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Abstract

Recent advances in implicit neural representation (INR)-based video coding have
demonstrated its potential to compete with both conventional and other learning-
based approaches. With INR methods, a neural network is trained to overfit a
video sequence, with its parameters compressed to obtain a compact representation
of the video content. However, although promising results have been achieved,
the best INR-based methods are still out-performed by the latest standard codecs,
such as VVC VTM, partially due to the simple model compression techniques
employed. In this paper, rather than focusing on representation architectures, which
is a common focus in many existing works, we propose a novel INR-based video
compression framework, Neural Video Representation Compression (NVRC)1,
targeting compression of the representation. Based on its novel quantization and
entropy coding approaches, NVRC is the first framework capable of optimizing an
INR-based video representation in a fully end-to-end manner for the rate-distortion
trade-off. To further minimize the additional bitrate overhead introduced by the
entropy models, NVRC also compresses all the network, quantization and entropy
model parameters hierarchically. Our experiments show that NVRC outperforms
many conventional and learning-based benchmark codecs, with a 23% average
coding gain over VVC VTM (Random Access) on the UVG dataset, measured
in PSNR. As far as we are aware, this is the first time an INR-based video codec
achieving such performance.

1 Introduction

In recent years, learning-based video compression [40, 34, 36, 13, 30] has demonstrated its significant
potential to compete with conventional video coding standards, with some recent contributions (e.g.,
DCVC-DC [36]) reported to outperform the latest MPEG standard codec, VVC VTM [10]. However,
learning-based codecs are typically associated with high computational complexity, in particular at
the decoder, which therefore limits their practical deployment. To address this, a new type of learned
video codec has been proposed, based on implicit neural representation (INR) models [13, 30], where
each INR instance is overfitted and compressed to represent a video sequence (or a video dataset).
INR-based codecs enable much faster decoding speed compared to most non-INR learning based
coding methods, and do not require offline optimization due to its overfitting nature. Although they
have shown promise, INR-based codecs are yet to compete with state-of-the-art conventional and
learned video coding methods in terms of rate-distortion performance.

To enhance coding performance, it is noted that most recent INR-based video coding methods [13, 30]
focus on improving network architectures but still perform simply model pruning, quantization and
entropy coding to obtain compact representations. Moreover, these methods are not fully end-to-
end optimized; for example, NeRV [13] and HiNeRV [30] are not trained with a rate-distortion
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Figure 1: Comparison between the output from HiNeRV [30] and the proposed NVRC. The image is
from UVG dataset (Jockey/ReadySetGo sequence) [45]

objective but only perform fine-tuning with pruning and quantization applied. Although COOL-CHIC
[33] and C3 [29] are almost end-to-end optimized, the rate consumed by their entropy model and
decoder/synthesis networks does not contribute to the training process. In contrast, state-of-the-art
non-INR learning-based codecs [34, 35] are typically end-to-end trained with advanced entropy
models, and this contributes to their improved coding performance compared to INR-based methods.

To address this issue, this paper proposes a new framework, referred to as Neural Video Representation
Compression (NVRC). Unlike other INR-based video codecs, NVRC is an enhanced framework for
compressing neural representations, which, for the first time, enables INR-based coding methods to
be fully end-to-end optimized with advanced entropy models. In particular, NVRC groups network
parameters and quantizes them with per-group learned quantization parameters. The feature grids are
then encoded by a context-based entropy model, where the network layer parameters are compressed
by a dual-axis conditional Gaussian model. The quantization and entropy model parameters are
further compressed by a lightweight entropy model to reduce their bit rate consumption. The overall
rate of the parameters from the INR, quantization, and entropy models is optimized together with the
representation quality. NVRC also utilizes a refined training procedure, where the rate and distortion
objectives are optimized alternatively to reduce the computational cost. The primary contributions of
this work are summarized below.

1. The proposed NVRC is the first fully end-to-end optimized INR-based framework for video
compression. In NVRC, neural representations, as well as quantization and entropy models, are
optimized simultaneously based on a rate-distortion objective.

2. Enhanced quantization and entropy models have been applied to encode neural representation
parameters, where the context and side information have been utilized to achieve higher coding
efficiency.

3. A new parameter coding method based on a hierarchical structure has been introduced
which allows NVRC to minimize the rate overhead. The parameters from quantization and
entropy models for encoding the neural representation, are all quantized and coded with learnable
parameters.

4. NVRC features an enhanced training pipeline, where the rate and distortion losses are optimized
alternatively, to reduce the computational cost of advanced entropy models.

We conducted experiments to compare the proposed approach with state-of-the-art conventional and
learning-based video codecs on the UVG [45], MCL-JCV [59] and JVET-CTC Class B [9] datasets.
To enable a fair comparison, we use both the RGB444 (like most learned video codecs) and YUV420
(like standard video coding methods) configurations. The results demonstrate the effectiveness of
NVRC, which achieved up to 23% and 50% BD-rate savings when compared to the latest MPEG
standard codec, H.266/VVC VTM-20.0 (Random Access) [11], and the state-of-the-art INR-based
codec, HiNeRV [30], respectively. To our best knowledge, NVRC is the first INR-based video codec
outperforming VVC VTM with such significant coding gains.

2 Related work

2.1 Learning-based video compression

Video compression is an important research topic that underpins the development of many video-
related applications, such as video streaming, video conferencing, surveillance, and gaming. In
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the past three decades, multiple generations of video coding standards [60, 56, 10] have evolved
by integrating advanced coding techniques. Recently, learning-based video compression emerged
as an popular alternative due to its strong expressive power and the ability to be optimized in a
data- and metric-driven manner. Neural networks can be combined with conventional codecs for
performance enhancement [42, 64] or used to build end-to-end optimized frameworks. DVC [40] first
proposed to replace all modules in conventional codecs using neural networks. Follow-up innovations
include those improving motion estimation [38, 2, 26, 36], applying feature space conditional coding
[27, 34], optimizing context modeling in terms of performance and efficiency [23, 22, 68], and
adopting novel architectures such as normalizing flows [25], transformers [61, 44], etc. In addition
to these architecture modifications, improvements to quantization-involved optimization have also
been achieved to handle the non-differentiability caused by hard thresholding operations [29, 3, 19].
Moreover, several studies [17, 51, 28, 41, 39] have validated the effectiveness of adapting a model
to an individual image of a video sequence via iterative refinement to reduce the amortization gap
[63, 58] and optimize bit allocation over a sequence of frames [62]. Despite demonstrating impressive
rate-distortion performance, with some recent advancements reporting outperformance of VVC [10],
neural video codecs are generally too computationally intensive [48], thus limiting their adoption in
practical applications.

2.2 INR-based video compression

Implicit neural representation (INR) [52] is an emerging paradigm for representing multimedia data,
such as audios [55], images [14, 54], videos [13], and 3D scenes [46, 49]. This type of method exploits
the mapping from the coordinate inputs to a high-dimensional feature space and aims to output the
corresponding target data value at that location. Neural representation for videos (NeRV) [13] has
been proposed to model the mapping from frame indices to video frames, showing competitive
reconstruction performance with a very high decoding speed. When applied to video compression,
the network parameters of these models are compressed through pruning, quantization, and entropy-
penalization [20, 16, 18, 65] to achieve high coding efficiency. The following contributions further
investigated patch-wise [5], volume-wise [43], or spatial-temporal disentangled representations [37]
to improve representational flexibility. There are also methods that explicitly model the volume-
wise residual [43], frame-wise residual [67], or flow-based motion compensation [66, 32, 21, 33],
to enable scalable encoding and representation of longer and more diverse videos. In addition to
these index-based approaches, other work has exploited content-specific embeddings/feature grids to
provide visual prior for the network. The embeddings may be associated with single [12] or multiple
resolutions [32, 30, 29, 33]. Although they hold promise in terms of low decoding complexity and
competitive performance, all these aforementioned INR-based video codecs are still outperformed by
state-of-the-art conventional (e.g., VVC VTM [10]) and autoencoder-based [35, 36] video codecs.

3 Method

Figure 2 shows the proposed NVRC framework, which follows a workflow similar to existing
INR-based video compression methods, such as [13, 30, 29], but with a more advanced model
compression pipeline. It trains a neural representation for a given video(s) and utilizes model
compression techniques to obtain the compact representation (with compressed network parameters)
of the video(s). Specifically, in NVRC, for a target video sequence V gt with T frames, height H ,
width W , and C channels, i.e., V gt ∈ RT×H×W×C , a neural representation F parameterized by θ is
trained to map coordinates to pixel intensities such as RGB colors, in a patch-wise manner. This can
be represented by:

Vpatch = Fθ(i, j, k), (1)

where i, j, k is the patch coordinates. Vpatch ∈ RTpatch×Hpatch×Wpatch×Cpatch is the corresponding
video patch, in which 0 ≤ i < W

Wpatch
, 0 ≤ j < H

Hpatch
and 0 ≤ k < T

Tpatch
. This formulation

(the same as in [30]) generalizes different frameworks: when (Tpatch, Hpatch,Wpatch) = (1, 1, 1),
the neural network maps coordinates to individual pixels [52]; when (Tpatch, Hpatch,Wpatch) =
(1, H,W ), the network maps coordinates to video frames [13].

As mentioned in Section 1, existing INR-based video codecs either split the training of the INR
model and model compression [13, 30], or train the model with compression techniques applied, but
not entirely in an end-to-end manner [29, 33]. Unlike these works, NVRC employs more advanced
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Figure 2: In NVRC, the parameters are encoded in a hierarchical structure, where (Middle-left)
per-block quantization scales and (bottom-left) context-based model are utilized for encoding feature
grids, and (Middle-right and bottom-right) per-axis quantization scales and dual-axis Gaussian model
are applied for encoding network layer parameters.

entropy models and allows fully end-to-end optimization. Specifically, a neural representation F
contains a set of learnable parameters θ including feature grids parameters (θgrid) and network layer
parameters (θlayer). To quantize and encode these parameters, quantization and entropy models
are employed with learnable compression parameters ϕ = {ϕquant, ϕem}. ϕ is determined by the
distribution of the representation parameters θ in a fine-grained manner, e.g., per-group quantization
scales, and can be considered as side information in compression [7]. While these parameters do
improve overall coding efficiency, the introduced overhead is not negligible, particularly when the
compression ratio of the representation parameters is high. Therefore ϕ is also quantized in this work,
denoted as ϕ̂ = {ϕ̂quant, ϕ̂em}, and entropy coded. Here the quantization and entropy coding are
performed based on another set of learnable parameters ψ = {ψquant, ψem}, which can be simply
quantized into full/half precision as ψ̂ = {ψ̂quant, ψ̂em}. This forms a hierarchical coding strategy
for encoding these model and compression parameters θ, ϕ and ψ, as illustrated in Figure 2.

All these parameters are optimized in a fully end-to-end manner based on a rate-distortion objective.
Here the distortion metric D, e.g., mean-square-error (MSE), is calculated between a reconstructed
video patch, Vpatch = Fθ̂(i, j, k), and the corresponding target video patch V gtpatch. The rate R is
based on the number of bits consumed by the three levels of quantized parameters θ̂, ϕ̂, ψ̂.

3.1 Feature grid coding

Although employing feature grids [12, 30, 29, 33, 31] for neural representations improves both
convergence rate and reconstruction quality, these typically rely on a large number of parameters,
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which could potentially challenge model compression techniques. To address this issue, related works
utilize multi-resolution grids to improve parameter efficiency and/or perform entropy coding for the
feature grid compression [12, 32, 30, 29, 33, 31].

To improve feature grid encoding, in NVRC the parameters are first partitioned into small blocks, for
which different quantization parameters are applied to improve the encoding efficiency. Context-based
entropy models are utilized with parallel coding

3D block partitioning. For a feature grid z in θgrid, with z ∈ RTgrid×Hgrid×Wgrid×Cgrid , it is
divided into blocks with a size of Tblk ×Hblk ×Wblk × Cgrid (padding is applied if the grid size is
not divisible) and produced Tgrid

Tblk
× Hgrid

Hblk
× Wgrid

Wblk
blocks. For multi-scale grids [32, 30, 33, 29], the

same block size is applied to partition the grids at each scale.

Quantization. With the partitioned blocks, a transformation is then applied before quantization.
Here, the corresponding per-block quantization scales δgrid,blk from ϕ̂quant are utilized, where

δgrid,blk ∈ R
Tgrid
Tblk

×
Hgrid
Hblk

×
Wgrid
Wblk

×Cgrid is learnable, and all the scales in δgrid,blk are shared by
features in the same channel and in the same block in z. To achieve this, δgrid,blk is first expanded to
δgrid, which has the same shape as z, and such that:

δgrid[t, h, w, c] = δgrid,blk[⌊
t

Tblk
⌋, ⌊ h

Hblk
⌋, ⌊ w

Wblk
⌋, c], (2)

where 0 ≤ t < Tgrid, 0 ≤ h < Hgrid, 0 ≤ w < Wgrid and 0 ≤ c < Cgrid. In practice, the
logarithm of δgrid,blk is learned, instead of δgrid,blk, which ensures that the scales are non-negative.

Following [16, 43, 29, 65, 31], the scaling and quantization can then be computed by:

ẑs = ⌊zs⌉ = ⌊ z

δgrid
⌉, (3)

in which zs represent the scaled parameters, ẑs denote the quantized zs.

The corresponding unscaling operation is defined by:

ẑ = ẑs × δgrid, (4)

to obtain the final quantized parameters ẑ.

Context-based entropy model. Although entropy coding has been used for reducing the bit rate
consumed by feature grids, many implementations are only based on simple entropy models and
treat the grids as ordinary network parameters [12, 32, 30, 31]. A better solution is to exploit
the spatial-temporal redundancy within the feature grids, due to the inter dependent nature of the
features. COOL-CHIC [33] and C3 [29] utilize context-based model and achieve efficient feature
grid encoding; however, these methods are not associated with optimal rate distortion performance
due to their low complexity constraints, and the use of grid entropy models for INR-based video
compression has not been fully explored in the literature.

To enhance the efficiency of feature grid coding, NVRC employs context-based Gaussian models with
auto-regressive style encoding and decoding processes [47] to exploit spatial-temporal redundancy
within feature grids. While auto-regressive style coding is sequential, in NVRC, the feature grids at
different resolutions are coded independently. Moreover, as mentioned above, each grid is partitioned
into many small 3D blocks, which are also coded in parallel. Thus, the context model in NVRC
has a high degree of parallelism, which enables fast coding despite of reduced amount of available
context. The context-based model employs 3D masked convolution [57, 47], with parameters ωcontext
from ϕ̂em, which are applied to all blocks from the same feature grid, but are not shared between
grids at different scales. The context model estimates the means µgrid and scales σgrid for the
Gaussian distribution in a per-feature manner and uses a coder such as the arithmetic coder to code
the parameters, i.e., ẑs. Here, the estimated means µgrid and scales σgrid will also be scaled by the
corresponding quantization scale δgrid before applying for encoding and decoding.

3.2 Network layer parameter coding

Unlike the feature grids in INR models, the network parameters, such as the weights in linear and
convolutional layers, are difficult to compress as there is no spatial or temporal correlation between
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parameters. Existing works typically use simple entropy models for encoding these parameters
[13, 30, 16, 43, 33, 65].

2D block partitioning. In the proposed NVRC framework, similar to feature grids, network layer
parameters are also partitioned into groups prior to quantization and coding. Here we assume that the
encoding of the parameters from the same input/output features/channels could benefit from sharing
quantization and entropy coding parameters. For example, if an input feature/channel is zero, then
the corresponding group of parameters are likely to be zeros as well. In NVRC, the quantization
and entropy coding models for network parameters are designed based on this assumption, and aim
to share the quantization and entropy models between parameters in the same row/column. Since
there are parameters with different numbers of dimensions, e.g., 2D for linear layer weights and 4/5D
for convolution weights, all layer parameters in NVRC are first reshaped into 2D tensors, where
the parameters in a row correspond to the weight from the same output feature/channel, and the
parameters in a column are the weights for the same input feature/channel. While existing works
[13, 30] can be directly employed on partitioned parameter tensors by rows or columns, and applied
per-row or per-column entropy parameters for coding, this may not be the best solution, because (i)
the partitioning axis needs to be decided, (ii) the coding could benefit from sharing quantization and
entropy parameters across both rows and columns. Therefore, in NVRC, the tensors are partitioned
according to both axes at the same time, and the quantization and entropy parameters are learned
in both axes and mixed during coding. We noticed that existing work has utilized quantization
parameters on both input and output channels in different contexts [15]. Here, entropy parameters are
also utilized, and both the quantization and entropy parameters are further compressed.

Quantization. For the weights of a layer, ωlayer, from θlayer, ωlayer ∈ RCout×Cin , the quantization
scales δlayer ∈ RCout×Cin , is combined by two vectors of scales δlayer,out ∈ RCout and δlayer,in ∈
RCin , such that:

δlayer[i, j] = δlayer,out[i]× δlayer,in[j], (5)

where 0 ≤ i < Cout and 0 ≤ j < Cin. In practice, only the logarithms of δlayer,out and δlayer,in are
stored, and quantization is performed similarly to the grid parameters (Section 3.1).

Dual-axis conditional Gaussian model. In NVRC, a dual-axis conditional Gaussian model is used
for coding the network layer parameters. Similar to the quantization parameters mentioned above, the
means µlayer and the scales σlayer, are represented in two per-axis parameter vectors, i.e. µlayer,out,
µlayer,in, σlayer,out and σlayer,in, and they are both from ϕ̂em.

The combined means µlayer and scales σlayer are obtained by

µlayer[i, j] = µlayer,out[i]× σlayer,in[j] + µlayer,in[j], (6)

and
σlayer[i, j] = σlayer,out[i]× σlayer,in[j], (7)

where 0 ≤ i < Cout, 0 ≤ j < Cin. Like the quantization parameters δlayer, only the per-axis means
µlayer,out, µlayer,in, and the logarithms of the per-axis scales σlayer,out, σlayer,in are stored. Finally,
the means and scales here will also (as for feature grids) be scaled by δlayer, before being utilized for
coding ω̂layer.

3.3 Coding of entropy model parameters

Since our use of more advanced quantization and entropy models will introduce additional bit rate
overhead, the quantization parameters ϕquant and entropy model parameters ϕem are also quantized
into ϕ̂quant and ϕ̂em and entropy coded. Here the same (as for feature grids in Section 3.1) scaling
and quantization operation is applied, in which a conditional Gaussian model is used, except that
the quantization scales and the means/scales for the Gaussian distribution are learned in a per-tensor
manner.

3.4 Rate-distortion optimization

Combined loss for NVRC. In NVRC, the overall loss function is given below:

L = R+ λD (8)
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Here D stands for the distortion calculated between the reconstructed content and the original input.
R is the total bitrate (bits/pixel) consumed by the quantized representation parameters θ̂, quantized
compression parameters ϕ̂. Specifically

R = Rinr +Rem =
1

T ×H ×W
(−

|θ̂s|∑
n

log2(pϕ̂(θ̂
s[n]))−

|ϕ̂s|∑
n

log2(pψ̂(ϕ̂
s[n]))) (9)

By jointly optimizing different parameters with the combined rate-distortion loss, the trade-off
between the rate and the reconstruction quality can be achieved.

Alternating optimization. In existing INR-based video representations and compression methods
[13, 30], the distortion loss is minimized iteratively with sampling batches of frames, patches or
pixels. To introduce the entropy regularization, this process has been extended [29, 65], where the
rate loss is also calculated in each training step, similar to other learning-based video compression
methods [40, 34]. However, in the INR-based video compression, the training is the process for
over-fitting the network to a video sequence, in which the samples of each steps are from the same
sequence, and the code, i.e., the INR model parameters, is the same set of parameters for all steps.
Thus, it is not necessary to update the rate term in every step, especially when a significant amount
of computation or memory is needed for this due to the use of entropy models. In NVRC, a more
efficient training process is used, where the rate R and distortion D are optimized alternately. In
every K+1 steps, the D is minimized in the first K steps, and where R is minimized at the K+1-th
step. Empirically, the rate loss is also scaled by K to keep the rate roughly the same. Note that, the
quantization step is still applied on each step, and skipping the entropy model is only possible when
the quantization parameters are separated from the entropy model.

Two-stage training. Similar to some existing works [13, 30, 29], NVRC is also trained in two stages.

In Stage 1, to optimize L, the non-differentiable quantization operation needs to be emulated through
a differentiable approximation during training. Recent work [29] has shown that a soft-rounding
operation with an additive Kumaraswamy noise can be used to replace quantization for neural
representation training. While in [29], this is applied only to feature grids, we extend this idea and
apply it to both feature grids and network parameters in the first stage of training. Compared to [29],
soft-rounding with higher temperature (0.5 to 0.3) is used in NVRC, as the original, low temperature
(e.g. 0.3 to 0.1 in [29]) for both feature grids and network parameters will lead to training difficulty
due to the large variance of the gradients.

In the second stage, instead of using soft-rounding, following [30, 31], Quant-Noise [53] is used to
fine-tune the neural representation, as we empirically found that Quant-Noise remains stable with
different hyper-parameter settings and is suitable for high quantization levels.

4 Experiment

4.1 Experiment Configuration

Evaluation database. To evaluate the performance of the proposed NVRC framework, we conducted
experiments on the UVG [45] and MCL-JCV [59] dataset. The UVG dataset includes 7 video
sequences with 300/600 frames, while the MCL-JCV dataset consists of 30 video clips with 120-150
frames. All sequences are compressed at their original resolution in this experiment. We also provide
the result of JVET-CTC dataset Class B [9] in the Appendix.

Implementation details. NVRC is a new framework focusing on INR model compression, which
can be integrated with any typical INR-based models. To test its effectiveness, we employed one
of the latest INR network architectures, HiNeRV [30], and integrated it into our NVRC framework.
This INR model has been reported to provide competitive performance compared to many standard
and end-to-end codecs for the video compression task. Minor adjustments have been made on top of
HiNeRV in terms of the network structure and the training configuration (see Appendix for details) -
rate points are now obtained by both turning the scale of the neural representation and the λ value.
The model is trained for 360 or 720 epochs in the first stage and 30 or 60 epochs in the second
stage, depending on the UVG [45] and MCL-JCV [59] datasets, due to the differing lengths of the
sequences.
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Table 1: BD-rate results on the UVG dataset [45].
Color Space Metric x265 (veryslow) HM (RA) VTM (RA) DCVC-HEM DCVC-DC HiNeRV C3 HNeRV-Boost

RGB 4:4:4 PSNR -73.74% -50.38% -23.42% -40.57% -31.20% -50.16% -66.86% -66.45%
MS-SSIM -80.65% -67.38% -49.75% -6.97% -11.75% -44.27% -76.59% -78.01%

YUV 4:2:0 PSNR -66.89% -42.50% -12.96% - -33.98% - - -
MS-SSIM -59.38% -38.20% -15.04% - -39.12% - - -

Table 2: BD-rate results on the MCL-JCV dataset [59].
Color Space Metric x265 (veryslow) HM (RA) VTM (RA) DCVC-HEM DCVC-DC HiNeRV C3 HNeRV-Boost

RGB 4:4:4 PSNR -51.61% -13.88% 36.91% -2.97% 13.40% -31.69% -42.23% -59.80%
MS-SSIM -66.83% -41.01% -6.39% -21.64% 33.07% -41.62% -49.23% -83.36%

YUV 4:2:0 PSNR -49.02% -13.19% 40.80% - 3.75% - - -
MS-SSIM -43.00% -12.61% 33.09% - -9.89% - - -

Figure 3: Average rate quality curves of various tested codecs on the UVG dataset [45].

Figure 4: Average rate quality curves of various tested codecs on the MCL-JCV dataset [59].

Benchmark methods. Conventional codecs, x265 [1] with the veryslow configuration, HM-18.0
[50] and VTM-20.0 [11] with the Random Access configuration, are used for benchmarking, together
with two recent learned video codecs, DCVC-HEM [35], DCVC-DC [36]. Three state-of-the-art
INR-based codecs, including the original HiNeRV [30], C3 [29] and HNeRV-Boost [65] have also
been included in this experiment. All results are produced by the open source implementations.

Evaluation methods. The evaluation was performed in the RGB color space (for comparing both
conventional codecs and learning-based methods) with the BT.601 color conversion, and in the
original YUV420 color space (for comparing both conventional methods and the learning-based
methods that support this feature in their public implementations). PSNR (RGB/YUV 6:1:1) and
MS-SSIM (RGB/Y) are used here to assess video quality, based on which Bjøntegaard Delta Rate
figures are calculated against each benchmark codec.

4.2 Results and discussion

Figure 3-4 and Table 1-2 provide the results for the proposed NVRC model and the benchmark
methods. It can be observed that when tested in the RGB 4:4:4 color space (as in many learning-based
works), NVRC significantly outperforms the original HiNeRV model [30], with an average coding
gain of 50.16%, measured by PSNR. Similar improvement has also been achieved against other
INR-based methods including HNeRV-Boost [65] and C3 [29]. Moreover, NVRC also offers better
performance compared to latest MPEG standard codec VVC VTM (Random-Access) [11] on the
UVG dataset [45], with a 23.4% average coding gain based on PSNR. To the best of our knowledge,
it is the first INR-based video codec outperforming VTM. Compared to state-of-the-art learned video
coding methods, NVRC also exhibits superior or comparable performance to DCVC-HEM [35] and
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Table 3: Complexity results of NVRC with the UVG dataset [45]. Encoding and decoding FPS are
measured by the number of training steps/evaluation steps per second performed by the INR model
with 1080p inputs/outputs. The model compression MACs and encoding/decoding time are measured
by the steps for performing quantization and entropy coding. The complexity figures are calculated
based on NVIDIA RTX 4090 GPU with FP16.

Rate point Frame MACs/Enc FPS/Dec FPS Model compression MACs/Enc time/Dec time

1-2 359.6G/6.4/21.0 25.2G/22.9s/37.0s
3-4 842.8G/3.6/15.1 50.4G/29.6s/44.8s
5-6 1929.0G/2.2/9.7 100.8G/43.4s/53.7s

Table 4: Ablation studies on the UVG dataset [45]. Results are BD-rates.

Metric NVRC (V1) (V2) (V3) (V4) (V5)

PSNR 0.00% 13.04% 11.06% 23.37% 30.84% 14.42%
MS-SSIM 0.00% 13.84% 10.24% 23.88% 30.07% 8.54%

DCVC-DC [36] on the UVG [45] and MCL-JCV [59] datasets, respectively.. When evaluated in
the YUV 4:2:0 color space, NVRC still offers superior performance as for RGB 4:4:4 color space,
outperforming most benchmarked methods based on PSNR and MS-SSIM. It should be also noted
that INR-based video codecs do not require offline training on large-scale datasets, whereas other
learning-based methods do. Qualitative results are provided in Figure 1 in terms of visual comparison
between the content reconstructed by NVRC and HiNeRV.

4.3 Computational complexity

The complexity figures of NVRC with the UVG dataset [45] are provided in Table 3. When compared
to the original HiNeRV [30], the proposed method (with HiNeRV as its INR network) is associated
with increased computational complexity. However, the MACs figure is still significantly lower than
that of other learning-based video codecs (e.g., DCVC-DC [36]), which allows faster decoding. It
should be noted that the complexity figures shown here are obtained based on research source code
that has not been optimized for latency. The actual latency of INR and entropy coding can be further
reduced by (1) optimizing the implementation of the INR and entropy models, (2) performing lower
precision computation, and (3) implementing parallel decoding between different resolution feature
grids.

4.4 Ablation study

To evaluate the contribution of the main components in NVRC, an ablation study was performed
based on the UVG dataset [45], using the configurations in Section 4.1, but four rate points for each
variant.

Alternative entropy model settings. We compared different combinations of entropy models for
encoding feature grids θgrid and network parameters θlayer: Context model + dual-axis conditional
Gaussian model (Default setting in NRVC), (V1) Context model + per-tensor conditional Gaussian
model, (V2) per-tensor conditional Gaussian model + dual-axis conditional Gaussian model, (V3)
per-tensor conditional Gaussian model + per-tensor conditional Gaussian model.

Hierarchical parameters coding. In NVRC, the quantization parameters ϕquant and the entropy
model parameters ϕem are also entropy coded. To verify this, we created another variant (V4) with
ϕquant and ϕem not coded but stored in half-precision.

Learned quantization steps. We also compared the use of learned quantization steps ϕquant and
ψquant (Default setting in NRVC) and (V5), a new variant with fixed quantization steps for grids,
where the log-step size is set to −4.

Table 4 shows the ablation study results, in terms of the BD-rate values against the original NVRC.
These figures confirmed the contribution of the tested components in the NVRC framework.
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In addition, we conducted experiments to evaluate the effects of fully end-to-end optimization
and alternating optimization on selected challenging sequences from the UVG dataset (Jockey and
ReadySetGo) [45]. When removing fully end-to-end optimization, the variant without rate loss in the
first stage exhibits up to a 35% BD-rate increase compared to the proposed model. However, this
loss diminishes if the number of epochs in the second stage increases. With the proposed alternating
optimization, we did not observe any noticeable difference in performance. Nevertheless, without
alternating optimization, the training step time can increase by up to 40% under our experimental
settings.

5 Conclusion

In this paper, we present NVRC, a new INR-based video compression framework with a focus on
representation compression. By employing novel entropy coding and quantization models, NVRC
significantly improved coding efficiency and allows real end-to-end optimization for the INR model.
The experimental results show that NVRC outperforms all the benchmarked conventional and
learning-based video codecs, in particular with a 23% bitrate saving against VVC VTM (Random
Access) [11] on the UVG database [45]. This is the first time an INR-based video codec has obtained
this achievement.
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A Appendix

A.1 Additional experiments

Table 5: BD-rate results on the JVET-CTC Class B dataset [9].
Color Space Metric x265 (veryslow) HM (RA) VTM (RA) DCVC-DC

RGB 4:4:4 PSNR -68.70% -35.53% 7.48% -13.85%
MS-SSIM -84.69% -65.51% -42.60% -18.81%

YUV 4:2:0 PSNR -66.33% -34.49% 9.57% -24.25%
MS-SSIM -66.02% -39.99% -6.79% -36.94%

Figure 5: Average rate quality curves of various tested codecs on the JVET-CTC Class B datasets [9].

In addition to the main paper experiments, here we provide the results of NVRC with the JVET-CTC
test sequences for VTM [9]. Similar experiments configurations as in the main paper have been used,
where x265 [1] with the configuration, HM-18.0 [50] and VTM-20.0 [11] with the Random Access
configuration, and DCVC-DC [36] have been used as the baseline models. Similar to the primary
experiment results, our proposed NVRC consistently outperforms the baseline models in most cases.

A.2 NVRC configurations at different scales.

Neural representation. In NVRC, the INR architecture is based on HiNeRV [30], with minor
modifications. The differences include: (1) due to the enhanced capability of feature grids coding,
feature grids in NVRC are larger for better capability on capturing dynamic contents. (2) The bilinear
interpolation of the input encoding is performed after the stem convolution layer, while in the original
HiNeRV it was before applying convolution. This improves the performance marginally. (3.) The
hyper-parameter selection between different scales has been simplified, where only the number of
channels of the network layers and the feature grids change with scales.

The hyper-parameters of the neural representation in NVRC are provided in Table 7 and 8. It is noted
that in NVRC, only the input feature grids in HiNeRV are coded by the context model, while the local
grids are simply considered as general layer parameters, as they only account for a small number of
parameters.

Table 6: Comparison between NVRC to existing works with entropy regularization.
Method Stage 1 Stage 2 Grid EM Layer EM Quant/EM parameter sharing Multi-level coding

Zhang et al. [66] D R+D N/A Uniform per-channel No
Gomes et al. [16] D R+D N/A Neural Network per-weight No
Maiya et al. [43] R+D R+D N/A Neural Network per-weight No

Kim et al. [29] R+D R+D Context Laplace* No No
Leguay et al. [33] R+D - Context Laplace* No No
Zhang et al. [65] D R+D Gaussian Gaussian per-weight No

Ours R+D R+D Context Gaussian per-block/per-axis Yes

*: Applied only after training.

Context-based entropy model. The context-based entropy model in NVRC has an autoregressive
style coding process. It is based on masked convolution [57, 47]. It contains 3 blocks, where each
block contains a Layer Normalization layer [4], 3D convolution and GeLU activation [24] (except
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Table 7: NVRC configurations.
S1 S2 S3 S4

Number of parameters 2.14M 6.35M 14.19M 31.41M
Channels (224, 112, 56, 28) (336, 168, 84, 42) (512, 256, 128, 64) (768, 384, 192, 96)
kernel size 3 × 3
Expansion ratios (4, 4, 4, 4)
Depths (3, 3, 3, 1)
Strides (3, 2, 2, 2)
Stem kernel size 3 × 3 × 3
Grid sizes Tgrid × 45 × 80 × 1 Tgrid × 45 × 80 × 2 Tgrid × 45 × 80 × 4 Tgrid × 45 × 80 × 8
Grid levels (4)
Grid scaling ratios (2, 2, 2, 0.5)
Local grid sizes T × 4 T × 8 T × 16 T × 32
Local grid levels (3)
Local grid scaling ratios (2, 0.5)

T : the number of video frames
Tgrid: 200 for UVG [45]/JVET-CTC Class B [9], 50 for MCL-JCV [59]

for the final output). The context-based model is independent between channels, and has been
implemented as with depth-wise convolution. The kernel size is 5 and the width is 8. The output of
the context-based model is the means and log scales of the Gaussian distribution.

Feature grids/layer parameters partitioning. In NVRC, the feature grid parameters are partitioned
into blocks, and the quantization parameters are shared within each block, while the layer parameters
are partitioned into rows and columns, with both of the quantization and entropy parameters shared.
For feature grid parameters, the block size used is 16× 8× 8, which is a relative small size but can
provide high degree of parallelism for the auto-regressive coding process. For the layer parameters,
there are different size of parameters in the neural representation, where some of them are very small
and could be too costly to include the per-column/row parameters. Thus, for those light weight
parameters, either single-axis or per-tensor quantization/entropy parameters are used. In particular,
we use the per-column/row quantization and entropy parameters if the number of parameters on the
column/row is at least 128.

A.3 Experiment configurations

In the experiments, the configurations of NVRC are based on [30]. The training is performed by
sampling patches from the target video, where the patch size is 120× 120, and the batch size of each
training step is 144 patches (equal to 1 frame). For learning RGB output, the distortion loss is:

D = 0.7× L1RGB + 0.3× (1− MS-SSIMRGB) (10)

where the MS-SSIM has a reduced window size (5 × 5) due to the training in small patches. For
YUV output, NVRC is trained the YUV444 setting, to avoid changing the model architecture, but
evaluation is in YUV420. In related works, different loss functions for YUV outputs have not been
studied. Here we use the loss

D = 0.99× (MSE6/8
Y × MSE1/8

U × MSE1/8
V ) + 0.01× (1− MS-SSIMY ), (11)

which align with both the commonly used PSNR-YUV (6:1:1) and MS-SSIM (Y) metrics. While
we did not thoroughly study the weighting between two terms, we found that this ratio offers both a
good PSNR and MS-SSIM performance.

The learning rates in Stage 1 and Stage 2 are 2e-3 (or 1e-3 for rare case which the training is less
stable) and 1e-4, where the cosine decay is applied for scaling the learning rate with a minimum
learning rate of 1e-4 and 1e-5, respectively. The norm clipping with 1.0 is applied. L2 regularization
of 1e-6 is applied to improve the numerical stability, as we observe that the norm of weight could
grow too large in some cases. The magnitude of L2 regularization linearly decays in the first stage and
is not applied in the second stage, to avoid under-fitting. For the soft-rounding and the Kumaraswamy
noise [29] in Stage 1, the temperatures and the noise scale ratio scale from 0.5 to 0.3 and 2.0 to 1.0,
respectively. For Quant-Noise [53] in Stage 2, the noise ratio scales from 0.5 to 1.0. Note that we
follow [30], where rounding, instead of the straight-through estimator (STE) [8], is applied to the
quantized variables. R is optimized once for every 8 steps of D.

For the conventional codecs, we used a QP range of 16–44 for x265 [1] and 16–36 for HM [50] and
VTM [11], with QP values selected at intervals of 4. The results for HiNeRV [30] and HNeRV-Boost
[65] are obtained by training with their provided implementations, with the original configurations.
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Table 8: NVRC representation scales and regularization (λ) configurations for the UVG [45], MCL-
JCV [59] and JVET-CTC Class B [9] datasets (RGB/YUV).

Rate point UVG MCL-JCV JVET-CTC Class B

RGB YUV RGB YUV RGB YUV

1 S2, λ = 1.0 S2, λ = 32.0 S1, λ = 0.25 S1, λ = 8.0 S2, λ = 1.0 S2, λ = 32.0
2 S2, λ = 2.0 S2, λ = 64.0 S1, λ = 0.5 S1, λ = 16.0 S2, λ = 2.0 S2, λ = 64.0
3 S3, λ = 4.0 S3, λ = 128.0 S2, λ = 1.0 S2, λ = 32.0 S3, λ = 4.0 S3, λ = 128.0
4 S3, λ = 8.0 S3, λ = 256.0 S2, λ = 2.0 S2, λ = 64.0 S3, λ = 8.0 S3, λ = 256.0
5 S4, λ = 16.0 S4, λ = 512.0 S3, λ = 4.0 S3, λ = 128.0 S4, λ = 16.0 S4, λ = 512.0
6 S4, λ = 32.0 S4, λ = 1024.0 S3, λ = 8.0 S3, λ = 256.0 S4, λ = 32.0 S4, λ = 1024.0

Figure 6: (Left) Rate distribution and (Right) bits-per-parameter of different parameter types.

A.3.1 Rate distribution

In Fig 6 (left), we provide the rate distribution of different types of parameters (feature grids, network
layer parameters, quantization and entropy coding parameters for feature grids/layer parameters).
The data is collected from the lowest rate point models with the UVG dataset [45]. It can be observed
that, in general, the quantization and entropy coding parameters contribute to a very small amount
of the total bitrate, where the ratio between the feature grids and the layer parameters vary between
different video sequences. In Figure 6 (right), we further provide the bits-per-parameter data for
different video sequences. In this very low bitrate rate point, NVRC is capable of learning parameter
distributions with very low bits-per-parameters, and it also varies between sequences. For example,
on some sequences with larger motion (Jockey and YachtRide), the bits-per-parameters of the feature
grids can be doubled, but for some relatively static sequences, the bits-per-parameters of the feature
grids is nearly zero.

A.4 Positive Impacts

NVRC is the first INR-based codec which outperforms VVC VTM [11] with a 23% coding gain on
the UVG database [45]. It will potentially contribute to the next generation of video coding standards,
and improve current video streaming services if deployed in practice.

A.5 Limitations

Encoder complexity. As the implementation of NVRC is based on sophisticated neural networks, it
requires substantial computational resources, in particular at the encoder. This is a common issue
with many INR-based approaches that require content overfitting during encoding. It makes this type
of approaches unsuitable for real-time encoding scenarios like video conferencing. This also results
in increased energy consumption and a negative environmental impact. Future work should focus on
reducing the complexity of this model.

Latency. As INR-based video codecs require overseeing all frames of a video sequence at the same
time during encoding, the system latency become more longer compared to conventional and some
end-to-end learned video codecs which perform per-frame encoding. This prevents these INR models
from adoption in practical application scenarios.
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Reproducibility. In this paper, we have not studied reproducibility, which is a critical issue for the
practical application of deep video compression with entropy coding. While our experiments focus
on floating-point operations, the operations in the proposed method can also be implemented, for
example, using integer operations [6], which can ensure reproducibility.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
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Answer: [Yes]
Justification: The claims in the abstract and introduction can accurately reflect the paper’s
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have mentioned the limitation of this work in the Appendix.
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• The paper should point out any strong assumptions and how robust the results are to
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model well-specification, asymptotic approximations only holding locally). The authors
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and how they scale with dataset size.
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address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not contain any theoretical result.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We did our best to disclose all the information required to reproduce the main
experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We will release the code and data publicly available to support the reproducibil-
ity of the results.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clearly specify all the training and test details in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This does not apply to the results in this work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We did provide the information related to the hardware resources used for
generating the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research reported in this paper does conform with the NeurIPS Code of
Ethics, in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We did discuss the impact of this work in Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not identify such risks with this work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have mentioned and cited the code/data/models used in this paper, and
respected the license and terms while using them.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We describe the NVRC model, and will release the implementation alongside
the paper after acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not perform experiments involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not perform experiments involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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