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ABSTRACT

Graph alignment, the problem of identifying corresponding nodes across multi-
ple graphs, is fundamental to numerous applications. Most existing unsupervised
methods embed node features into latent representations to enable cross-graph
comparison without ground-truth correspondences. However, these methods suf-
fer from two critical limitations: the degradation of node distinctiveness due to
oversmoothing in GNN-based embeddings, and the misalignment of latent spaces
across graphs caused by structural noise, feature heterogeneity, and training in-
stability, ultimately leading to unreliable node correspondences. We propose a
novel graph alignment framework that simultaneously enhances node distinctive-
ness and enforces geometric consistency across latent spaces. Our approach intro-
duces a dual-pass encoder that combines low-pass and high-pass spectral filters to
generate embeddings that are both structure-aware and highly discriminative. To
address latent space misalignment, we incorporate a geometry-aware functional
map module that learns bijective and isometric transformations between graph em-
beddings, ensuring consistent geometric relationships across different representa-
tions. Extensive experiments on graph benchmarks demonstrate that our method
consistently outperforms existing unsupervised alignment baselines, exhibiting
superior robustness to structural inconsistencies and challenging alignment sce-
narios. Additionally, comprehensive evaluation on vision-language benchmarks
using diverse pretrained models shows that our framework effectively generalizes
beyond graph domains, enabling unsupervised alignment of vision and language
representations.

1 INTRODUCTION

Graph alignment, also referred to as network alignment or graph matching, is a fundamental problem
in machine learning and graph theory, concerned with identifying a correspondence between the
nodes of two graphs such that structurally similar or semantically equivalent nodes are matched.

Graph alignment arises in a wide range of application domains, including bioinformatics (e.g., pro-
tein interaction networks) (Liao et al., 2009} Singh et al., [2007), social network analysis (L1 et al.,
2018 [Korula & Lattanzil 2014}, computer vision (Liu et al., 2022a; |Chen et al.l 2025} |Wang et al.,
2019), and natural language processing (Osman & Barukub, 2020; |Guillaumel 2021). Due to its
combinatorial nature, graph alignment is computationally challenging, often requiring approxima-
tion or heuristic algorithms.

Graph alignment methods are typically classified into three categories based on their alignment
strategies: optimization-based, optimal transport—based, and embedding-based approaches. They
also vary in the level of supervision required, ranging from unsupervised to semi-supervised, using
partial node correspondences, and fully supervised methods. A detailed overview of these categories
with related works is provided in Appendix [A]

Embedding-based graph alignment methods encode graphs into low-dimensional node representa-
tions via Graph Neural Networks (GNNs) (He et al., [2024; [Fey et al., 2020; Gao et al.l 2021b),
followed by alignment through transformations or joint learning with cross-graph regularization.
Node matching is then performed using nearest-neighbor search or assignment algorithms, achiev-
ing better scalability than optimization-based alternatives.
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Figure 1: Limitations of embedding-based graph alignment on synthetic data. G; is a ring graph with
100 nodes and 2D random features. (a) G is identical to G, yielding well-aligned embeddings. (b)
Feature inconsistency introduced through Gaussian noise (std=0.2) causes divergence. (c) Structural
inconsistency via 30% edge dropout distorts the embedding alignment. (d) Identical graphs with
different training runs show embedding instability, highlighting unsupervised learning limitations.

These methods are typically formulated as unsupervised learning tasks, where ground-truth node
correspondences across graphs are unavailable. Despite their computational advantages, these ap-
proaches face several inherent challenges that limit their effectiveness and reliability:

1) Degradation of node distinctiveness in GNN embeddings. While GNNs capture structural
information by aggregating neighborhood features, this process inherently reduces node distinctive-
ness. This limitation is particularly problematic for graph alignment, where accurate correspondence
identification depends on highly discriminative representations. As embeddings lose uniqueness,
alignment becomes increasingly ambiguous and error-prone.

2) Misaligned latent spaces across graphs. In the absence of supervision, explicit constraints, or
alignment-specific objectives during training, embedding-based methods struggle to produce com-
parable latent spaces across different graphs. Even when using shared encoders, the resulting em-
beddings often occupy misaligned geometric spaces due to structural inconsistencies, feature het-
erogeneity, and training instability. As illustrated in Figure[I} nodes with identical local structures
may be mapped to distant regions in their respective latent spaces.

This misalignment arises from multiple sources. First, structural inconsistencies, such as missing
or noisy edges, distort neighborhood aggregation during message passing, leading to incompatible
embeddings for otherwise corresponding nodes. Second, feature inconsistency across graphs, stem-
ming from differences in user attributes, schema, or data domains, causes graph encoders to embed
semantically equivalent nodes into disjoint subspaces. Lastly, GNN-based encoders often exhibit
stochasticity in training; different random initializations can yield drastically different embeddings,
even on fixed graph inputs (Moschella et al., [2023). Without explicit mechanisms to harmonize or
align the latent spaces, these inconsistencies severely hinder cross-graph communication and under-
mine the reliability of node alignment.

Figure|l|illustrates the latent spaces learned by a 2-layer GCN on synthetic graphs. Panel (a) shows
that identical graphs produce well-aligned embeddings, facilitating effective correspondence detec-
tion. However, panels (b) and (c) reveal that minor feature and structural inconsistencies cause
corresponding node embeddings to diverge significantly, compromising alignment quality. Most
critically, panel (d) shows that retraining the same model on identical graphs with different ran-
dom initializations produces drastically different latent spaces, underscoring the instability and non-
deterministic nature of learned representations.

In this paper, we introduce GADL, Graph Alignment with Dual-pass encoder and Latent space
communication, which builds upon the Graph Autoencoder (GAE) framework (Kipf & Welling,
2016) by incorporating a dual-pass encoding architecture and cross-graph latent communication
mechanism tailored for unsupervised graph alignment tasks.

First, to address the degradation of node distinctiveness caused by oversmoothing in GNN neigh-
borhood aggregation, GADL employs a dual-pass GCN encoder that combines low-pass and high-
pass spectral filters. The low-pass branch captures structural context, while the high-pass branch
preserves fine-grained node distinctiveness. Their concatenation yields embeddings that are both
structure-aware and highly discriminative, crucial for accurate graph alignment. Second, to ad-
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dress latent space misalignment across graphs, GADL incorporates a geometry-aware functional
map module that learns explicit transformations between different graph embeddings. By enforcing
bijectivity and orthogonality constraints, this module ensures that embeddings across graphs be-
come mutually consistent and locally isometric, enabling effective cross-graph communication and
alignment without requiring ground-truth node pairs. Our key contributions can be summarized as:

1. We propose a novel dual-pass GCN encoder that combines low-pass and high-pass spectral
filters to produce embeddings that are both structure-aware and highly discriminative.

2. We introduce a geometry-aware functional map module that explicitly aligns latent spaces
across graphs, enabling robust cross-graph communication without supervision.

3. We conduct extensive experiments on graph alignment benchmarks, demonstrating supe-
rior performance and robustness to structural inconsistencies in unsupervised alignment
tasks.

4. We evaluate our framework on vision-language benchmarks, demonstrating that our frame-
work effectively generalizes beyond graph domains to enable cross-modal alignment.

2 PRELIMINARIES

We formaly define the problem of aligning attributed nodes from a source graph G, to a target
graph G, in an unsupervised setting. The goal is to identify, for each node in the source graph, a
corresponding node in the target graph.

Definition 1 (Graph Alignment (GA)). Given two graphs Gs = (Vs, Es, X) and Gy = (W, &, X4),
where V denotes the set of nodes, £ the set of edges, and X, € RN=*F« the associated node at-
tributes (features), the graph alignment problem aims to find a one-to-one mapping ™ : Vs — V;
such that for each node u € Vs, m(u) = v € Vy and =1 (v) = u. The objective is to identify corre-
spondences between nodes in G5 and G, that preserve structural similarity and attribute consistency
across the two graphs.

We assume the GA problem between two general graphs with different number of nodes (|Vs| #
[V¢]) in an unsupervised setting, where no ground-truth node correspondences are available during
training, and the alignment depends solely on the structural and attribute information of the graphs.

2.1 GRAPH AUTOENCODER FOR UNSUPERVISED NODE EMBEDDING

Graph autoencoders (GAEs) (Kipf & Welling, |2016) learn node embeddings in an unsupervised
setting, generating low-dimensional representations that capture both node features and graph struc-
ture. Following the general principle of autoencoders, a GAE consists of two main components: an
encoder g5(Z | G) that maps the input graph G = (V, €, X), where X € RIVI** into a latent em-
bedding matrix Z € RIV1*?, leveraging both graph structure and node features to learn meaningful
representations; and a decoder p, (G | Z) that reconstructs the original graph structure and node at-
tributes from these latent embeddings, producing an approximation G of the input graph. The model
is trained to minimize a loss function composed of a reconstruction loss L,.., which measures the
difference between G and G, and optionally a regularization term L., on the latent space:

L= £rec(g7 Q) + )\creg(z)> (1)

where A controls the strength of regularization. This framework enables unsupervised learning of
node embeddings that capture the intrinsic geometric structure of the graph, thereby facilitating
downstream tasks such as graph alignment.

In this framework, the encoder is typically implemented using a GNN ¢(X, S; ) : RNVxF — RN xd
with parameters 6, which maps node features X and graph structure S (e.g., an adjacency or nor-
malized Laplacian matrix) to latent node embeddings Z. The decoder is typically a simple, non-
parametric function that reconstructs the graph structure from the learned embeddings. A common
choice is the inner product decoder, which estimates the adjacency matrix A as A = ZZ7. This
formulation assumes that the similarity between node embeddings reflects the likelihood of an edge,
enabling the reconstruction of the graph topology directly from the embedding space.



Under review as a conference paper at ICLR 2026

2.2 FUNCTIONAL MAP ON GRAPHS

The functional map framework, originally proposed for 3D shape correspondence (Ovsjanikov et al.,
2012)), offers a compact and flexible approach that converts the problem of finding a complex node-
to-node correspondence into learning a small, low-dimensional operator C' that aligns functions
represented in a spectral basis. This paradigm naturally extends to graphs (Fumero et al.| 2025}
Behmanesh et al.||2024), where functions are defined on nodes, providing a powerful framework for
comparing and aligning graph-structured data.

Building on the general framework of Deep Geometric Functional Maps (Donati et al., 2020), the
functional map formulation is adapted to operate on graph-based latent representations through:

1. Feature extraction. Given a pair of graphs G; and §», each is associated with a set of descriptor
functions, denoted by Fy(G1) and Fy(G2), respectively. A descriptor function is a real-valued
function defined on the nodes of a graph, either hand-crafted to capture structural information shared
across graphs or learned via neural encoders, producing row feature matrices F'; and F'5.

2. Projection to spectral domain: For each domain, the spectral basis @, is computed via eigen-
decomposition of the normalized graph Laplacian L = T — D 2AD . Descriptor functions are
then projected onto the reduced spectral subspace @, € R™+*", spanned by the first » eigenvectors,
resulting in the spectral coefficients ]§‘1 = <I>1TF1, and f‘g = <I>2T Fs.

3. Functional map estimation. A functional map C15 € R"*" is then estimated by aligning the
spectral descriptors between the two domains via the following regularized least squares objective:

Cio ZafgﬂgnHCFl — |3 + a|[A2C — CAy |3, (2)

where the second term is the Laplacian commutativity regularizer, enforcing that C;, approximately
commutes with the graph Laplacians to preserve spectral properties.

3 METHOD OVERVIEW

As established in the introduction, learning-based frameworks for graph alignment suffer from two
fundamental limitations that significantly impair their performance: loss of node distinctiveness
through feature aggregation and misaligned latent spaces in unsupervised cross-graph scenarios. In
the following, we present the proposed framework that addresses these challenges through architec-
tural innovations that preserve node distinguishability while enforcing embedding space alignment.

3.1 OVERALL FRAMEWORK

Given two graphs G, = (Vs, &, X;) and G, = (W4, &, Xy), the framework employs a dual-pass
encoder with shared parameters 6 to extract meaningful node representations. The encoder processes
both graphs simultaneously, generating latent embeddings Z; = fy(Xs, As) € RIVsIxd and Z, =
fo(Xy, Ay) € RIViIXd by jointly encoding graph structure and node attributes. To address latent
space misalignment, a regularized functional map module enforces structural constraints and enables
communication between the embedding spaces. Figure 2] provides a schematic overview.

3.2 GRAPH ENCODER

Given a graph G = (V, £, X), a graph encoder Z = f5(X, A) € RIVI*4 embeds each node v; € V
into a latent vector z; € R?, such that the embeddings of neighboring nodes are encouraged to be
similar. While this property allows the encoder to capture the local graph structure effectively, it
poses a significant limitation for graph alignment tasks by reducing the distinctiveness of individual
nodes, an essential factor for accurately identifying corresponding nodes across graphs.

Definition 2 (Ideal node embedding for graph alignment). An ideal node embedding for graph align-
ment achieves two properties: local consistency, where neighboring node embeddings are similar

(Max, ey MaXyepf () thk) —niP || is small), and global distinctiveness, where distinct nodes have



Under review as a conference paper at ICLR 2026

Dual-pass encoder Latent spaces alignment Decoder Overall loss £
b e
a Y fo, (X5, A5) > A List of parameters:
» S
f " e 61, 6
th(xs' As) A A ¢ C12, c21
Gs d A 12 .-
s o E g A; =0(Z,Z)
Shared parameters 3 g‘) Node alignment
: | & § P T S=17,727
2 5 v | Pe A =0(ZZt) g 1 2 3 4 5 6 7
1 7 fH,(XtrAt) vy T a [l
> > b
fo,Xe, Ar) . 7 p
Gt 6 —i e
f =

Figure 2: Overview of the proposed framework. Given input graphs, the model uses a dual-pass
encoder with shared parameters to extract node embeddings. A regularized functional map mod-
ule resolves latent space misalignment by enforcing structural constraints and enabling cross-space
communication. A graph decoder reconstructs the inputs, and the model is optimized with an overall
loss. Finally, alignments are estimated via cosine similarity and greedy matching.

sufficiently different embeddings (min, ,cv ||h£,k) —pP || is large). Graph alignment thus requires
embedding nodes that balance a fundamental trade-off: preserving local similarities to capture
structure while maintaining node distinctiveness for unique identification.

One of the simple yet effective graph encoders is the Graph Convolutional Network (GCN) (Kipf]
& Welling} [2017), which extends convolution to graph-structured data by aggregating neighboring
node information to capture both features and structure. A single GCN layer is defined by H(+1) =

o (ﬁ_%Aﬁ_%H(l)W(l)), where A = A + I is the adjacency matrix with self-loops, D is the
degree matrix, H") and W) are the feature and weight matrices, and o (-) is the activation function.

Spectral interpretation of GCN: In graph signal processing, the graph Laplacian is defined as
L = D — A, where D is the degree matrix and A is the adjacency matrix. The Laplacian can
be decomposed as L = UAUT, where U = (ug,...,u,) is the matrix of eigenvectors, and
A = diag(Aq1,...,A,) is the diagonal matrix of eigenvalues. The normalized graph Laplacian is
defined as Lg,,, = D™1/2LD~1/2, whose eigenvalues ); lie within the interval [0, 2].

The GCN filter can be expressed as AGCN,Sym =1- ﬂsym =U({I- A)UT, with an associated
frequency response function pGCN(S\i) — 1 — \,;. Since the eigenvalues satisfy \; € [0,2), the
response function pGCN(S\i) decreases as 5\1- increases, particularly over the range [0, 1]. This be-
havior implies that the GCN filter primarily suppresses high-frequency components and thus acts as
a low-pass filter in that region. However, for i > 1, PGCN (:\L) becomes negative, introducing noise
and disrupting smoothness. This means GCN is not a completely low-pass filter and can degrade
performance due to this issue.

Node embedding via spectral filtering: Low-pass filters preserve low-frequency components
(small \;) and suppress high-frequency components, producing smooth embeddings where neigh-
boring nodes have similar representations. Such embeddings are effective at capturing local structure
and community information within the graph. In contrast, high-pass filters preserve high-frequency
components (large \;), emphasizing the differences between neighboring nodes. This leads to em-
beddings that capture distinctive, discriminative features, making the latent representations of nodes
more distinct and farther apart from those of their neighbors.

Dual-pass GCN encoder with spectral filtering: In our proposed model, we design a dual-encoder
architecture comprising two complementary GCN variants that exploit the spectral properties of
graph signals. The architecture consists of: 1) a low-pass GCN encoder Z; = fp, (X, A) that
aggregates information from neighboring nodes, and 2) a high-pass GCN encoder Zp, = fy, (X, A),
which highlights differences between a node and its neighbors, generating distinctive embeddings
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that effectively capture discriminative features. The final node representation is obtained through
concatenation Z = [Z; || Z;,] € RIVIx(ditdn),

Both encoders employ a unified spectral convolution framework with layer-wise propagation rule:
z"Y o (D7 HAD W) 3)

where A; = % (A + f)) for low-pass and A, = % (f) - A) for high-pass spectral encoding.

The low-pass graph filter is characterized by A;qm = D7V2AD Y2 = I - 1Ly, =
U (I - %A) U'. This formulation reveals that A; ., exhibits a frequency response p;(\;) =

1- %5\7 The response function is monotonically decreasing over \i € [0, 2], thereby attenuating
high-frequency components while preserving smooth graph signals. This enables capturing local
structural patterns and maintaining graph regularity in embeddings. Similarly, the high-pass graph

filter is defined by A}, 5y = D™Y/2A, D712 = %f:sym =U (%f&) UT. This formulation in-
dicates that A;hsym acts as a spectral filter with frequency response ph(j\i) = %/N\L The response

pr(Ai) monotonically increases over \; € [0, 2], suppressing low frequencies while amplifying high
frequencies, functioning as a high-pass filter (see (Wang et al.| 2022a)).

Theorem 1 (Discriminativity of dual-pass GCN encoder). Let z\°% € R% and 28" € R% denote
node embeddings from low-pass and high-pass GCN encoders, respectively, and dual-pass embed-
ding is defined as the concatenation z; = [z} || z?‘gh] € R4z Using this architecture for both
graphs G and G, the dual-pass GCN encoder provides ideal node embeddings for graph alignment
by satisfying:

1. Spectral locality preservation: the embedding z; preserves neighborhood similarity com-
parably to zi»ow.

2. Enhanced node discriminability: the embedding z; provides superior node correspondence
discrimination compared to either component alone.

The proof is provided in Appendix [B]

3.3 LATENT SPACE COMMUNICATION

While each GAE independently produces a latent space for its respective graph, resulting in mis-
aligned embeddings, we address this limitation by incorporating deep functional maps to learn ex-
plicit mappings between latent representations. Rather than directly comparing raw embeddings,
which may differ by arbitrary isometric transformations, we learn functional maps C'2 and C?!
that transform functions between latent spaces. These maps are optimized within our network using
Equation 2] where F; and F represent embeddings from the shared dual-pass encoder.

To facilitate latent space communication, our framework leverages spectral geometry principles and
a regularized functional map module that enforces structural constraints. We impose bijectivity
and orthogonality losses to ensure the maps C'2 and C?! are approximately invertible and locally
isometric, preserving essential geometric properties. The bijectivity loss promotes invertibility by
ensuring functions mapped between latent spaces and back are accurately reconstructed, enforcing
structural consistency and mutual alignment. Formally, it is defined as:

Lyi; = [|C12C21 — I||% + [|C21Ci2 — I||%. €]
The orthogonality loss enforces that functional maps behave as partial isometries, preserving local
geometry and structural information during cross-space transformations. This loss is given by:

Lowh = [|C12Cy — 1|3 + [|C3, Car — 1|3 )

These regularizations enable geometry-aware alignment of latent spaces, facilitating reliable cross-
graph alignment without requiring any ground-truth correspondences and effectively bridging inde-
pendently learned embeddings.
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3.4 GRAPH DECODER

Given latent node embeddings Z = f5(X,A) € RIVI*4 produced by the encoder, the decoder
reconstructs graph structure using inner product operations A, = o(Z,Z}), and A; = 0(%Z;Z, ),
where o (+) denotes the element-wise sigmoid function.

3.5 MODEL OPTIMIZATION AND TRAINING LOSS

Our model jointly optimizes GAE parameters and functional maps C;5, Co; through end-to-end
training. Given embeddings Z; = fo(X;, As) and Zo = fp(X4, A;), we project them into spectral
domains using graph Laplacian eigenvectors, yielding descriptors F; and F,. Functional maps
C1o € RF¥F and Cy; € R¥** align these spectral features via:

R N 2

LR :O‘HCuFl —F2Hp+ﬂ||1\2012 — Chi|7 ©
R N 2

Liy = a HC21F2 - F1Hp + B[ A1Ca1 — CarAs|7 @

We incorporate these objectives as differentiable loss terms, with C;5 and Cy; as trainable param-
eters optimized end-to-end via backpropagation. These losses are combined with the standard GAE
reconstruction loss, minimizing binary cross-entropy between the observed adjacency matrix A and

its reconstruction A: . .
Lrec = BCE(AS, As) + BCE(AM At)7 (8)

where BCE(+, -) denotes the element-wise binary cross-entropy loss. The overall training objective
combines the training loss and regularization terms in a weighted sum:

Liotal = Lrec + Armt (L + LE0) + Abij Lobij + Aoren Lortn )

The entire architecture is trained end-to-end via gradient descent, ensuring that functional maps and
embeddings co-evolve to produce structure-aware cross-graph correspondences.

3.6 NODE ALIGNMENT

Given learned embeddings, we compute the cosine similarity matrix S = ZSZ;'— between (o-
normalized node embeddings Z.,Z; € RN*? from source and target graphs. Node correspon-
dences are predicted using greedy matching, iteratively selecting the highest similarity unmatched
pairs until complete one-to-one alignment is achieved.

4 EXPERIMENTS

In this section, we aim to address the following research questions: (1) robustness: is GADL
more robust to feature and structural inconsistencies than existing state-of-the-art graph alignment
methods? (2) effectiveness: does GADL outperform state-of-the-art methods on real-world graph
alignment tasks? (3) generalization: how effectively does GADL generalize to vision-language
alignment? (4) ablation analysis: what is the contribution of each component in GADL to the
overall alignment performance? (5) encoder evaluation: how does the proposed dual-pass GCN
encoder improve node embeddings over standard GNNs? (6) hyperparameter sensitivity: how
sensitive is GADL to hyperparameter variations?

A comprehensive description of the experimental setup, including benchmarks, baselines, evaluation
metrics, and experimental settings, is provided in the Appendix [C|

4.1 ROBUSTNESS: EVALUATION ON SEMI-SYNTHETIC BENCHMARKS

To evaluate the robustness of the proposed GADL model under structural inconsistencies, we con-
duct experiments on six semi-synthetic benchmark datasets following (He et al.| 2024])), generating
perturbed graph pairs with perturbation levels of 0%, 1%, and 5% (setup in Appendix |C.3).
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Table[T]compares GADL against state-of-the-arts: Netsimile (Berlingerio et al.| 2013), Final (Zhang
& Tong, 2016), GAlign (Trung et al., [2020), WAlign (Gao et al., [2021a), GAE (Kipf & Welling,
2016), T-GAE(He et al., [2024)), and SLOTAlign (Tang et al., 2023a)). Results show mean matching
accuracy and standard deviation across 10 randomly generated target graphs under structural pertur-
bations of 0%, 1%, and 5%. Results for Final, WAlign, and GAE are from He et al.| (2024), while
GAlign and SLOTAlign are reproduced. Entries marked ”-” indicate scalability failures.

Table 1: Robustness evaluation under different structural inconsistency levels (%).

Dataset Perturb.  NetSimile Final GAlign WALlign GAE T-GAE  SLOTAlign GADL
0% 72709 922+12 81.67+07 884+16 863+13 91.0+1.1 91.12+02 92.82%0.9
Celegans 1% 663+38 332+7.8 6623+0.8 80.7+30 332+84 865+1.1 8525+0.6 88.07%0.7

5% 41.1+13.0 104+27 4922+1.6 424211 65+£24 692+21 70.05+04 71.74%0.2

0% 947+£03 975+£03 93.02+04 974+05 97.6+04 97.8+04 9622+05 98.27%0.3
Arena 1% 87.8+1.0 325+59 8746+x0.6 90031 30.1%£17.6 96.0+1.0 9524+04 96.86=0.4
5% 523+£53 72+26 6496+12 304%17.5 14+14 786+25 785+0.6 80.69+0.4

0% 464+04 899%03 5650+1.4 90.0+04 895+04 90.1+03 88.17+03 90.71+0.4
Douban 1% 400+12 278+%57 514005 772+48 383164 873+04 8583+12 87.94+0.1
5% 207+46 78+3.0 2997+22 36.6%134 06£03 702%25 6742+£05 69.62+0.1

0% 737+04 875%0.7 7415+0.7 872+04 87.1+£08 87.5+x04 87.74+0.6 88.20+0.2

Cora 1% 66.4+1.6 30.0+33 6853+04 80.1+12 579+53 851+05 84.66+0.1 853003
5% 412+33 67+28 456708 334x73 9627 67713 678+£03 68.22£0.2
0% 63.7+02 85.6+02 6643+0.6 856+02 852+03 856+02 - 85.82+0.0
DBLP 1% 55117 152+33 59.00+£05 731+16 194+x06 83304 - 82.77+0.3
5% 19548 2709 3884%£02 15983 1402 60.8+19 - 62.49 +0.3
0% 909+0.1 97.6+0.1 9218%15 975+£02 97.6%x03 97.6+0.1 - 97.76 £ 0.1
Coauthor CS 1% 752+£22 133£50 81.15+£0.7 752+54 495+7.8 932+08 - 93.41+ 0.6
5% 263+60 20+04 3041%0.1 113%75 0.6+0.1 66.0+ 1.4 - 68.54 +1.2

The results yield several key observations: (1) GADL consistently ranks among the top performers
across datasets, maintaining high accuracy even with 5% perturbations while baselines show sharp
degradation under structural noise. (2) Embedding-based methods (T-GAE, GAlign, GADL) gen-
erally outperform optimal-transport-based methods (Final). SLOTAlign, combining learning and
optimization, achieves competitive but suboptimal results compared to pure learning-based models.

A notable observation is the dramatic performance degradation of standard GAE under structural
perturbations. This phenomenon directly manifests the latent space misalignment problem illus-
trated in Figure [T] (c): without explicit alignment objectives or geometric constraints, GAE tends
to produce embeddings that are highly sensitive to structural noise. T-GAE partially mitigates this
issue through transferable pre-training on graph families, which improves generalization to struc-
tural variations. However, it still lacks explicit geometric constraints to consistently align latent
spaces. GADL incorporates these geometric constraints and achieves stronger robustness through
two mechanisms: a dual-pass encoder that preserves discriminative node features and a geometry-
aware functional map module that explicitly enforces geometric consistency between latent spaces.

4.2 EFFECTIVENESS: EVALUATION ON REAL-WORLD BENCHMARKS

We evaluate the effectiveness of the proposed GADL method on two real-world noisy graph datasets
with partial node alignment: Douban Online-Offline and ACM-DBLP. These benchmarks involve
distinct graphs with partially aligned nodes. Performance is measured using Hit@#%, the proportion
of ground-truth nodes ranked in the top-k predictions. Results are reported in Table

Table 2: Performance of graph alignment methods on real-world benchmarks.
ACM-DBLP Douban Online-Offline

Method | 101 Hit@S HIt@I0 Hit@S0 | Hil@1 Hit@5 Hit@l0 Hit@50
NetSimile | 259 832 1209 2642 | 107 277 474 1503
GAE 810 2250 3010 4510 | 330 920 1410  32.10
GAlign 7326 9124 9509 9837 | 4132 6243 7137  87.65
WAlign 6202 8196 8731 9389 | 3640 5394 6708 8533
T.GAE 7389 9173 9533 0822 | 3694 6064 6977  88.62
SLOTAlign | 6604 8406 8795 9465 | 5143 5343 7773  90.23
GADL 88.63 9476 96.16 9841 | 5331 7361 80.67 9418
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The results reveal key insights: (1) GADL consistently achieves the highest alignment accuracy,
outperforming all baselines, outperforming all baselines with substantial margins over second-best
models (T-GAE on ACM-DBLP, SLOTAlign on Douban). (2) Compared to T-GAE, which em-
ploys a GIN encoder but lacks latent-space communication, our GADL model demonstrates superior
performance through its dual-pass GCN encoder architecture integrated with latent-space commu-
nication. (3) Learning-based methods (T-GAE, GADL) outperform optimal-transport approaches
(SLOTAlign) on larger benchmarks, demonstrating better robustness to structural variations that
violate optimal transport assumptions.

Additional experiments on ablation analysis, encoder evaluation, and hyperparameter sensitivity are
provided in Appendices [D] [E] and[G] A detailed computational complexity and runtime analysis is
presented in Appendix [F|

4.3 GENERALIZATION: EVALUATION ON VISION-LANGUAGE BENCHMARKS

Latent space alignment is a special case of graph alignment, relying only on embeddings without
explicit structure. To highlight this generality, we further evaluate our method on vision-language
alignment benchmarks, where the task involves aligning latent representations from diverse pre-
trained vision and language models. We evaluate latent space alignment across multiple benchmarks
using representations from diverse pretrained vision and language models. Full experimental details
are provided in Appendix [C.5]

Table[3|summarizes the vision-language alignment accuracies on four datasets using three pretrained
vision models (CLIP (Ramesh et al.l [2022), DeiT (Touvron et all [2021), and DINOv2 (Oquab
et al.,2023))) and two pretrained language models from SentenceTransformers library (Reimers &
Gurevych,2019) (all-mpnet-base-v2and all-roberta-large-v1l). Comprehensive re-
sults are in the Appendix [H] Results on CIFAR-100 and ImageNet-100 are reproduced using official
implementations.

Table 3: Vision-language alignment across four datasets using three pretrained vision models (CLIP,
DeiT, and DINOv2) and two pretrained language models: Lan. model 1 (all-mpnet-base-v2) and
Lan. model 2 (all-roberta-large-v1).

Method CIFAR-10 CINIC-10 CIFAR-100 ImageNet-100
Lan. model I Lan. model 2 Lan. model I Lan. model2 Lan. modell Lan. model2 Lan. modell Lan. model2
CLIP - (ViT-L/14@336)
LocalCKA  25.0+10.5 17.0+£15.9 30.0 £0.0 40+5.0 24.00+ 141 13.67+047 8.00+ 141 8.33+047
oT 0.0+0.0 10.0 £0.0 495+22 20+4.1 1.00 £ 0.00 1.67 £0.47 1.33+£047 1.00 £ 0.00
FAQ 12.0+10.1 05+2.2 30.5+22 0.0+0.0 233+%1.25 2.67 £1.70 433+1.70 233%1.25
MPOpt 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+0.0 1.67£1.25 2.67+1.25 4.67+2.05 2.67 £0.47
Gurobi 20.5+6.0 47.0+£73 50.0 £ 0.0 80.0+0.0 2.11+1.29 344 +1.27 322+£235 4.50 + 1.50
Hahn-Grant  25.0 £ 10.5 47.0+7.3 50.0 £ 0.0 80.0 + 0.0 233+1.25 3.00£2.16 4.93+£2.05 4.67+1.70
GADL 76.7 +4.7 733 +4.7 76.7 £4.7 80.0 £ 0.0 79.7+£2.0 81.00 + 1.4 41.3+8.2 453 +14.2
DeiT - (DeiT-B/16d@384)

LocalCKA  24.0+9.9 20.0+£5.6 68.0 £ 8.9 0.0+0.0 1033 £0.94 2333+047 833%1.70 9.33£0.47
oT 12.0+4.1 10.0+£0.0 20.0+0.0 0.0£0.0 2.33+£0.94 1.67 £0.47 2.00 £ 0.00 0.67 £0.47
FAQ 40.0+15.2 22.5+9.7 555+£5.1 0.0+0.0 4.33+047 1.33£1.25 3.67 047 3.33+£0.94
MPOpt 0.0£0.0 0.0+£0.0 0.0£0.0 0.0+£0.0 0.33 £0.47 0.67 +£0.94 2.67+2.36 1.00 +0.82
Gurobi 28.5+3.7 59.0+3.1 10.0 £ 0.0 40.0 £0.0 3.67£2.49 3.11+1.91 3.56 £ 1.57 3.00 £ 1.00
Hahn-Grant  28.5+3.7 59.0£3.1 10.0£0.0 40.0 £0.0 1.33£0.47 533+1.25 1.67 £2.36 1.33£1.25
GADL 100.0 £ 0.0 100.0 + 0.0 100.0 £ 0.0 100.0 + 0.0 47.3+89 42.7 £ 6.3 67.3+4.5 65.7 £0.9

DINOV2 - (ViT-G/14)
LocalCKA  37.5+288 18.5+£29.2 52.5+31.1 57.0+134 4.00 +0.82 4.67+0.94 533047 6.00 £ 0.82

oT 30.0+13.8 335+£19.8 775 +6.4 155+7.6 1.00 £ 0.00 1.00  0.00 1.00 £ 0.00 0.33 +£0.47
FAQ 37.5+£212 38.0£29.8 31.0£45 205+£22 433+0.94 333£1.25 3.00 £0.82 4.33+2.05
MPOpt 73.5+£179 94.0 £18.5 79.0£3.1 47.0 £46.0 1.33£1.25 0.33£0.47 4.00 +0.82 0.67 £0.47
Gurobi 69.5+242 100.0 £ 0.0 79.0£3.1 100.0 0.0 2.56  1.64 1.78 £ 1.31 1.50 £ 0.50 2.50 £ 0.50
Hahn-Grant  69.5+24.2 100.0 £ 0.0 79.0£3.1 100.0 £ 0.0 4.00 +£0.82 2.00+1.41 6.33£0.47 1.22+£0.92
GADL 100.0 £ 0.0 100.0 £ 0.0 100.0 £ 0.0 100.0 £ 0.0 67.7+1.7 58.3+04 44.3+8.3 49.3+04

The results highlight key insights. (1) GADL consistently outperforms all baselines, demonstrat-
ing substantial benefits beyond optimization and optimal transport frameworks. (2) Most baselines
achieve near-chance accuracies (< 10%) with occasional inconsistent successes, even sophisticated
solvers like Gurobi fail in certain settings. Performance gaps with GADL become pronounced on
challenging benchmarks (CIFAR-100, ImageNet-100), highlighting limitations of treating alignment
as pure assignment optimization. (3) Pretrained model choice critically impacts performance, while
DINOV2 and DeiT excel on smaller datasets, CLIP consistently outperforms on larger benchmarks.
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5 CONCLUSION

We present GADL, a novel framework for unsupervised graph alignment that combines dual-pass
encoding with geometry-aware latent space communication. Comprehensive experiments demon-
strate consistent performance gains across diverse benchmarks, with successful application to vision-
language tasks validating the broader utility of the framework beyond traditional graph domains.
While promising, our approach incurs modest computational overhead from dual-pass encoding
compared to standard GCN and requires careful hyperparameter tuning. Future work will focus on
adaptive spectral filtering and efficient embedding strategies, with potential extensions to molecular
networks, social graphs, and multi-modal alignment tasks, including a more thorough evaluation on
vision-language benchmarks.
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A RELATED WORK

Extensive research has addressed the graph alignment problem, with existing methods broadly
categorized into three families based on their alignment strategies: optimization-based, optimal
transport-based, and embedding-based approaches. These methods also differ in terms of the level
of supervision required, ranging from unsupervised techniques to semi-supervised methods (which
rely on partially paired nodes), and fully supervised approaches.

Traditional graph alignment methods formulate the problem as an optimization task, typically as
a Quadratic Assignment Problem (QAP), seeking node permutations that minimize discrepancies
between source and target adjacency matrices. IsoRank (Singh et al., [2008) represents a seminal
approach, employing a PageRank-inspired algorithm to compute node similarity matrices based
on neighbor similarity for unsupervised alignment. BigAlign (Koutra et al.| 2013) extends this
framework by incorporating both structural and attribute information to enhance alignment accuracy.
FINAL (Zhang & Tong| |2016) addresses scalability through matrix factorization, combining global
structural consistency with partial anchor constraints.

These optimization-based approaches often struggle with scalability due to the NP-hard nature of
QAP, though approximation strategies and relaxations can make them tractable on medium-sized
networks. While primarily unsupervised, they can accommodate semi-supervised settings by incor-
porating known anchor pairs as hard or soft constraint

Optimal transport-based methods model each graph as a probability distribution over its nodes and
seek a transport plan, i.e., a soft correspondence, that minimizes a divergence such as the Wasser-
stein or Gromov-Wasserstein distance between the distributions. This framework offers a principled
approach to graph alignment by optimizing the transport cost between node distributions. Unlike the
hard alignments produced by QAP-based methods, optimal transport typically yields soft alignment
matrices, allowing for uncertainty and partial correspondences.

A notable early contribution in this category is WAlign (Gao et al,, |2021a), which jointly learns
node embeddings and alignments by minimizing Wasserstein distance between graphs in a shared
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embedding space using a lightweight GCN and Wasserstein distance discriminator. Building on this
direction, FGW (Tang et al., 2023b) employs Fused Gromov-Wasserstein distance to jointly align
structural and attribute information through a coarse-to-fine matching scheme. PARROT (Zeng
et al.l 2023)) extends this idea by running Random Walk with Restart (RWR) on both individual
graphs and their Cartesian product, capturing more nuanced structural correspondence. GALOPA
(Wang et al.| 2023)) integrates a GNN encoder with a self-supervised OT loss, jointly learning fea-
tures and transport plans. To improve scalability, Wasserstein Wormhole (Haviv et al.| [2024) intro-
duces a transformer-based autoencoder that maps distributions into a latent space where Euclidean
distances approximate Wasserstein distances, enabling efficient, linear-time graph comparisons.

These methods are typically unsupervised and particularly effective for noisy or incomplete graphs
due to their probabilistic formulation and global alignment perspective.

Embedding-based methods learn vector representations for nodes in each graph and align them
based on embedding similarity. This approach typically involves generating node embeddings, either
independently or jointly, followed by alignment through nearest-neighbor search or learned mapping
functions.

NetSimile (Berlingerio et al., 2013) represents an early embedding-based approach that uses hand-
crafted structural features (degree, clustering coefficient) to represent nodes and aligns graphs
through direct feature vector comparison using similarity measures. GAlign (Trung et al., [2020)
adopts an unsupervised approach where both graphs are independently encoded using a shared
Graph Convolutional Network, with node embeddings aligned by minimizing distributional dis-
crepancies such as Wasserstein distance between embedding spaces. NeXtAlign (Zhang et al.|[2021)
enhances representation learning through a cross-graph attention mechanism that enables nodes in
one graph to attend to features in the other. This produces alignment-aware embeddings and im-
proves performance in semi-supervised settings with known anchor node pairs. REGAL (Heimann
et al., 2018) generates compact node embeddings by extracting structural features like node degree
and local neighborhoods, then aligns nodes across graphs by matching their embeddings based on
distance, enabling efficient and scalable graph alignment. GINA (Wang et al., |2022b)) addresses
hierarchical alignment by projecting node embeddings from Euclidean to hyperbolic space, learn-
ing linear transformations between geometries using anchor nodes to better capture scale-free and
hierarchical structures in social and biological networks.

A foundational approach to embedding-based graph learning is the Graph Autoencoder (GAE) and
its probabilistic extension, the Variational Graph Autoencoder (VGAE) (Kipf & Welling, [2016).
These models use a GCN encoder to generate latent node embeddings, which are then used to
reconstruct the adjacency matrix via an inner product decoder. Although originally designed for
link prediction, GAEs have become a common backbone for alignment tasks due to their ability
to capture global graph structure in an unsupervised manner. Expanding on this foundation, T-
GAE (He et al. [2024)) addresses scalability through a transferable graph autoencoder trained on
small graph families that generalizes to large, unseen networks without fine-tuning. This design
enables strong alignment performance while significantly reducing training time and computational
overhead. However, typical embedding-based methods often become unstable when graphs differ
significantly in structure. SLOTAlign (Tang et al.| [2023a) is developed to tackle the structure and
feature inconsistencies commonly found in these embedding-based graph alignment methods. It
formulates alignment as an optimal transport problem on learned intra-graph similarity matrices,
combining optimal transport with embedding-based approaches.

In embedding-based graph alignment methods, the uniqueness and discriminative power of learned
embeddings play a critical role in alignment accuracy. Several spectral GNN models have been
proposed to go beyond low-frequency information in graph convolutional networks, including GPR-
GNN (Chien et al., [2021), BernNet (He et al., 2021), TFE-GNN (Duan et al., 2024), and FAGCN
(Bo et al [2021). These models primarily target single-graph tasks, such as node classification,
and leverage high-frequency graph signals to mitigate over-smoothing. While effective for these
purposes, they are not directly applicable to graph alignment, which requires embeddings that are
learned in a fully unsupervised manner and robust to structural inconsistencies across graphs.

Our approach addresses these challenges by introducing a dual-pass encoder with explicit low-pass
and high-pass branches, whose outputs are preserved and concatenated and learned in a fully unsu-
pervised manner, along with a functional map module that enforces latent space alignment across
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graphs. This design enables embeddings that are simultaneously discriminative and aligned across
graphs, capabilities not provided by prior spectral GNN methods.

B PROOF OF THEOREMI]

Proof. Preliminary Definitions: Let GCN filter Acon sym = =1I- LSym =U(I- A)UT, where
U = [uy,...,u,] is the eigenbasis, A = diag(\y, ..., \,) is the diagonal matrix of eigenvalues,
and each ergenvalue satisfies \; € [0,2]. The spectral representation of node features is: X =
22:1 Xkuk, where Xk = u;X

* The low-pass component captures the smooth, global structure of the graph. It aggre-
gates information from neighbors producing embeddings: Ziow = Y1 Plow (Ak) Xk W,

where plow()\k) =1- 7)\;@ This captures smoothed signals over the graph, node embed-
dings are averages of thelr neighbors.

* The high-pass component captures complementary, local variations and finer structural de-
tails, given by: Znigh = > r—; Phigh (M) X U, Where prign(Ar) = ,)\k

Claim 1 (Neighborhood preservation). The dual-pass embedding z; preserves neighborhood sim-
ilarity as effectively as the low-pass embedding z°".

Proof of Claim 1. The key insight underlying local consistency is that neighborhood similarity is
primarily encoded in low-frequency spectral components, which capture smooth variations across
connected nodes.

For the dual-pass embeddings of nodes ¢ and j, the cosine similarity can be written as:

(2i,2) = (27, 20") + (20, 2750) + (2, 2] + (2750, 2").

The filters are designed to be spectrally complementary,

. . 1. 1. .
Diow(Ak) + Phigh(Ax) = (1 — 5)\1@) + 5)\1@ =1, VX, €]0,2].

Due to their complementary spectral responses, the low-pass and hlgh pass components are approx-
imately orthogonal. To see this, note that the low-pass filter plow()\k) =1- 7)% is monotonically
decreasing, achieving maximum response at Ay = 0 and minimum at \, = 2. Conversely, the
high-pass filter phigh(jxk) = 7)\;6 is monotonically increasing, with minimum response at )\k =0
and maximum at \;, = 2. The spectral overlap between components is measured by the product
Prow(Me) - phigh(j\k) = %5%(2 — Ag), which is maximized only at the intermediate eigenvalue A, = 1
and approaches zero at both extremes.

This spectral disjointness ensures that the high-pass component adds complementary discrimi-
native information without interfering with the neighborhood-preserving properties encoded in
the low-frequency domain by the low-pass component. Consequently, the dual-pass embedding

z; = [z || z?igh] preserves neighborhood similarity as effectively as the low-pass component z;
alone, since the neighborhood-relevant information is fully retained while additional dlscrlmrnatlve

power is gained.

low

Claim 2 (Enhanced discriminability for node correspondence). For node correspondence tasks,

the dual-pass embedding z; provides superior discriminability compared to either z°% or zhlgh
alone. That is, false correspondences are less likely under similarity computed via z;.

Proof of Claim 2. Discriminability is measured by the separation margin between the distributions
of similarities for corresponding pairs C = {(i,7) : i € V1, j € Va, i <> j} and non-corresponding
pairs N ={(i,7) 11 € V1, j € Vo, i ¢ 5}

As we mentioned, the dual-pass filter design ensures perfect spectral complementarity: the low-pass
and high-pass filters have anti-correlated frequency responses, ensuring that their contributions are
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nearly independent. Consequently, their mutual information is bounded, 7(z.°%; ?igh) < ¢, for
small € > 0, reflecting the opposing spectral emphasis.

For any /-induced metric, the squared distance between dual-pass embeddings decomposes as:

d(zi,2))* = d(2™, 2) + (2", 2)") + 2(" — 2, 2" — 7).

Under the approximate orthogonality condition, the cross-term is negligible, yielding:

d(ZuZJ) Nd( low low) +d( hlgh ?igh)g-

The separation margin is thus defined as A = min; jycc sim(z;, z;) — max; y)epn sim(z;, zx).

The critical observation is that the two components offer complementary discriminative power:

¢ Case A (Low-pass insufficient): When graphs share similar global structure but differ in
local details, z;°" may yield high similarity for non-corresponding pairs. However, z?‘gh

captures local dlfferences, reducing false positives.

low

* Case B (High-pass insufficient): When local structures are noisy or similar, zhlgh may

be unreliable. However, z!°" provides stable global discrimination based on community
structure and smooth attrlbutes.

Together, these effects yield an additive improvement in discriminability. Formally, the dual-pass
margin satisfies

Adual Z maX(Alowa Ahigh) + v

where v > 0 represents the additional discriminative contribution from orthogonal spectral infor-
mation. This establishes that the dual-pass embedding provides superior node correspondence dis-
crimination.

O

C EXPERIMENTAL SETUP

This section describes the benchmarks, performance metrics, and experimental settings used for
graph alignment evaluation.

C.1 BENCHMARKS

Table 4 summarizes statistics for all experimental datasets. It includes six semi-synthetic graph
alignment benchmarks consisting of graphs with varying sizes and properties to comprehensively
evaluate the robustness of our approach. Additionally, two real-world graph alignment datasets with
partial ground-truth node correspondences are included to assess overall performance. The datasets
are as follows:

* Celegans: This dataset models the protein-protein interaction network of Caenorhabditis
elegans. Each node represents a protein, and edges indicate physical or functional inter-
actions between proteins, making it useful for biological network analysis and alignment
tasks involving molecular networks (Kunegis| 2013).

* Arenas: A communication network derived from email exchanges at the University Rovira
i Virgili. Nodes correspond to individual users, and edges represent the presence of at least
one email sent between them. It serves as a social interaction graph with temporal and
communication patterns (Leskovec & Krevl, 2014).

* Douban: A social network from the Chinese movie review platform Douban, where nodes
represent users, and edges capture friend or contact relationships. This dataset is commonly
used to study social dynamics and network alignment in social media contexts (Zhang &
Tong, [2016)).
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Table 4: Overview of datasets and their key properties

Dataset #Nodes #Edges #Aligned Nodes #Node Features Description
Celegans 453 2025 453 Interactome
Arenas 1133 5451 1133 Email Communication
Douban 3906 7215 3906 7 Social Network
Cora 2708 5278 2708 Citation Network
DBLP 17716 52867 17716 Citation Network
CoauthorCs 18333 81894 18333 Coauthor

ACM 9872 39561 Coauthor Network
ACM-DBLP - hpi b 9916 44808 932 17 Coauthor Network

Online 3906 16328 Social Network
Douban Offine 1118 3022 113 338 Social Network

* Cora: A citation network of scientific papers where nodes are publications, and edges
denote citation relationships. Cora is a benchmark dataset for graph mining and node clas-
sification, providing a structured academic citation graph ideal for evaluating graph-based
learning models (Sen et al.||2008).

* DBLP: An extensive citation network aggregated from DBLP, Association for Computing
Machinery (ACM), Microsoft Academic Graph (MAG), and other scholarly databases. It
includes publication and citation information, widely used for testing graph alignment,
clustering, and knowledge discovery tasks in academic networks (Pan et al.,[2016).

* CoauthorCs: A co-authorship network in computer science that represents collaborations
between authors. Nodes correspond to researchers, and edges indicate joint publications.
It is often used to study community structure and author disambiguation in bibliographic
databases (Sinha et al., 2015)).

* ACM-DBLP: This dataset contains two co-authorship graphs from the ACM and DBLP
databases. Nodes represent authors, and edges indicate co-authorship. Although collected
independently, both graphs share overlapping authors, with 6,325 ground-truth alignments.
Node features capture publication distributions across research venues. The dataset poses
a challenging alignment task due to structural and feature discrepancies between the two
graphs (Zhang & Tong|, 2018)).

* Douban Online-Offline: This dataset comprises two social graphs from the Douban plat-
form, one based on online interactions and the other on offline event co-attendance. Both
graphs share a subset of users, with 1,118 aligned nodes. Node features reflect user loca-
tion distributions. The dataset is designed to evaluate alignment across heterogeneous and
partially overlapping social networks (Zhang & Tong, [2016)).

C.2 PERFORMANCE METRICS

To assess graph alignment performance, we adopt two widely used metrics: alignment accuracy
(Acc) and Hit@k. Alignment Accuracy (Acc) measures the proportion of correctly predicted node
correspondences among all ground-truth aligned pairs, providing a direct measure of overall match-
ing performance. Hit@Fk evaluates whether the true corresponding node from the source graph
appears within the top-k predicted candidates for each node in the target graph. This metric reflects
the ability of model to rank correct matches highly and is particularly useful for top-k retrieval sce-
narios. Both metrics are computed using all available ground-truth node pairs, with higher values
indicating better alignment quality.

C.3 EXPERIMENTAL SETTINGS

In section @ we follow the experimental setting introduced in the (He et al., 2024)) for gener-
ating inconsistent graph pairs. Given a source graph G, with adjacency matrix A, we construct
10 perturbed and permuted target graphs using the transformation A = P(A + M)PT, where
M € {-1,0,1}*¥ introduces edge-level perturbations, and P is a random permutation matrix.
The perturbation level is controlled by a parameter p € {0, 1%, 5%}, representing the fraction of
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edges modified: p|€|. We adopt seven structural node features from (Berlingerio et al.l 2013): node
degree, clustering coefficient, average degree of neighbors, average clustering coefficient of neigh-
bors, number of edges in ego-network, number of outgoing edges of ego-network, and number of
neighbors of ego-network. These descriptors provide compact, structure-aware representations for
robust evaluation under varying structural inconsistencies.

All experiments are implemented using PyTorch 2.1.2 and PyTorch Geometric 2.5.0. Most bench-
marks are run on servers equipped with NVIDIA A100 GPUs (CUDA 12.2), each providing 40 GB
of memory. For large-scale datasets such as DBLP and Coauthor CS, we use NVIDIA H100 GPUs
(CUDA 12.6) with 95 GB of memory, enabling efficient training and evaluation on high-complexity
graphs. The implementation and related resources will be made publicly available upon acceptance
of the paper.

C.4 HYPERPARAMETER SELECTION

In the GADL framework, hyperparameters include: (1) architectural parameters: number of GCN
layers, hidden dimensions, and spectral basis size (k); (2) weighting coefficients: Agant, Abij, Aorths
«, and 3; and (3) optimization parameters: learning rate, and weight decay.

For the architectural hyperparameter, we select values guided by the structure of the graphs and
computational considerations. For the number of GCN layers, we balance three factors: enabling
sufficient long-range information propagation, computational efficiency, and avoiding oversmooth-
ing. Small, dense graphs (Celegans, Arena, Cora) have short diameters and high connectivity, so 2
layers suffice to capture local neighborhoods while preserving node distinctiveness. Medium-sized,
sparse graphs (Douban and Douban Online-Offline) require 5-6 layers because their lower connec-
tivity demands deeper information propagation, and our dual-pass design supports this depth while
still preserving discriminative embeddings. For large-scale graphs (ACM-DBLP, DBLP, Coau-
thorCS), we limit the depth to 2-3 layers: despite their size, these graphs are locally dense, and most
useful structural information lies within 2-3 hops. Adding more layers increases computational cost
without improving accuracy.

For hidden dimensions, we scale with problem complexity and richness of node features: 16 di-
mensions for semi-synthetic graphs with simple 7-dimensional structural features, 256 for Douban
Online-Offline with its 538-dimensional sparse features, and 1024 for ACM-DBLP, which combines
large scale with diverse structural patterns.

We set & = 300 for the spectral basis after testing a range of values and using principles from func-
tional map theory. In functional map theory, increasing k improves the ability of a linear functional
map to approximate the underlying correspondence. If a valid node permutation exists, a sufficiently
high-dimensional spectral basis can always represent it. In practice, we find that £ = 300 provides
stable alignment on our benchmarks while balancing accuracy and computational efficiency.

For the loss function weights Agn, Abij, Aortn and the functional map term weights «, and 3, we
perform a grid search to systematically evaluate combinations of values. We set o = 1073, 8 =
1072, Apm = LApij = 1071, and Aoy = 107 for all benchmarks, though slight adjustments could
improve results on individual datasets. A sensitivity analysis of loss function weights is presented
in Appendix

The optimization hyperparameters, learning rate and weight decay, are set to standard values com-
monly used for Adam in graph learning tasks: a learning rate of 1e — 3 and a weight decay of 5e — 4.
The model is trained end-to-end using the Adam optimizer based on the loss function in Equation[9]

For applying GADL to new problems, we recommend the following: (1) analyze graph properties
such as diameter, sparsity, average degree, and clustering coefficient; (2) choose the number of layers
based on graph structure, balancing long-range information propagation, computational efficiency,
and avoiding oversmoothing; (3) scale hidden dimensions with graph size and feature richness; (4)
select a sufficiently large spectral basis k to reliably capture the underlying correspondence, while
still balancing computational efficiency; and (5) perform a grid search to tune Apnp, Abij, Aorths Qs
and f.
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C.5 DETAILS OF VISION-LANGUAGE EXPERIMENT

C.5.1 SETUP

We evaluate the vision-language alignment task on a range of benchmarks, including CIFAR-10
(Krizhevsky et al., 2009), CINIC-10 (Darlow et al.l |2018), CIFAR-100 (Krizhevsky et al., 2009),
and ImageNet-100 (Russakovsky et al., 2015), using representations extracted from diverse pre-
trained vision and language models. For each vision model, class-level representations are derived
by averaging image-level embeddings within each class. Correspondingly, language representations
are obtained by averaging embeddings generated from multiple textual prompts for each class. To
enable application of our graph alignment method, we build a similarity graph from these represen-
tations, where each class-level embedding is treated as a node and connected to its k£ most similar
neighbors according to cosine similarity.

Since the vision and language models generally produce embeddings of different dimensionalities,
in this experiment, we employ dual-pass GCN encoders without weight sharing. While this design
accommodates modality-specific feature spaces, it also makes the alignment task more challenging,
as the model must learn to reconcile heterogeneous latent representations.

C.6 HYPERPARAMETERS

We adopt a similar hyperparameter configuration for the vision-language benchmarks. Specifically,
we set k = 5 when constructing the k-NN graphs. Each modality is encoded with a 4-layer dual-
pass GCN encoder, and we use 9 Laplacian eigenvectors for CIFAR-10 and CINIC-10, and 90
eigenvectors for CIFAR-100 and ImageNet-100. The hidden and output dimensions of the encoder
are both set to 512. All other hyperparameters follow the general settings described in Section|C.3]

C.6.1 BASELINES

We compare against a set of established solvers and heuristics for the alignment problem. Local CKA
(Maniparambil et al., [2024) leverages the centered kernel alignment (CKA) metric to approximate
the QAP with a linear assignment formulation, providing an efficient method for vision—language
correspondence. Optimal Transport (OT) methods (Peyré et al.l 2016) address the alignment by
modeling embeddings as probability distributions and computing the minimal transport cost, thereby
preserving geometric structure across modalities. The Fast Approximate QAP algorithm (FAQ) (Vo-
gelstein et al., [2015) is a well-known primal heuristic that relaxes the QAP and iteratively refines
the solution, yielding scalable but approximate alignments. MPOpt (Hutschenreiter et al., [2021)
represents a generic mathematical programming approach, solving the alignment as a constrained
optimization problem using standard formulations. Gurobi (Gurobi Optimization, LLC} [2023) is a
commercial off-the-shelf solver for mixed-integer and quadratic programs, providing near-optimal
results for small problem instances. Finally, the Hahn-Grant solver (Schnaus et al.| 2025)) is a dual
ascent algorithm that produces strong lower bounds by repeatedly solving linear assignment prob-
lems.

We also reference two recent vision—language alignment methods. Vec2Vec (Jha et al.l 2025)
maps embeddings from different models into a shared latent space using input/output adapters, a
shared backbone, and adversarial plus structural losses. CycleReward (Bahng et al.l [2025) learns
vision—language alignment via cycle-consistency-based preference data and a reward model. These
models are not designed for graph alignment and therefore are not direct competitors. Moreover,
a full evaluation would require reproducing their results on our benchmarks, which is beyond the
scope of this work and is deferred to future studies focused specifically on this domain.

C.6.2 VISION AND LANGUAGE MODELS

We adopt the set of 32 vision models used in Blind Match (Schnaus et al.|[2025)). For self-supervised
methods, we use DINO (Caron et al.| [2021)) models (RN50 and ViT—-S/B with patch sizes 16 and
8) trained on ImageNet-1k and DINOv2 (Oquab et al., |2023) models (ViT-S/B/L/G with patch
size 14) trained on the LVD-142M dataset, as well as fully supervised models such as DeiT vari-
ants (Touvron et al.,|2021) (Tiny, Small, and Base with patch size 16, including distilled and high-
resolution @384 versions) and ConvNeXt models(Liu et al.l 2022b) (Base and Large, pretrained
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on ImageNet-1k or ImageNet-22k, with additional fine-tuned @384 variants). For vision—language
pretraining, we employ CLIP (Ramesh et al., 2022 with both ResNet backbones (RN50, RN101,
RN50x4, RN50x16, RN50x64) and Vision Transformer architectures (ViT-B/32, ViT-B/16,
ViT-L/14,ViT-L/14@336). All experiments are conducted using official implementations and
pretrained weights, ensuring consistent and reliable representation extraction for each model.

We consider four pretrained language models spanning diverse architectures and training
paradigms, including the RN50x4 model from CLIP (Ramesh et al) 2022)) and three models,
all-MinilM-L6-v2, all-mpnet-base-v2, and all-Roberta-large-v1, extracted
from the SentenceTransformers library (Reimers & Gurevych, [2019). All vision and language mod-
els used in our experiments are summarized in Table 5]

Table 5: Summary of vision and language models used in the experiments
Vision models
DINO (Caron et al.] 2021}: RN50, ViT-S/16, ViT-S/8, ViT-B/16, ViT-B/8
DINOVZ (Oquab et al.|[2023): ViT-S/14, ViT-B/14, VIT-L/14, ViT-G/14
DeiT (Touvron et al.| 2021): DeiT-T/16, DeiT-T/16d, DeiT-S/16, DeiT-S/16d, DeiT-B/16, DeiT-B/16@384, DeiT-B/16d, DeiT-B/16d@384
ConvNeX (Liu et al.][2022b}: CN-B-1, CN-B-22, CN-L-1, CN-L-22, CN-L-22ft@384, CN-XL-22ft@384
CLIP (Ramesh et al.][2022]: RN50, RN101, RN50x4, RN50x16, RN50x64, ViT-B/32, ViT-B/16, ViT-L/14, VIT-L/14@336

Language models

CLIP (Ramesh et al.|[2022): RN50x4
SentenceTransformers (Reimers & Gurevych|[2019): all-MiniLM-L6-v2, all-mpnet-base-v2, all-Roberta-large-v1

D ABLATION ANALYSIS

To analyze the impact of individual components in the proposed framework, we conduct an ablation
study evaluating variants with specific modules removed or modified. We compare GADL against:
(1) GADL w/o dual-pass encoder: replaces the dual-pass GCN with a standard single-pass GCN
while retaining latent-space communication; (2) GADL w/o bijectivity regularization: removes
the bijectivity regularization term while keeping the dual-pass encoder; (3) GADL w/o orthogonal-
ity regularization: omits orthogonality regularization while maintaining all other components, and
(4) GADL w/o latent-space alignment: removes both bijectivity and orthogonality regularizations,
relying solely on the dual-pass encoder without any geometric constraints on the latent spaces.

Results are summarized in Table[6] They highlight the individual contribution of each component
to the overall alignment performance. Replacing the dual-pass GCN with a standard encoder causes
substantial accuracy drops.

Table 6: Performance of GADL and its variants on real-world graph alignment benchmarks.

Method ‘ ] _ACM-DBLP ) ) Doul_)an Onlil_le-Ofﬂine )
Hit@l Hit@5 Hit@l0 Hit@50 | Hit@l Hit@5 Hit@10 Hit@50
GADL w/o dual-pass encoder 81.68 9222 95.24 97.88 4338  62.96 71.1 88.55
GADL w/o bijectivity regularization 88.47 94.6 96.06 98.37 52.68  72.89 80.14 94.78
GADL w/o orthogonality regularization | 88.51  94.48 96.06 98.35 51.96 72.8 79.51 94.72
GADL w/o latent-space alignment 87.42 93.5 96.03 98.34 49.35  70.23 76.72 92.66
GADL 88.63  94.76 96.16 98.41 5331  73.61 80.67 94.18

The results show that the dual-pass encoder provides greater improvement on Douban than ACM-
DBLP, reflecting the impact of initial node features on encoder effectiveness. Essentially, the
Douban dataset contains sparse, high-dimensional node features with many zero entries, causing
standard GCN embeddings to become overly smooth and less discriminative. Consequently, the
dual-pass filters lead to a significant improvement in matching accuracy. In contrast, the ACM-
DBLP features are denser and more informative, so the standard GCN already generates sufficiently
distinctive embeddings, with the high-pass component providing only moderate improvement.

Moreover, the results indicate that removing both regularizers leads to a clear performance degrada-
tion across benchmarks, with a more pronounced impact on Douban Online-Offline than on ACM-
DBLP. This discrepancy can be attributed to several factors: 1) Douban Online-Offline consists of
heterogeneous graph sources, one from online social interactions and one from offline event co-
attendance, with inherently misaligned structures and dynamics, making latent space communica-
tion more critical. In contrast, ACM-DBLP contains two co-authorship networks from similar aca-
demic databases with more comparable structural properties. 2) The Offline graph is much smaller

21



Under review as a conference paper at ICLR 2026

and sparser than the Online graph. This structural mismatch causes embeddings to naturally drift
into different geometric spaces during training, making the bijectivity and orthogonality constraints
more valuable for alignment. 3) As noted earlier, Douban has sparse, high-dimensional features with
many zero entries. This sparsity, combined with structural differences, means that without explicit
geometric constraints, the latent spaces can diverge significantly. The regularizations help anchor
these spaces together despite the feature sparsity.

In essence, the larger improvements on heterogeneous graphs with structural and feature inconsis-
tencies empirically validate that our latent-space alignment framework is most effective where it
is most needed, directly confirming our motivation for designing this module to address the core
challenges outlined in the introduction.

E ABLATION STUDY ON GRAPH ENCODERS

We evaluate the impact of different GNN encoder architectures on the alignment accuracy within
the GADL framework using two real-world benchmark datasets. Specifically, we conduct a com-
parative evaluation of our proposed dual-pass GCN encoder against four GNN variants: GCN
& Welling| [2017), GIN (Xu et al., 2018a), JKGNN 2018b), and TIDE
@. For these encoders, we adopt a 6-layer architecture with ReLU activation functions, fol-
lowing the configurations presented in their respective papers. Additionally, TIDE is applied in a
single-channel setup, where the learnable parameter ¢ is shared across all channels.

100 4 GCN
GIN
= = JKGNN
S g0 | mmm TIDE
- = Dual-pass GCN
o
@
5
3 604 1
o
@
=
g a0 4
g
=]
o
=
2 20+ 1
Hit@50 Hit@1 Hit@5 Hit@10 Hit@50

Douban Online-Offline
Figure 3: Encoder comparison on graph alignment performance (Hit@ K).

As shown in Figure[3] the proposed dual-pass GCN achieves consistently higher alignment accuracy
across both datasets. Among the others, the GIN encoder performs best because it is designed to bet-
ter capture graph structure by extending the Weisfeiler-Lehman (WL) graph isomorphism test, which
helps it distinguish nodes more effectively. Since more expressive node representations reduce am-
biguity in identifying correct correspondences, this enhanced expressiveness directly contributes to
improved node alignment accuracy.

F COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of GADL comprises four main components: the dual-pass spectral
encoder, the functional map module, the bijectivity and orthogonality regularizers, and the node-
alignment step.

The encoder employs two complementary GCN branches, each requiring sparse matrix propagation
and feature transformation with per-layer complexity O(|€|d + |V|d?), where |V| and |€| denote
the number of nodes and edges, respectively, and d is the embedding dimension. For & layers, the
dual-pass encoder incurs total cost O(2k|E|d + 2k|V|d?) = O(k|E|d + k|V|d?), which simplifies to
O(k|V|d) for sparse graphs where |E] = O(|V]) and d < |V)|.

The functional map module computes transformations Cio, Co; € R4*4 petween latent spaces
and applies them to node embeddings, with a total complexity of O(|V|d?), arising from the ma-
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trix multiplications of the functional maps with the node embeddings. Notably, this cost excludes
eigendecomposition, as our method relies on precomputed eigenvalues and eigenvectors.

The bijectivity and orthogonality regularizers each require O(d®) operations for matrix multiplica-
tion and Frobenius norm computation, contributing negligible overhead.

The alignment stage computes pairwise node similarities via inner products with complexity
O(|V|?d), followed by greedy Hungarian algorithm with complexity O(|V|?).

Combining all components, GADL has total complexity O(k|E|d + k|V|d? + |V|d? + & + |V|?).

For sparse graphs where |£| = O(|V|) and moderate embedding dimensions d < |V
to O(|V|?), dominated by the node-alignment step.

, this simplifies

F.1 RUNTIME EVALUATION

We evaluate the computational efficiency of GADL against state-of-the-art methods across six
benchmark datasets of varying scales. Table [7|reports the training time (in seconds) per epoch.

Table 7: Training time comparison (seconds per epoch)

Dataset Graph Size WAlign T-GAE SLOTAlign GADL
Celegans Small 0.04 0.18 0.22 0.08
Douban Medium 0.24 1.16 1.27 0.54
Douban Online-Offline  Medium 0.17 0.28 0.54 0.22
ACM-DBLP Large 0.63 2.75 3.25 1.57
Dblp Large 8.51 22.46 - 11.55
Coauthor CS Large 9.52 29.28 - 16.73
Note: “~” indicates timeout after 1 hour training.

requires iterative alternating optimization with complexity O(T-(|V1 |?[Va|+|V1|[V2|?))
2023a). While sparsity can reduce SLOTAlign to O(|V1|[Va|(d1 + da) + [Vi|le + [Vally), it still
remains significantly more expensive than GADL. As a result, SLOTAlign fails to complete within
reasonable time on larger graphs (Dblp, Coauthor CS).

GADL vs. T-GAE. While both methods exhibit O(|V|?) complexity dominated by node matching,
GADL demonstrates 1.5-2x faster runtime across all datasets. This speedup stems from lightweight
dual-pass GCN encoder compared to the deeper GIN architecture used in T-GAE (6-12 layers). The
functional map module adds only minimal overhead, as its O(|V|d?) complexity (with d < |V)) is
negligible compared to the O(|V|?) cost of node matching.

GADL vs. SLOTAlign. GADL significantly outperforms the optimization-based SLOTAlign, which
(Tang et al.

GADL vs. WAlign. WAlign achieves efficient runtime by employing a lightweight GCN encoder
and replacing the Sinkhorn-based optimal transport with simple pairwise similarity computation
and greedy matching, resulting in O(|V|?) complexity. This makes it significantly faster than
optimization-based methods like SLOTAlign. However, this efficiency reduces alignment accuracy
and robustness, as its performance drops under perturbations (Table [T)).

G HYPERPARAMETER SENSITIVITY

We conduct a sensitivity analysis to examine the influence of key hyperparameters on model per-
formance. In particular, we focus on the loss weighting coefficients Agn, Abij, and Agren, Which
control the relative importance of the functional map loss, bijectivity constraint, and orthogonality
regularization, respectively, in the overall training objective.

To isolate the effect of each hyperparameter, we vary its value over a defined range while keep-
ing the remaining parameters fixed at their optimal values, as determined through prior validation.
We evaluate model performance using the Hit@1 accuracy metric on both real-world benchmark
datasets.
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The results in Figure [d]demonstrate how model performance responds to variations in each hyperpa-
rameter, using the optimal values identified through tuning as a reference. The results demonstrate
that our approach is stable across a wide range of settings, while also pointing out where tuning
is most important for best results. These insights provide practical guidance for selecting effective
hyperparameter configurations when applying the model to new benchmarks.

2\
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ACM-DBLP Douban Online-Offline

Figure 4: Hyperparameter sensitivity analysis on ACM-DBLP and Douban Online-Offline datasets.
We report Hit@1 accuracy while varying each hyperparameter (Arn, Abij, Aortn) independently.

H COMPREHENSIVE RESULTS FOR VISION-LANGUAGE MODEL
COMBINATIONS

To provide a comprehensive evaluation of vision—language alignment, we test our proposed model
across multiple vision and language model combinations on two benchmark datasets, CIFAR-10
and CINIC-10. The vision models considered include CLIP (Ramesh et al., [2022), ConvNeXt
(Liu et al., 2022b), DINO (Caron et al., [2021)), DINOv2 (Oquab et al.| [2023)), and DeiT (Touvron
et al., 2021). For the language models, we include the RN50x4 model from CLIP (Ramesh et al.,
2022)) as well as three models from the SentenceTransformers library (Reimers & Gurevych,|2019):
all-MiniIlM-L6-v2,all-mpnet-base-v2,and all-Roberta-large-vl.

The results are summarized in Figure [5] where the error bars indicate the standard deviation com-
puted over 20 random seeds.

These results indicate that our proposed approach consistently achieves higher matching accuracies
across diverse vision—language encoder combinations, outperforming state-of-the-art baselines such
as the Hahn-Grant solver in most configurations (cf. Figure 4 in the Hahn-Grant paper (Schnaus
et al., [2025)).

Our method shows particularly strong performance with DINO and DINOv2 models, where most
configurations achieve matching accuracies above 0.8 on both CIFAR-10 and CINIC-10 datasets.
The CLIP models also demonstrate competitive performance, with several variants reaching near-
perfect accuracy. Several models achieve perfect accuracy on CIFAR-10, including CLIP: RN50x4
and ViT-B/16, all ConvNeXt variants except CN—B—-2 2, most DeiT models, and all DINO models.
Comparable trends are observed on CINIC-10, where numerous models also reach 100% accuracy.
The results indicate that the choice of pre-training model has a greater influence on performance
than model size. DINO models exhibit remarkable consistency, achieving near-perfect accuracy in
most configurations. In contrast, some larger models, such as CLIP: RN101 and RN50x16, per-
form poorly (33-40% on CIFAR-10), indicating that model scale alone does not guarantee superior
performance.

Among the different language encoders, the sentence-transformer models (a11-MiniILM-L6-v2,
all-mpnet-base-v2, and All-Roberta-large-vl) outperform RN50x4, as they are
specifically optimized for semantic text representation and generating high-quality text embed-
dings. In contrast, the RN50x4 encoder in CLIP is trained with an objective that prioritizes vi-
sion—language alignment rather than producing rich text embeddings.

We further evaluate the proposed model across diverse vision—language combinations on the larger-
scale CIFAR-100 and ImageNet-100 benchmarks. Table [8| summarizes the results. These results
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Figure 5: Vision—language accuracy of the proposed model on combinations of multiple vision

models with four language models on CIFAR-10 (top row) and CINIC-10 (bottom row)

demonstrate that model performance is highly context-dependent, with no single architecture achiev-
ing universal superiority across CIFAR-100 and ImageNet-100.
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Table 8: Vision-language alignment accuracies on CIFAR-100 and ImageNet-100 with two language
models.

Model CIFAR-100 ImageNet-100
all-mpnet-base-v2  All-Roberta-large-vl  all-mpnet-base-v2  All-Roberta-large-v1
CLIP
RN50x16 46.67 £2.87 67.00 +4.97 40.67 £ 0.94 63.67 +3.40
RN50x64 48.33 £ 0.47 76.33 £0.94 37.33+£0.47 58.00 +4.55
ViT-L/14 46.00 +7.87 85.67 +1.89 74.00 £ 0.82 61.00 + 1.41
VIiT-L/14@336 79.67 +2.05 81.00 + 1.41 41.33 £8.26 4533 £14.20
DeiT
DeiT-B/16 47.00 £ 0.82 84.00 +0.82 67.33 +0.47 58.67 +4.03
DeiT-B/16 @384 54.67 +£5.44 88.00 £ 0.00 35.33+0.47 57.67 +7.54
DeiT-B/16d 58.33 +8.63 58.67 £15.22 38.33 £6.02 5433 +7.04
DeiT-B/16d@384 47.33 £8.99 42.67+6.34 67.33 +4.50 65.67 +0.94
DINOv2
ViT-B/14 48.33 £0.47 55.00 + 6.53 83.67 £0.47 60.33 +0.94
ViT-S/14 48.67 £ 4.64 58.33+3.22 35.67 +0.47 63.67 +4.50
ViT-L/14 79.67 +1.70 60.67 £5.19 48.33 +2.49 69.67 +7.13
ViT-G/14 67.67+1.70 58.33+0.47 4433 +8.26 49.33 047
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