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ABSTRACT

Graph neural networks (GNNs) are rapidly becoming the dominant way to learn
on graph-structured data. Link prediction is a near-universal benchmark for new
GNN models. Many advanced models such as Dynamic graph neural networks
(DGNNs) specifically target dynamic link prediction. However, these models,
particularly DGNNs, are rarely compared to each other or existing heuristics. Dif-
ferent works evaluate their models in different ways, thus one cannot compare
evaluation metrics directly. Motivated by this, we perform a comprehensive com-
parison study. We compare link prediction heuristics, GNNs, discrete DGNNs,
and continuous DGNNs on dynamic link prediction. We find that simple link
prediction heuristics often perform better than GNNs and DGNNs, different slid-
ing window sizes greatly affect performance, and of all examined graph neural
networks, that DGNNs consistently outperform static GNNs.

1 INTRODUCTION

Recently, there has been a drive to enable fair comparisons and benchmarks of GNNs (Errica et al.,
2020; Dwivedi et al., 2020; Hu et al., 2020). The drive was in part due to a lack of common practice
in the validation and testing of GNNs and concerns around replicability and reproducibility. Repro-
ducibility is a problem for the wider field of machine learning (Lipton & Steinhardt, 2019) and even
science in general (Sciences et al., 2019) making it difficult to identify actual scientific advances.

In the space of dynamic graph neural networks (DGNNs) these problems are further exacerbated
by (i) the dynamic nature of the data, (ii) the lack of common terminology (Holme, 2015), (iii)
the lack of established strong baselines (most works don’t compare performance to other DGNNs),
(iv) the divide between discrete and continuous DGNNs and (v) the wide array of experimental
design choices. Among the choices are: how to represent the dynamic network (e.g. snapshot,
time-windows, continuous, time-to-live of edges, etc.), which node features to include, how to split
the data into train-validation-test sets, which metrics to use to evaluate the results, how to use neg-
ative sampling rate in reported metrics, and how to choose/optimize neural network parameters
(e.g. learning rate, early stopping criterion, embedding space dimensions, etc.). All of this means
that comparing the performance of methods by reading research papers is not possible unless they
clearly state all their design choices and those design choices are identical between papers.

DGNNs are a promising avenue in modeling network dynamics because of their ability to encode
both spatial patterns through GNNs and temporal patterns through time-series components (e.g.
recurrent neural networks (RNN) or self-attention). However, the so far proposed DGNNs have
been tested on few datasets and are rarely compared to other DGNNs. Different studies compare
the methods on different datasets as there is no consensus when it comes to which datasets to use in
DGNN benchmarking.

To address this problem we aim to perform a fair and comprehensive comparison of GNN meth-
ods on the dynamic link prediction task. We benchmark each GNN and DGNN using the same
experiment design, including the same strategy for optimizing hyperparameters (i.e. grid search).

Previous works in the DGNN space focus on presenting a new architecture. These models are either
discrete or continuous DGNNs. However, these types of models are not compared to each other.
Discrete models operate on discrete network representations while continuous models operate on
continuous representations. A comparison between these kinds of models is not possible unless
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they are evaluated on the same network representation. We present a framework that enables this
comparison. The framework represents the datasets as both discrete and continuous while evaluating
the predictions identically. This is achieved by transferring the continuous DGNNs to the discrete
domain. In short, this is done by training them separately on the continuous representation, then
training a decoder using the continuous node embeddings on the discrete representation.

Using our new framework we compare link prediction heuristics, static GNNs, discrete DGNNs, and
continuous DGNNs. This is therefore not just a comparison of different models, but a comparison
of different kinds of models. Our aim is to give an indication of which GNNs are best capable of
encoding dynamic network topology and indeed if they are better than well-established heuristics
commonly used in the network science community for link prediction. To the best of our knowledge,
this is the first comparison of discrete and continuous DGNNs.

Another important question is whether DGNNs are better than traditional GNNs at encoding dy-
namic graph structure. There are multiple ways that dynamic networks can be represented as static
networks, thus allowing GNNs to encode dynamic networks. Previous works compare DGNNs to
GNNs and their results indicate that DGNNs do indeed perform better than GNNs (Pareja et al.,
2020; Chen et al., 2021; Xu et al., 2020; Rossi et al., 2020). However, these works use only one of
the many ways of converting dynamic networks to static ones. Without exploring these options it is
still uncertain whether DGNNs tend to outperform GNNs on dynamic network encoding. To gain
more insight, we use three different ways of aggregating dynamic networks to static networks, or
five if counting different sliding window sizes. These are explained in Section A.4.1. To thoroughly
explore these options we consider the aggregation options as a hyperparameter and include it in our
grid search. We also analyze the importance of this hyperparameter in Section 4.2.

Our primary contribution is a fair comparison of graph neural networks and link prediction heuristics
on dynamic link prediction. To this end, we introduce a framework that can train different types of
GNNs; static GNNs, discrete DGNNs, and continuous DGNNs. To enable reproduction of our
results and facilitate future work we publicly release our code and configuration files1.

2 BACKGROUND

2.1 DYNAMIC NETWORKS

Dynamic network terminology has yet to converge. Networks, where edges and nodes may appear
or disappear over time, go by many names in the literature (Holme, 2015). Here we will refer to
these networks as dynamic networks. There are several kinds of dynamic networks and these may
also go by different names. In this work, we adopt the dynamic network cube terminology for
dynamic networks, a conceptual framework that groups dynamic networks along three dimensions
and enables more precise terminology (Skarding et al., 2021).

Definition 1 (Dynamic network) a dynamic network is a graph G = (V,E) where: V =
{(v, ts, te)}, with v being a vertex of the graph and ts, te are respectively the start and end times-
tamps for the existence of the vertex (with ts ≤ te). E = {(u, v, ts, te)}, with u, v ∈ V and ts, te are
respectively the start and end timestamps for the existence of the edge (with ts ≤ te).

Temporal granularity refers to how coarse or fine-grained a network representation is (Skarding
et al., 2021). In order of increasingly fine-grained, we have static, discrete, and continuous networks.
Static networks are networks with no information of time.

Dynamic networks can also be distinguished by the link duration spectrum (Skarding et al., 2021).
Evolving networks are characterized by links persisting for longer, while links in temporal networks
are ephemeral. An interaction network is a type of temporal network where links have no duration.

Discrete representations are ordered sets of static graphs, examples of such representations include
snapshots. A discrete network representation is an ordered set of graphs,

DG = {G1, G2, . . . , GT }, (1)

where T is the number of snapshots/time-windows.

1Code available at https://github.com/xkcd1838/bench-DGNN
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Continuous network representations have exact temporal information. They represent the dynamic
network as one graph with time stamps on the nodes and/or edges. Examples of such representations
include interval graphs (Holme & Saramäki, 2012; Holme, 2015) and graph streams (Zhang, 2010).
Since this work uses interaction networks, we use a contact sequence (Holme & Saramäki, 2012) to
represent our continuous networks. A contact sequence is a time-ordered list of triplets, where one
triplet represents an interaction between two nodes at a given time.

CS = {(ui, vi, ti); i = 1, 2, . . .}, (2)

where ui and vi is the node pair and ti is the time the nodes interacted.

The distinction between discrete and continuous networks is important because a model, e.g. a
DGNN, is made to encode one of the representation forms. A discrete DGNN can only encode
networks represented as discrete networks and a continuous DGNN can only encode networks rep-
resented as continuous networks.

2.2 GRAPH NEURAL NETWORKS & LINK PREDICTION HEURISTICS

Graph neural networks (GNN) have seen a surge in popularity in recent years. GNNs are represen-
tation learning models which aim to store a latent representation of a graph structure. GNN models
use message passing to aggregate features of neighboring nodes together (Wu et al., 2020). A com-
mon output of a GNN layer is node embeddings. Most GNNs can only encode static networks, in
this work we refer to these models as static GNNs.

Dynamic graph neural networks (DGNN) is a subclass of GNNs capable of encoding dynamic net-
works (Skarding et al., 2021)2. The two main types of DGNNs are discrete DGNNs and continuous
DGNNs which are capable of encoding discrete and continuous networks respectively. Due to the
difference in network representation, their architectures are radically different.

Discrete DGNN architectures usually consist of GNN layers and time series layers, with the time
series layers being RNN layers or attention layers. Continuous DGNNs on the other hand have
more varied architectures. The key challenge for the continuous models is to encode the inter-event
time between node interactions. For this, some models (Ma et al., 2020; Kumar et al., 2019) use
RNNs, such as a time-aware LSTM (Baytas et al., 2017), other models use temporal point processes
(Trivedi et al., 2017, 2019; Knyazev et al., 2021) and the most recently emerged approaches use
time embeddings (Kazemi et al., 2019). There are currently only two time embedding based models,
TGAT (Xu et al., 2020) and TGN (Rossi et al., 2020). Discrete DGNNs iterate over the data snapshot
by snapshot, while continuous DGNNs iterate over the data edge by edge.

Link prediction heuristics are simple methods based on the idea that two nodes are more likely to
form links if they have common neighbors. The simplest implementation of this idea is the common
neighbor heuristic (Liben-Nowell & Kleinberg, 2007) where the similarity score is given by

|Γ(u) ∩ Γ(v)| (3)

Where Γ(u) is the neighbors of node u. There is a rich literature on these methods in the network
science community (Liben-Nowell & Kleinberg, 2007; Martı́nez et al., 2016).

2.3 DYNAMIC LINK PREDICTION

Traditionally, link prediction is the task of predicting links in static networks. Where there is no
distinction between predicting missing links and future links. When predicting links in dynamic
networks, this distinction is important. Missing link prediction can be referred to as interpolation
and future link prediction can be referred to as extrapolation (Kazemi et al., 2020). In this work, we
compare methods on the future link prediction (extrapolation) task on discrete networks.

We predict which links will appear in the next time-window. From the perspective of discrete meth-
ods, this is a very natural prediction task. The methods read in time-windows (snapshots) which

2There also exist GNN architectures for static networks with dynamic node and/or edge labels. These so-
called spatio-temporal graph neural networks are discussed in some GNN surveys (Wu et al., 2020; Zhou et al.,
2020)
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Table 1: Dataset statistics. Snap density is the average density of the snapshots, Snap size, is the
size of the snapshots (time-windows) in days. Num snap is the number of snapshots in the network.
Total time is the time period (in days) that the dataset covers.

Unique Snap Cont. Snap Num Total
Dataset Nodes Edges edges Density density edges size snap time Splits
Enron 151 5,780 1,569 0.13854 0.01379 50,572 30 37 1,137 80-10-10
UC Irvine messages 1,899 22,497 13,838 0.00769 0.00014 59,835 2.2 88 193 71-10-19
Bitcoin-OTC 5,881 23,686 21,492 0.00124 0.00001 35,592 14 135 1,903 70-10-20
Autonomous-systems 7,716 583,946 7,796 0.00026 0.00020 2,335,784 1 99 99 70-10-20
Wikipedia 9,227 39,804 18,257 0.00043 0.00003 157,474 1 30 30 70-15-15
Reddit 10,984 307,593 78,516 0.00130 0.00017 672,447 1 30 30 70-15-15

are in chronological order and predict which links appear in the next snapshot. Adapting static and
continuous models for dynamic link prediction is more involved. We cover the details on how static,
discrete, and continuous models are adapted to dynamic link prediction in Section A.4.

Link prediction can be seen as a special case of dynamic link prediction, where there are only three
snapshots; the train, validation, and test snapshots. In that sense, dynamic link prediction is simply
an extension of link prediction with multiple snapshots in the train, validation, and test sets.

3 EXPERIMENTAL SETUP

3.1 DATASETS

Table 1 shows statistics of the datasets. We select five continuous interaction networks and one
discrete evolving network (Autonomous) as datasets. We chose interaction networks as they allow
us to easily convert to more coarse-grained temporal granularities such as discrete networks. Sparser
snapshots indicate a greater imbalance between links and non-links, thus making the classification
problem harder. Details on the datasets are found in the appendix, Section A.1.

We prepare two versions of each dataset, a directed continuous interaction network and an undirected
discrete network. Continuous models encode the continuous network. The static and discrete models
encode the discrete network. In the conversion from continuous to discrete, reciprocal edges are
added to make the discrete networks undirected. The number of times an edge occurs in a snapshot
is added as a weight to the snapshot’s edge.

All results are reported predictions on the discrete networks. For continuous models, this is achieved
by splitting the continuous parts of the continuous networks into snapshots corresponding to the
snapshots in the discrete network. We then let the continuous models encode the continuous network
before the target snapshot and then try to predict the link occurrence in the discrete network.

3.2 METHODS

For each of the three network categories, static, discrete, and continuous, we select at least two
GNNs to benchmark. We select GCN (Kipf & Welling, 2017) and GAT (Veličković et al., 2018)
as static models as they are known to be fairly universal and representative. To represent discrete
models we select EGCN-H, EGCN-O and GC-LSTM. The EGCN (Pareja et al., 2020) models differ
from other DGNN models as they use RNNs to evolve the GCN weights rather than evolve node
embeddings. GC-LSTM is selected as it is an integrated DGNN and the architecture was used by
Chen et al. (2021) specifically for dynamic link prediction. The GC-LSTM encoder integrates an
LSTM and a spectral GCN (Defferrard et al., 2016), it is very similar to the first DGNNs introduced
by Seo et al. (2018). To represent continuous models we select two time embedding based contin-
uous DGNNs, TGAT (Xu et al., 2020) and TGN (Rossi et al., 2020). Implementation details are
given in the appendix, Section A.3.

To represent link prediction heuristics we select three well established methods (Liben-Nowell &
Kleinberg, 2007; Martı́nez et al., 2016), Common Neighbors (CN), Adamic-Adar (AA) (Adamic &
Adar, 2003) and Jaccard. As well as two modern heuristics; Newton’s gravitational law (Newton)
(Wahid-Ul-Ashraf et al., 2017) and Common Neighbor and Centrality based Parameterized Algo-
rithm (CCPA) (Ahmad et al., 2020). The modern methods use the shortest path between nodes to
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get scores for missing links beyond common neighbors, whereas the other methods give a similarity
score of 0 if there are no common neighbors.

3.3 TASK & METRICS

The dynamic link prediction task is to give a probability score for each node pair in the network
that a link between the two nodes will be created in the next snapshot. The prediction problem is
extremely unbalanced; in every selected network (except for Enron) we see more than 10,000 non-
links for every link. This leads Yang et al. (2015) to recommend using precision-recall curves when
evaluating link prediction. We use mean average precision (mAP) , which is equivalent to the area
under the precision-recall curve. We also report the Area under the receiver operating characteristic
curve (AUC) as this is commonly done for link prediction methods and mean reciprocal rank (MRR).

The link prediction task becomes harder the more imbalanced the classes are. The class imbalance
can be measured through network density. Since we test on snapshots, the mean snapshot density
in Table 1 indicates how imbalanced the prediction task on each dataset is. The mAP score was
selected in part because it is sensitive to this increased difficulty. We, therefore, expect mAP scores
for networks with lower snapshot density to be lower.

This extreme class imbalance makes it tempting to use negative sampling to balance the datasets
more when reporting the metrics. However, negative sampling has been shown to lead to a wrong
ordering of predictors (Yang et al., 2015). It also greatly affects the mAP metric, so scores with
different sampling ratios are not comparable. Examples of this are the TGAT (Xu et al., 2020) and
TGN (Rossi et al., 2020) papers which report sampled scores on a 1 to 1 ratio.

3.4 EVALUATION SCHEME

We perform a chronological train-validation-test split. The snapshot size and split sizes are shown in
Table 1. All models use the same snapshot sizes and the same train-validation-test splits. We report
the results of the test results of the best performing (highest mAP) validation run.

We ensure that all models are trained in the same way by using a common framework that supports
models of the three different temporal granularities. Our framework is an extension of the framework
used by EvolveGCN (Pareja et al., 2020). Major differences with that framework include adding; (i)
two additional training pipelines, one for static and one for continuous models (we use the already
existing pipeline for the discrete models), (ii) grid search functionality, (iii) enabling the use of
continuous embeddings on discrete network representations, and (iv) link prediction heuristics. The
evaluation on the validation and test set is however identical, thus our results are comparable to
Pareja et al. (2020). Details on the three training pipelines are found in, Section A.4.

All GNN models use the same decoder (a two level feed forward network) and binary-cross entropy
loss. Models are trained by predicting the next snapshot in the training set. For each epoch, the
framework iterates through the dynamic network, snapshot by snapshot. For each iteration, the
framework feeds the GNN with the network before the current time step and evaluates the predictions
of the GNN against the next snapshot. Previous snapshots may be aggregated, but the next snapshot
is always of the same size to ensure that the results are comparable. The heuristics don’t require any
training and are thus run directly on the test set.

The loss function is weighted, giving non-existing links a weight of 0.1 and links a weight of 0.9.
Neural network weights are initialized using uniform random initialization. Static and discrete mod-
els use a negative sampling ratio of 1 to 100 during training, and continuous models a ratio of 1 to 1.
Importantly, we do not use negative sampling when reporting validation and test scores. We use the
one-hot encoded node degree as initial node features for static and discrete models. This was shown
by Errica et al. (2020) to improve the performance of GNNs on graph classification. This is a key
design decision, as it dictates the size of the node embedding. The continuous models are limited to
use the same dimensions on node and edge features. Following the original works, we use a node
and edge feature size of 172. The node features are randomly initialized and for datasets without
edge features (every dataset except Wikipedia and Reddit) we randomly initialize the edge features.
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Table 2: Dynamic link prediction mAP scores. The scores reported are the mean and standard
deviation (in parenthesis) of mAP scores averaged across four runs with different random seeds. The
heuristics are deterministic and thus they all have a standard deviation of 0. The best performances
are highlighted in bold, and the highest scoring GNN performances are underlined. Cells marked
by † were not run (see Section A.4.3). Random is completely random predictions. R-embed is
predictions when the decoder is given random embeddings.

Models Enron UC Bitcoin Autonomous Wikipedia Reddit
Random 0.003(0.000) 2 · 10−5(0.000) 2 · 10−6(0.000) 2 · 10−4(0.000) 3 · 10−5(0.000) 2 · 10−4(0.000)
R-embed 0.003(0.000) 3 · 10−5(0.000) 3 · 10−6(0.000) 0.002(0.001) 3 · 10−5(0.000) 2 · 10−4(0.000)
CN 0.064 0.007 0.002 0.616 0.033 0.144
AA 0.070 0.007 0.004 0.616 0.033 0.144
Jaccard 0.060 0.006 0.002 0.130 0.016 0.012
Newton 0.063 0.008 0.008 0.616 0.036 0.151
CCPA 0.064 0.008 0.003 0.616 0.034 0.144
GCN 0.322(0.022) 0.021(0.004) 0.002(0.002) 0.032(0.006) 3 · 10−5(0.000) 0.038(0.007)
GAT 0.347(0.020) 0.018(0.007) 0.001(0.001) 0.030(0.017) 4 · 10−4(0.001) 0.006(0.005)
EGCN-H 0.329(0.048) 0.014(0.003) 0.001(0.001) 0.182(0.082) 0.004(0.001) 0.038(0.010)
EGCN-O 0.338(0.031) 0.025(0.001) 0.003(0.001) 0.165(0.033) 0.005(0.001) 0.039(0.005)
GC-LSTM 0.270(0.023) 0.047(0.003) 0.002(0.001) 0.406(0.024) 0.007(0.001) 0.097(0.007)
TGAT 0.058(0.004) 0.001(0.001) 2 · 10−4(0.000) † 0.006(0.000) 0.108(0.007)
TGN 0.055(0.009) 0.007(0.001) 1 · 10−4(0.000) † 0.004(0.000) 0.042(0.009)

We search for good hyperparameters by performing a grid search. While being very time-
consuming, this allows us to analyze the impact that different time-windows have on training. We
then run each model four times with the best found hyperparameters with different seeds.

If the hyperparameter is not included in the grid search, we use the values used by the original
authors. Some of the parameters optimized differ between the different types of models. We search
the learning rate on all models as it is recommended by Goodfellow et al. (2016) as an important
hyperparameter to optimize. For static GNNs and discrete DGNNs we chose to search the hidden
layer size to regulate the number of parameters of the model as too few might lead to underfitting and
too many might lead to overfitting. For further details on the hyperparameters and the grid search
see Section A.5.

4 RESULTS AND DISCUSSION

4.1 MODEL COMPARISON

Table 2 shows the mAP scores from our experiment. We also report the AUC scores (Table 5) and
MRR scores (Table 6). All results are the average scores taken from four runs of the best parameter
setting found by the grid search. The selected parameter settings are reported in Table 9.

How do link prediction heuristics and GNNs compare? On most datasets the heuristic baselines
outperformed the GNNs in terms of mAP. The heuristics performed better than the GNNs on larger
datasets, while the GNNs performed better on the smaller datasets. Among the GNNs, the discrete
DGNNs performed consistently better, with continuous DGNNs performing poorly, except for on the
Wikipedia and Reddit datasets where the continuous DGNNs performed relatively well. The MRR
scores are quite similar to the mAP scores, however, the AUC scores rank the models completely
differently. The GNNs consistently have higher AUCs than heuristics and the continuous DGNNs
have the highest AUC scores for most datasets. In other words, individually, the mAP scores and
AUC scores tell two almost contradicting stories.

An explanation for this disparity lies in the extreme class imbalance inherent to link prediction (Yang
et al., 2015). The AUC score relies on the false positive rate. Due to the large number of non-existing
links, the false positive rate may stay relatively low despite the precision is also being low. In fact,
the mAP and AUC are shown to be approximately the same, except for the precision of the highest
ranked links (Su et al., 2015). Our results thus indicate that the link prediction heuristics are better
at ranking links initially, but later links are ranked better by the GNNs.

For applications focused on the highest ranked links, which is common in information retrieval and
recommender systems, our results indicate that link prediction heuristics will typically outperform
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GNNs in the absence of informative node or edge features. For a comprehensive prediction of the
network, e.g. predicting future snapshots, our results indicate that the heuristics and GNNs might
be complementary. Incorporating heuristics into GNNs may yield improved performance. One
example of a combined prediction is done by Sankar et al. (2020).

How do different GNNs compare? Among the GNN models, DGNNs performed better than static
GNNs. In terms of mAP, the discrete models performed well, and in terms of AUC, the continuous
models did well. With the exception of Enron, a DGNN always outperformed the static GNNs
across all reported metrics. Particularly GC-LSTM performs comparatively well. Static GNNs are
on some datasets, e.g. Wikipedia, closer to the performance of random predictions.

Even in terms of mAP, the continuous models do well on Wikipedia and Reddit where they have
informative edge features. However, their performance is lacking on other datasets. This implies
that they may rely on edge features for good performance; we explore this further in Section 4.4.
Their performance in terms of AUC is generally good. This performance gap, and as explained
earlier, difficulty with ranking initial links, may be caused by the choice of negative sampling when
training the encoders. During training only one randomly chosen negative sample is used per link.
Increasing the quality or quantity of negative samples will possibly improve their performance.

Why did GC-LSTM outperform the other DGNNs? GC-LSTM is a fairly simple DGNN archi-
tecture where each snapshot in the snapshot window is first encoded by a GNN and the resulting
node embeddings are then encoded by an LSTM. The EGCN models focus on evolving the GNN
weights rather than the node embeddings. The EGCN-O model does not take node embeddings as
an input, while EGCN-H only takes the top-k node embeddings as input. We hypothesize that the
performance difference is caused by the EGCN models deemphasizing node embeddings.

Another difference in our comparison of GC-LSTM and the EGCN models is the GNNs and their
implementation. GC-LSTM uses a GNN from PyTorch geometric (Fey & Lenssen, 2019), while the
EGCN models use the original author’s GCN (Pareja et al., 2020) implementation3.

Why are the mAP scores so different between datasets? The scores vary notably between
datasets. Datasets with low snapshot density have lower mAP scores than those with high snap-
shot density. This reflects the increased difficulty of the classification problem which comes with
increased class imbalance (Yang et al., 2015).

The Autonomous dataset does however not appear to follow this pattern. The methods can perform
well despite the network being rather sparse. We speculate that this might be due to Autonomous
being an evolving network rather than an interaction network (Section 2.1). In slowly evolving net-
works there is less change between snapshots, and methods only need to predict gradual changes to
the network as fewer links disappear. It is shown that network characteristics, such as the clustering
coefficient and average shortest path, influence heuristic performance (Gao et al., 2015). It is plau-
sible that link duration influences performance as well, however, since this study includes only one
evolving dataset, further work is needed to confirm this.

4.2 SNAPSHOT TRAINING WINDOW ANALYSIS

Figure 1 shows the mAP scores found during the grid search on the static and discrete models. One
datapoint is one parameter setting in the search. A sliding time-window of size 5 or 10 consistently
produces the best results, particularly for the discrete models. This indicates that it is beneficial
to use a sliding window when training DGNNs. Most models are spread across a large spectrum
of scores, implying that optimizing the hyperparameters is essential for obtaining a representative
score for both GNNs and DGNNs.

4.3 USING A PARAMETER BUDGET

The grid search explored different layer sizes. However, this did not take into account the total num-
ber of learnable parameters. The DGNNs, therefore, ended up with much more learnable parameters
than the static GNNs. To explore whether the discrete models can to fit the data better simply due to

3We attempted to use the PyTorch Geometric Temporal implementation of the EGCN models (Rozember-
czki et al., 2021), but the original author’s code outperformed the PyTorch Geometric Temporal implementation.
We believe this was due to a bug in PyTorch Geometric Temporal that has since been fixed.
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Figure 1: Grid search mAP scores against the size of the snapshot training window. The snapshot
training window is explained in Section A.4.1. Each color represents the five GNNs. All figures
show different y-axes for the separate datasets due to large differences in scores between datasets.

Table 3: mAP scores of GCN and GC-LSTM compared on a parameter budget. GCN+P is the GCN
model with the same number of learnable parameters as the GC-LSTM.

Models Enron UC Bitcoin Autonomous Wikipedia Reddit
GCN 0.322(0.022) 0.021(0.004) 0.002(0.002) 0.032(0.006) 3 · 10−5(0.000) 0.038(0.007)
GCN+P 0.302(0.037) 0.010(0.010) 0.005(0.000) 0.090(0.087) 2 · 10−4(0.000) 0.040(0.002)
GC-LSTM 0.270(0.023) 0.047(0.003) 0.002(0.001) 0.406(0.024) 0.007(0.001) 0.097(0.007)

having more parameters, we run GCN with the same number of parameters as the best performing
GC-LSTM setting. For the exact change in layer size and the resulting total number of parameters,
see Table 10. We perform a full grid search to locate good values for learning rate and snapshot
training window given these new layer sizes.

The mAP scores for the GCN with more parameters are compared to the original scores of GCN
and GC-LSTM in Table 3. In general, the additional parameters enabled the GCN to achieve a
marginally higher score on the larger datasets, but not enough to outperform GC-LSTM, except for
on the bitcoin dataset.

4.4 EXPLORING THE PERFORMANCE OF CONTINUOUS DGNNS

In Section 4.1 we hypothesized that the continuous DGNNs relied on informative edge features
to achieve good results on the Wikipedia and Reddit datasets. To check this hypothesis, we run
TGAT and TGN on these datasets with randomized edge features. The results, shown in Table 4,
show a substantial decrease in performance when edge features are randomized, particularly on the
Wikipedia dataset. The performance on Reddit has decreased, but not as drastically. This shows that
the edge features are an important, but not always critical, asset to aid encoding.

Overall, the continuous DGNNs performed relatively poorly compared to discrete DGNNs in terms
of mAP. We suspect this is caused by: (i) Reliance on edge features (ii) transferring from a contin-

8
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Table 4: Continuous DGNNs with randomized edge features. ’-RE’ indicate random edge features.
Models Wikipedia Wikipedia-RE % diff Reddit Reddit-RE % diff
TGAT 0.006(0.000) 0.002(0.002) −61% 0.108(0.007) 0.088(0.005) −18%
TGN 0.004(0.000) 0.001(0.000) −83% 0.042(0.009) 0.023(0.008) −29%

uous setting to a discrete setting takes the embeddings to some extent out of their element, and (iii)
the hyperparameters of the continuous DGNNs were optimized by the original authors on Wikipedia
and Reddit. The performance of the continuous DGNNs can probably be significantly improved by
exploring other ways to apply continuous DGNNs to the discrete representation and by further opti-
mizing the hyperparameters.

5 CONCLUSIONS AND FUTURE WORK

We introduce a framework that enables the comparison of discrete and continuous DGNNs. We use
this framework to perform a comprehensive comparison of link prediction heuristics and three types
of GNNs on the dynamic link prediction task.

Link prediction heuristics performed better in terms of mAP and DGNNs performed better in terms
of AUC. We believe the mAP metric is more indicative of link prediction performance (Yang et al.,
2015). For applications concerned with not only the highest ranked link but all links, heuristics and
GNNs appear to be complementary.

Despite heuristics being simple, they prove to be strong baselines. Future work on GNNs and
DGNNs which are applied to link prediction should be compared to at least one link prediction
heuristic. However, while heuristics currently outperform GNNs in terms of mAP, the heuristics
cannot leverage informative node or edge features, nor do they leverage temporal patterns. There-
fore, GNNs and DGNNs have a lot of potential to improve their performance beyond the heuristics.

We find that the snapshot training window greatly affects performance. Future work should explore
multiple snapshot training window sizes. Despite searching multiple different static network rep-
resentations, the discrete DGNNs consistently outperformed static GNNs. Our results also indicate
that network characteristics, such as the link duration (temporal vs evolving networks) influence pre-
diction performance. Continuous DGNNs performed well when they had informative edge features,
but not without them.

Exciting directions for future work include: (i) Incorporating link prediction heuristics and recent
advances in GNNs into DGNNs, (ii) exploring effective ways of training continuous DGNNs on
discrete networks, (iii) exploring the influence of dynamic network characteristics on link prediction
performance, and (iv) expanding this benchmark to include additional methods and datasets. Inter-
esting additional models to compare include other discrete DGNNs (Sankar et al., 2020), approaches
using auto-encoder loss functions (Chen et al., 2019), generative adversarial network based ap-
proaches (Lei et al., 2019; Xiong et al., 2019) and temporal point process based continuous DGNNs
(Trivedi et al., 2019; Knyazev et al., 2021).

Improving the performance of both discrete and continuous DGNNs remains an exciting research
avenue. We consider this work a first step towards improving dynamic link predictions and an
important foundation for future work.
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A APPENDIX

A.1 DATASET DETAILS

Enron 4, is an email communication network, where a link is an email sent between two people.
Enron is a tiny network spatially, but medium-sized temporally with a reasonable number of con-
tinuous links and covering a time span of over 3 years. Due to the small number of nodes and a
comparatively large number of edges, it is much denser than the other networks.

UC Irvine messages5, shortened to UC, is an online forum network from the University of Cali-
fornia, Irvine. Two students are connected if they interact on the same forum post. Thus this was
originally a bipartite network but it has been projected to have nodes of only one type. The odd
choice of snapshot size is adapted from EvolveGCN (Pareja et al., 2020) which observes that a
smaller snapshot size yields some snapshots without any edges.

Bitcoin-OTC6, shortened to Bitcoin, is a who-trust-whom network of people trading on the Bitcoin
OTC platform. A link is an evaluation by one user of another. The bitcoin network is medium-sized
in terms of nodes, however, most of its edges are unique edges which indicate that very few edges

4http://networkrepository.com/ia-enron-employees.php
5http://konect.cc/networks/opsahl-ucforum/
6https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
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Table 5: Dynamic link prediction AUC scores. Formatted identically to Table 2
Models Enron UC Bitcoin Autonomous Wikipedia Reddit
Random 0.521(0.048) 0.497(0.013) 0.487(0.008) 0.500(0.000) 0.501(0.001) 0.499(0.001)
R-embed 0.443(0.084) 0.514(0.023) 0.497(0.007) 0.516(0.009) 0.505(0.003) 0.504(0.008)
CN 0.713 0.734 0.638 0.996 0.749 0.844
AA 0.714 0.734 0.638 0.996 0.749 0.844
Jaccard 0.712 0.734 0.523 0.999 0.749 0.906
Newton 0.727 0.810 0.526 0.998 0.829 0.967
CCPA 0.728 0.810 0.783 0.998 0.826 0.944
GCN 0.911(0.011) 0.646(0.006) 0.777(0.242) 0.454(0.127) 0.412(0.019) 0.974(0.001)
GAT 0.903(0.037) 0.618(0.053) 0.861(0.019) 0.562(0.030) 0.275(0.009) 0.646(0.076)
EGCN-H 0.872(0.071) 0.662(0.048) 0.765(0.018) 0.892(0.050) 0.705(0.003) 0.951(0.009)
EGCN-O 0.888(0.042) 0.585(0.014) 0.712(0.069) 0.904(0.036) 0.708(0.006) 0.951(0.011)
GC-LSTM 0.904(0.037) 0.555(0.004) 0.741(0.031) 0.944(0.007) 0.706(0.006) 0.968(0.001)
TGAT 0.483(0.010) 0.700(0.283) 0.920(0.002) † 0.948(0.001) 0.985(0.000)
TGN 0.865(0.007) 0.947(0.001) 0.916(0.001) † 0.965(0.002) 0.969(0.001)

Table 6: Dynamic link prediction MRR scores. Formatted identically to Table 2
Models Enron UC Bitcoin Autonomous Wikipedia Reddit
Random 0.038(0.010) 0.004(0.001) 0.001(0.000) 0.001(0.000) 0.001(0.000) 0.001(0.000)
R-embed 0.030(0.014) 0.004(0.001) 0.002(0.001) 0.031(0.017) 0.001(0.000) 0.216(0.017)
CN 0.337 0.261 0.046 0.625 0.303 0.444
AA 0.338 0.262 0.046 0.625 0.303 0.442
Jaccard 0.327 0.250 0.029 0.411 0.257 0.229
Newton 0.291 0.267 0.029 0.615 0.308 0.432
CCPA 0.337 0.267 0.047 0.623 0.303 0.441
GCN 0.404(0.027) 0.141(0.021) 0.071(0.012) 0.0184(0.003) 0.002(0.002) 0.216(0.017)
GAT 0.369(0.093) 0.097(0.025) 0.013(0.002) 0.265(0.027) 0.013(0.018) 0.079(0.026)
EGCN-H 0.339(0.052) 0.110(0.110) 0.062(0.015) 0.340(0.095) 0.053(0.004) 0.204(0.015)
EGCN-O 0.318(0.029) 0.140(0.006) 0.075(0.016) 0.383(0.050) 0.007(0.010) 0.194(0.007)
GC-LSTM 0.332(0.069) 0.162(0.004) 0.079(0.007) 0.587(0.018) 0.098(0.005) 0.344(0.007)
TGAT 0.117(0.023) 0.041(0.018) 0.059(0.001) † 0.127(0.004) 0.327(0.002)
TGN 0.187(0.010) 0.100(0.021) 0.033(0.005) † 0.095(0.004) 0.223(0.012)

are reoccurring. Lack of reoccurring edges causes each snapshot to be much sparser than most of
the other datasets.

Autonomous-systems7, shortened to Autonomous, is an internet router communication network. A
link is a router exchanging traffic flow with a peer. This network is already aggregated as a discrete
network. We follow Pareja et al. (2020) in selecting the first 99 days and using that as our dataset.
This is by far the dataset with the most edges.

Wikipedia8, a bipartite Wikipedia page editing network. Nodes are either a Wikipedia user or a
Wikipedia page. A link is a user editing a Wikipedia page. Wikipedia also has few reoccurring
edges and similarly to Bitcoin, has then comparably sparse snapshots.

Reddit9, a bipartite Reddit posting network. Nodes are either a Reddit user or a subreddit. A link is
a user posting on a subreddit. Reddit is the largest network spatially as it has the largest number of
nodes and unique edges.

We use a slightly larger train split on Enron as it is a tiny dataset and we had difficulties with the
models learning anything if the training set was too small. The UC, Bitcoin, and Autonomous data-
splits follow Pareja et al. (2020), and the Wikipedia and Reddit splits follow Xu et al. (2020). We
use the same splits so we can compare our results to the previous works.

A.2 AUC AND MRR SCORES

Table 5 and Table 6 present the AUC and the MRR scores respectively. These results are discussed
in Section 4.1. The scores are from the same experiments as the mAP scores in Table 2.

7http://snap.stanford.edu/data/as-733.html
8http://snap.stanford.edu/jodie/wikipedia.csv
9http://snap.stanford.edu/jodie/reddit.csv
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Table 7: Overview of compared methods.
Models Temporal granularity Method/architecture type
CN (Liben-Nowell & Kleinberg, 2007) Static Heuristic
AA (Adamic & Adar, 2003) Static Heuristic
Jaccard (Liben-Nowell & Kleinberg, 2007) Static Heuristic
Newton (Wahid-Ul-Ashraf et al., 2017) Static Heuristic
CCPA (Ahmad et al., 2020) Static Heuristic
GCN (Kipf & Welling, 2017) Static Spectral GNN (Wu et al., 2020)
GAT (Veličković et al., 2018) Static Spatial GNN (Wu et al., 2020)
EGCN-H (Pareja et al., 2020) Discrete Integrated DGNN (Skarding et al., 2021)
EGCN-O (Pareja et al., 2020) Discrete Integrated DGNN (Skarding et al., 2021)
GC-LSTM (Chen et al., 2021) Discrete Integrated DGNN (Skarding et al., 2021)
TGAT (Xu et al., 2020) Continuous Time embedding based (Skarding et al., 2021)
TGN (Rossi et al., 2020) Continuous Time embedding based (Skarding et al., 2021)

A.3 IMPLEMENTATION DETAILS OF MODELS

Table 7 is an overview of the methods, their temporal granularity, and method type (architecture
type in the case of GNNs). The architecture types are categories of GNNs identified by surveys (Wu
et al., 2020; Skarding et al., 2021).

We use either standardized implementations or the original authors’ code. For GCN and GAT, we
use the PyTorch Geometric implementation (Fey & Lenssen, 2019)10, for GC-LSTM we use the
PyTorch Geometric Temporal implementation (Rozemberczki et al., 2021)11 and we use the original
authors’ code for the EGCN models12, TGAT13 and TGN14.

Unless otherwise stated, we do not modify any of the tested models. Some minor modifications were
made to GC-LSTM, TGAT, and TGN to enable the comparison. The PyTorch Geometric Temporal
implementation of GC-LSTM (Rozemberczki et al., 2021) was modified to enable sliding windows
in the same manner as originally used by EvolveGCN (Pareja et al., 2020). For TGAT and TGN
we leave the training unchanged, but add the functionality to extract node embeddings to enable
comparison to the discrete models.

We attempted to add the static GNN, SEAL (Zhang & Chen, 2018) to our benchmark as it is a
promising GNN (Zhang et al., 2020) specifically targeted at link prediction. However, the model
requires preprocessing 2-hop subgraphs for every node pair. We found this to not scale well. This
is particularly due to us not using negative sampling (sampling of non-links) during validation and
testing. Simply storing these preprocessed subgraphs for one of our larger datasets would require
several TB of disk space.

A.4 TRAINING PIPELINES

While the evaluation is identical for all methods, the training procedure is different between the
different kinds of methods. This is a necessity due to the different network representations that the
methods operate on.

A.4.1 STATIC

Static GNNs encode a graph. Since our training set includes multiple snapshots, we convert these
snapshots into one graph to enable the training of the GNN. We can aggregate an arbitrary number
of snapshots into one snapshot by including a link in the output snapshot if it occurs in any of the
input snapshots, thus turning a discrete network into a static one. We do this in three different ways
and consider these approaches a hyperparameter.

The most straightforward way to train a GNN on a dynamic network is to combine all the snapshots
in the training set into one big snapshot. We call this approach ’static’. This is the approach taken by

10https://github.com/rusty1s/pytorch_geometric
11https://github.com/benedekrozemberczki/pytorch_geometric_temporal
12https://github.com/IBM/EvolveGCN
13https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs
14https://github.com/twitter-research/tgn
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traditional link prediction and continuous DGNN works (Xu et al., 2020; Rossi et al., 2020). This is
the only approach not to train in a ”roll forward” manner.

It is presumably beneficial to exploit the temporal information in the training set and roll forward
during training. One way to do this is to only encode the previous snapshot when attempting to
predict the next snapshot. This does not require any snapshot aggregation. This can be seen as a
sliding window of size 1 and is the approach used by Pareja et al. (2020) for static GNNs.

Complex networks tend to be rather sparse. It might therefore be beneficial to use a sliding win-
dow. We explore sliding windows of size 5 and 10. Size 10 is the default for EGCN, we chose to
additionally use size 5 to investigate whether the size of the sliding window is influential. For the
static models, these ”sliding snapshot windows” are aggregated into one snapshot. For even sparser
networks it may be beneficial to represent the dynamic network as an evolving network. For this,
we use an expanding window. We refer to this option as ’expanding’.

A.4.2 DISCRETE

Most discrete models inherently support multiple snapshots, but the number of snapshots cannot
vary. It is therefore necessary to use a sliding window that feeds a consistent number of snapshots
to the model. We use sliding window sizes of 1, 5, and 10. While this is comparable to the sliding
window of the static models, it is also different since the snapshots in these sliding windows are not
aggregated together.

A.4.3 CONTINUOUS

Continuous models have no notion of snapshots, and we are unaware of anyone training continuous
models on discrete networks. As this is a comparative study we aim to train the models the same
way they were originally trained, yet also in a way that allows us to compare the results fairly. Our
solution is to train in two steps. Firstly we train the encoder, secondly the decoder.

Continuous models are trained edge-by-edge. Like other time-series models the edges are batched.
This hinders us from training the continuous models end-to-end with our decoder (recall that we
want to use the same decoder for all models) since the decoder backpropagates on each snapshot.

It is theoretically possible to train the continuous models end-to-end with our decoder by changing
the edge batch size from snapshot to snapshot. This will however lead the number of edges in the
batches to change from batch to batch. Whether the radical change in batch size throughout training
is a viable way to train is unknown. However, we deem it as too different from the original way these
networks were trained to include this approach in our study. We encourage future work to explore
end-to-end training on snapshots for continuous models.

We opt to train the continuous models in two steps. First, we train identically to how the models were
originally trained, with a constant batch size (essentially pretending snapshots do not exist), using
contrastive learning, and a negative sampling rate of 1 to 1. We then extract the node embeddings
and train our decoder separately with the encoder (the continuous DGNN) frozen, this time with a
batch size matching the number of edges in the snapshot. Training with the same decoder allows us
to use the same class weights and negative sampling rate (1 to 100) as the static and discrete models.

To speed up decoder training, we cache the node embeddings produced by the frozen encoder in the
first epoch of the decoder training. This speeds up training by a factor of at least 10x.

Despite the effort to optimize training speed, we opted to not test the continuous models on the
Autonomous dataset. A single (encoder) epoch took on average 16 hours to run (wall-time) on our
hardware (see Section A.6 for the hardware). The discrete evolving network could be preprocessed
into a more suitable format for continuous models, but doing so is non-trivial and we consider that
outside the scope of this work.

A.5 HYPERPARAMETERS

For the static GNNs we search the parameters; learning rate, snapshot training window, and hidden
layer size. The search for parameters on discrete DGNNs is identical to the static except for the
snapshot training window which only searches sliding windows. The grid search is slightly modified
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Table 8: Hyperparameters searched by the grid search.
Hyperparameter Methods Values

Snapshot training window
Heuristic 1, 5, 10, static
Static 1, 5, 10, expanding, static
Discrete 1, 5, 10

Existing edge treatment Heuristic Default, score, adaptive
Learning rate Static, discrete, continuous 0.0001, 0.005, 0.001, 0.05, 0.01
Hidden layer size Static, discrete 50, 100, 200 (10, 20, 30 on Enron)
Decoder learning rate Continuous 0.0001, 0.005, 0.001, 0.05, 0.01
Decoder weight decay Continuous 0, 0.0001, 0.01

Table 9: Hyperparameters selected by the grid search
Models Hyperparameter Enron UC Bitcoin Autonomous Wikipedia Reddit

CN Snapshot training window 1 10 10 1 5 5
Existing edge treatment default default adaptive default default default

AA Snapshot training window 1 10 10 1 5 5
Existing edge treatment default default adaptive default default default

Jaccard Snapshot training window 1 10 1 expanding 5 expanding
Existing edge treatment default default adaptive default default default

Newton Snapshot training window 1 10 1 1 5 5
Existing edge treatment default default adaptive default default default

CCPA Snapshot training window 1 10 10 1 5 5
Existing edge treatment default default adaptive default default default

GCN
Snapshot training window 1 1 static 5 5 expanding
Learning rate 0.005 0.005 0.05 0.0001 0.05 0.01
Hidden layer size 10 50 200 50 200 50

GAT
Snapshot training window 1 1 static 10 1 1
Learning rate 0.001 0.005 0.001 0.005 0.005 0.01
Hidden layer size 30 50 50 50 50 100

EGCN-H
Snapshot training window 5 10 5 5 5 5
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
Hidden layer size 10 50 100 200 100 50

EGCN-O
Snapshot training window 1 5 10 5 5 5
Learning rate 0.01 0.001 0.01 0.005 0.005 0.01
Hidden layer size 10 200 200 200 200 100

GC-LSTM
Snapshot training window 5 5 10 10 5 5
Learning rate 0.005 0.001 0.005 0.01 0.001 0.01
Hidden layer size 10 50 50 200 50 200

TGAT
Learning rate 0.001 0.0001 0.001 † 0.0001 0.0001
Decoder learning rate 0.05 0.001 0.0001 † 0.001 0.005
Decoder weight decay 0.01 0.0001 0 † 0.0001 0

TGN
Learning rate 0.0001 0.0001 0.001 † 0.0001 0.0001
Decoder learning rate 0.0001 0.001 0.005 † 0.001 0.001
Decoder weight decay 0.01 0.0001 0.0001 † 0.0001 0

on the Enron dataset where we search smaller layer sizes due to the dataset being so small. The
parameters searched in the grid search are shown in Table 8, the selected hyperparameters are shown
in Table 9.

Continuous models are trained with the original hyperparameters and we perform a grid search on
the second training stage where we train the decoder. The parameters optimized are; learning rate,
decoder learning rate, and decoder weight decay.

By default, link prediction heuristics don’t predict scores for already existing edges. We choose to
explore three options. (i) Calculating a score as if the edge didn’t exist, (ii) Giving the existing links
the same score based on the historical probability of a link persisting between snapshots, and (iii)
the default option, simply assuming existing links will persist. We also search the snapshot training
window as shown in Table 8.
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Table 10: Layer size and total number of learnable parameters for the equal parameter budget runs
in Section 4.3. The number of learnable parameters of the encoder is in parenthesis.

Models Enron UC Bitcoin Autonomous Wikipedia Reddit
GCN 10 (880) 50 (15400) 200 (199600) 50 (39850) 200 (131400) 50 (130400)
GCN+P 70 (10360) 320 (184960) 420 (511560) 1200 (2336400) 360 (294120) 1600 (6652800)
GC-LSTM 10 (10470) 50 (184350) 50 (508350) 200 (227100) 50 (303750) 200 (6617400)

Some hyperparameters are common for all GNNs. The maximum number of epochs is 500. We
use early stopping with an early stop patience of 100. The TGAT and TGN encoders are trained
as in their original works, with a maximum of 50 epochs (epochs on continuous models are signifi-
cantly longer than on static or discrete models. Training using a high number of epochs is therefore
impractical). We evaluate the models on the validation set every 5 epochs.

Other hyperparameters are specific for models; we use the original authors’ parameters and we keep
them the same across all datasets. For GAT we use 8 attention heads and a dropout value of 0.5.
GC-LSTM uses a spectral GCN (Defferrard et al., 2016) which approximates the graph convolution
and takes a hyperparameter K. It indicates the number of hops included in the neighborhood con-
volution. We use K = 3. For continuous models we use a batch size of 200, 2 attention heads, and
a dropout of 0.1. For TGN we activate memory as that is its major feature distinguishing it from
TGAT.

A.6 RUNTIME & HARDWARE

The grid search consisted of searching 3, 690 different parameter settings, each setting took on
average roughly 4 hours to complete. The grid search took roughly 13, 900 hours. Running the best
found hyperparameters with four different seeds is 140 different runs. These runs took on average
roughly 7 hours to complete, those runs took roughly 1, 500 hours. In total that is 15, 400 hours, or
642 days.

The runs were computed in parallel on HPC clusters. The clusters varied slightly in their architec-
ture, but a typical node had a processor equivalent to an Intel Xeon Gold 6126 and a GPU equivalent
to an NVIDIA Quadro P6000. A singularity container was used to ensure a consistent runtime
environment.
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