 Since $\hat{s}_t \leq s_t^*$, sub-sampling is conservative: relative to decisions made with the full buffer, it can
210 only *increase* the likelihood of projecting or discarding (never reduce it), which further suppresses
211 interference at fixed thresholds.
212213 4 EXPERIMENTS AND RESULTS
214215 We evaluate on standard CL benchmarks for comparability with prior work: Split MNIST and Per-
216 mitted MNIST (LeCun & Cortes, 2005; Goodfellow et al., 2013), Split CIFAR-10/100 (Krizhevsky
217 et al., 2009), and Tiny ImageNet.

216 **Baselines.** (1) **OGD** (Farahjatabar et al., 2019): A gradient projection method that enforces orthogonality to previously learned parameter subspaces. It is our primary baseline given its geometric alignment with SFAO’s projection-based approach. (2) **EWC** (Kirkpatrick et al., 2017): A seminal regularization-based method that constrains parameter updates according to their estimated importance to prior tasks via the Fisher Information Matrix. This provides a representative benchmark for weight-consolidation approaches. (3) **SI** (Zenke et al., 2017): An efficient path-regularization method that computes parameter importance online and penalizes changes to parameters deemed critical for previous tasks. (4) **SGD**: Vanilla stochastic gradient descent, which lacks any mechanism to mitigate catastrophic forgetting, is included as a naive baseline to illustrate the magnitude of improvement achieved by SFAO.

227 4.1 METHOD STABILITY AND ARCHITECTURAL REQUIREMENTS

229 **Observation.** During initial experiments, we discovered that regularization-based methods EWC
230 and SI exhibited significant instability when paired with lightweight architectures, often diverging
231 or producing invalid losses on the Simple CNN backbone. This instability required switching to
232 more complex architectures to achieve stable training.

233 **Fix.** We address this by conducting experiments on both architectural settings. Initially, we evaluate
234 geometry-aware methods (OGD and SFAO) on Simple CNN and regularization methods (EWC and
235 SI) on Wide ResNet-28×10 (WRN28×10) due to stability constraints. Subsequently, when computa-
236 tional resources became available, we conducted additional experiments evaluating all methods on
237 WRN28×10 to enable direct comparisons.

238 **Implication.** While architectural adjustments can resolve stability issues, this approach highlights
239 a fundamental limitation: methods that require specific architectural choices to function properly
240 lack the generalizability needed for real-world deployment. In practice, practitioners cannot always
241 guarantee access to large or specially designed models, making architecture-agnostic stability crucial
242 for continual learning methods.

243 **New Model Results.** We present results for CIFAR datasets under both experimental settings. The
244 first set of tables shows results with Simple CNN for geometry-aware methods and WRN28×10
245 for regularization methods. The second set of tables shows all methods evaluated on WRN28×10,
246 enabling direct head-to-head comparisons. SFAO demonstrates consistent performance across both
247 architectural settings without requiring backbone-specific adjustments, positioning it as a more gen-
248 eralizable solution that maintains stability regardless of model capacity constraints.

249 **Setup.** For MNIST datasets, all baselines use a Simple MLP consisting of a flattened input layer, a
250 single hidden layer with 784 units and ReLU activation, followed by a linear classifier to C classes.

251 For CIFAR experiments, we present results under two architectural settings. In the first setting,
252 geometry-aware methods (OGD, SFAO, SGD) use a Simple CNN consisting of two convolutional
253 blocks with 3×3 kernels (32 and 64 channels respectively), each followed by ReLU activation and
254 2×2 max pooling, then a 128-unit fully connected layer and a linear classifier. Regularization meth-
255 ods (EWC, SI) use WRN28×10 with standard formulation including 28 layers, widening factor 10,
256 batch normalization, and residual connections. In the second setting, all methods are evaluated on
257 WRN28×10 to enable direct head-to-head comparisons.

258 All reported results include standard deviations computed over 5 runs with different random seeds,
259 ensuring statistical reliability while remaining within our compute budget.

260 **Architectures.** For MNIST datasets, all baselines use a Simple MLP: flattened input → a single
261 hidden layer (784 units, ReLU) → linear classifier to C classes. For Group (A) CIFAR experiments
262 (OGD, SFAO, SGD) we use a **Simple CNN** consisting of two convolutional blocks with 3×3
263 kernels (32 and 64 channels), each followed by ReLU and 2×2 max pooling, then a 128-unit fully
264 connected layer and a linear classifier. For Group (B) CIFAR experiments (EWC, SI) we use a
265 **WRN28×10** (standard formulation with 28 layers, widening factor 10, batch normalization, and
266 residual connections), which provides the capacity and stability required by these regularization-
267 based methods.

270 **Hyperparameters.** Across all datasets, we use an SGD optimizer with a momentum of 0.9, a
 271 learning rate of 10^{-3} , batch size of 32, and 2 epochs per task to control compute and isolate forgetting
 272 behavior. For EWC and SI, we follow Avalanche’s implementation¹ and select regularization
 273 strength λ by a small grid search on early tasks. For SFAO, we sweep cosine thresholds λ_{proj} and
 274 λ_{accept} in the range 0.80–0.95 (discard threshold fixed at -1×10^{-4} , max storage capped at 200),
 275 and display the best result.

276
 277 **Compute Efficiency.** All experiments were run on a single NVIDIA A40 GPU (9 vCPUs, 48GB
 278 host memory). SFAO introduces minimal overhead—training time increased by less than 6–8%
 279 compared to vanilla SGD.

280 4.2 SPLIT MNIST BENCHMARK

	Accuracy \pm Std. Deviation (%)				
	Task 1	Task 2	Task 3	Task 4	Task 5
SGD	67.4 \pm 0.5	75.9 \pm 0.8	47.4 \pm 1.0	97.0 \pm 0.2	91.0 \pm 0.3
EWC	12.8 \pm 0.4	11.5 \pm 0.9	31.8 \pm 0.7	12.0 \pm 0.4	99.8 \pm 0.1
SI	93.9 \pm 0.3	92.6 \pm 0.5	99.3 \pm 0.1	99.8 \pm 0.4	99.2 \pm 0.1
OGD	99.9 \pm 0.0	68.0 \pm 1.2	54.6 \pm 1.0	74.7 \pm 0.8	42.7 \pm 1.5
SFAO	93.6 \pm 0.4	79.3 \pm 0.9	47.2 \pm 1.1	95.6 \pm 0.3	86.8 \pm 0.5

289
 290 Table 1: *Split MNIST*: The accuracy of the model after sequential training on five tasks. The best
 291 continual results are highlighted in **bold**.

292
 293 As shown in Table 1, SI attains the best overall performance with minimal forgetting. SFAO is not
 294 as strong as SI or OGD on this benchmark; however, it substantially improves over EWC and SGD
 295 in terms of retention while maintaining high per-task accuracy. These results position SFAO as a
 296 memory-efficient, geometry-aware optimizer that compares favorably to regularization baselines on
 297 MNIST-scale problems.

298 4.3 PERMUTED MNIST BENCHMARK

	Accuracy \pm Std. Deviation (%)		
	Task 1	Task 2	Task 3
SGD	75.7 \pm 0.6	81.7 \pm 0.4	83.5 \pm 0.3
EWC	73.0 \pm 0.5	75.6 \pm 0.7	77.4 \pm 0.6
SI	92.8 \pm 0.2	95.3 \pm 0.1	94.9 \pm 0.1
OGD	79.3 \pm 0.4	79.8 \pm 0.3	81.3 \pm 0.4
SFAO	76.0 \pm 0.6	79.3 \pm 0.5	82.8 \pm 0.7

300
 301 Table 2: *Permuted MNIST*: The accuracy of the model after sequential training on three permutations
 302 (p_1, p_2, p_3). The best continual results are highlighted in **bold**.

303
 304 As shown in Table 2, SI achieves the highest accuracy across permutations. However, SFAO pro-
 305 duces competitive results and outperforms EWC. SFAO also narrows the average accuracy gap with
 306 OGD at higher cosine thresholds (see Appendix A.4)

314 4.4 SPLIT CIFAR-100 BENCHMARK (WITHOUT WRN)

315
 316 We extended Split CIFAR-100 to 10 tasks following the standard protocol. Table 3 reports per-task
 317 accuracies for Group A methods on the Simple CNN; Group B methods are shown for context using
 318 a WRN28 \times 10. While SFAO underperforms OGD in final accuracy with the Simple CNN backbone,
 319 it is notably more consistent across tasks and outperforms OGD on most tasks until the last. This
 320 highlights a trade-off: OGD excels at preserving late-task performance, whereas SFAO provides
 321 steadier retention throughout training.

322
 323 ¹We build on the open-source Avalanche framework (Carta et al., 2023), available at <https://github.com/ContinualAI/continual-learning-baselines/tree/main>.

	Accuracy \pm Std. Deviation (%)									
	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Task 8	Task 9	Task 10
SGD	10.1 \pm 0.3	10.1 \pm 0.3	8.0 \pm 0.2	9.6 \pm 0.2	10.4 \pm 0.2	10.1 \pm 0.3	10.9 \pm 0.3	9.0 \pm 0.2	11.4 \pm 0.3	12.3 \pm 0.3
EWC	19.4 \pm 0.5	18.2 \pm 0.4	14.5 \pm 0.3	24.7 \pm 0.5	21.6 \pm 0.4	18.7 \pm 0.3	20.9 \pm 0.4	15.9 \pm 0.3	22.0 \pm 0.4	13.5 \pm 0.3
SI	12.2 \pm 0.8	14.0 \pm 0.7	19.1 \pm 0.9	14.4 \pm 0.6	16.9 \pm 0.7	32.3 \pm 1.6	28.4 \pm 1.3	31.5 \pm 2.0	37.8 \pm 2.1	43.6 \pm 3.5
OGD	8.5 \pm 0.2	3.6 \pm 0.1	8.0 \pm 0.2	6.4 \pm 0.2	4.5 \pm 0.2	8.4 \pm 0.3	21.3 \pm 0.5	13.6 \pm 0.4	15.90 \pm 1.3	66.0 \pm 2.4
SFAO	8.9 \pm 0.3	8.3 \pm 0.3	9.9 \pm 0.2	11.2 \pm 0.2	12.5 \pm 0.2	11.2 \pm 0.5	26.7 \pm 0.8	16.8 \pm 2.3	21.4 \pm 1.3	23.6 \pm 3.8

Table 3: *Split CIFAR-100*: The accuracy of the model after sequential training on all ten tasks. The best continual results are highlighted in **bold**.

	Accuracy \pm Std. Deviation (%)									
	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Task 8	Task 9	Task 10
SGD	8.6 \pm 0.5	3.9 \pm 0.7	9.0 \pm 0.2	7.0 \pm 0.4	10.2 \pm 0.3	7.2 \pm 0.5	18.3 \pm 0.3	8.7 \pm 0.4	15.2 \pm 0.6	46.8 \pm 0.2
EWC	19.4 \pm 0.5	18.2 \pm 0.4	14.5 \pm 0.3	24.7 \pm 0.5	21.6 \pm 0.4	18.7 \pm 0.3	20.9 \pm 0.4	15.9 \pm 0.3	22.0 \pm 0.4	13.5 \pm 0.3
SI	12.2 \pm 0.8	14.0 \pm 0.7	19.1 \pm 0.9	14.4 \pm 0.6	16.9 \pm 0.7	32.3 \pm 1.6	28.4 \pm 1.3	31.5 \pm 2.0	37.8 \pm 2.1	43.6 \pm 3.5
OGD	10.8 \pm 0.2	2.6 \pm 0.3	7.2 \pm 0.2	7.5 \pm 0.5	7.6 \pm 0.4	5.6 \pm 0.2	21.6 \pm 0.5	14.3 \pm 0.3	10.8 \pm 0.5	71.4 \pm 1.1
SFAO	10.1 \pm 0.7	4.0 \pm 0.5	9.4 \pm 0.3	7.6 \pm 0.4	5.0 \pm 0.4	7.4 \pm 0.6	21.0 \pm 0.8	17.4 \pm 1.8	19.0 \pm 1.7	58.1 \pm 4.3

Table 4: *Split CIFAR-100 with WRN*: The accuracy of the model after sequential training on all ten tasks. The best continual results are highlighted in **bold**.

4.5 SPLIT CIFAR-100 BENCHMARK (WITH WRN)

We extended Split CIFAR-100 to 10 tasks following the standard protocol. Table 4 reports per-task accuracies for all methods using the WRN-28 \times 10 backbone, enabling direct comparison across approaches. SFAO is able to demonstrate more consistent retention across earlier tasks and competitive results on mid-sequence tasks. This contrast highlights a trade-off: OGD preserves strong performance on later tasks, whereas SFAO provides steadier performance throughout training. This indicates SFAO achieves a more balanced performance across the sequence, which may be preferable in applications where uniform retention is important.

4.6 SPLIT CIFAR-10 BENCHMARK (WITHOUT WRN)

	Simple CNN					WRN-28 \times 10				
	Task 1	Task 2	Task 3	Task 4	Task 5	Task 1	Task 2	Task 3	Task 4	Task 5
SGD	49.5 \pm 2.3	50.0 \pm 1.8	50.0 \pm 2.1	50.0 \pm 1.5	50.0 \pm 2.0	77.3 \pm 2.3	60.4 \pm 1.8	52.5 \pm 2.1	51.6 \pm 1.5	86.3 \pm 2.0
EWC	20.6 \pm 1.2	17.5 \pm 0.9	19.2 \pm 1.0	24.5 \pm 1.8	23.6 \pm 1.1	20.6 \pm 1.2	17.5 \pm 0.9	19.2 \pm 1.0	24.5 \pm 1.8	23.6 \pm 1.1
SI	70.2 \pm 2.7	51.8 \pm 2.5	44.1 \pm 2.0	66.3 \pm 2.8	96.1 \pm 1.5	70.2 \pm 2.7	51.8 \pm 2.5	44.1 \pm 2.0	66.3 \pm 2.8	96.1 \pm 1.5
OGD	79.3 \pm 3.1	58.0 \pm 2.7	51.6 \pm 2.5	58.0 \pm 3.0	93.0 \pm 1.2	80.3 \pm 3.1	63.7 \pm 2.7	53.0 \pm 2.5	66.0 \pm 3.0	94.7 \pm 1.2
SFAO	76.5 \pm 2.9	62.4 \pm 3.2	52.6 \pm 2.4	57.6 \pm 3.0	77.0 \pm 2.1	78.7 \pm 2.9	56.9 \pm 3.2	55.4 \pm 2.4	69.9 \pm 3.0	90.9 \pm 2.1

Table 5: Split CIFAR-10 benchmark with Simple CNN backbone.

Table 6: Split CIFAR-10 benchmark with WRN-28 \times 10 backbone.

Table 4.6.5 reports per-task accuracies for Group A methods (OGD, SFAO, SGD) evaluated on the Simple CNN; EWC and SI are shown for context using a WRN28 \times 10 and should be treated as qualitative context.² Under the lightweight Simple CNN backbone (head-to-head comparison), OGD attains the highest average accuracy overall in our run, while SFAO is competitive on average. This pattern illustrates the stability–plasticity trade-off: OGD can strongly preserve earlier task performance in certain settings, whereas SFAO provides more balanced per-task behavior and reduced projection frequency (see Appendix A.3). We therefore report Group A as direct comparisons and treat Group B as qualitative context only.

4.7 SPLIT CIFAR-10 BENCHMARK (WITH WRN)

Table 4.6.6 reports per-task accuracies for all baselines using the WRN-28 \times 10 backbone, enabling direct comparison across methods. SFAO shows strong and balanced performance across the sequence, achieving the best results on mid-sequence tasks (Task 3 and Task 4) and remaining competitive on the first and last tasks. While SI reaches the highest accuracy on the final task, its

²EWC and SI were evaluated on Wide ResNet-28 \times 10 due to instability / divergence observed on the Simple CNN; see the Setup paragraph.

earlier performance lags behind SFAO. These results highlight that SFAO achieves a favorable balance between stability and plasticity on Split CIFAR-10, outperforming OGD in several tasks while maintaining consistency throughout training.

4.8 SPLIT TINYIMAGENET BENCHMARK (WITH WRN)

	Accuracy \pm Std. Deviation (%)									
	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Task 8	Task 9	Task 10
SGD	17.4 \pm 1.4	19.0 \pm 0.7	16.3 \pm 0.9	16.9 \pm 0.5	19.8 \pm 1.0	17.3 \pm 0.5	14.6 \pm 1.4	18.8 \pm 0.4	17.3 \pm 0.7	18.3 \pm 1.2
EWC	23.8 \pm 0.0	25.0 \pm 0.0	21.3 \pm 0.0	18.2 \pm 0.0	25.7 \pm 0.0	23.2 \pm 0.0	19.6 \pm 0.0	22.9 \pm 0.0	18.5 \pm 0.0	22.9 \pm 0.0
SI	5.3 \pm 0.0	6.1 \pm 0.0	6.5 \pm 0.0	8.4 \pm 0.0	12.1 \pm 0.0	18.7 \pm 0.0	18.5 \pm 0.0	29.1 \pm 0.0	35.2 \pm 0.0	52.3 \pm 0.0
OGD	7.5 \pm 1.2	9.5 \pm 1.9	10.8 \pm 1.4	16.2 \pm 1.3	14.5 \pm 2.4	20.4 \pm 2.8	20.7 \pm 2.1	32.2 \pm 3.0	31.4 \pm 2.2	45.5 \pm 2.0
SFAO	24.36 \pm 0.46	25.76 \pm 0.81	25.30 \pm 1.35	24.50 \pm 0.87	29.02 \pm 1.60	27.54 \pm 1.53	25.08 \pm 0.95	27.80 \pm 1.46	26.94 \pm 1.13	26.30 \pm 1.53

Table 7: *Split TinyImageNet*: The accuracy of the model after sequential training on all ten tasks.

Table 7 shows that SFAO is competitive on early tasks of Split TinyImageNet, whereas SI excels on the final three tasks and EWC remains strong in the first half. Given the benchmark’s greater complexity (fine-grained categories, higher intra-class variation, and stronger distribution shifts), these trends may reflect differing robustness profiles across difficulty regimes rather than a single global ranking. A plausible explanation is that SFAO’s accept/project mechanism favors rapid adaptation early in the stream, while regularization-based approaches (SI/EWC) offer greater stability later; a definitive causal analysis is left to future work.

5 LIMITATIONS AND FUTURE DIRECTIONS

5.1 ARCHITECTURAL GENERALIZABILITY

A key limitation was the instability of regularization-based methods like EWC and SI, requiring us to switch to a WRN28 \times 10 backbone for stable training. This highlights the need for methods robust across diverse architectures and model capacities. While SFAO shows architecture-agnostic stability, the field needs systematic approaches ensuring method robustness without architectural workarounds. Future work should develop continual learning techniques maintaining consistent performance across varying model sizes, enabling deployment in resource-constrained scenarios.

5.2 TASK ORDERING EFFECTS

Continual learning performance often depends on task sequence, with some orders amplifying forgetting and others resembling curricula (Bell & Lawrence, 2022; Kemker et al., 2018). Since SFAO regulates updates through thresholds, future work could explore *dynamic robustness* via checkpoints and backtracking: if a new task induces sharp forgetting, training can revert and continue with stricter thresholds, effectively “learning more cautiously.” Threshold statistics also provide a proxy for task difficulty, enabling automated adaptation and the design of optimal curricula. Thus, SFAO could both mitigate order sensitivity and serve as a principled tool for quantifying and improving task sequencing across continual learning methods.

5.3 PER-LAYER THRESHOLD TRAINING

Beyond fixed thresholds, a promising direction is **learning thresholds dynamically**. Thresholds $\lambda_{\text{proj}}^{\ell}$ and $\lambda_{\text{accept}}^{\ell}$ can be treated as learnable parameters and optimized via backpropagation with differentiable gating (e.g., sigmoid soft thresholds) or via reinforcement learning (Ghasemi & Ebrahimi, 2024) using long-term metrics like forgetting and compute cost.

5.4 DYNAMICALLY UPDATE AND SCHEDULE THRESHOLDS

Thresholds can be updated with learning rates or schedules, becoming stricter near convergence to reduce interference and improve stability. Strategies include linear warm-up with exponential growth (Kalra & Barkeshli, 2024) or piecewise updates (Cohen-Addad & Kanade, 2016). Thresholds can also adapt to performance metrics such as forgetting rate or plasticity–stability scores for dynamic sensitivity control.

432

6 RELATED WORK

433

6.1 GEOMETRY-AWARE METHODS

434 The geometry-aware perspective in continual learning began as an alternative to memory replay and
 435 regularization. Instead of storing data or penalizing parameter shifts, methods like OGD proposed
 436 projecting gradients onto subspaces orthogonal to prior tasks, ensuring updates do not interfere with
 437 previous knowledge (Farajtabar et al., 2019). This concept was further refined by Gradient Projec-
 438 tion Memory (GPM), which used Singular Value Decomposition (SVD) to build compact gradient
 439 subspaces and selectively project future updates (Cha et al., 2020). These methods often rely on
 440 operations such as orthogonalization or SVD. Although effective, such approaches introduce struc-
 441 tural overhead that SFAO addresses through lightweight probabilistic approximations of gradient
 442 alignment.

443

6.2 REGULARIZATION-BASED METHODS

444 Regularization-based methods such as EWC and SI were among the first to gain traction to address
 445 catastrophic forgetting (Kirkpatrick et al., 2017; Zenke et al., 2017). They constrain updates to im-
 446 portant parameters using gradient tracking metrics by imposing static penalties (e.g., quadratic loss
 447 terms) based on parameter sensitivity. Some recent variants, such as RTRA, combine regulariza-
 448 tion with adaptive gradient strategies to improve stability and training efficiency (Zhao et al., 2023).
 449 These methods model forgetting as a function of parameter importance, introducing fixed or adap-
 450 tive constraints during optimization. Our work differs in that SFAO modulates updates dynamically
 451 based on local alignment with previously learned gradient directions.

452

6.3 THEORETICAL PERSPECTIVES ON FORGETTING

453 A growing body of work aims to dissect why catastrophic forgetting occurs in neural networks. Early
 454 empirical studies suggest that standard gradient descent optimizers completely overwrite earlier task
 455 knowledge (Goodfellow et al., 2013). Later papers like (Nguyen et al., 2019) and (Wu et al., 2024)
 456 show that forgetting also correlates with gradient interference, task similarity, and network capac-
 457 ity. Our method is grounded in this insight, as SFAO addresses the most cited cause of forgetting,
 458 gradient interference by filtering out the conflicting directions during learning. Its cosine similarity
 459 testing and projection filtering mechanism are rooted in the theoretical observation that overlapping
 460 gradients lead to interference.

461

7 CONCLUSION

462 We introduce SFAO, a tunable, similarity-gated extension to OGD that balances forgetting and
 463 adaptability using cosine similarity. It employs a practical gating mechanism with interpretable
 464 parameters to regulate stability, ensuring consistent memory retention under a fixed compute bud-
 465 get. This design also provides a promising path toward adaptive or scheduled thresholds, offering
 466 flexible control strategies in continual learning. SFAO integrates seamlessly with SGD, without
 467 requiring additional losses, memory buffers, or architectural overhead.

468

8 IMPACT STATEMENT

469 This work aims to advance the field of machine learning through methodological contributions.
 470 We do not identify specific societal or ethical risks arising from this study beyond those typical of
 471 general machine learning research.

472

9 REPRODUCIBILITY STATEMENT

473 All experimental code, hyperparameters, and model configurations are provided to ensure repro-
 474 ducibility, and can be found publicly on GitHub at [https://anonymous.4open.science/](https://anonymous.4open.science/r/sfao-4E83/)
 475 r/sfao-4E83/.

486 REFERENCES
487

488 Wickliffe C. Abraham and Anthony Robins. Memory retention – the synaptic stability versus plas-
489 ticity dilemma. *Trends in Neurosciences*, 28(2):73–78, 2005. ISSN 0166-2236. doi: <https://doi.org/10.1016/j.tins.2004.12.003>. URL <https://www.sciencedirect.com/science/article/pii/S0166223604003704>.

490

491

492 Jacob Armstrong and David A. Clifton. Continual learning of longitudinal health records. In 2022
493 *IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)*, pp. 01–06.
494 IEEE, September 2022. doi: 10.1109/bhi56158.2022.9926878. URL <http://dx.doi.org/10.1109/BHI56158.2022.9926878>.

495

496

497 Samuel J. Bell and Neil D. Lawrence. The effect of task ordering in continual learning. *arXiv preprint arXiv:2205.13323*, 2022. URL <https://arxiv.org/abs/2205.13323>.

498

499 Antonio Carta, Lorenzo Pellegrini, Andrea Cossu, Hamed Hemati, and Vincenzo Lomonaco.
500 Avalanche: A pytorch library for deep continual learning. *Journal of Machine Learning Research*,
501 24(363):1–6, 2023. URL <http://jmlr.org/papers/v24/23-0130.html>.

502

503 Hyun Oh Cha, Jaehong Choi, Youngkyun Kim, Jinwoo Choi, and Jinwoo Kim. Gradient projection
504 memory for continual learning. *OpenReview*, 2020. URL <https://openreview.net/forum?id=3AOj0RCNC2>.

505

506 Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
507 lifelong learning with a-gem, 2019. URL <https://arxiv.org/abs/1812.00420>.

508

509 Vincent Cohen-Addad and Varun Kanade. Online optimization of smoothed piecewise constant
510 functions. *CoRR*, abs/1604.01999, 2016. URL <http://arxiv.org/abs/1604.01999>.

511

512 Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg
513 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
514 tasks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp. 1–1, 2021. ISSN
515 1939-3539. doi: 10.1109/tpami.2021.3057446. URL <http://dx.doi.org/10.1109/TPAMI.2021.3057446>.

516

517 Mehrdad Farajtabar, David Warde-Farley, Xuezhe Li, Seyed Kamyar Ghasemipour, Da Li, Le Song,
518 and Joelle Pineau. Orthogonal gradient descent for continual learning. *arXiv preprint arXiv:1910.07104*, 2019. URL <https://arxiv.org/pdf/1910.07104>.

519

520 Sebastian Farquhar and Yarin Gal. A unifying bayesian view of continual learning, 2019. URL
521 <https://arxiv.org/abs/1902.06494>.

522

523 Majid Ghasemi and Dariush Ebrahimi. Introduction to reinforcement learning, 2024. URL <https://arxiv.org/abs/2408.07712>.

524

525 Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
526 investigation of catastrophic forgetting in gradient-based neural networks. *arXiv preprint arXiv:1312.6211*, 2013. URL <https://arxiv.org/pdf/1312.6211>.

527

528 Maxim Gunin, Chaitanya Wang, Shivam Joshi, Anil Rajput, James Demmel, and Arye Nehorai.
529 Zeroflow: Overcoming catastrophic forgetting is easier than you think. *arXiv preprint arXiv:2501.01045*, 2025. URL <https://arxiv.org/html/2501.01045v2>.

530

531 Parsa Hamedi, Reza Razavi-Far, and Ehsan Hallaji. Federated continual learning: Concepts,
532 challenges, and solutions, 2025. URL <https://arxiv.org/abs/2502.07059v2>.
533 arXiv:2502.07059v2 [cs.LG], 04 Jul 2025.

534

535 Jeremy Howard and Sebastian Ruder. Fine-tuned language models for text classification. *CoRR*,
536 abs/1801.06146, 2018. URL <http://arxiv.org/abs/1801.06146>.

537

538 Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei Tao, Jinwen Ma, Dongyan Zhao,
539 and Rui Yan. Overcoming catastrophic forgetting via model adaptation. In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGvcoA5YX>.

540 Dayal Singh Kalra and Maissam Barkeshli. Why warmup the learning rate? underlying mechanisms
 541 and improvements, 2024. URL <https://arxiv.org/abs/2406.09405>.

542

543 Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
 544 catastrophic forgetting in neural networks. *Proceedings of the AAAI Conference on Artificial
 545 Intelligence*, 32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.11651. URL <https://ojs.aaai.org/index.php/AAAI/article/view/11651>.

546

547 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei
 548 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwińska, et al. Overcom-
 549 ing catastrophic forgetting in neural networks. *Proceedings of the National Academy of Sciences*,
 550 114(13):3521–3526, 2017. URL <https://arxiv.org/pdf/1612.00796.pdf>.

551

552 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets. *URL:*
 553 <https://www.cs.toronto.edu/~kriz/cifar.html>, 6(1):1, 2009.

554

555 Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 2005. URL <https://api.semanticscholar.org/CorpusID:60282629>.

556

557 Sang-Woo Lee, Tuan Ajanthan, and Philip HS Torr. Overcoming catastrophic forgetting by
 558 incremental moment matching. In *Advances in Neural Information Processing Systems
 559 (NeurIPS)*, 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/f708f064faaf32a43e4d3c784e6af9ea-Paper.pdf.

560

561 Timothée Lesort. Continual learning: Tackling catastrophic forgetting in deep neural networks with
 562 replay processes, 2020. URL <https://arxiv.org/abs/2007.00487>.

563

564 Zhizhong Li and Derek Hoiem. Learning without forgetting. *arXiv preprint arXiv:1606.09282*,
 565 2016. URL <https://arxiv.org/abs/1606.09282>.

566

567 Zhizhong Li and Derek Hoiem. Learn to grow: A continual structure learning framework for
 568 overcoming catastrophic forgetting. *arXiv preprint arXiv:1904.00310*, 2019. URL <https://arxiv.org/abs/1904.00310>.

569

570 David Lopez-Paz and Marc'Aurelio Ranzato. Toward understanding catastrophic forgetting in con-
 571 tinual learning. *arXiv preprint arXiv:1908.01091*, 2019. URL <https://arxiv.org/abs/1908.01091>.

572

573 David Lopez-Paz and Marc'Aurelio Ranzato. Gradient episodic memory for continual learning,
 574 2022. URL <https://arxiv.org/abs/1706.08840>.

575

576 Youngjae Min, Benjamin Wright, Jeremy Bernstein, and Navid Azizan. Sketchogd: Memory-
 577 efficient continual learning. *arXiv preprint arXiv:2305.16424*, 2023. URL <https://arxiv.org/pdf/2305.16424.pdf>.

578

579 Cuong V. Nguyen, Alessandro Achille, Michael Lam, Tal Hassner, Vijay Mahadevan, and Ste-
 580 fano Soatto. Toward understanding catastrophic forgetting in continual learning. *CoRR*,
 581 abs/1908.01091, 2019. URL <http://arxiv.org/abs/1908.01091>.

582

583 German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
 584 lifelong learning with neural networks: A review. *Neural Networks*, 113:54–71, 2019.

585

586 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experience
 587 replay for continual learning, 2019. URL <https://arxiv.org/abs/1811.11682>.

588

589 Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning,
 590 2021. URL <https://arxiv.org/abs/2103.09762>.

591

592 Sebastian Thrun and Tom Mitchell. Lifelong robot learning. *Robotics and Autonomous Systems*, 15
 593 (1):25 – 46, July 1995.

594

595 Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and
 596 improving multi-task optimization in massively multilingual models, 2020. URL <https://arxiv.org/abs/2010.05874>.

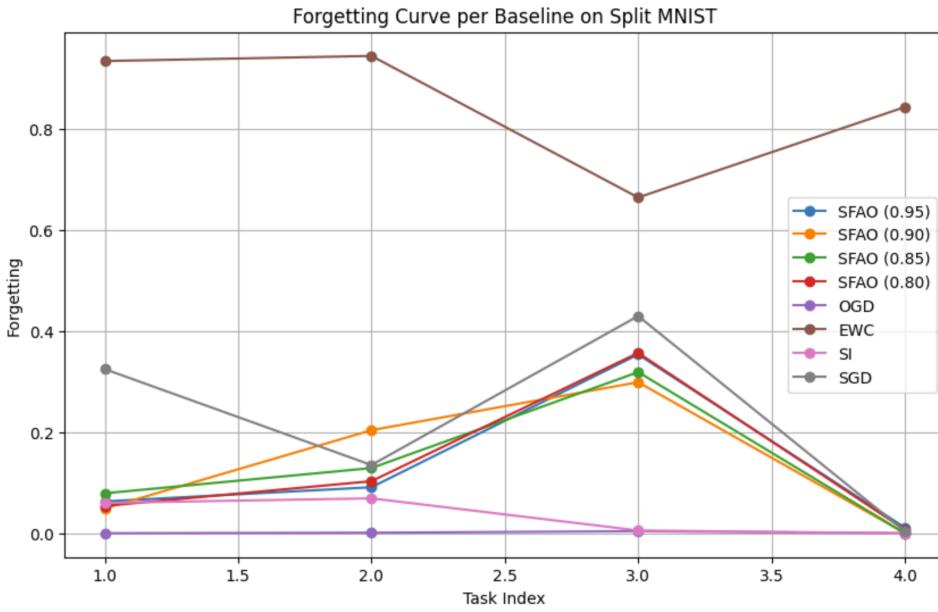
594 Xinyi Wu, David P. Foster, Prateek Jain, and Le Song. Understanding forgetting in continual learning
595 with linear regression. *arXiv preprint arXiv:2405.17583*, 2024. URL <https://arxiv.org/html/2405.17583v1>.
596

597 598 Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
599 neural networks?, 2014. URL <https://arxiv.org/abs/1411.1792>.
600

601 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
602 Gradient surgery for multi-task learning, 2020. URL <https://arxiv.org/abs/2001.06782>.
603

604 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
605 *arXiv preprint arXiv:1703.04200*, 2017. URL <https://arxiv.org/pdf/1703.04200>.
606

607 Yuchen Zhao, Yichao Zhou, Hang Zhang, and Peng Yin. Rtra: Rapid training of regularization-
608 based approaches in continual learning. *arXiv preprint arXiv:2312.09361*, 2023. URL <https://arxiv.org/html/2312.09361v1/#S1>.
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A ADDITIONAL EXPERIMENTS
649650 A.1 FORGETTING ON SPLIT MNIST
651673 Figure 1: Forgetting curve per baseline on Split MNIST. Forgetting is averaged across previously
674 seen tasks after each new task. There are a total of four tasks.
675676 A.2 SFAO AND OGD MEMORY USAGE COMPARISON
677678 The memory usage was calculated using in the form of megabytes (MB):
679

680
$$\text{Memory (MB)} = \frac{|\mathcal{S}| \times \text{num_params} \times 4}{1024^2}$$

681

682 where $|\mathcal{S}|$ is the number of stored gradients, num_params is the total number of model parameters,
683 and 4 is the number of bytes per float 32.
684

Dataset	OGD (MB)	SFAO (MB)
Split MNIST	1441.82	153.71
Permuted MNIST (3)	4367.28	155.28
Permuted MNIST (5)	7278.00	155.28

685 Table 8: Memory usage (MB) comparison between OGD and SFAO across Split MNIST and Per-
686 mitted MNIST. For Permuted MNIST, experiments were conducted with p_1-p_3 permutations (3) and
687 p_1-p_5 permutations (5)
688689 As seen in Table 8, SFAO substantially reduces memory usage on Split MNIST and Permuted
690 MNIST, remaining essentially constant across increasing permutations. This efficiency stems from
691 SFAO’s buffer management strategy: the cosine similarity threshold prevents redundant gradients
692 from entering the buffer, while the discard threshold removes uninformative vectors, keeping $|\mathcal{S}|$
693 bounded regardless of the number of tasks. On Split CIFAR-100, SFAO uses slightly more memory
694 than OGD due to higher-dimensional and more diverse gradients, which fewer pass the filtering
695 thresholds. This modest increase reflects a trade-off that prioritizes stability and mitigates catas-
696 troptic forgetting in complex datasets, demonstrating that SFAO balances efficiency and reliability
697 across different benchmarks.
698

Dataset	OGD	SFAO
Split MNIST	5625	200
Permuted MNIST	5625	200
Split CIFAR-100	300*	200

Table 9: Projection frequency per batch for OGD and SFAO across benchmarks. *For Split CIFAR-100, OGD uses a capped gradient memory (`max_mem_dirs` = 1000) and harvest policy (`dirs_per_task` = 120, `harvest_batches` = 30), unlike MNIST where projections scale with the full stored gradient set.

A.3 AVERAGE PROJECTION FREQUENCY

As seen in Table 9 We observe that OGD incurs significantly higher projection counts, especially on MNIST benchmarks where projections scale with the full memory of past gradients. In contrast, SFAO maintains a fixed low projection frequency across all tasks, offering a more computationally efficient alternative. While OGD’s capped memory reduces this burden on Split CIFAR-100, SFAO still provides stable performance with substantially fewer projections.

A.4 DIFFERENT COSINE SIMILARITY THRESHOLDS VS OGD ACCURACY

Dataset	OGD	SFAO (0.95)	SFAO (0.90)	SFAO (0.85)	SFAO (0.80)
Permuted MNIST (3)	0.8014	0.7815	0.7753	0.7938	0.7815
Permuted MNIST (5)	0.7933	0.7633	0.7612	0.7799	0.7887
Split CIFAR-10	0.6800	0.6525	0.6487	0.6152	0.6219
Split CIFAR-100	0.1562	0.1368	0.1500	0.1436	0.1505

Table 10: Average accuracy comparison of OGD and SFAO across different cosine similarity thresholds on multiple benchmarks. For Permuted MNIST, experiments were conducted with p_1-p_3 (3 permutations) and p_1-p_5 (5 permutations).

As seen in Table 10, SFAO demonstrates competitive performance across most datasets, particularly for Permuted MNIST, where thresholds of 0.85 and 0.80 remain close to OGD despite the increased complexity from additional permutations. While OGD generally outperforms SFAO on CIFAR-based benchmarks, the gap is minimal for Split CIFAR-10 and narrows further at lower thresholds (0.80). These results highlight that adaptive cosine thresholds help maintain stability without significantly compromising accuracy, even under more challenging task permutations.

A.5 PLASTICITY-STABILITY MEASURE

The Plasticity-Stability Measure (PSM) is a scalar metric that quantifies the trade-off between a model’s ability to acquire new knowledge (plasticity) and its ability to retain previously learned knowledge (stability). Formally, it is defined as:

$$\text{PSM} = \frac{A_{\text{final}} + A_{\text{avg}}}{2},$$

where A_{final} is the final accuracy on the last task and A_{avg} is the average accuracy across all tasks. Higher values indicate a better balance, while lower values suggest excessive forgetting or limited adaptability.

As seen in Table 11, SFAO consistently achieves mid-range PSM values across all benchmarks, remaining close to the balance point between 0 and 1. This reflects its design choice of prioritizing stability while still maintaining sufficient plasticity to adapt to new tasks. However, OGD’s behavior varies: on MNIST-scale datasets it favors plasticity, while on high-dimensional datasets like CIFAR it skews heavily toward stability at the cost of adaptability. Overall, SFAO’s selective gating yields a steadier stability–plasticity trade-off, making it more reliable across diverse benchmarks.

Dataset	OGD	SFAO (0.95)	SFAO (0.9)	SFAO (0.85)	SFAO (0.8)
Split MNIST	0.4995	0.4352	0.4310	0.4344	0.4350
Permuted MNIST (3)	0.4999	0.4783	0.4786	0.4897	0.4791
Permuted MNIST (5)	0.4958	0.4683	0.4592	0.4742	0.4769
CIFAR-100	0.2511	0.4691	0.4636	0.4768	0.4671
CIFAR-10	0.3574	0.4593	0.4454	0.4277	0.4320

Table 11: Plasticity-Stability Comparison of OGD and SFAO across different cosine similarity thresholds on multiple benchmarks. For Permuted MNIST, experiments were conducted with p_1-p_3 (3 permutations) and p_1-p_5 (5 permutations).

B ALGORITHMS

B.1 SFAO (SIMILARITY-GATED UPDATE WITH MONTE CARLO SAMPLING)

Algorithm 1 SFAO: Single-layer similarity-gated update (per step)

Require: Current gradient $g_t \in \mathbb{R}^d$; buffer $\mathcal{B} = \{g_i\}_{i=1}^B$; thresholds $\lambda_{\text{proj}} \leq \lambda_{\text{accept}}$; Monte Carlo sample size $k \ll B$; buffer policy parameters $(B_{\text{max}}, \tau_{\text{add}}, \tau_{\text{drop}})$

Ensure: Update direction u_t and updated buffer \mathcal{B}

```

0:  $\mathcal{C} \leftarrow \text{SAMPLESUBSET}(\mathcal{B}, k)$  {uniform without replacement}
0:  $\hat{s} \leftarrow \text{MCMAXCos}(g_t, \mathcal{C})$   $\{\hat{s} = \max_{g \in \mathcal{C}} \frac{g_t^\top g}{\|g_t\| \|g\|}$  (conservative)}
0: if  $\hat{s} > \lambda_{\text{accept}}$  then {accept}
0:    $u_t \leftarrow g_t$ 
0: else if  $\lambda_{\text{proj}} < \hat{s} \leq \lambda_{\text{accept}}$  then {project}
0:    $u_t \leftarrow (I - P_S) g_t$   $\{S = \text{span}(\mathcal{B})\}$ 
0: else {discard}
0:    $u_t \leftarrow 0$ 
0: end if
0:  $\mathcal{B} \leftarrow \text{UPDATEBUFFER}(\mathcal{B}, g_t, B_{\text{max}}, \tau_{\text{add}}, \tau_{\text{drop}})$ 
0: return  $u_t, \mathcal{B} = 0$ 

```

B.2 GEOMETRY OF THE SFAO UPDATE

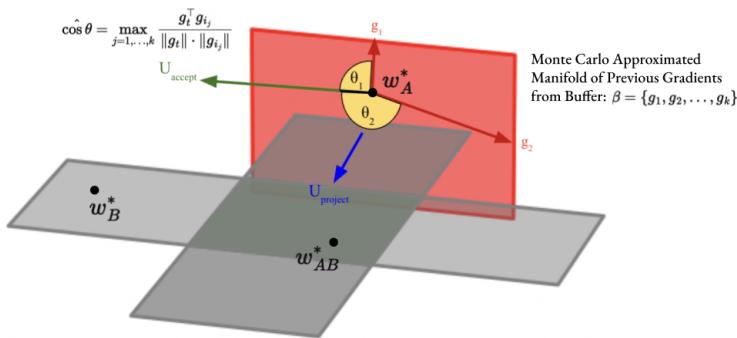


Figure 2: Geometry of the SFAO update. Green (U_{accept}): when the current gradient is sufficiently similar to the buffer \mathcal{B} , the update is accepted as is. Blue (U_{project}): otherwise the gradient is orthogonally projected off the subspace spanned by the buffered past gradients $\{g_i\}$ to mitigate interference.

810 B.3 PER-LAYER SFAO: MATHEMATICAL FORMULATION AND ALGORITHM
811812 **Mathematical formulation.** For layer $\ell \in \{1, \dots, L\}$, let $g_t^{(\ell)}$ be the layer-wise gradient and
813 $\mathcal{B}^{(\ell)} \subset \mathbb{R}^{d_\ell}$ its buffer. With Monte Carlo subset $\mathcal{C}^{(\ell)} \subset \mathcal{B}^{(\ell)}$ of size k_ℓ , define

814
$$s^{(\ell)} = \max_{g \in \mathcal{C}^{(\ell)}} \frac{\langle g_t^{(\ell)}, g \rangle}{\|g_t^{(\ell)}\| \|g\|}.$$

815
816

817 Given thresholds $-1 \leq \lambda_{\text{proj}}^{(\ell)} \leq \lambda_{\text{accept}}^{(\ell)} \leq 1$, set the layer update
818

819
$$\mathcal{U}^{(\ell)}(g_t^{(\ell)}) = \begin{cases} g_t^{(\ell)}, & s^{(\ell)} > \lambda_{\text{accept}}^{(\ell)} \\ (I - P_{\mathcal{S}^{(\ell)}}) g_t^{(\ell)}, & \lambda_{\text{proj}}^{(\ell)} < s^{(\ell)} \leq \lambda_{\text{accept}}^{(\ell)} \\ 0, & s^{(\ell)} \leq \lambda_{\text{proj}}^{(\ell)} \end{cases} \quad \text{with } \mathcal{S}^{(\ell)} = \text{span}(\mathcal{B}^{(\ell)}).$$

820
821
822

823 Concatenate (or assemble) per-layer updates to obtain $u_t = (\mathcal{U}^{(1)}(g_t^{(1)}), \dots, \mathcal{U}^{(L)}(g_t^{(L)}))$ and up-
824 date parameters $\theta \leftarrow \theta - \eta u_t$ per SGD.
825826 C ADDITIONAL RESULTS AND PROOFS
827828 C.1 MINIMIZING GRADIENT INTERFERENCE RISK
829830 Recall Eq. 5 for minimizing the *interference risk* of an update u against a set $G \subset \mathbb{R}^d$ of stored
831 directions. Here, we solve the constrained optimization problem
832

833
$$\min_{u \in \mathbb{R}^d} \frac{1}{2} \|u - g_t\|_2^2 \quad \text{s.t.} \quad g^\top u = 0 \quad \forall g \in G,$$

834

835 We proceed by solving the Lagrangian under the formal constraint $G^\top u = 0$:

836
$$\mathcal{L}(u, \lambda) = \frac{1}{2} \|u - g_t\|_2^2 + \lambda^\top (G^\top u) \quad (11)$$

837

838 Next, we evaluate the Karush–Kuhn–Tucker (KKT) conditions:

839 **Stationarity:**

840
$$\nabla_u \mathcal{L}(u^*, \lambda^*) = \nabla_u \left(\frac{1}{2} \|u - g_t\|_2^2 + \lambda^\top (G^\top u) \right) = 0 \quad (12)$$

841

842
$$= u - g_t + G\lambda = 0 \quad (13)$$

843

844
$$\implies u^* = g_t - G\lambda \quad (14)$$

845 **Primal Feasibility:**

846
$$G^\top u = 0 \quad (15)$$

847
$$G^\top (g_t - G\lambda) = 0 \quad \text{per Stationarity} \quad (16)$$

848
$$G^\top g_t - G^\top G\lambda = 0 \quad (17)$$

849
$$G^\top g_t = G^\top G\lambda \quad (18)$$

850
$$\implies \lambda^* = (G^\top G)^\dagger G^\top g_t \quad (19)$$

851 Since our problem only involves linear equality constraints, the multipliers λ are unconstrained and
852 all equalities are always active, so the dual feasibility and complementary slackness conditions are
853 vacuous and need not be checked. Also, note that \dagger denotes the Moore–Penrose Pseudoinverse.
854855 Substituting λ^* :

856
$$u^* = g_t - G(G^\top G)^\dagger G^\top g_t \quad (20)$$

857
$$\implies u^* = (I - G(G^\top G)^\dagger G^\top) g_t \quad (21)$$

858 Letting $P_S = G(G^\top G)^\dagger G^\top$, we recover Eq. 6:
859

860
$$u^* = (I - P_S) g_t,$$

861

862 which shows that the optimal update is the projection of the current gradient step g_t onto the orthogonal
863 complement of the span of past gradients.

864 **SVD expression.** Let the thin SVD of $G \in \mathbb{R}^{d \times k}$ be
 865

$$866 \quad G = U_r \Sigma_r V_r^\top,$$

867 where $r = \text{rank}(G)$, $U_r \in \mathbb{R}^{d \times r}$ and $V_r \in \mathbb{R}^{k \times r}$ have orthonormal columns, and $\Sigma_r \in \mathbb{R}^{r \times r}$ is
 868 diagonal with positive entries. Then
 869

$$870 \quad G^\top G = V_r \Sigma_r^2 V_r^\top \quad \Rightarrow \quad (G^\top G)^\dagger = V_r \Sigma_r^{-2} V_r^\top,$$

871 and hence
 872

$$873 \quad P_S = G(G^\top G)^\dagger G^\top = (U_r \Sigma_r V_r^\top)(V_r \Sigma_r^{-2} V_r^\top)(V_r \Sigma_r U_r^\top) = U_r U_r^\top.$$

874 Therefore, the optimal update can be written purely in terms of the left singular vectors of G :
 875

$$876 \quad u^* = (I - U_r U_r^\top) g_t.$$

877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917