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ABSTRACT

We present Graph Energy-based Model (GEM), an energy-based model for molec-
ular graph generation. GEM uses dequantization and gradient symmetrization to
incorporate generation by stochastic gradient Langevin dynamics for graph repre-
sentation that is discrete and includes symmetric constraint. Experimental results
show that GEM can comparably design compounds as other deep generative ap-
proaches.

1 INTRODUCTION

Discovering novel molecules is important but costly and time-consuming. Machine learning-based
novel molecule generation approaches are expected to remedy this problem. Specifically, recent ap-
proaches use deep generative models, such as GANs (De Cao & Kipf (2018); Maziarka et al. (2020)),
VAEs (Simonovsky & Komodakis (2018); Jin et al. (2018)) and normalizing flows (Kaushalya et al.
(2019); Zang & Wang (2020)), to produce graph representation of compounds.

This paper introduces Graph Energy-based Model (GEM), which uses another generative model,
namely energy-based model (EBM) for molecular graph generation. We empirically demonstrate
that GEM can generate novel molecules as other approaches. Additionally, its generation in the
input space enables preserving specified substructures, which distinguishes GEM from different deep
generative approaches.

2 GRAPH ENERGY-BASED MODELS

Figure 1: During training, GEM learns to assign lower energy to molecules in a dataset and higher
energy to generated ones including invalid graphs. For property-targeted generation, molecules with
desired properties are expected to have lower energy. GEM generates molecular graphs with lower
energy using MCMC, which are expected to be valid molecules.

2.1 NOTATIONS

A molecular graph G can be represented as an undirected graph depicted by a pair of ten-
sors: a feature tensor X ∈ {0, 1}N×#M and an adjacency tensor A ∈ {0, 1}N×N×#B. The
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feature tensor X represents atoms in the molecule, and the adjacency tensor represents bonds
among them. N is the maximum number of atoms in molecules in a dataset, M is a set of
considered atoms, e.g., M = {C,N,O,F, virtual node}, and B is the set of bond types, i.e.,
B = {single, double, triple, virtual bond}. “virtual node” and “virtual bond” are used for padding in
case the number of atoms in a given molecule is smaller than N .

For each triplet of (N,M,B), there is a set of valid molecular graphs G = G(N,M,B). Validity
includes the symmetry of adjacency tensor slices: A:,:,b is a symmetric matrix for b = 1, 2, . . . ,#B.
Practically, we use datasets D ⊂ G.

2.2 GENERATING GRAPHS BY EBMS

We propose to generate a novel molecule by using an energy function E� : G → R, parameterized
by a real vector �. Specifically, we use a graph neural network to represent this parameterized
function. The energy function is expected to assign smaller values to valid molecules and higher
values to invalid ones. This energy function determines a Boltzmann-Gibbs distribution p�(G) =

exp(−E�(G))P
G0∼G exp(−E�(G))

, from which molecules are expected to be sampled with a high probability.

If graphs are continuous, we can sample graphs from this distribution by using stochastic gradient
Langevin dynamics (SGLD, Welling & Teh (2011)):

X(t+1) = X(t) +
αt

2
gX(X(t),A(t)) +

√
αt�X,A(t+1) = A(t) +

αt

2
gA(X(t),A(t)) +

√
αt�A, (1)

where αt ∈ R+ is a step size, gX = ∇XE� and gA = ∇AE� are score functions, and �X and �A
are standard normals. This generation (Equation (1)) can also be achieved by directly estimating
gX and gA as (Niu et al. (2020)). X(0) and A(0) are sampled from a uniform distribution on [0, 1].
The distribution of G(∞) = (X(∞),A(∞)) is asymptotically equal to p�(G), and we assume that
this property can be approximated with finite steps with a small constant state size, i.e., αt = α,
following the literature.

Actually, simply applying Equation (1) does not work in our case, because they do not consider the
following requirements: 1. X and A are discrete, and 2. slices of A is symmetric. To fix the first
issue, we relax the domains of X and A to be (0, 1)N×#M and (0, 1)N×N×#B. For discrete tensors
from datasets, we modify them by using dequantization and applying softmax function along the
last axes. Dequantization is a technique used in Kaushalya et al. (2019), which adds random values
to the tensor elements X← X + cUX, A← A + cUA, where c ∈ (0, 1) is a scaling parameter, and
UX,UA are uniform noise on (0, 1). We set c = 0.9 in the experiments.

To avoid sampled adjacency tensors being asymmetric, we sample A(0) and �A from symmetric
distributions, where (A(0))i,j,b = (A(0))j,i,b, (�A)i,j,b = (�A)j,i,b, for i, j ∈ {1, 2, . . . , N} and
b ∈ {1, 2 . . . ,#B}. Additionally, the score function gA needs to be symmetric, which we will
describe in the next section.

2.3 SYMMETRIZE GRADIENT OF ADJACENCY TENSOR

We use a neural network based on Relational GCN (RGCN, (Schlichtkrull et al. (2018))) as an
energy function. RGCN is a graph convolutional neural network for graphs with multiple edge
types. For each graph G = (X,A), the lth RGCN layer processes node representation Hl ∈ RN×C

as

Hl+1 = σ

 
HlW

(0)
l +

#BX
b=1

A:,:,bHlW
(b)
l

!
, (2)

where H0 = X, W (0)
l ,W

(b)
l ∈ RC×D are learnable parameters, σ is a nonlinear activation func-

tion, and C,D are input and output feature dimensions. After several RGCN layers, a graph-level
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representation is obtained by the aggregation of (Li et al. (2016)). This representation is transformed
into a scalar value E�(G) by a multi layer perceptron.

Crucially, with this energy function, the score function gA is asymmetric. Indeed, by focusing on the
first layer of RGCN layers and ignoring the nonlinear activation for simplicity, we obtain a Jacobian

tensor of
∂H1

∂(A)i,j,b
=
∂A:,:,bXW

(1)
b

∂(A)i,j,b
= J (i,j)XW (1)

b , where J (i,j) denotes a single entry matrix of

1 at (i, j) and 0 elsewhere (Petersen & Pedersen (2006)). This gradient is not symmetric for each b.
To remedy this, we modify Equation (2) as

Hl+1 = σ

 
HlW

(0)
l +

#BX
b=1

1

2
(A:,:,b + A>:,:,b)HlW

(b)
l

!
. (3)

Though this modification does not change the output because each A:,:,b is symmetric by definition,

now the Jacobian tensor is also symmetrized as
∂H1

∂(A)i,j,b
=

1

2
(J (i,j) + J (j,i))XW (1)

b , from which

we can deduce
∂E�

∂(A)i,j,b
=

∂E�

∂(A)j,i,b
, the symmetry of the score function gA. Practically, the

modification of Equation (3) can be separately done before the forward pass of the model, which
means the actual modification to the off-the-shelf models is minimum. In the experiments, we use
the abovementioned RGCN variant, which is also used in other graph-based molecular generation
methods (De Cao & Kipf (2018); Kaushalya et al. (2019)).

2.4 TRAINING OF GEM

To optimize the energy function E�, we can use stochastic gradient of ∇�ED [log p�(G)] =
ED [∇�E�(G)] − Epθ(G0) [∇�E�(G

′)]. At the LHS’s second term, samples from the model
G′ ∼ p�(G

′) are used. As discussed in Section 2.2, we use a finite step of SGLD to approximate this
sampling, resulting in diverged samples from the model distribution. To remedy this problem, we
use the persistent contrastive divergence (PCD, Tieleman (2008)), which reuses the past generated
samples. Additionally, we penalized {E�(G)}2 (Du & Mordatch, 2019).

2.5 GENERATION BY GEM

GEM generates molecular graphs using SGLD (Equation (1)), which adds noise to graph representa-
tion, and thus, sometimes collapses its validity. To remedy this issue, we apply validity correction
(Zang & Wang (2020)) to feature and adjacency tensors after generation steps.

One of the most appealing ability of GEM is substructure preserving generation. Because GEM sam-
ples molecular graphs in the input space by SGLD, this ability is achieved by updating parts of graph
representation (see also Figure 2 and Appendix A).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

We used QM9 (Wu et al. (2018)) and ZINC-250k (Irwin & Shoichet (2015)) as datasets D. QM9
and ZINC-250k contain 1.3 × 105 and 2.5 × 105 molecules, respectively. Following the pre-
processing protocols in Kaushalya et al. (2019), we kekulize each molecule in each dataset and
ignore hydrogens as the SMILES format. As a result, the maximum number of atoms in a molecule
N is 9 for QM9 9 and 38 for ZINC-250k. The number of atom types #M including the vir-
tual node is 5 for QM9 and 10 for ZINC-250k. The number of bond types #B is 4, namely
B = {single, double, triple, virtual bond}, for both datasets. We also followed the data split of
Kaushalya et al. (2019).

Each input feature tensor is embedded in 16-dimensional space and processed by a two-layer RGCN
of 128 hidden dimensions. Its output is aggregated in a 256-dimensional space and converted to
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Figure 2: Left: GEM can generate molecular graphs while preserving specified substructures
(highlighted by light gray) by applying masks to the corresponding parts and only updating the
rest (highlighted by light blue). Right: Examples of substructure generation while fixing 4-
Chlorodiphenylmethane c1ccc(cc1)Cc2ccc(cc2)Cl highlighted by light gray.

scalar energy by an MLP of (1024, 512) hidden units. The hyperbolic tangent function is used as an
activation function, and the sigmoid function ς(x) = {1+exp(−x)}−1 is applied to the final output
that restricts the range to [0, 1]. Please refer to Appendix B for details of training and generation.

3.2 RESULTS

We present validity, novelty, and uniqueness of molecular graphs generated from 1,000 random
initial states in Table 1 compared with baselines of MoFlow (Zang & Wang (2020)), GraphNVP
(Kaushalya et al. (2019)), MolGAN (De Cao & Kipf (2018)), and RVAE (Ma et al. (2018)). GEM
shows comparable performance with other methods using other deep generative methods on both
datasets.

Additionally, samples of substructure preserving generation are presented in Figure 2. GEM can ex-
actly fix specified substructures, which distinguishes our approach from different generative meth-
ods. Other samples are presented in Figure 3 of Appendix A.

Table 1: The results of non substructure-preserving molecular graph generation. Baseline results
are borrowed from the original papers. For GEM, average and standard deviation of three runs are
reported. ? indicates the use of validity correction (Zang & Wang (2020)).

Dataset QM9 ZINC-250k
Method Validity Novelty Uniqueness Validity Novelty Uniqueness

GEM ? 100± 0.0 99.1± 0.2 85.9± 0.6 100± 0.0 100± 0.0 100± 0.0

MoFlow? 100± 0.0 98.0± 0.1 99.2± 0.1 100± 0.0 100± 0.0 100± 0.0
GraphNVP 83.1± 0.5 58.2± 1.9 99.2± 0.3 42.6± 1.6 100± 0.0 94.8± 0.6
MolGAN 98.1 94.2 10.4 N/A N/A N/A
RVAE 96.6 97.5 N/A 34.9 100 N/A

4 CONCLUSION

In this paper, we have proposed GEM, an EBM for molecular graphs. Dequantization and gradient
symmetrization have been introduced to generate discrete and symmetric representations of graphs
in continuous space. We empirically demonstrate the effectiveness of GEM and its unique ability,
substructure preserving generation. We hope energy-based molecular generation, including GEM,
opens a new direction of de novo design.
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A SUBSTRUCTURE PRESERVING GENERATION

To fix substructures, we apply masks to both feature and adjacency tensors. Suppose the number of
atoms in a given substructure is S < N , where N is the maximum number of atoms in molecules of
a dataset. Because GEM is permutation invariant to an input representation, we can re-index atoms
in the substructure to 1, 2, . . . , S such that the Sth atom to be connected with the rest part, without
loss of generality. Then, we use a mask to update only a part of the feature tensor corresponding
to S + 1, S + 2, . . . , N th atoms and fix the atoms in the substructure. Similarly, we only update
connections among S, S + 1, . . . , N th atoms and fix the connections among the rests by masking
the adjacency tensor. This masking can be extended to appending the rest parts to multiple atoms.

B EXPERIMENTS

B.1 DETAILS OF TRAINING AND GENERATION

We used PyTorch v1.7 (Paszke et al. (2019)) for model implementation, chainer-chemistry v0.7 1

for data preprocessing, and RDKit v2020.09 2 for handling molecule information.

We trained GEM using Adam (Kingma & Ba (2015)) with a learning rate of 1.0×10−4 for 30 epochs.
For SGLD, we set a step size α to 1.0× 10−4 and the number of steps to 40. Following Grathwohl
et al. (2020); Du et al. (2020), we set the buffer size of PCD to 104 and the reinitialization probability
ρ to 5.0×10−2, and reduced the effect of additive noise by multiplying 0.1 to the standard deviation
as common practice. For SGLD, we used an exponential moving average of the model with a decay
rate of 1.0× 10−3 for the stability.

To generate molecular graphs, we used SGLD of step size of 1.0×10−1 for QM9 and 1.0×10−2 for
ZINC-250k, and the number of steps of 103. Adding noise in Equation (1) sometimes turns once
generated valid molecular graphs into invalid ones. Therefore, we record all valid graphs generated
at each step. We discarded the graphs generated during the first 100 steps to reduce the effects of
initial states.

1https://github.com/chainer/chainer-chemistry
2https://www.rdkit.org

6

https://github.com/chainer/chainer-chemistry
https://www.rdkit.org



	Introduction
	Graph Energy-based Models
	Notations
	Generating Graphs by EBMs
	Symmetrize Gradient of Adjacency Tensor
	Training of GEM
	Generation by GEM

	Experiments
	Experimental Settings
	Results

	Conclusion
	Substructure Preserving Generation
	Experiments
	Details of training and generation


