
Published as a conference paper at ICLR 2022

IMPROVING NON-AUTOREGRESSIVE TRANSLATION
MODELS WITHOUT DISTILLATION

Xiao Shi Huang, Felipe Pérez, Maksims Volkovs
Layer 6 AI
{gary,felipe,maks}@layer6.ai

ABSTRACT

Transformer-based autoregressive (AR) machine translation models have achieved
significant performance improvements, nearing human-level accuracy on some
languages. The AR framework translates one token at a time which can be time
consuming, especially for long sequences. To accelerate inference, recent work has
been exploring non-autoregressive (NAR) approaches that translate blocks of tokens
in parallel. Despite significant progress, leading NAR models still lag behind their
AR counterparts, and only become competitive when trained with distillation. In
this paper we investigate possible reasons behind this performance gap, namely, the
indistinguishability of tokens, and mismatch between training and inference. We
then propose the Conditional Masked Language Model with Correction (CMLMC)
that addresses these problems. Empirically, we show that CMLMC achieves state-
of-the-art NAR performance when trained on raw data without distillation, and
approaches AR performance on multiple datasets. Code for this work is available
here: https://github.com/layer6ai-labs/CMLMC.

1 INTRODUCTION

Neural machine translation (NMT) models based on the Transformer architecture have achieved
leading performance (Vaswani et al., 2017; Barrault et al., 2019; Huang et al., 2020). Majority
of the proposed approaches are based on the autoregressive (AR) principle, where translation is
done one token at a time conditioning on already translated tokens. AR inference scales linearly
with the number of tokens and full forward pass through the decoder is required for each translated
token. This can be prohibitively expensive for long sequences, particularly as leading models are
becoming increasingly larger in size. To mitigate this problem, recent works have explored the
non-autoregressive (NAR) approach where subsets of tokens are translated in parallel (Gu et al., 2018;
Ghazvininejad et al., 2019; Kasai et al., 2020). NAR models achieve significantly faster inference
speed that no longer depends on sequence length. However, despite considerable progress, leading
NAR models still require sequence-level knowledge distillation (Kim & Rush, 2016) to achieve
competitive accuracy. In practice, a large AR Transformer model trained on the raw data is used
as the teacher for distillation (Ghazvininejad et al., 2019). This process is expensive, as every new
language pair requires training a new teacher. It is also non-standard, and raises questions to the
necessity and the underlying problems solved by distillation (Zhou et al., 2020; Ding et al., 2021).

In this work we focus on one of the leading NAR approaches, the Conditional Masked Language
Model (CMLM) (Ghazvininejad et al., 2019). CMLM achieved leading NAR performance on
multiple NMT datasets - especially when combined with semi-autoregressive training (Ghazvininejad
et al., 2020b) - but only when the model is trained on distilled data. Without distillation, CMLM
performance drops significantly below AR benchmarks. The need for distillation indicates that
CMLM alone is unable to fully leverage the information available in the raw training data (Ding et al.,
2021). Here, we identify two shortcomings of CMLM that, when addressed, significantly improve
NAR translation quality and narrow the gap between raw and distilled performance.

First, input token representations in CMLM can become nearly indistinguishable, especially for
adjacent positions. In AR models this problem is avoided by a combination of causal masked attention,
sequential inference, and learned positional encodings (PEs). However, unmasked attention and
simultaneous translation of token blocks in CMLM loses most of the information that distinguishes
tokens. This problem is particularly severe during the first inference step, where the input is fully
masked. The model thus only relies on learned PEs to distinguish tokens, which is not sufficient.
Poor token separation can cause significant translation errors, including the identified phenomenon of
token repetition stemming from the related multi-modality problem (Zhou et al., 2020).

1

https://github.com/layer6ai-labs/CMLMC

Published as a conference paper at ICLR 2022

Second, there is a misalignment between CMLM’s training and inference procedures. During training
CMLM is optimized with a masked loss analogous to language model training in popular models
such as BERT (Devlin et al., 2019). However, CMLM inference always starts with a fully masked
sentence and translates all tokens simultaneously. Iterative refinement is then applied where subsets
of low confidence tokens are masked and re-translated at each iteration. During training the model
rarely sees a fully masked sentence, and is not trained to self-correct from the initial fully masked
translation that can contain significant errors. The misalignment between the two procedures can
cause a disconnect, where optimization of the training loss does not transfer to improvements in
translation quality.

In this work we propose the Conditional Masked Language Model with Correction (CMLMC). Our
model builds on the CMLM architecture and addresses the aforementioned problems. We modify the
decoder structure by exposing the positional encodings and incorporating causal attention layers to
differentiate adjacent tokens. We also propose a novel correction loss that teaches the model how to
correct translation mistakes made in early decoding iterations from the fully masked sentence. With
these improvements, CMLMC achieves new state-of-the-art undistilled NAR results and approaches
AR performance on multiple NMT benchmarks.

2 RELATED WORK

Neural machine translation is a sequence to sequence prediction problem where a source sentence
X = (x1, . . . , xm) in one language is transformed into a target sentence Y = (y1, . . . , yn) in
another language. In AR setting this problem is modelled as: argmaxY

∏n
i=1 P (yi|X,Y<i), where

Y<i = (y1, . . . , yi−1) so every token is conditioned on all translated tokens before it (Cho et al., 2014).
Greedy inference approach is typically taken where tokens are translated left-to-right sequentially, so
a sequence of length n requires n forward passes through the model. Transformer-based AR models
currently achieve leading accuracy on most NMT benchmarks (Barrault et al., 2019), but as models
become larger linear inference can become prohibitively expensive for long sequences.

The NAR approach is proposed to mitigate this problem. Early work NAT (Gu et al., 2018) models
the problem as: argmaxY P (n|X)

∏n
i=1 P (yi|X), where P (n|X) is the probability over sequence

length. Since P (yi|X) is independent of Y , inference can be parallelized and all tokens (or their
subsets) can be translated simultaneously. The conditional independence assumption can be overly
restrictive and typically does not hold in natural language. To relax it, NAT adds positional attention
and full self-attention between all tokens. However, the performance of this model is still considerably
worse than the AR benchmarks, which authors attribute to the multi-modality problem (Gu et al.,
2018). NAT tackle this problem by applying knowledge distillation (Kim & Rush, 2016) on the
training data, where a large AR model is used as a teacher. Distillation significantly improves
performance, and has since been widely adopted to reduce the performance gap to AR benchmarks.

Recently, multiple NAR approaches have been proposed that build on the work of NAT (Gu et al.,
2018). Flowseq (Ma et al., 2019) introduces latent variables and generative flow to decouple token
dependencies in the output. CMLM (Ghazvininejad et al., 2019), the focus of our work, extends
masked language loss training (Devlin et al., 2019) to NMT to facilitate more robust handling of target
language input initialization and iterative refinement. Several works build on CMLM to improve
performance such as incorporating the energy of teacher optimization (Tu et al., 2020), adding raw
data prior (Ding et al., 2021), and improving the encoder-decoder architecture (Kasai et al., 2021).
DisCo (Kasai et al., 2020) utilizes attention masking instead of token masking to improve both
training and inference efficiency. ReorderNAT (Ran et al., 2021) uses an explicit module to re-order
the input sequence. GLAT (Qian et al., 2021) compares intermediate predictions with ground truth to
dynamically adjust the masking percentage according to translation difficulty. Recent work, including
AXE (Ghazvininejad et al., 2020a), Imputer (Saharia et al., 2020), FullyNAT (Gu & Kong, 2021), and
OAXE (Du et al., 2021) achieve improved performance with the alignment loss (Libovický & Helcl,
2018) that has been found to be more suitable for one-step NAR tasks (Haviv et al., 2021). This
important direction is orthogonal to our focus in this paper, and can be readily incorporated in future
work. The closest to our work is the SMART model (Ghazvininejad et al., 2020b) which also focuses
on the training-inference gap in NAR training; we discuss the key differences between our approach
and SMART in Section 3.2. Finally, it is important to note that while significant progress has been
made, the majority of work in NAR has focused on maximizing the distilled performance. Despite its

2

Published as a conference paper at ICLR 2022

importance, NAR performance on raw data remains significantly below leading AR baselines and is
the focus on this work.

3 CMLMC: CONDITIONAL MASKED LANGUAGE MODEL WITH CORRECTION

In this section, we analyze the CMLM architecture and identify several weaknesses in its design,
namely, lack of token distinguishability and training-inference mismatch. We then propose the
CMLMC model, which addresses these problems leading to significant improvements in accuracy.

3.1 TOKEN DISTINGUISHABILITY

To generate accurate translations the model must be able to align the source and translated sentences.
This is particularly important in Transformer-based architectures where source sentence is typically
encoded as memory, and decoder attends over memory during translation. To infer which part(s) of
the memory to attend for a given translated token, the decoder needs to know exactly where the token
is in the translated sequence and its relative position to other translated tokens. Transformer attention
doesn’t preserve positional information so in AR models this is achieved by a combination of causal
masked attention, positional encodings (PEs), and sequential inference.

0.8 0.4 0.0 0.4 0.8
Cosine Similarity

0
2k

4k

of
 P

E
Pa

irs
CMLM
RevealPosition

1 2 3 4 5+
of Token Repetitions

0
3k

6k

of
 S

en
te

nc
es CMLM

RevealPosition

Figure 1: IWSLT’14 De-En 1(a) Binned cosine similar-
ity between all unique pairs of the first 200 well-trained
PEs. 1(b) Distribution of token repetitions across test
sentences after initial translation from fully masked sen-
tence. For each repetition count, we find the number
of test sentences where at least one token consecutively
repeats that many times.

Causal masked attention matrix has a lower-
triangular shape so each token only attends
over tokens that come before it. PEs (fixed
or learned) get added to the input token em-
beddings at each position, and enable the
model to infer the relative and absolute dis-
tance between tokens (Yan et al., 2019). Fi-
nally, sequential inference translates one to-
ken at a time conditioning on all previously
translated tokens, so the model can identify
exactly which token is being translated at
each step. Jointly these design choices lead
to adequate separation between tokens and
provide strong positional information.

In NAR models, parallel translation significantly complicates sentence alignment. In particular,
CMLM replaces causal masked attention with a full attention over all tokens. Unmasked attention
combined with parallel inference over all tokens implies that the model has to rely solely on PEs for
position information. If learned PEs for different positions are very similar to each other, CMLM
would not be able to distinguish them. Token indistinguishability is especially problematic during the
first inference step since CMLM inference always starts with a fully masked sentence. During this
step, all tokens are replaced with the same mask embedding <M> summed into PEs. The model
thus has to translate the entire sentence using only PEs to distinguish the input tokens.

Figure 1(a) shows binned cosine similarity between unique pairs of trained PE encodings learned by
the CMLM model on IWSLT’14 De-En dataset. We see that the similarity distribution has a long
tail on the positive side. Significant number of PE pairs have cosine similarity above 0.5, and over
200 pairs have similarity greater than 0.7. These results indicate that during inference with a fully
masked sentence, some token pairs can be nearly indistinguishable for CMLM. This can lead to
severe translation errors, the most direct of which is token repetition where indistinguishable tokens
get translated to the same word. Figure 1(b) shows the distribution of consecutive token repetitions
across test sentences on the same dataset. We see that CMLM can produce over 5 repetitions in a
translated sentence, and hundreds of sentences have 3 or more repetitions. It is evident that CMLM
has difficulty translating from fully masked sentence, and bad initial translation can be difficult to
correct even with multiple steps of iterative refinement.

We address the problem of token distinguishability with a dual strategy. First, each decoder block
in CMLM is augmented with a causal masked attention layer, inserted between the unmasked self
attention and encoder attention layers, leading to the following block structure: FULL-ATT →
MASKED-ATT → ENCODER-ATT → FFN. Re-introducing masked attention brings back the
left-to-right sequential hierarchy and breaks symmetry between positions with similar PEs. We

3

Published as a conference paper at ICLR 2022

deliberately insert this layer before the encoder attention, as it aligns source and translated sentences,
so properly separating input tokens is particularly important there. We use the standard masked
attention layer where the upper triangular portion of the SoftMax matrix is set to 0.

Second, we modify how token embeddings and PEs are combined. The majority of transformer-based
models simply sum the two embeddings. However, this can be insufficient to propagate the positional
information to the upper layers since the model has to balance the scales of both embeddings. This
can again be particularly problematic during the fully masked inference step when learned mask
embedding <M> is added to PEs. <M> is shared across all masked positions, and in training
receives gradient updates that are typically larger in magnitude than individual PEs. Empirically
we found that gradient magnitude for <M> can be up to 50x larger than the average gradient
magnitude for first 100 most commonly updated tokens throughout training. This can in turn make
the magnitude of <M> much larger than PE, making it difficult for the model to distinguish PEs at
different positions once they are summed with <M>. To deal with this problem we instead propose
to combine token embeddings and PEs with a feed-forward layer (FFN). Formally, given an input
token embedding yi and positional encoding pei at position i, we first expand by concatenating
them and then shrink back down with an FFN: y′i = FFN([yi, pei]). Here, [·, ·] is the concatenation
operation and FFN : R2d → Rd where d is the original embedding dimension. FFN enables the
model to appropriately adjust the embedding scales and (de-)emphasize specific dimensions.

The joint effect of these architecture modifications is shown in Figure 1. We refer to this method
as RevealPosition. From Figure 1(a) we see that PE cosine similarity distribution is now mainly
clustered around 0, and no pair has similarity above 0.5. This is a significant improvement from
CMLM where hundreds of PE pairs have cosine similarity above 0.7. Furthermore, from Figure 1(b)
we also see that RevealPosition consistently reduces the number of sentences that have repetitions
across all repetition counts. In particular, the most frequent one and two token repetitions are reduced
by over 30% and 35% respectively. In the experiments section we further show that these relatively
simple modifications lead to considerable improvements in BLEU of over 1 point. However, despite
the reduction in repetitions, RevealPosition can still make mistakes, so in the next section we proposed
a new loss function that aims to teach the model how to correct them.

3.2 TRAINING/INFERENCE MISMATCH

It is generally accepted that training and inference procedures should match as closely as possi-
ble (Ranzato et al., 2015; Mihaylova & Martins, 2019). When this is the case, improving training loss
during optimization typically translates to better inference performance. In AR models, training and
inference are well aligned, in both cases the model translates one token at a time conditioned on all
previously translated tokens. The only major difference is that during training previously translated
tokens are fixed to ground truth, but during inference they are set to model predictions.

This is not the case in many NAR models, including CMLM. The training strategy in CMLM follows
a masked language model approach similar to BERT (Devlin et al., 2019) pretraining: a random
subset of tokens from the target sentence Y get masked, effectively splitting Y into masked tokens
Ymask and observed ground truth tokens Yobs; masked tokens are replaced with the mask embedding
<M>, and the sentence is passed through the decoder to get predictions for Ymask. The loss function
then aims to maximize the probability of masked tokens for reconstruction accuracy. Unlike the fixed
15% masking typically used in BERT, CMLM uses a more aggressive strategy, sampling the number
of masked tokens uniformly between 1 and sentence length. During inference CMLM always starts
with a fully masked sentence and translates all tokens. Iterative refinement are then applied, where a
subset of tokens with the lowest probability is re-masked and re-translated at every iteration.

Comparing these training and inference procedures we can see a mismatch. During training CMLM
is not trained to correct its predictions. In particular, it is not trained to recognize the errors made
in the crucial first inference step. As we discussed in the previous section, translations from this
first step can have significant errors (repeated tokens etc.), so learning to correct these errors can be
critical to model performance. To better align training and inference, we build an error correction
mechanism into our model by adding a correction loss term during training. This term focuses on
correcting mistakes after inference with fully masked input. Formally, given a source sentence X
and a target sentence Y , we first split Y into Yobs and Ymask as in CMLM training. We then apply
the decoder to the fully masked sentence Y∅, where every token is replaced with <M>, obtaining

4

Published as a conference paper at ICLR 2022

Transformer
Encoder

+

memory

+

CMLMC
Decoder

<M> <M> <M> <M>

+

CMLMC
Decoder

+

CMLMC
Decoder

we work <M> NLP

-- -- on --

work work <M> NLP

work work on on --

Ground truth

Model Prediction

Substitution Token

wir arbeiten an NLP

----we

Figure 2: CMLMC loss example. Here, source German sentence X=[wir arbeiten an NLP]
is translated to the target English sentence Y =[we work on NLP]. First, sampled mask Ymask

masks out the [on] token. Masked sentence is passed through the CMLMC decoder to predict the
masked out token in the Lmask loss. Then, fully masked sentence Y∅ is passed through the CMLMC
decoder that translates all tokens simultaneously to Ŷ∅=[work work on on]. Sampled first
token [work] from Ŷ∅ is substituted for [we], and the resulting sentence [work work <M>
NLP] passes through the CMLMC decoder to correct the [work]→ [we] in the Lcorr loss.

Ŷ∅ = Decoder(X,Y∅). Here, Ŷ∅ is identical to the output of the first inference step, where all
tokens are predicted at once and can contain significant errors. With probability p we replace each
token y ∈ Yobs with a corresponding predicted token ŷ ∈ Ŷ∅. This splits Yobs into two sets: Ypred,
where tokens are substituted with predictions from Ŷ∅, and the remaining portion Yobs\Ypred. Our
correction loss then aims to predict the tokens in Ypred:

Lcorr = −
∑

y∈Ypred

log(P (y|Ypred, Yobs\Ypred, Ymask, X)) (1)

To compute this loss we make a forward pass through the decoder with a sentence that now contains
mask Ymask, predictions Ypred, and unmasked ground truth tokens Yobs\Ypred. The model generates
predictions for every substituted token in Ypred, and we maximize the probability of the corresponding
ground truth tokens. This process approximates the correction procedure, where model re-translates
a subset of unmasked tokens by conditioning on current translation. Early self-correction steps
primarily condition on tokens from Ŷ∅ obtained during the initial pass. As shown in (Ghazvininejad
et al., 2019), these early steps are very important and lead to large improvements in BLEU. So
the correction loss Lcorr aims to gradually optimize the model for this process during training. In
addition to Lcorr, we keep the original mask prediction loss from CMLM:

Lmask = −
∑

y∈Ymask

log(P (y|Yobs, Ymask, X)) (2)

Note that Ypred is dropped from this loss and conditioning is done on ground truth tokens in Yobs.
The final loss that we use in our model is a combination of correction and mask prediction losses:

LCMLMC = Lcorr + Lmask (3)

Figure 2 illustrates how the joint loss is computed for an example German to English translation. The
mismatch between NAR training and inference procedures is also recognized by SMART (Ghazvinine-
jad et al., 2020b). Similarly to our approach, SMART applies the decoder during training to generate
predictions for a subset of tokens and then learns to self-correct these predictions while simultane-
ously reconstructing masked tokens. Our approach however has two key differences. First, SMART
generates token predictions from a partially masked sentence {Ymask, Yobs}. While this does teach
the model to self-correct, the decoder always sees some ground truth tokens Yobs as input. This
procedure thus does not address the key first inference step where tokens are predicted from the fully
masked sentence with no ground truth input. We discussed that the most significant mistakes are
made during this step (also empirically shown in CMLM) so learning to correct them is particularly
important. We consequently argue that our approach to instead apply the decoder to fully masked
sentence Y∅ for self-correction loss better addresses the training/inference gap. Second, SMART
uses the same input with masked tokens Ymask and decoder predicted tokens Ypred for both mask
reconstruction and self-correction tasks. This can potentially hamper training since to predict masked
tokens decoder also conditions on Ypred which can contain significant errors especially early in
optimization. To preserve clean signal in masked training we only condition on ground truth tokens
Yobs in Lmask. Empirically, we demonstrate that our approach leads to significant improvements in
accuracy particularly on undistilled data.

5

Published as a conference paper at ICLR 2022

3.3 CMLMC TRAINING AND INFERENCE

Algorithm 1: CMLMC Training
input: paired training data S = {(Xi, Yi)}i,

learning rate η, token substitute probability p
initialize model parameters Θ
while not convergent do

for (X,Y) ∈ S do
sample mask: Y → Ymask and Yobs

make forward pass:
Ŷ∅ = Decoder(X,Y∅)

substitute tokens:
Yobs → Ypred and Yobs\Ypred

compute loss:
LCMLMC(X,Y) = Lcorr +Lmask

update model:
Θ = Θ− η ∂

∂Θ
LCMLMC(X,Y)

end
end
return Θ

In previous sections we introduced modifications to
CMLM that improve token distinguishability and
better align training with inference. Combined they
form our CMLMC approach. Algorithm 1 outlines
the training procedure for CMLMC. Given a train-
ing corpus S = {(Xi, Yi)}i of source and target
sentence pairs, for each pair (X,Y) we first sam-
ple mask Ymask uniformly from the interval [1, |Y |].
We then compute correction and mask losses Lcorr

and Lmask as outlined in Section 3.2, and update
model parameters using gradients. During infer-
ence we follow the same iterative approach used
in CMLM. First, a fully masked sentence Y∅ is
passed through the decoder that translates all to-
kens at once to get Ŷ (1)

∅ . In subsequent iterations
t ≥ 1, a subset of tokens with the lowest likelihood
in Ŷ

(t)
∅ is masked and re-translated by making a pass

through the decoder to get Ŷ (t+1)
∅ . The length of

Y∅ is predicted by the special LENGTH token that is appended to the source sentence in the en-
coder (Ghazvininejad et al., 2019). We repeat the inference procedure for top-k predicted lengths and
select the translation with the highest average token probability, analogous to using beam search in
AR models.

4 EXPERIMENTS

We evaluate our approach on multiple public NMT datasets: IWSLT’14 De-En/En-De, WMT’14 De-
En/En-De, and WMT’16 Ro-En/En-Ro. We use the same training/validation/test sets as in previous
work (Ghazvininejad et al., 2019) and report test set performance in BLEU for direct comparison.
For each dataset we compute performance on both raw and distilled settings, resulting in 12 dataset in
total. Distillation is done using the Transformersmall/base/large AR model (Vaswani et al., 2017) for
the IWSLT’14/WMT’16/WMT’14 datasets respectively, accounting for model capacity and dataset
size. We compare CMLMC against leading NAR baselines including, Flowseq (Ma et al., 2019),
CMLM and its variants, CMLM+SMART and CMLM+RawPrior (Ghazvininejad et al., 2019; 2020b;
Ding et al., 2021), LevenshteinNAR (Gu et al., 2019), DisCo (Kasai et al., 2020), ENGINE (Tu et al.,
2020), ReorderNAT (Ran et al., 2021), GLAT (Qian et al., 2021), as well as the models using the
alignment losses. Descriptions for all baselines are in the related work section.

All experiments are done using the Fairseq library (Gehring et al., 2017). To stay consistent with
previous work, on the IWSLT’14 dataset we use the Transformersmall configuration 512-1024-4,
while on the WMT datasets we use the Transformerbase configuration 512-2048-8 for encoder and
decoder in CMLMC. The numbers correspond to embedding dimension, FFN layer size, and number
of attention heads respectively. Hyper-parameters for each dataset are selected through grid search and
are listed in Table B.1 in Appendix. We apply our modifications to CMLM using the code released by
the authors1. In all experiments we use a linear FFN to combine the token and PE embeddings. For
datasets where CMLM performance is not reported, we train the model ourselves using the original
code, and choose the hyper-parameters by applying the same grid search as in CMLMC. We also
implement SMART to match the performance on the reported datasets since code is not publicly
available, this implementation is then used to evaluate SMART on datasets not reported in the original
paper. For CMLMC training we compute the correction loss Lcorr by randomly substituting 30%
(p = 0.3) of tokens in Yobs with predictions from Ŷ∅; the substitution percentage is chosen by grid
search from [0.1, 0.2, 0.3, 0.5]. At inference time we follow the procedure outlined in Section 3.3.
As in CMLM, we use 10 iterative refinement steps, but lower the beam search length to 3. Adam
optimizer (Kingma & Ba, 2015) with default settings is used for all experiments, and we train the
models on the IBM servers with 160 POWER9 CPUs, 600GB RAM and 4 Tesla V100 GPUs (32G).

1https://github.com/facebookresearch/Mask-Predict

6

Published as a conference paper at ICLR 2022

Table 1: Results and ablation study on the WMT datasets. ∗ Indicates our training results, as
the original papers did not report results on these datasets. For CMLM we report re-run results
from (Kasai et al., 2021) as they are better than those reported in the original paper.

Model Param WMT’14 De-En WMT’14 En-De WMT’16 Ro-En WMT’16 En-Ro
raw distill raw distill raw distill raw distill

AR Transformer (Kasai et al., 2020; 2021) 65M 31.09 31.8 27.74 28.3 34.46 34.8 34.16 34.6

N
A

R

Flowseq (Ma et al., 2019) 258M 28.29 30.68 23.64 25.31 32.91 32.84 32.35 32.20
CMLM (Ghazvininejad et al., 2019) 67M 29.40∗ 31.20 24.61 27.40 32.87∗ 33.31 32.86 33.7
CMLM+SMART (Ghazvininejad et al., 2020b) 67M 29.58∗ 31.27 25.10∗ 27.65 32.86∗ 33.53∗ 32.71∗ 33.85∗

CMLM+RawPrior (Ding et al., 2021) 67M – – – 27.8 – 33.7 – –
LevenshteinNAR (Gu et al., 2019) 67M – – – 27.73 – 33.02 – –
DisCo (Kasai et al., 2020) 67M – 31.31 25.64 27.34 32.25 33.25 – 33.22
ENGINE (Tu et al., 2020) 67M – – – – – 34.04 – –
ReorderNAT (Ran et al., 2021) 46M – 31.13 – 26.49 – 31.99 – 31.70
GLAT (Qian et al., 2021) 73M – 31.02 – 26.55 – 33.84 – 32.87

A
lig

ne
d

L
os

s CMLM+AXE (Ghazvininejad et al., 2020a) 67M 24.90 27.90 20.40 23.53 31.42 31.54 30.47 30.75
CMLM+OAXE (Du et al., 2021) 67M 26.8 30.2 22.4 26.1 – 33.3 – 32.4
Imputer (Saharia et al., 2020) 67M – 31.8 25.0 28.2 – 34.1 – 34.4
FullyNAT (Gu & Kong, 2021) ≈89M – 31.39 23.58 27.49 – 34.16 – 33.79

O
ur

s

CMLM+RevPos 73M 30.02 30.84 25.53 27.70 33.69 33.92 33.41 34.23
CMLM+Corr 67M 30.55 31.31 26.10 28.19 33.98 34.08 33.75 34.31
CMLMC 73M 30.92 31.41 26.40 28.37 34.13 34.13 34.14 34.57
CMLMC456 63M 30.59 31.23 26.31 27.91 33.94 33.93 33.86 34.47

4.1 RESULTS

Results on the WMT datasets are shown in Table 1. We see that CMLMC outperforms all NAR
benchmarks using CE loss, in many cases by a wide margin. On the distilled setting, with the
exception of WMT’14 De-En, CMLMC improves over CMLM by more than 0.8 BLEU points, and
achieves new state-of-the-art results for Cross-Entropy-based NAR translation on all datasets. Even
when compared to models using alignment loss, CMLMC only falls short on WMT’14 De-En when
compared to Imputer (Saharia et al., 2020), but is still superior to all other baselines despite using
the standard CE loss. Similarly, on the raw setting CMLMC improves over CMLM by 1.5 to over 2
BLEU points on all datasets. Improvements of this magnitude lead to CMLMC largely closing the
gap to AR performance on undistilled data. On all datasets except En-De the difference between raw
CMLMC and AR is less than 0.5 BLEU which to the best of our knowledge is the first time when
such small performance difference is achieved without distillation. This implies that it is possible to
train NAR models without distillation and achieve comparable translation quality to AR counterparts.
So we believe that with further research in this area, the performance difference between the two
frameworks can be eliminated. Jointly, these results, and in particular the improvement over CMLM,
indicate that the identified problems do cause a performance bottleneck. They also indicate that our
proposed solutions are effective and can lead to significant improvements, while being conceptually
simple and easy to implement. Results on the IWSLT’14 datasets are shown in Table A.1 in the
Appendix. CMLMC also shows considerable improvements of over 0.7 BLEU on distilled datasets
and over 1.8 BLEU on raw datasets compared to the leading baselines.

Analysis of iterative refinement is shown in Table 3(a). For both CMLM and CMLMC we compute
BLEU accuracy at different iterations. We also compute total inference time to translate the entire
IWSLT’14 De-En test set and fraction of token repetitions. Fraction of repetitions is computed by
counting all consecutively repeating tokens and dividing by the total number of translated tokens.
This number can thus be interpreted as the repetition rate that we expect to see from each model, for
example at 5% we expect to see 50 repetitions in every 1000 translated tokens. From Table 3(a) we
see that the repetition rate is consistently lower in CMLMC. This can partially explain the over 3
points gain in BLEU after the initial translation from fully masked sentences (iteration 1). This gain is
preserved throughout the refinement iterations, and after the last iteration CMLMC has repetition rate
that is almost 50% lower than CMLM. The architectural changes to distinguish tokens together with
correction training, enable CMLMC to start with fewer mistakes and more effectively correct them
during iterative refinement. We also see that additional masked attention layers in the decoder blocks
add an overhead during inference forward passes. However, after the full 10 iterations this overhead is
around 20% which we do not believe to be significant for a model of this size. Contrasting CMLMC
with SMART, we note that CMLMC outperforms SMART on all datasets, with an average BLEU
gain of 0.54 in the distilled datasets and 1.15 in raw, further supporting our arguments in section 3.2.

7

Published as a conference paper at ICLR 2022

Auto-Regressive CMLMC

Iter 1
Iter 10

de de

de de

de

fr fr

frfr

fr

es

es es

es

es

CMLM

Figure 3: 3(a) IWSLT’14 De-En BLEUs, inference times, and token repetitions for different number
of correction iterations. Inference time measures the wall time from when model and test data are
loaded until the last sentence has been translated. 3(b) Translation language probability visualization
for a multi-target En-De/Es/Fr corpus. Each models is trained to translate all three languages.

4.2 ABLATION STUDY

Ablation results on the WMT datasets are shown in Table 1; IWSLT’14 ablations are shown in
Table A.1 in the Appendix. Here, CMLM+RevPos incorporates the architectural changes in the
decoder to better distinguish tokens (Section 3.1) but is trained with the original CMLM loss. On
the other hand, CMLM+Corr keeps the original CMLM architecture but incorporates the correction
loss during training (Section 3.2). We observe that both CMLM+RevPos and CMLM+Corr improve
performance over CMLM on all datasets in both raw and distilled settings. The improvements are
significant and range from 0.2 to over 2 points gain in BLEU. CMLM+Corr generally leads to larger
improvement, demonstrating the importance of training the model to correct mistakes. Additional
ablation study on the effect of Masked Attention layers and concatenation of PEs are shown in
Table A.1, indicating the necessity of both in the RevealPosition mechanism. The gains over CMLM
are more pronounced on raw setting than distilled. We hypothesize that a smaller impact on distilled
setting is due to the simplification of the underlying training data structure. Knowledge distillation
compresses multiple modes in the raw data into a single mode learned by the AR model (Zhou et al.,
2020). NAR models trained with this data are less likely to make translation mistakes related to
multi-modality so correction is not as important in this case. We still see however, that even on
distilled data CMLM+Corr produces significant improvements of up to 1.3 BLEU points. Finally,
combining both approaches in CMLMC gives additional improvement, and in all cases CMLMC
outperforms both CMLM+RevPos and CMLM+Corr. This indicates that distinguishing tokens and
error correction are complementary and jointly lead to better translations.

Architectural modifications to the decoder outlined in Section 3.1 introduce additional parameters
through weights in masked attention layers and input FFN. From Table 1 we see that CMLMC has
around 9% more parameters than CMLM. To remove the performance effect of extra parameters,
we also train a smaller model CMLMC456 where input embedding dimension is reduced from 512
to 456; this model has 63M parameters which is 6% smaller than CMLM. As seen in Table 1, the
reduction in parameters does impact the performance, however, CMLMC456 still outperforms nearly
all baselines especially on raw data. This demonstrates that most performance gains in CMLMC
come from our modifications and not from additional parameters.

4.3 MULTI-MODALITY

We discussed that knowledge distillation is a time-consuming and non-standard step, yet all leading
NAR models rely on it since their raw scores significantly underperform the distilled counterparts.
Previous work (Zhou et al., 2020) argues that distillation primarily helps to resolve the multi-modality
problem in the raw dataset, which NAR models cannot handle directly. Following that work, we use
the aligned sentences from the Europarl corpus to create a multi-target English to German, Spanish
and French (En-De/Es/Fr) corpus. For every En source sentence, we have three target sentences in
De, Es, and Fr, effectively creating a tri-modal data. For each architecture we train a single model
on raw data to translate in all three languages by sharing the encoder/decoder layers but learning
token representations for each language. During inference the model is applied to En test sentences,
and we estimate the probability of translation belonging to each of the three target languages by
computing relative count of translated tokens from each language. Figure 3(b) visualizes the results
where probabilities close to 1 are shown at the extremes of the corresponding languages.

8

Published as a conference paper at ICLR 2022

Table 2: Qualitative examples of test sentence translation from CMLM and CMLMC on the IWSLT’14
De-En dataset. For both models we show translations after the first self-correction iteration (from
fully masked sentence) and after the last iteration.

Source: also, werde ich sie ihnen zeigen. das ist einer, zwei, drei, vier, fünf.

CMLM iter 1 so, i’m going to show you. this is one one, two, three three, four, five.
CMLM iter 10 so, i’m going to show you. this is one, two, two, three, four, five.

CMLMC iter 1 so, i’m going to show you you. this’s one, two, three, four, five.
CMLMC iter 10 so, i’m going to show you. that’s one, two, three, four, five.

Source: das entspricht der leistung von hundert atomkraftwerken, weil das geht besonders schnell überall.

CMLM iter 1 that’s equivalent of a hundred nuclear nuclear power power power power, because it’s all going very quickly.
CMLM iter 10 that’s the equivalent of a hundred of nuclear power power power, because it’s going on very quickly.

CMLMC iter 1 that’s the performance of a hundred nuclear nuclear power power, because it’s going fast.
CMLMC iter 10 that’s the performance of a hundred of nuclear power plants, because it’s going very fast.

We see that at iteration 1 CMLM outputs a highly mixed distribution where translations have tokens
from multiple languages, which clearly shows the multi-modality problem. After 10 iterations of
self-correction CMLM is able to separate the languages and mostly produces translations where the
majority of tokens are from one target language. This demonstrates that iterative refinement is an
important component of NAR translation that helps the models settle into one mode. We also see
that CMLMC has a much better language separation at iteration 1 than CMLM. So our proposed
modifications improve the multi-modality problem even when translation is done from fully masked
sentence. By comparing the graphs from CMLM and CMLMC at iteration 10 vs autoregressive
baseline, we observe that they all exhibit a similar degree of separation. However, as we have
seen from other experiments their BLEU scores are typically quite different. This suggests that the
multi-modality problem might not be the only issue NAR models face when trained on raw datasets.
We believe that an additional investigation is necessary here and leave it for future work.

4.4 QUALITATIVE ANALYSIS

IWSLT’14 De-En translation examples are shown in Table 2. We focus on the common NAR problem
of token repetition and show two example sentences that are representative of the repetition errors that
CMLM typically makes. We also show the final translation after 10 iterative refinements and compare
against the CMLMC translation. The first sentence has a sequence of numbers “one, two, three, four,
five". Embeddings for number tokens tend to be close together in the learned space, and CMLM has
difficulty removing these repetitions. After the first iteration “one" and “three" tokens repeat, and
while CMLM is able to correct these, it can’t fully remove repetitions and the final translation still
has repeating “two" token. CMLMC on the other hand has no difficulty with the number tokens and
translates them correctly after the first iteration.

The second sentence shows a long repetition that is difficult to correct. Here, “power" is repeated four
times by CMLM after the first iteration. After 10 iterations CMLM is able to correct the “nuclear"
repetition and remove one “power" token but the other three remain. Since each refinement iteration
re-translates a subset of tokens with the lowest probability, longer repetitions are increasingly harder
to correct as all repeating tokens need to eventually end up in the lowest probability set. We see that
CMLMC also repeats “power", but only once, allowing the correction mechanism to come into play
and fix the error. These examples demonstrate that improved token distinguishability can lead to
initial translations with fewer repetition mistakes. Our model is then the able to more effectively
correct them, resulting in the better end translations.

5 CONCLUSION

We introduce the Conditional Masked Language Model with Correction (CMLMC), an NAR trans-
lation model that addresses the design shortcomings in leading NAR approaches. Through a dual
strategy of revealing positional information and adding error correction mechanism, we significantly
improve NAR translation performance on both raw and distilled datasets. In particular, when trained
on raw data, CMLMC approaches the performances of leading AR models which to the best of our
knowledge is the first such result in NAR. Future work involves expanding our approach to other
NAR models and further investigation into the relationship between multi-modality and distillation.

9

Published as a conference paper at ICLR 2022

REFERENCES

Loïc Barrault, Ondřej Bojar, Marta R Costa-Jussa, Christian Federmann, Mark Fishel, Yvette Graham,
Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, et al. Findings of the 2019
conference on machine translation. In WMT, 2019.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In EMNLP, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F. Wong, Dacheng Tao, and Zhaopeng Tu. Under-
standing and improving lexical choice in non-autoregressive translation. In ICLR, 2021.

Cunxiao Du, Zhaopeng Tu, and Jing Jiang. Order-agnostic cross entropy for non-autoregressive
machine translation. In Arxiv, 2021.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional
sequence to sequence learning. In ICML, 2017.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In EMNLP, 2019.

Marjan Ghazvininejad, V. Karpukhin, Luke Zettlemoyer, and Omer Levy. Aligned cross entropy for
non-autoregressive machine translation. In ICML, 2020a.

Marjan Ghazvininejad, Omer Levy, and Luke Zettlemoyer. Semi-autoregressive training improves
mask-predict decoding. arXiv preprint arXiv:2001.08785, 2020b.

Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the trade.
In ACL, 2021.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-autoregressive
neural machine translation. In ICLR, 2018.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. In NeurIPS, 2019.

Adi Haviv, Lior Vassertail, and Omer Levy. Can latent alignments improve autoregressive machine
translation? In NAACL, 2021.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimization
through better initialization. In ICML, 2020.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and Jiatao Gu. Non-autoregressive machine
translation with disentangled context transformer. In PMLR, 2020.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah Smith. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine translation. In ICLR, 2021.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In EMNLP, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Zhuohan Li, Zi Lin, Di He, Fei Tian, Tao Qin, Liwei Wang, and Tie-Yan Liu. Hint-based training for
non-autoregressive machine translation. In EMNLP-IJCNLP, 2019.

Jindřich Libovický and Jindřich Helcl. End-to-end non-autoregressive neural machine translation
with connectionist temporal classification. In EMNLP, 2018.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In ICLR, 2020.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neubig, and Eduard Hovy. FlowSeq: Non-
autoregressive conditional sequence generation with generative flow. In EMNLP-IJCNLP, 2019.

10

Published as a conference paper at ICLR 2022

Tsvetomila Mihaylova and André F. T. Martins. Scheduled sampling for transformers. In ACL, 2019.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li.
Glancing transformer for non-autoregressive neural machine translation. In ACL, 2021.

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. Guiding non-autoregressive neural machine translation
decoding with reordering information. In AAAI, 2021.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
with recurrent neural networks. In ICLR, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, and Mohammad Norouzi. Non-autoregressive
machine translation with latent alignments. In EMNLP, 2020.

Lifu Tu, Richard Yuanzhe Pang, Sam Wiseman, and Kevin Gimpel. ENGINE: Energy-based inference
networks for non-autoregressive machine translation. In ACL, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive
machine translation with auxiliary regularization. AAAI, 2019.

Hang Yan, Bocao Deng, Xiaonan Li, and Xipeng Qiu. Tener: Adapting transformer encoder for
named entity recognition. arXiv preprint arXiv:1911.04474, 2019.

Chunting Zhou, Jiatao Gu, and Graham Neubig. Understanding knowledge distillation in non-
autoregressive machine translation. In ICLR, 2020.

11

Published as a conference paper at ICLR 2022

A CMLMC PERFORMANCE ON IWSLT’14 EN-DE DATASET

Table A.1: Results and ablation study on the IWSLT’14 De-En and En-De datasets. ∗ Indicates CMLM
and SMART models that were trained by us, as (Ghazvininejad et al., 2019) and (Ghazvininejad
et al., 2020b) does not report results on these datasets.

Model Param IWSLT’14
De-En En-De

raw distill raw distill

AR Transformer(Liu et al., 2020) 38M 34.66 35.30 28.56 29.26

NAR-Reg (Wang et al., 2019) 46M – 28.04 – –
NAR-Hint (Li et al., 2019) 46M – 28.80 – –
Flowseq (Ma et al., 2019) 73M 24.75 27.55 – –
CMLM (Ghazvininejad et al., 2019) 38M 31.80∗ 33.42∗ 25.60∗ 27.59∗

CMLM+SMART (Ghazvininejad et al., 2020b) 38M 30.74∗ 33.48∗ 24.55∗ 27.74∗

ENGINE (Tu et al., 2020) 67M – 33.17 – –

CMLM+MaskedAttn 44M 33.08 33.70 26.03 27.93
CMLM+ConcatPE 39M 33.23 33.90 26.12 27.90
CMLM+RevPos 46M 33.50 33.96 26.38 28.13
CMLM+Corr 38M 33.90 34.53 26.92 28.39
CMLMC 46M 34.28 34.78 27.55 28.51
CMLMC456 38M 33.83 34.44 27.35 28.47

B CMLMC HYPERPARAMETERS

Table B.1: CMLMC hyper-parameters.

Parameters IWSLT’14 WMT’14 WMT’16

learning rate 0.0005 0.0007 0.0005
warmup 30k 40k 15k
dropout 0.3 0.2 0.3
updates 175k 150k 120k
epochs 300 250 200
GPU 1xTesla V100 4xTesla V100 4xTesla V100
tokens/GPU 8192 8192 8192

12

	Introduction
	Related Work
	CMLMC: Conditional Masked Language Model with Correction
	Token Distinguishability
	Training/Inference Mismatch
	CMLMC Training and Inference

	Experiments
	Results
	Ablation Study
	Multi-Modality
	Qualitative Analysis

	Conclusion
	CMLMC Performance on IWSLT'14 En-De Dataset
	CMLMC Hyperparameters

