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ABSTRACT

As neural networks are increasingly deployed in dynamic environments, they
face the challenge of catastrophic forgetting, the tendency to overwrite previously
learned knowledge when adapting to new tasks, resulting in severe performance
degradation on earlier tasks. We propose Selective Forgetting-Aware Optimization
(SFAO), a dynamic method that regulates gradient directions via cosine similarity
and per-layer gating, enabling controlled forgetting while balancing plasticity and
stability. SFAO selectively projects, accepts, or discards updates using a tunable
mechanism with efficient Monte Carlo approximation. Experiments on standard
continual learning benchmarks show that SFAO achieves competitive accuracy
with markedly lower memory cost, a 90% reduction, and improved forgetting on
MNIST datasets, making it suitable for resource-constrained scenarios.

1 INTRODUCTION

Deep neural networks exhibit remarkable proficiency under static environments but degrade signif-
icantly in non-stationary learning environments, where the input-output distribution evolves over
time (Parisi et al., 2019). In Continual Learning (CL), where models must learn a sequence of tasks
without revisiting previous data, this degradation manifests as catastrophic forgetting (Goodfellow
et al., 2013). The root cause lies in gradient-induced interference, whereby updates for new tasks
disrupt previously consolidated knowledge, causing subspace collapse in the parameter space and
destabilizing learned representations (Lopez-Paz & Ranzato, 2022).

This challenge is particularly acute in safety critical domains such as autonomous driving, medi-
cal diagnostics, and cybersecurity, where models must adapt to emerging patterns such as evolving
traffic scenarios, novel disease classes, or new malware signatures without compromising prior ex-
pertise (Hamedi et al., 2025). Failure to maintain stability in such contexts leads to diminished
reliability, costly retraining, and large computational overhead (Armstrong & Clifton, 2022; Lesort,
2020). Consequently, mitigating forgetting while preserving adaptability remains a foundational
objective in CL research.

We introduce SFAO, an approach that selectively regulates gradient updates. On each layer, SFAO
either accepts, projects, or discards a step based on the cosine alignment with previously stored
directions. This provides a lightweight and tunable mechanism, which can be used for controlling
updates without requiring a large memory buffers or fixed regularization.

1.1 CONTRIBUTIONS

1. A simple per-layer gating rule that accepts, projects, or discards updates based on cosine
similarity, offering a controllable way to manage gradient updates.

2. A gradient filtering mechanism that discards conflicting or uninformative updates, enhanc-
ing knowledge retention and improving generalization across sequential tasks.

3. A conceptually simple optimizer that achieves strong memory-forgetting trade-offs without
relying on state-of-the-art accuracy.
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2 PRELIMINARIES

2.1 CONTINUAL LEARNING

In continual learning (CL), a model is trained on a sequence of T tasks
D1,D2, . . . ,DT ,

where each task Dt = {(x(t)
i , y

(t)
i )}nt

i=1 is sampled from a distribution Pt(x, y). Unlike classi-
cal i.i.d. training, the distributions {Pt} are non-stationary and past data D1, . . . ,Dt−1 is typically
inaccessible when training on Dt.

The model parameters θ are updated using stochastic gradient-based optimization techniques
gt = ∇θLt(θ),

where Lt is the loss for task t. A central challenge is catastrophic forgetting: learning new tasks
degrades performance on earlier tasks. Formally, the forgetting on task i after all T tasks is

Fi = max
t≤T

ai,t − ai,T ,

where ai,t denotes accuracy on task i after training task t. To better quantify the ability for a model
to remain robust to new tasks, we use average forgetting, defined as F = 1

T−1

∑T−1
i=1 Fi. Addi-

tional measures include Average Accuracy (mean accuracy across all tasks at the end of training),
Backward Transfer (BWT), and the Plasticity–Stability Measure (PSM), which together capture the
tradeoff between learning new knowledge and retaining old knowledge.

2.2 GRADIENT INTERFERENCE: A GEOMETRIC AND FIRST-ORDER VIEW

Let {Di}t−1
i=1 denote previously learned tasks with losses {Li} and let Lt be the current task. Write

gi(θ) =∇θLi(θ) and gt(θ) =∇θLt(θ). For a small step θ+ = θ − ηu (learning rate η > 0 and
update direction u), a first-order Taylor expansion gives the instantaneous change on a past task i:

∆Li ≜ Li(θ
+)− Li(θ) = −η g⊤i u + O(η2). (1)

Interference on task i occurs when g⊤i u < 0 (loss increases); synergy occurs when g⊤i u > 0 (loss
decreases). Define the interference risk of an update u against a set G ⊂ Rd of stored directions by

R(u;G) = max
g∈G

(
− g⊤u

)
+
, (x)+ := max{x, 0}. (2)

Minimizing risk,R, encourages g⊤u ≥ 0 for all g ∈ G in the small-step regime, which by equation 1
eliminates first-order forgetting on the represented directions.

Let S = span(G) and PS be the orthogonal projector onto S. Consider the feasibility cone

C = {u ∈ Rd : g⊤u ≥ 0 ∀g ∈ G}. (3)
An interference-safe step can be posed as the inequality-constrained Euclidean projection

min
u∈Rd

1
2∥u− gt∥22 s.t. g⊤u ≥ 0 ∀ g ∈ G. (4)

Problem equation 4 projects gt onto the polyhedral cone C and its solution need not be orthogonal
to S.

A stricter surrogate is the equality-constrained projection

min
u∈Rd

1
2∥u− gt∥22 s.t. g⊤u = 0 ∀ g ∈ G, (5)

which enforces u ∈ S⊥ and whose solution is obtained by solving the Lagrangian (Appendix C):
u⋆ = (I − PS) gt. (6)

Proposition 2.1 (First-order safety for represented tasks) If u = (I − PS) gt, then g⊤u = 0 for
all g ∈ S, and thus for any past task i whose gradient gi ∈ S we have ∆Li = O(η2). Hence
orthogonal projection removes first-order forgetting on tasks whose gradients are represented in S.

Proof. For g ∈ S we have PSg = g, so g⊤(I − PS)gt = (PSg)
⊤gt − g⊤gt = 0. Plug into

equation 1.
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2.3 ORTHOGONAL GRADIENT DESCENT (OGD)

Orthogonal Gradient Descent (OGD) (Farajtabar et al., 2019) is a geometry-based continual learning
method which addresses gradient interference by constraining updates to directions orthogonal to
past gradients. Let S = span{g1, . . . , gN} be the subspace of stored gradients. OGD projects a new
gradient gt onto the orthogonal complement of S:

g⊥t = ProjS⊥(gt) = gt −
N∑
i=1

g⊤t gi
∥gi∥2

gi.

This guarantees that the update does not interfere with previously learned directions, thereby pre-
serving earlier task performance. OGD’s geometric clarity makes it an appealing baseline, but it
is computationally costly: storing all or a large subset of past gradients requires O(Nd) memory
(for d-dimensional gradients), and each update involves O(Nd) dot products. Subsequent works
have sought to approximate this projection using low-rank subspaces or memory buffers to improve
scalability.

3 SELECTIVE FORGETTING-AWARE OPTIMIZER

3.1 SIMILARITY-GATED UPDATE RULE (SFAO)

Let θt ∈ Rd denote the parameters at step t and gt = ∇θLt(θt) the mini-batch gradient. We
maintain a buffer of past gradients with span S = span{g1, . . . , gN} and orthogonal projector PS .

Let Q ∈ Rd×r be an orthonormal basis for S (e.g., incremental Gram–Schmidt or compact SVD),
so PS = QQ⊤.

Given a Monte Carlo subset C ⊆ {1, . . . , N} of size k ≪ N , define the sampled maximum cosine
alignment

st = max
i∈C

g⊤t gi
∥gt∥ ∥gi∥

. (7)

Because C ⊆ {1, . . . , N}, st is a deterministic lower bound on the true maximum alignment over
the buffer.

Choose thresholds λproj ≤ λaccept in [−1, 1] and, if one wishes to accept only synergistic updates, set
λaccept ≥ 0. Then the SFAO gated direction ut is

ut =


gt, if st > λaccept (accept)(
I − PS

)
gt = (I −QQ⊤)gt, if λproj < st ≤ λaccept (project)

0, if st ≤ λproj (discard) ,

(8)

followed by the SGD-style parameter update

θt+1 = θt − η ut . (9)

Recovering special cases (corrected).

• SGD: empty buffer or λaccept = −1⇒ ut = gt.

• Always-project (OGD behavior): set λproj = −1, λaccept = 1 so every step falls in the
project region, yielding ut = (I − PS)gt.

• Hard reject: λproj = 1 discards all updates (ut = 0).

With momentum / weight decay. With momentum mt = βmt−1 + (1− β)ut and weight decay
λ,

θt+1 = (1− ηλ) θt − ηmt. (10)

3
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3.2 MONTE CARLO APPROXIMATION

Computing cos θ against all stored gradients is prohibitively expensive when the buffer size B is
large. To mitigate this, we maintain a buffer {gi}Bi=1 of past gradients and randomly sample k ≪ B
directions at each update:

ˆcos θ = max
j=1,...,k

g⊤t gij
∥gt∥ · ∥gij∥

, gij ∼ S.

This approximation reduces the dot-product complexity from O(Bd) to O(kd) per step, offering a
substantial computational savings. Importantly, the sampled maximum is a conservative estimate:
because only k candidates are considered, ˆcos θ tends to underestimate the true maximum alignment.
While downward-biased in expectation, this bias is benign and even advantageous in practice, as it
favors projection or rejection over direct acceptance. Empirically, this conservative tendency aligns
with the observed stability gains of our method, providing both efficiency and robustness at no
additional cost.

3.3 SUPPRESSING GRADIENT INTERFERENCE WITH SELECTIVE PROJECTION

Building on Section 2.2, recall that interference occurs when g⊤i u < 0 for a past gradient gi. GEM
(Lopez-Paz & Ranzato, 2022) prevents such interference by solving a quadratic program with in-
equality constraints g⊤u ≥ 0 for stored directions (Eq. 4), projecting gt onto the corresponding
feasible cone. By contrast, OGD (Farajtabar et al., 2019) and GPM (Saha et al., 2021) adopt the
stricter equality-constrained view, removing all components in the stored subspace S = span(B)
via the orthogonal update u = (I − PS)gt (Eq. 6), which minimizes first-order forgetting for tasks
whose gradients lie in S.

SFAO extends these ideas by introducing a similarity-gated rule that selects among accept, project,
and discard operations. To analyze its guarantees, define the sampled interference risk

R̂(u; C) = max
g∈C

(−g⊤u)+,

for a subset C ⊆ B of stored directions.

Project region. If u = (I−PS)gt, then g⊤u = 0 for all g ∈ B, hence R̂(u; C) = 0. This recovers
the first-order safety guarantees of OGD/GPM for tasks represented in S.

Accept region. If ŝt > λaccept ≥ 0, then even the worst sampled cosine similarity is nonnegative.
For the sampled g⋆ attaining ŝt we have (g⋆)⊤gt ≥ 0, so R̂(gt; C) = 0. (The restriction λaccept ≥ 0
is essential; otherwise negative-alignment directions could still be accepted.)

Discard region. If u = 0, the update is null and trivially safe.

Conservativeness under sampling. Since ŝt = maxg∈C cos(gt, g) ≤ s⋆t = maxg∈B cos(gt, g),
sub-sampling provides a deterministic lower bound on the true maximum alignment. Therefore,
relative to full-buffer decisions, SFAO with finite k can only increase the likelihood of projection or
discarding (never reduce it), making the method conservative in suppressing interference.

Discard region. u = 0 is trivially safe.

Since ŝt ≤ s⋆t , sub-sampling is conservative: relative to decisions made with the full buffer, it can
only increase the likelihood of projecting or discarding (never reduce it), which further suppresses
interference at fixed thresholds.

4 EXPERIMENTS AND RESULTS

We evaluate on standard CL benchmarks for comparability with prior work: Split MNIST and Per-
muted MNIST (LeCun & Cortes, 2005; Goodfellow et al., 2013), Split CIFAR-10/100 (Krizhevsky
et al., 2009), and Tiny ImageNet.
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Baselines. (1) OGD (Farajtabar et al., 2019): A gradient projection method that enforces orthog-
onality to previously learned parameter subspaces. It is our primary baseline given its geometric
alignment with SFAO’s projection-based approach. (2) EWC (Kirkpatrick et al., 2017): A seminal
regularization-based method that constrains parameter updates according to their estimated impor-
tance to prior tasks via the Fisher Information Matrix. This provides a representative benchmark
for weight-consolidation approaches. (3) SI (Zenke et al., 2017): An efficient path-regularization
method that computes parameter importance online and penalizes changes to parameters deemed
critical for previous tasks. (4) SGD: Vanilla stochastic gradient descent, which lacks any mecha-
nism to mitigate catastrophic forgetting, is included as a naive baseline to illustrate the magnitude
of improvement achieved by SFAO.

4.1 METHOD STABILITY AND ARCHITECTURAL REQUIREMENTS

Observation. During initial experiments, we discovered that regularization-based methods EWC
and SI exhibited significant instability when paired with lightweight architectures, often diverging
or producing invalid losses on the Simple CNN backbone. This instability required switching to
more complex architectures to achieve stable training.

Fix. We address this by conducting experiments on both architectural settings. Initially, we evaluate
geometry-aware methods (OGD and SFAO) on Simple CNN and regularization methods (EWC and
SI) on Wide ResNet-28×10 (WRN28×10) due to stability constraints. Subsequently, when compu-
tational resources became available, we conducted additional experiments evaluating all methods on
WRN28×10 to enable direct comparisons.

Implication. While architectural adjustments can resolve stability issues, this approach highlights
a fundamental limitation: methods that require specific architectural choices to function properly
lack the generalizability needed for real-world deployment. In practice, practitioners cannot always
guarantee access to large or specially designed models, making architecture-agnostic stability crucial
for continual learning methods.

New Model Results. We present results for CIFAR datasets under both experimental settings. The
first set of tables shows results with Simple CNN for geometry-aware methods and WRN28×10
for regularization methods. The second set of tables shows all methods evaluated on WRN28×10,
enabling direct head-to-head comparisons. SFAO demonstrates consistent performance across both
architectural settings without requiring backbone-specific adjustments, positioning it as a more gen-
eralizable solution that maintains stability regardless of model capacity constraints.

Setup. For MNIST datasets, all baselines use a Simple MLP consisting of a flattened input layer, a
single hidden layer with 784 units and ReLU activation, followed by a linear classifier to C classes.

For CIFAR experiments, we present results under two architectural settings. In the first setting,
geometry-aware methods (OGD, SFAO, SGD) use a Simple CNN consisting of two convolutional
blocks with 3×3 kernels (32 and 64 channels respectively), each followed by ReLU activation and
2×2 max pooling, then a 128-unit fully connected layer and a linear classifier. Regularization meth-
ods (EWC, SI) use WRN28×10 with standard formulation including 28 layers, widening factor 10,
batch normalization, and residual connections. In the second setting, all methods are evaluated on
WRN28×10 to enable direct head-to-head comparisons.

All reported results include standard deviations computed over 5 runs with different random seeds,
ensuring statistical reliability while remaining within our compute budget.

Architectures. For MNIST datasets, all baselines use a Simple MLP: flattened input→ a single
hidden layer (784 units, ReLU)→ linear classifier to C classes. For Group (A) CIFAR experiments
(OGD, SFAO, SGD) we use a Simple CNN consisting of two convolutional blocks with 3 × 3
kernels (32 and 64 channels), each followed by ReLU and 2× 2 max pooling, then a 128-unit fully
connected layer and a linear classifier. For Group (B) CIFAR experiments (EWC, SI) we use a
WRN28×10 (standard formulation with 28 layers, widening factor 10, batch normalization, and
residual connections), which provides the capacity and stability required by these regularization-
based methods.
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Hyperparameters. Across all datasets, we use an SGD optimizer with a momentum of 0.9, a
learning rate of 10−3, batch size of 32, and 2 epochs per task to control compute and isolate forget-
ting behavior. For EWC and SI, we follow Avalanche’s implementation1 and select regularization
strength λ by a small grid search on early tasks. For SFAO, we sweep cosine thresholds λproj and
λaccept in the range 0.80–0.95 (discard threshold fixed at −1 × 10−4, max storage capped at 200),
and display the best result.

Compute Efficiency. All experiments were run on a single NVIDIA A40 GPU (9 vCPUs, 48GB
host memory). SFAO introduces minimal overhead—training time increased by less than 6-8%
compared to vanilla SGD.

4.2 SPLIT MNIST BENCHMARK

Accuracy ± Std. Deviation (%)
Task 1 Task 2 Task 3 Task 4 Task 5

SGD 67.4±0.5 75.9±0.8 47.4±1.0 97.0±0.2 91.0±0.3
EWC 12.8±0.4 11.5±0.9 31.8±0.7 12.0±0.4 99.8±0.1
SI 93.9±0.3 92.6±0.5 99.3±0.1 99.8±0.4 99.2±0.1
OGD 99.9±0.0 68.0±1.2 54.6±1.0 74.7±0.8 42.7±1.5
SFAO 93.6±0.4 79.3±0.9 47.2±1.1 95.6±0.3 86.8±0.5

Table 1: Split MNIST: The accuracy of the model after sequential training on five tasks. The best
continual results are highlighted in bold.

As shown in Table 1, SI attains the best overall performance with minimal forgetting. SFAO is not
as strong as SI or OGD on this benchmark; however, it substantially improves over EWC and SGD
in terms of retention while maintaining high per-task accuracy. These results position SFAO as a
memory-efficient, geometry-aware optimizer that compares favorably to regularization baselines on
MNIST-scale problems.

4.3 PERMUTED MNIST BENCHMARK

Accuracy ± Std. Deviation (%)
Task 1 Task 2 Task 3

SGD 75.7±0.6 81.7±0.4 83.5±0.3
EWC 73.0±0.5 75.6±0.7 77.4±0.6
SI 92.8±0.2 95.3±0.1 94.9±0.1
OGD 79.3±0.4 79.8±0.3 81.3±0.4
SFAO 76.0±0.6 79.3±0.5 82.8±0.7

Table 2: Permuted MNIST: The accuracy of the model after sequential training on three permutations
(p1, p2, p3). The best continual results are highlighted in bold.

As shown in Table 2, SI achieves the highest accuracy across permutations. However, SFAO pro-
duces competitive results and outperforms EWC. SFAO also narrows the average accuracy gap with
OGD at higher cosine thresholds (see Appendix A.4)

4.4 SPLIT CIFAR-100 BENCHMARK (WITHOUT WRN)

We extended Split CIFAR-100 to 10 tasks following the standard protocol. Table 3 reports per-task
accuracies for Group A methods on the Simple CNN; Group B methods are shown for context using
a WRN28×10. While SFAO underperforms OGD in final accuracy with the Simple CNN backbone,
it is notably more consistent across tasks and outperforms OGD on most tasks until the last. This
highlights a trade-off: OGD excels at preserving late-task performance, whereas SFAO provides
steadier retention throughout training.

1We build on the open-source Avalanche framework (Carta et al., 2023), available at https://
github.com/ContinualAI/continual-learning-baselines/tree/main.
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Accuracy ± Std. Deviation (%)
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

SGD 10.1±0.3 10.1±0.3 8.0±0.2 9.6±0.2 10.4±0.2 10.1±0.3 10.9±0.3 9.0±0.2 11.4±0.3 12.3±0.3
EWC 19.4±0.5 18.2±0.4 14.5±0.3 24.7±0.5 21.6±0.4 18.7±0.3 20.9±0.4 15.9±0.3 22.0±0.4 13.5±0.3
SI 12.2±0.8 14.0±0.7 19.1±0.9 14.4±0.6 16.9±0.7 32.3±1.6 28.4±1.3 31.5±2.0 37.8±2.1 43.6±3.5
OGD 8.5±0.2 3.6±0.1 8.0±0.2 6.4±0.2 4.5±0.2 8.4±0.3 21.3±0.5 13.6±0.4 15.90±1.3 66.0±2.4
SFAO 8.9±0.3 8.3±0.3 9.9±0.2 11.2±0.2 12.5±0.2 11.2±0.5 26.7±0.8 16.8±2.3 21.4±1.3 23.6±3.8

Table 3: Split CIFAR-100: The accuracy of the model after sequential training on all ten tasks. The
best continual results are highlighted in bold.

Accuracy ± Std. Deviation (%)
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

SGD 8.6±0.5 3.9±0.7 9.0±0.2 7.0±0.4 10.2±0.3 7.2±0.5 18.3±0.3 8.7±0.4 15.2±0.6 46.8±0.2
EWC 19.4±0.5 18.2±0.4 14.5±0.3 24.7±0.5 21.6±0.4 18.7±0.3 20.9±0.4 15.9±0.3 22.0±0.4 13.5±0.3
SI 12.2±0.8 14.0±0.7 19.1±0.9 14.4±0.6 16.9±0.7 32.3±1.6 28.4±1.3 31.5±2.0 37.8±2.1 43.6±3.5
OGD 10.8±0.2 2.6±0.3 7.2±0.2 7.5±0.5 7.6±0.4 5.6±0.2 21.6±0.5 14.3±0.3 10.8±0.5 71.4±1.1
SFAO 10.1±0.7 4.0±0.5 9.4±0.3 7.6±0.4 5.0±0.4 7.4±0.6 21.0±0.8 17.4±1.8 19.0±1.7 58.1±4.3

Table 4: Split CIFAR-100 with WRN: The accuracy of the model after sequential training on all ten
tasks. The best continual results are highlighted in bold.

4.5 SPLIT CIFAR-100 BENCHMARK (WITH WRN)

We extended Split CIFAR-100 to 10 tasks following the standard protocol. Table 4 reports per-
task accuracies for all methods using the WRN-28×10 backbone, enabling direct comparison across
approaches. SFAO is able to demonstrate more consistent retention across earlier tasks and com-
petitive results on mid-sequence tasks. This contrast highlights a trade-off: OGD preserves strong
performance on later tasks, whereas SFAO provides steadier performance throughout training. This
indicates SFAO achieves a more balanced performance across the sequence, which may be prefer-
able in applications where uniform retention is important.

4.6 SPLIT CIFAR-10 BENCHMARK (WITHOUT WRN)

Simple CNN
Task 1 Task 2 Task 3 Task 4 Task 5

SGD 49.5±2.3 50.0±1.8 50.0±2.1 50.0±1.5 50.0±2.0
EWC 20.6±1.2 17.5±0.9 19.2±1.0 24.5±1.8 23.6±1.1
SI 70.2±2.7 51.8±2.5 44.1±2.0 66.3±2.8 96.1±1.5
OGD 79.3±3.1 58.0±2.7 51.6±2.5 58.0±3.0 93.0±1.2
SFAO 76.5±2.9 62.4±3.2 52.6±2.4 57.6±3.0 77.0±2.1

Table 5: Split CIFAR-10 benchmark with Simple
CNN backbone.

WRN-28×10
Task 1 Task 2 Task 3 Task 4 Task 5

SGD 77.3±2.3 60.4±1.8 52.5±2.1 51.6±1.5 86.3±2.0
EWC 20.6±1.2 17.5±0.9 19.2±1.0 24.5±1.8 23.6±1.1
SI 70.2±2.7 51.8±2.5 44.1±2.0 66.3±2.8 96.1±1.5
OGD 80.3±3.1 63.7±2.7 53.0±2.5 66.0±3.0 94.7±1.2
SFAO 78.7±2.9 56.9±3.2 55.4±2.4 69.9±3.0 90.9±2.1

Table 6: Split CIFAR-10 benchmark with WRN-
28×10 backbone.

Table 4.6.5 reports per-task accuracies for Group A methods (OGD, SFAO, SGD) evaluated on
the Simple CNN; EWC and SI are shown for context using a WRN28×10 and should be treated
as qualitative context.2 Under the lightweight Simple CNN backbone (head-to-head comparison),
OGD attains the highest average accuracy overall in our run, while SFAO is competitive on average.
This pattern illustrates the stability–plasticity trade-off: OGD can strongly preserve earlier task per-
formance in certain settings, whereas SFAO provides more balanced per-task behavior and reduced
projection frequency (see Appendix A.3). We therefore report Group A as direct comparisons and
treat Group B as qualitative context only.

4.7 SPLIT CIFAR-10 BENCHMARK (WITH WRN)

Table 4.6.6 reports per-task accuracies for all baselines using the WRN-28×10 backbone, enabling
direct comparison across methods. SFAO shows strong and balanced performance across the se-
quence, achieving the best results on mid-sequence tasks (Task 3 and Task 4) and remaining com-
petitive on the first and last tasks. While SI reaches the highest accuracy on the final task, its

2EWC and SI were evaluated on Wide ResNet-28×10 due to instability / divergence observed on the Simple
CNN; see the Setup paragraph.
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earlier performance lags behind SFAO. These results highlight that SFAO achieves a favorable bal-
ance between stability and plasticity on Split CIFAR-10, outperforming OGD in several tasks while
maintaining consistency throughout training.

4.8 SPLIT TINYIMAGENET BENCHMARK (WITH WRN)

Accuracy ± Std. Deviation (%)
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

SGD 17.4±1.4 19.0±0.7 16.3±0.9 16.9±0.5 19.8±1.0 17.3±0.5 14.6±1.4 18.8±0.4 17.3±0.7 18.3±1.2
EWC 23.8±0.0 25.0±0.0 21.3±0.0 18.2±0.0 25.7±0.0 23.2±0.0 19.6±0.0 22.9±0.0 18.5±0.0 22.9±0.0
SI 5.3±0.0 6.1±0.0 6.5±0.0 8.4±0.0 12.1±0.0 18.7±0.0 18.5±0.0 29.1±0.0 35.2±0.0 52.3±0.0
OGD 7.5±1.2 9.5±1.9 10.8±1.4 16.2±1.3 14.5±2.4 20.4±2.8 20.7±2.1 32.2±3.0 31.4±2.2 45.5±2.0
SFAO 24.36±0.46 25.76±0.81 25.30±1.35 24.50±0.87 29.02±1.60 27.54±1.53 25.08±0.95 27.80±1.46 26.94±1.13 26.30±1.53

Table 7: Split TinyImageNet: The accuracy of the model after sequential training on all ten tasks.

Table 7 shows that SFAO is competitive on early tasks of Split TinyImageNet, whereas SI excels on
the final three tasks and EWC remains strong in the first half. Given the benchmark’s greater com-
plexity (fine-grained categories, higher intra-class variation, and stronger distribution shifts), these
trends may reflect differing robustness profiles across difficulty regimes rather than a single global
ranking. A plausible explanation is that SFAO’s accept/project mechanism favors rapid adaptation
early in the stream, while regularization-based approaches (SI/EWC) offer greater stability later; a
definitive causal analysis is left to future work.

5 LIMITATIONS AND FUTURE DIRECTIONS

5.1 ARCHITECTURAL GENERALIZABILITY

A key limitation was the instability of regularization-based methods like EWC and SI, requiring
us to switch to a WRN28×10 backbone for stable training. This highlights the need for methods
robust across diverse architectures and model capacities. While SFAO shows architecture-agnostic
stability, the field needs systematic approaches ensuring method robustness without architectural
workarounds. Future work should develop continual learning techniques maintaining consistent
performance across varying model sizes, enabling deployment in resource-constrained scenarios.

5.2 TASK ORDERING EFFECTS

Continual learning performance often depends on task sequence, with some orders amplifying for-
getting and others resembling curricula (Bell & Lawrence, 2022; Kemker et al., 2018). Since SFAO
regulates updates through thresholds, future work could explore dynamic robustness via checkpoints
and backtracking: if a new task induces sharp forgetting, training can revert and continue with
stricter thresholds, effectively “learning more cautiously.” Threshold statistics also provide a proxy
for task difficulty, enabling automated adaptation and the design of optimal curricula. Thus, SFAO
could both mitigate order sensitivity and serve as a principled tool for quantifying and improving
task sequencing across continual learning methods.

5.3 PER-LAYER THRESHOLD TRAINING

Beyond fixed thresholds, a promising direction is learning thresholds dynamically. Thresh-
olds λℓ

proj and λℓ
accept can be treated as learnable parameters and optimized via backpropagation

with differentiable gating (e.g., sigmoid soft thresholds) or via reinforcement learning (Ghasemi &
Ebrahimi, 2024) using long-term metrics like forgetting and compute cost.

5.4 DYNAMICALLY UPDATE AND SCHEDULE THRESHOLDS

Thresholds can be updated with learning rates or schedules, becoming stricter near convergence
to reduce interference and improve stability. Strategies include linear warm-up with exponential
growth (Kalra & Barkeshli, 2024) or piecewise updates (Cohen-Addad & Kanade, 2016). Thresh-
olds can also adapt to performance metrics such as forgetting rate or plasticity–stability scores for
dynamic sensitivity control.

8
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6 RELATED WORK

6.1 GEOMETRY-AWARE METHODS

The geometry-aware perspective in continual learning began as an alternative to memory replay and
regularization. Instead of storing data or penalizing parameter shifts, methods like OGD proposed
projecting gradients onto subspaces orthogonal to prior tasks, ensuring updates do not interfere with
previous knowledge (Farajtabar et al., 2019). This concept was further refined by Gradient Projec-
tion Memory (GPM), which used Singular Value Decomposition (SVD) to build compact gradient
subspaces and selectively project future updates (Cha et al., 2020). These methods often rely on
operations such as orthogonalization or SVD. Although effective, such approaches introduce struc-
tural overhead that SFAO addresses through lightweight probabilistic approximations of gradient
alignment.

6.2 REGULARIZATION-BASED METHODS

Regularization-based methods such as EWC and SI were among the first to gain traction to address
catastrophic forgetting (Kirkpatrick et al., 2017; Zenke et al., 2017). They constrain updates to im-
portant parameters using gradient tracking metrics by imposing static penalties (e.g., quadratic loss
terms) based on parameter sensitivity. Some recent variants, such as RTRA, combine regulariza-
tion with adaptive gradient strategies to improve stability and training efficiency (Zhao et al., 2023).
These methods model forgetting as a function of parameter importance, introducing fixed or adap-
tive constraints during optimization. Our work differs in that SFAO modulates updates dynamically
based on local alignment with previously learned gradient directions.

6.3 THEORETICAL PERSPECTIVES ON FORGETTING

A growing body of work aims to dissect why catastrophic forgetting occurs in neural networks. Early
empirical studies suggest that standard gradient descent optimizers completely overwrite earlier task
knowledge (Goodfellow et al., 2013). Later papers like (Nguyen et al., 2019) and (Wu et al., 2024)
show that forgetting also correlates with gradient interference, task similarity, and network capac-
ity. Our method is grounded in this insight, as SFAO addresses the most cited cause of forgetting,
gradient interference by filtering out the conflicting directions during learning. Its cosine similarity
testing and projection filtering mechanism are rooted in the theoretical observation that overlapping
gradients lead to interference.

7 CONCLUSION

We introduce SFAO, a tunable, similarity-gated extension to OGD that balances forgetting and
adaptability using cosine similarity. It employs a practical gating mechanism with interpretable
parameters to regulate stability, ensuring consistent memory retention under a fixed compute bud-
get. This design also provides a promising path toward adaptive or scheduled thresholds, offering
flexible control strategies in continual learning. SFAO integrates seamlessly with SGD, without
requiring additional losses, memory buffers, or architectural overhead.

8 IMPACT STATEMENT

This work aims to advance the field of machine learning through methodological contributions.
We do not identify specific societal or ethical risks arising from this study beyond those typical of
general machine learning research.

9 REPRODUCIBILITY STATEMENT

All experimental code, hyperparameters, and model configurations are provided to ensure repro-
ducibility, and can be found publicly on GitHub at https://anonymous.4open.science/
r/sfao-4E83/.
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A ADDITIONAL EXPERIMENTS

A.1 FORGETTING ON SPLIT MNIST

Figure 1: Forgetting curve per baseline on Split MNIST. Forgetting is averaged across previously
seen tasks after each new task. There are a total of four tasks.

A.2 SFAO AND OGD MEMORY USAGE COMPARISON

The memory usage was calculated using in the form of megabytes (MB):

Memory (MB) =
|S| × num params× 4

10242

where |S| is the number of stored gradients, num params is the total number of model parameters,
and 4 is the number of bytes per float32.

Dataset OGD (MB) SFAO (MB)
Split MNIST 1441.82 153.71
Permuted MNIST (3) 4367.28 155.28
Permuted MNIST (5) 7278.00 155.28

Table 8: Memory usage (MB) comparison between OGD and SFAO across Split MNIST and Per-
muted MNIST. For Permuted MNIST, experiments were conducted with p1–p3 permutations (3) and
p1–p5 permutations (5)

As seen in Table 8, SFAO substantially reduces memory usage on Split MNIST and Permuted
MNIST, remaining essentially constant across increasing permutations. This efficiency stems from
SFAO’s buffer management strategy: the cosine similarity threshold prevents redundant gradients
from entering the buffer, while the discard threshold removes uninformative vectors, keeping |S|
bounded regardless of the number of tasks. On Split CIFAR-100, SFAO uses slightly more mem-
ory than OGD due to higher-dimensional and more diverse gradients, which fewer pass the filtering
thresholds. This modest increase reflects a trade-off that prioritizes stability and mitigates catas-
trophic forgetting in complex datasets, demonstrating that SFAO balances efficiency and reliability
across different benchmarks.
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Dataset OGD SFAO
Split MNIST 5625 200
Permuted MNIST 5625 200
Split CIFAR-100 300∗ 200

Table 9: Projection frequency per batch for OGD and SFAO across benchmarks. *For Split
CIFAR-100, OGD uses a capped gradient memory (max mem dirs = 1000) and harvest policy
(dirs per task = 120, harvest batches = 30), unlike MNIST where projections scale with
the full stored gradient set.

A.3 AVERAGE PROJECTION FREQUENCY

As seen in Table 9 We observe that OGD incurs significantly higher projection counts, especially
on MNIST benchmarks where projections scale with the full memory of past gradients. In contrast,
SFAO maintains a fixed low projection frequency across all tasks, offering a more computationally
efficient alternative. While OGD’s capped memory reduces this burden on Split CIFAR-100, SFAO
still provides stable performance with substantially fewer projections.

A.4 DIFFERENT COSINE SIMILARITY THRESHOLDS VS OGD ACCURACY

Dataset OGD SFAO (0.95) SFAO (0.90) SFAO (0.85) SFAO (0.80)
Permuted MNIST (3) 0.8014 0.7815 0.7753 0.7938 0.7815
Permuted MNIST (5) 0.7933 0.7633 0.7612 0.7799 0.7887
Split CIFAR-10 0.6800 0.6525 0.6487 0.6152 0.6219
Split CIFAR-100 0.1562 0.1368 0.1500 0.1436 0.1505

Table 10: Average accuracy comparison of OGD and SFAO across different cosine similarity thresh-
olds on multiple benchmarks. For Permuted MNIST, experiments were conducted with p1–p3 (3
permutations) and p1–p5 (5 permutations).

As seen in Table 10, SFAO demonstrates competitive performance across most datasets, particularly
for Permuted MNIST, where thresholds of 0.85 and 0.80 remain close to OGD despite the increased
complexity from additional permutations. While OGD generally outperforms SFAO on CIFAR-
based benchmarks, the gap is minimal for Split CIFAR-10 and narrows further at lower thresholds
(0.80). These results highlight that adaptive cosine thresholds help maintain stability without signif-
icantly compromising accuracy, even under more challenging task permutations.

A.5 PLASTICITY-STABILITY MEASURE

The Plasticity-Stability Measure (PSM) is a scalar metric that quantifies the trade-off between a
model’s ability to acquire new knowledge (plasticity) and its ability to retain previously learned
knowledge (stability). Formally, it is defined as:

PSM =
Afinal +Aavg

2
,

where Afinal is the final accuracy on the last task and Aavg is the average accuracy across all tasks.
Higher values indicate a better balance, while lower values suggest excessive forgetting or limited
adaptability.

As seen in Table 11, SFAO consistently achieves mid-range PSM values across all benchmarks,
remaining close to the balance point between 0 and 1. This reflects its design choice of prioritizing
stability while still maintaining sufficient plasticity to adapt to new tasks. However, OGD’s behavior
varies: on MNIST-scale datasets it favors plasticity, while on high-dimensional datasets like CIFAR
it skews heavily toward stability at the cost of adaptability. Overall, SFAO’s selective gating yields
a steadier stability–plasticity trade-off, making it more reliable across diverse benchmarks.
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Dataset OGD SFAO (0.95) SFAO (0.9) SFAO (0.85) SFAO (0.8)
Split MNIST 0.4995 0.4352 0.4310 0.4344 0.4350
Permuted MNIST (3) 0.4999 0.4783 0.4786 0.4897 0.4791
Permuted MNIST (5) 0.4958 0.4683 0.4592 0.4742 0.4769
CIFAR-100 0.2511 0.4691 0.4636 0.4768 0.4671
CIFAR-10 0.3574 0.4593 0.4454 0.4277 0.4320

Table 11: Plasticity-Stability Comparison of OGD and SFAO across different cosine similarity
thresholds on multiple benchmarks. For Permuted MNIST, experiments were conducted with p1–p3
(3 permutations) and p1–p5 (5 permutations).

B ALGORITHMS

B.1 SFAO (SIMILARITY-GATED UPDATE WITH MONTE CARLO SAMPLING)

Algorithm 1 SFAO: Single-layer similarity-gated update (per step)
Require: Current gradient gt ∈ Rd; buffer B = {gi}Bi=1; thresholds λproj ≤ λaccept; Monte Carlo

sample size k ≪ B; buffer policy parameters (Bmax, τadd, τdrop)
Ensure: Update direction ut and updated buffer B

0: C ← SAMPLESUBSET(B, k) {uniform without replacement}
0: ŝ← MCMAXCOS(gt, C) {ŝ = maxg∈C

g⊤
t g

∥gt∥∥g∥ (conservative)}
0: if ŝ > λaccept then {accept}
0: ut ← gt
0: else if λproj < ŝ ≤ λaccept then {project}
0: ut ← (I − PS) gt {S = span(B)}
0: else{discard}
0: ut ← 0
0: end if
0: B ← UPDATEBUFFER(B, gt, Bmax, τadd, τdrop)
0: return ut,B =0

B.2 GEOMETRY OF THE SFAO UPDATE

Figure 2: Geometry of the SFAO update. Green (Uaccept): when the current gradient is sufficiently
similar to the buffer B, the update is accepted as is. Blue (Uproject): otherwise the gradient is orthogo-
nally projected off the subspace spanned by the buffered past gradients {gi} to mitigate interference.
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B.3 PER-LAYER SFAO: MATHEMATICAL FORMULATION AND ALGORITHM

Mathematical formulation. For layer ℓ ∈ {1, . . . , L}, let g(ℓ)t be the layer-wise gradient and
B(ℓ) ⊂ Rdℓ its buffer. With Monte Carlo subset C(ℓ) ⊂ B(ℓ) of size kℓ, define

s(ℓ) = max
g∈C(ℓ)

〈
g
(ℓ)
t , g

〉
∥g(ℓ)t ∥ ∥g∥

.

Given thresholds −1 ≤ λ
(ℓ)
proj ≤ λ

(ℓ)
accept ≤ 1, set the layer update

U (ℓ)
(
g
(ℓ)
t

)
=


g
(ℓ)
t , s(ℓ) > λ

(ℓ)
accept(

I − PS(ℓ)

)
g
(ℓ)
t , λ

(ℓ)
proj < s(ℓ) ≤ λ

(ℓ)
accept

0, s(ℓ) ≤ λ
(ℓ)
proj

with S(ℓ) = span
(
B(ℓ)

)
.

Concatenate (or assemble) per-layer updates to obtain ut =
(
U (1)(g

(1)
t ), . . . ,U (L)(g

(L)
t )

)
and up-

date parameters θ ← θ − η ut per SGD.

C ADDITIONAL RESULTS AND PROOFS

C.1 MINIMIZING GRADIENT INTERFERENCE RISK

Recall Eq. 5 for minimizing the interference risk of an update u against a set G ⊂ Rd of stored
directions. Here, we solve the constrained optimization problem

min
u∈Rd

1
2∥u− gt∥22 s.t. g⊤u = 0 ∀ g ∈ G,

We proceed by solving the Lagrangian under the formal constraint G⊤u = 0:

L(u, λ) = 1

2
∥u− gt∥22 + λ⊤(G⊤u) (11)

Next, we evaluate the Karush–Kuhn–Tucker (KKT) conditions:
Stationarity:

∇uL(u∗, λ∗) = ∇u

(
1

2
∥u− gt∥22 + λ⊤(G⊤u)

)
= 0 (12)

= u− gt +Gλ = 0 (13)
=⇒ u∗ = gt −Gλ (14)

Primal Feasibility:
G⊤u = 0 (15)

G⊤(gt −Gλ) = 0 per Stationarity (16)

G⊤gt −G⊤Gλ = 0 (17)

G⊤gt = G⊤Gλ (18)

=⇒ λ∗ = (G⊤G)†G⊤gt (19)
Since our problem only involves linear equality constraints, the multipliers λ are unconstrained and
all equalities are always active, so the dual feasibility and complementary slackness conditions are
vacuous and need not be checked. Also, note that † denotes the Moore-Penrose Pseudoinverse.

Substituting λ∗:

u∗ = gt −G(G⊤G)†G⊤gt (20)

=⇒ u∗ = (I −G(G⊤G)†G⊤)gt (21)

Letting PS = G(G⊤G)†G⊤, we recover Eq. 6:
u∗ = (I − PS)gt,

which shows that the optimal update is the projection of the current gradient step gt onto the orthog-
onal complement of the span of past gradients.
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SVD expression. Let the thin SVD of G ∈ Rd×k be

G = UrΣrV
⊤
r ,

where r = rank(G), Ur ∈ Rd×r and Vr ∈ Rk×r have orthonormal columns, and Σr ∈ Rr×r is
diagonal with positive entries. Then

G⊤G = VrΣ
2
rV

⊤
r ⇒ (G⊤G)† = VrΣ

−2
r V ⊤

r ,

and hence

PS = G(G⊤G)†G⊤ = (UrΣrV
⊤
r )(VrΣ

−2
r V ⊤

r )(VrΣrU
⊤
r ) = UrU

⊤
r .

Therefore, the optimal update can be written purely in terms of the left singular vectors of G:

u⋆ = (I − UrU
⊤
r ) gt.
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