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1 Introduction1

Protein sequence generation is a key area in computational biology, where the objective is to2

generate sequences with specific functional and structural features. Deep learning models have made3

substantial progress in this domain, but still face significant challenges in handling long sequences4

and modeling biological dynamics. While large language models have shown impressive results,5

their computational requirements often limit accessibility in academic research settings.6

This study focuses on implementing and evaluating a small-scale Mamba architecture for protein7

sequence generation. The Mamba architecture offers several advantages through its selective state-8

space updates: linear computational complexity, efficient handling of long-range dependencies, and9

natural alignment with protein dynamics. Our work aims to demonstrate that competitive performance10

can be achieved with reduced computational resources, making advanced protein sequence modeling11

more accessible to the research community.12

Figure 1: Overview of our proposed approach showing (A) Mamba architecture for protein sequence
modeling, (B) multi-dimensional evaluation framework, and (C) experimental workflow.

2 Related Work13

The field of protein language modeling has seen significant advances through various architectural14

approaches. Early works like UniRep [3] demonstrated that relatively small models using mLSTM15

architecture could effectively capture both evolutionary and biophysical properties. TAPE [1] provided16

comprehensive benchmarks showing that models with 10-20M parameters can achieve competitive17

results across multiple tasks, establishing a foundation for efficient protein modeling.18

Structure-aware approaches emerged through works like Bepler and Berger [2], which incorporated19

structural information via multi-task learning and introduced the soft symmetric alignment mechanism.20
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The generative capacity of protein language models was significantly advanced by ProtGPT2 [5],21

which demonstrated successful unsupervised sequence generation, though at the cost of substantial22

computational resources.23

Recent innovations in state space models have opened new possibilities for efficient protein modeling.24

ProtMamba [6] pioneered the application of the Mamba architecture to proteins, demonstrating25

that alignment-free approaches could effectively capture homology information. PTM-Mamba [7]26

extended this framework to handle post-translational modifications, highlighting the architecture’s27

versatility. The core Mamba design [4] offers several key advantages for protein sequence modeling:28

• Linear computational complexity O(L) versus transformers’ quadratic O(L²)29

• Efficient handling of long-range dependencies through selective state updates30

• Reduced memory requirements enabling training on limited compute resources31

• Natural alignment with protein dynamics through state-based modeling32

Based on these developments, we focus on evaluating small-scale models (8-15M parameters) that33

balance performance with efficiency: UniRep-Small (mLSTM), TAPE-LSTM (bidirectional LSTM),34

Mini-Transformer, and our proposed Small Mamba model.35

3 Proposed Model36

Our implementation of the Mamba architecture leverages selective state-space modeling to efficiently37

process protein sequences. The core model is described by:38

ḣ(t) = Ah(t) +Bu(t), y(t) = Ch(t)

with a selective state update mechanism:39

st = σ(Wsht + bs)⊙ st−1 + (1− σ(Wsht + bs))⊙ tanh(Whht + bh)

This mechanism enables adaptive retention of historical information while maintaining linear com-40

plexity. Key design considerations include optimized parameter count to balance expressivity and41

efficiency, selective state updates for capturing long-range protein dependencies, adaptable hidden42

state dimension based on sequence complexity, and efficient batch processing for training acceleration.43

4 Evaluation Framework and Expected Results44

Our comprehensive evaluation framework integrates multiple aspects of protein sequence analysis and45

generation. For sequence modeling capability, we assess the models’ proficiency through perplexity46

measurements across varying sequence lengths and masked token prediction accuracy, with particular47

attention to long-range interaction prediction at known binding sites. The computational efficiency48

analysis examines both training dynamics and resource utilization, comparing theoretical predictions49

with empirical measurements.50

Sequence quality assessment combines multiple complementary approaches. We employ BLAST51

and HMMER for similarity scoring and domain conservation analysis, supplemented by Clustal52

Omega for multiple sequence alignment. Structure validation integrates both secondary structure53

prediction via PSIPRED and tertiary structure prediction through AlphaFold, with quality metrics54

including TM-score and RMSD. The framework also evaluates the biological plausibility of generated55

sequences through amino acid distribution analysis and physicochemical property conservation.56

Our experiments utilize the UniRef50 dataset, carefully selecting 10 million sequences to ensure57

comprehensive coverage while maintaining computational feasibility. Training conditions and58

hyperparameters are standardized across all models to enable fair comparison. The experimental59

phase spans eight weeks, with systematic evaluation of each metric.60

Key expected contributions include first comprehensive evaluation of small-scale Mamba for protein61

generation, novel insights into efficient protein sequence modeling, and practical guidelines for62

protein engineering under computational constraints. These findings will serve as a valuable reference63

for the protein engineering community, particularly in resource-constrained academic settings. Our64

work aims to demonstrate that advanced protein sequence modeling can be achieved with modest65

computational resources while maintaining competitive performance.66
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